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Chapter 1

Introduction

Traduction en Français

La puissance des architectures parallèles ne cesse de croître depuis leur apparition ; les super-
calculateurs les mieux classés ces dernières années illustrent bien cette tendance. En effet,
les performances maximales pour ASCI Red (1998), Roadrunner (2008) et Summit (2018) sont
respectivement de l’ordre des teraFLOPS, petaFLOPS et exaFLOPS. Cette différence notable
peut s’expliquer par deux principaux facteurs. Premièrement, de plus en plus de cœurs sont
intégrés afin d’offrir plus de parallélisme : 9 152 cœurs pour ASCI Red, 129 600 cœurs pour
Roadrunner et 2 282 544 cœurs pour Summit. Deuxièmement, divers aspects liés au matériel
(incluant la hiérarchie de la mémoire, la capacité de stockage et les interconnexions) sont
améliorés ; par exemple l’ordonnancement des threads, les instructions vectorielles ou la
gestion de la mémoire.

Un tel potentiel de puissance de calcul vient au prix d’une conception de plus en plus
complexe et parfois difficile à appréhender. Il est pourtant nécessaire de comprendre ces ar-
chitectures afin de les exploiter. Un premier pas vers cette compréhension est la reconnais-
sance des différents types modèles mémoires pouvant composer une architecture parallèle.
Dans les systèmes àmémoire partagée, les cœurs partagent généralement le même espacemé-
moire. En revanche, les systèmes à mémoire distribuée sont des grappes de machines reliées
par le réseau, où chaque machine possède sa propre mémoire. Ainsi, l’accès à des données
situées sur des machines distantes n’est possible que si des communications explicites sont
instanciées. Dans le contexte du calcul accélérée, un système hétérogène comprend des pro-
cesseurs manycore tels que les GPUs et les FPGAs contrôlés à partir d’une machine standard
(l’hôte) via un bus PCI.

De plus, certaines architectures peuvent être intrinsèquement hétérogènes. Par exem-
ple, ARM big.LITTLE associe des cœurs de processeurs économes et lents avec des cœurs
rapides à forte consommation. D’autres exemples sont les APU AMD qui combinent des
processeurs multicœurs et un processeur graphique sur une seule puce.

En fonction du type de système ciblé, différents langages de programmation parallèle et
APIs doivent être utilisés. OpenMP [9], Pthreads [12] ou Cilk [6] ont d’abord été conçus pour

1



2 Chapter 1. Introduction

les systèmes à mémoire partagée, MPI [7] pour les systèmes à mémoire distribuée et CUDA
[2] ou OpenCL [8] pour les accélérateurs. En outre, les superordinateurs étant généralement
des grappes de processeurs combinées à des accélérateurs, il est courant de combiner des lan-
gages en fonction des types de modèles mémoires présents (par exemple, OpenMP + CUDA,
MPI + Pthreads, etc). Cependant, une autre tendance est également d’apporter plus de trans-
parence dans la programmation hétérogène avec des extensions de langage (par exemple, le
support du calcul accélérée dans OpenMP 4.0 ou encore l’introduction de communications
unilatérales dans MPI 3.0). Une autre alternative est l’introduction du modèle PGAS (Par-
titioned Global Access Space ou encore “modèle de mémoire partagée distribuée”). Dans ce
type de modèle de mémoire, la mémoire partagée est partitionnée de manière logique afin
que différents threads aient leur propre espace d’adressage. Les nouveaux langages tels que
X10 [15], Chapel [1] ou UPC [14] suivent le modèle PGAS.

La programmation parallèle peut être néanmoins difficile. En effet, plusieurs problèmes
inhérents au parallélisme existent.

Les data races

Survenant lorsque, sans synchronisation appropriée, différents threads accèdent au même
emplacement de mémoire et, sur au moins un de ces accès, une écriture est effectuée. Ceci
entraîne des résultats inexacts. Cependant, certaines data races peuvent être délibérées :
celles-ci sont dites bénignes.

Les deadlocks

On parle de deadlock lorsqu’un thread attend un événement qui ne se produira jamais ou
lorsque deux threads s’attendent simultanément. Par conséquent, le programme ne se ter-
mine jamais. Cela peut se produire tant bien dans le modèle de mémoire partagée que dans
le modèle de mémoire distribuée.

Les synchronisations

Une mauvaise gestion des synchronisations de threads nuit aux performances. Par exemple,
des sections critiques avec trop de charge de travail impliquent l’attente de threads. Le temps
d’inactivité de threads qui attendent trop longtemps doit donc être réduit.

Les faux partages

Les faux partages (false sharing) sont inhérents aux systèmes à mémoire partagée avec une
cohérence de cache trop conservatrice (notamment celle basées sur les protocoles MESI ou
MOESI). Ils se produisent lorsque plusieurs cœurs partagent la même ligne de cache. En effet,
une ligne de cache partagée est invalidée chaque fois qu’il y a une écriture. Par conséquent,
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les autres threads lisant leurs données doivent récupérer fréquemment la ligne de cache, ce
qui dégrade les performances.

Localité de données et latences de transferts

Les latences de transferts se produisent à différentes échelles. Nous pourrions par exemple
distinguer les communications entre processus dans un modèle de mémoire distribuée (ou
hétérogène) des transferts de données standard au sein d’un système à mémoire partagée.
Nous pourrions encore distinguer les transferts à l’échelle du registre vectoriel dans les ar-
chitectures SIMD. Cependant le principe reste le même ; une mauvaise localité des données
implique des latences de transfert plus élevées.

Les goulots d’étranglement

Les goulots d’étranglement surviennent lorsque trop de threads accèdent à la même mé-
moire, saturant ainsi le bus de communication. Il s’agit d’un facteur spécifique de latences de
transferts élevées, typiques des applications ne tenant pas compte des architectures NUMA
(Non-Uniform Memory Access).

Contexte de recherche

Relever les défis du parallélisme nécessite une connaissance approfondie de divers aspects
liés au programme à optimiser ainsi que l’architecture sous-jacente.

Premièrement, l’algorithme en question pourrait être modifié afin d’exposer le paral-
lélisme et améliorer l’efficacité des accès mémoires. Dans certains cas, une programmation
parallèle inefficace provient d’un manque de connaissance du langage de programmation
utilisé. Par exemple, une utilisation incorrecte des constructeurs de synchronisation entraîne
une exécution incorrecte du programme (éventuellement provoquée par des data races).

Deuxièmement, les différents types de systèmes décrits au préalable peuvent impliquer
différents types de stratégies pour exploiter pleinement leur potentiel. Par conséquent, il
peut être difficile d’optimiser une application s’exécutant sur un cluster hétérogène. En
outre, nous devons non seulement étudier quelle transformation de programme est adéquate
sur une architecture donnée, mais nous avons également parfois besoin d’une connaissance
approfondie de certains langages de programmation pour tirer le meilleur parti du matériel.
Un exemple typique est CUDA, spécialement conçu pour les GPU NVIDIA : son abstraction
de bas niveau peut augmenter la courbe d’apprentissage. Par conséquent, une programma-
tion efficace sur des architectures hétérogènes implique un large éventail de connaissances
qu’un programmeur doit posséder.

Les compilateurs sont des outils dont le flux est souvent caractérisé par (i) l’analyse
d’un code source et sa traduction en une (ou plusieurs) représentation(s) intermédiaire(s),
(ii) l’application de différentes techniques de transformation pour optimiser le programme
et (iii) la traduction de la version optimisée du code en code assembleur (compilation tradi-
tionnelle) ou en un code source de haut niveau (compilation source-à-source). L’application
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de transformations sur les représentations intermédiaires afin d’optimiser le programme im-
plique que l’analyse et la vérification du programme font également partie du processus. Par
conséquent, les compilateurs peuvent aider à alléger la tâche d’un programmeur en prenant
en charge une partie de tout le refactoring de code nécessaire pour utiliser efficacement
l’architecture cible.

Malheureusement, les technologies de compilation actuelles ne semblent pas répondre
aux besoins de la compilation parallèle. En effet, leurs représentations intermédiaires (RI),
qui sont des clés pour effectuer des optimisations, ont été originellement conçues pour des
programmes séquentiels uniquement. Cela ne restreint pas la possibilité de compiler des
programmes parallèles car les constructions parallèles sont traduites en appels runtime. Mais
certaines limitations persistent:

1. Les représentations intermédiaires n’intègrent pas la sémantique des con-
structeurs parallèles. Sans sémantique parallèle, les RIs ont une expressivité re-
streinte pour adapter les techniques d’optimisation courantes aux programmes paral-
lèles et permettre des techniques spécifiques au parallélisme. Par exemple, comment
un compilateur peut-il analyser les instances de synchronisation pour éviter des data
races si sa RI ne contient aucune abstraction des synchronisations ?

2. Les appels runtime empêchent l’application de techniques d’optimisations
classiques sur les parties séquentielles d’un programme parallèle. Comme le
compilateur ne connaît pas les effets secondaires de ces appels d’exécution, il aban-
donne tout choix d’optimisation. Même les compilateurs pour les programmes paral-
lèles usent d’appels runtime, comme en est le cas du compilateur Chapel qui traduit
le code source en C ou C ++ avec des appels runtime.

Par conséquent,

Comment pourrions-nous repenser la conception des représentations intermédiaires
pour les architectures parallèles?

Contributions de cette thèse

Cette thèse contribue à divers aspects liés aux représentations intermédiaires pour les archi-
tectures parallèles, dans le cadre de la compilation statique. Elle inclue :

1. un état de l’art des représentations intermédiaires parallèles ;
2. la conception, l’implémentation et la formalisation de TeML, un méta-langage pour

l’optimisation d’applications tensorielles, à la lumière des perspectives de recherche
exposées par l’état de l’art.
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1.1 Parallel Architectures, Programming Languages and
Challenges

The power of parallel architectures has been ever increasing since their emergence and top-
ranked supercomputers in these last years illustrate this trend. The order of magnitude of
peak performances for ASCI Red (1998), Roadrunner (2008) and Summit (2018) are respec-
tively teraFLOPS, petaFLOPS and exaFLOPS. Such differences every decade can be explained
by two main factors. First, more and more cores are integrated for greater parallelism: 9,152
cores for ASCI Red, 129,600 cores for Roadrunner and 2,282,544 cores for Summit. Second,
hardware organization (including memory hierarchy, storage capacity, and interconnec-
tions) is revisited to improve various aspects such as thread scheduling, vector instructions,
and memory management. The potential of recent hardware comes along with a more com-
plex design that can be difficult to grasp, but necessary to understand to leverage them.

The first step towards understanding is acknowledging the different types of memory
systems composing a parallel architecture (cf. Figure 1.1). In shared memory systems, cores
share the same memory and addressing space. On the other hand, distributed memory sys-
tems are clusters of machines linked through the network where each machine has its own
private memory. Thus, accesses to data located on remote machines require the instantiation
of explicit communications. In the context of accelerated computing, heterogeneous systems
include manycore processors such as GPUs and FPGAs monitored from a standard machine
(the host) through a PCI bus.

Heterogeneity can be inherent to certain architectures. For instance, the ARM
big.LITTLE (cf. Figure 1.2) couples slow processor cores with high-speed cores. Other
examples are AMD APUs that combine multi-core processors and a GPU on a single chip
(cf. Figure 1.3).

Different parallel programming languages and APIs are used, depending on the targeted
system. OpenMP [9], Pthreads [12] or Cilk [6] were first designed for shared memory sys-
tems, MPI [7] for distributed memory systems and CUDA [2] or OpenCL [8] for accelerators.
Furthermore, as supercomputers are clusters of CPUs combined with accelerators, it is com-
mon to combine languages targeting different memory systems (i.e. OpenMP + CUDA, MPI
+ Pthreads, etc). Though, another trend is to offer more transparency in heterogeneous pro-
gramming with language extensions (i.e. support of accelerated computing in OpenMP 4.0,
the introduction of one-sided communications in MPI 3.0). Another alternative is the intro-
duction of the PGAS model (also known as “distributed-shared memory model”). This type
of memory model is based on a logical partitioning of the shared memory so that different
threads have their own addressing space. New languages such as X10 [15], Chapel [1] or
UPC [14] follow the PGAS model.

Due to various issues inherent to parallelism, parallel programming can be challenging.
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Figure 1.1: Different types of memory systems in parallel architectures
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Figure 1.2: ARM big.LITTLE

Figure 1.3: AMD Trinity APU die shot
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Data races

Data races occur when, without proper synchronizations, different threads access to the
same memory location and at least on these accesses is a write. These lead to inaccurate
results. Nevertheless, benign data races are to  be distinguished as they are deliberate.

Deadlocks

Deadlocks, that lead to programs that never terminates, can be created in different circum-
stances, e.g. a thread waiting for an event that will never occur, or two threads waiting for
each other to complete their tasks. Deadlocks can be encountered in the shared memory
model as well as in the distributed memory model.

Synchronizations

An improper use of synchronization constructs can lead to poor performances. For example,
critical sections containing too much workload can result into thread stalling.

False sharing

Inherent to sharedmemory systems with too conservative cache coherence (especially when
based on MESI or MOESI protocols), it occurs when several cores share the same cache line.
The shared cache line is invalidated whenever one of the cores writes to it. Therefore, other
threads reading their data need to re-fetch the cache line. Frequent data re-fetching degrades
performances.

Data locality, transfer latencies

Poor data locality can increase transfer latencies and the number of memory accesses. These
issues can happen at different scales; we can distinguish communications between processes
in a distributed memory or a heterogeneous model from standard data transfer within a
shared memory system, and even from transfers at the vector register scale in SIMD archi-
tectures.

Traffic contention

Traffic contention occurs when too many threads access the same memory, thus creating a
bus bottleneck. This is a specific factor of high transfer latencies typical to NUMA-unaware
applications.

1.2 Research Context

Tackling parallel-specific challenges requires a deep knowledge of aspects related to the pro-
gram as well as the underlying architecture. First, the program’s algorithm may need to be
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rewritten to expose parallelism and enhance efficient memory accesses. In some cases, such
rewriting can target the proper use of the parallel programming language. For instance,
improper use of synchronization constructs when necessary leads to incorrect program ex-
ecution (sometimes caused by data races or deadlocks). Second, the different types of sys-
tems depicted above may require different types of strategies to leverage their potential.
Consequently, it can be challenging to optimize an application running on a heterogeneous
cluster. Furthermore, not only should we investigate which program transformations are
adequate on a given architecture, but we also sometimes need a good knowledge of certain
programming languages to make the most of the hardware. A typical example is CUDA that
is designed for NVIDIA GPUs; its low-level abstraction can increase one’s learning curve.
Therefore, efficient programming on heterogeneous architectures involves a wide spectrum
of knowledge that a programmer needs to grasp.

Compilers are tools which flow is often characterized by (i) parsing a source language
and translating it into an (or several) intermediate representation(s) (IR), (ii) applying var-
ious transformation techniques on the IRs to optimize the program then (iii) translating
the optimized version of the code either into assembly code (traditional compilation) or a
high-level program (source-to-source compilation). IR transformations to optimize the pro-
gram implies that program analysis and verification are also part of the compilation process.
Therefore, compilers can help alleviate a programmer’s task by taking in charge part of all
the code refactoring required for an efficient use of the target architecture.

Unfortunately, current compiler technologies seem not to catch up with the needs of
parallel compilation. Indeed, their intermediate representations, that are keys to perform op-
timizations, were originally designed for sequential programs only. This does not restrain
the possibility of compiling parallel programs since parallel constructs are translated to run-
time calls. But such characteristics raise some limitations:

1. Intermediate representations do not integrate the semantics of parallel con-
structs. Therefore, it is difficult to adapt existing optimization techniques to parallel
programs. This also limits the ability to apply parallel-specific techniques. For in-
stance, how could a compiler analyze synchronization instances to avoid data races if
its IR does not have any representation of synchronizations?

2. Runtime calls impede the application of commonoptimizations on sequential
parts in a parallel program; with unknown side-effects of a runtime call, the com-
piler becomes conservative. For example, in Figure 1.4, constant propagation and dead
store elimination are, as expected, applied when no MPI communications are used.
However, Figure 1.5 shows that none of these optimizations have been performed due
to the presence of the MPI constructs. Even compilers for parallel programs may rely
on runtime calls; this is the case for the Chapel compiler that translates the source
code into C or C++ with runtime calls.

Therefore,
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1 if (taskid == 0) {
2 a = 0;
3 b = a;
4 }
5 else if (taskid == 1) {
6 a = 1;
7 b = 2;
8 printf("%d\n", b);
9 }

1 taskid.0_6 = taskid;
2 if (taskid.0_6 == 1)
3 goto <bb 3>;
4 else
5 goto <bb 4>;
6 <bb 3>:
7 # DEBUG a => 1
8 # DEBUG b => 2
9 # DEBUG __fmt => "%d\n"

10 __printf_chk (1, "%d\n", 2);

Figure 1.4: Original code sample without MPI communications (left) and its
corresponding GCC IR (right) after applying -O2 optimizations

1 if (taskid == 0) {
2 a = 0;
3 b = a;
4 MPI_Recv(&a, 1, MPI_INT, 1, 0,

MPI_COMM_WORLD, NULL);↪→
5 }
6 else if (taskid == 1) {
7 a = 1;
8 b = 2;
9 printf("%d\n", b);

10 MPI_Send(&b, 1, MPI_INT, 0, 0,
MPI_COMM_WORLD);↪→

11 }

1 taskid.0_6 = taskid;
2 if (taskid.0_6 == 0)
3 goto <bb 3>;
4 else
5 goto <bb 4>;
6 <bb 3>:
7 a = 0;
8 b = 0;
9 MPI_Recv (&a, 1, 1275069445, 1, 0,

1140850688, 0B);↪→
10 goto <bb 6>;
11 <bb 4>:
12 if (taskid.0_6 == 1)
13 goto <bb 5>;
14 else
15 goto <bb 6>;
16 <bb 5>:
17 a = 1;
18 b = 2;
19 # DEBUG __fmt => "%d\n"
20 __printf_chk (1, "%d\n", 2);
21 MPI_Send (&b, 1, 1275069445, 0, 0,

1140850688);↪→

Figure 1.5: Original code sample with MPI communications (left) and its cor-
responding GCC IR (right) after applying -O2 optimizations
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How do rethink intermediate representation design for parallel architectures?

1.3 Thesis Contributions and Outline

This thesis contributes to various aspects related to the intermediate representation for static
parallel source-to-source compilation:

1. A survey of parallel intermediate representations;
2. The design, implementation, and formalization of TeML, a tensor optimization meta-

language, in the light of research perspectives exposed by the survey.

We focus on expressiveness and functionality, thereby providing a flexible framework for
suitable static optimizations, as well as prospective dynamic ones. This document is outlined
as follows. Chapter 2 is a survey of contributions to parallel intermediate representations.
Chapter 3 recalls characteristics of numerical applications and exposes challenges in tensor
optimizations with, as an example, issues encountered in computational fluid dynamics. We
then study the challenges of code transformations in the context of NUMA architectures in
Chapter 4. Chapter 3 and 4 are preliminary to understand choices in the design of TeML,
presented in Chapter 5. Chapter 6 presents the formal specification TeML.We then conclude
this dissertation with Chapter 7, mentioning future work.



Chapter 2

Intermediate Representation for
Explicitly Parallel Programs:

State-of-the-art

Dans ce chapitre, nous étudions les représentations intermédiaires parallèles proposées ces
dernières années. Contrairement à l’état-de-l’art proposé par Belwal et Surdashan [31], nous
nous concentrons exclusivement sur les représentations de programmes explicitement parallèles.
Nous prenons donc en compte un nombre considérable de contributions non incluses dans [31].

Les contributions sont classées en 4 catégories de représentations : les langages intermédi-
aires, les graphes, la forme d’assignation unique statique (SSA) et la représentation polyédrique.
Ces différents types de représentations ont des rôles complémentaires dans un flot de compila-
tion. En effet, les graphes sont utiles pour représenter, par exemples, différents attributs du
flot d’un programme (par exemple le flux parallèle ou les dépendances). La forme SSA facilite
l’analyse et l’optimisation du flot de données. Le modèle polyédrique quant à lui est puissant
pour analyser et optimiser les boucles imbriquées. Et finalement, les langages servent de portes
d’entrées pour générer ces différentes représentations.

Les contributions aux RIs parallèles sont principalement axées sur l’inclusion de la séman-
tique parallèle dans ces différents types de représentations. Mais ce domaine de recherche en est
encore à ses débuts, ce qui laisse plusieurs perspectives de recherches encore possibles tels que la
prise en compte des hiérarchies mémoires, la possibilité d’analyser les pointeurs, l’expressivité
des RIs relativement à différents domaines d’applications, leur intégration concrète dans les out-
ils de compilation, les méthodologies d’optimisations impliquant leur usage, ainsi que le rôle de
la compilation dynamique.

∗ ♣ ∗ ♣ ∗

In this chapter, we survey parallel intermediate representations (PIR) proposed in recent
years in the context of static compilation. Unlike the survey proposed by Belwal and Sur-
dashan [31], we focus exclusively on representations for explicitly parallel programs. We,
therefore, take into account a considerable amount of contributions not included in [31].

13
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Contributions are classified in 4 categories with complementary roles in a compilation
flow: intermediate languages, graphs, static single assignment form, and polyhedral repre-
sentation. Indeed, graphs are useful to represent different program behaviors (e.g the parallel
flow or dependences), the static single assignment form eases data-flow analyses and opti-
mization, the polyhedral model is powerful to analyze and optimize nested loops and finally,
intermediate languages are gateways to generate these different representations.

In the following, we address each category with an introduction and related contribu-
tions.

2.1 Intermediate languages

Intermediate languages ease program analysis. The C language, for instance, is difficult to
analyze for several reasons including its large set of constructs and the difficulty of defining
its formal semantics. An intermediate language such as CIL [97] is more convenient as it is
an analyzable subset of C with fewer keywords. Another interest is to serve as a common
intermediate language for compilers that support multiple languages. We can mention PIPS
IR [10], designed for C and Fortran programs.

In the context of parallel programs, several intermediate languages have been proposed
at different levels of abstraction. Themain interest in designing such a language is to capture
parallel semantics including expressing parallel loops, describing variables properties (e.g.,
shared or private) or abstract synchronizations.

Selected contributions in the literature

Erbium Miranda et al. [93, 92] proposed Erbium, an intermediate language specifically
designed to support classic or platform-specific optimizations for streaming applications.
Erbium features data structures and functions for the representation of data streaming and
resource management.

Threads creation are abstracted as processes communicating and synchronizing through
event records. Records abstract FIFO channels with read or write views, that is, unbounded
streams addressable through non-negative indexes. Live elements of read or write views are
stored in a sliding window. The size of such a window is a view’s horizon.

Several primitives are useful for the management of resources: commit, update, release
and stall. The following producer-consumer flow illustrates their usage. On a producer’s
side, a view is on read and write access until the producer commits it; at this point, the view
becomes read-only and is made available to the consumer process. However, unless the
consumer updates its view with the corresponding index, it will not actually consume the
view. After being consumed, a view can be released and the storage location of the released
view can be reused by a producer when using the stall primitive.

Erbium has been implemented in an experimental branch of GCC 4.3.
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GCC IR In order to adapt GCC optimizations to parallel programs, one could think of re-
implementing optimization passes. However, Pop and Cohen [104] attempt to tackle the
lack of parallel semantics in GCC by preserving both parallel semantics and optimizations
passes implementation. For this purpose, they propose a set of annotations.

Dataflow annotations abstract informations about accessed variables within a block such
as read, write or reduced variables. Control-flow annotations abstract barriers and synchro-
nizations (e.g, execution by a single thread, barrier, synchronization point, memory flush).
Finally, user hints store any information provided by the programmer, including the sched-
ule of a loop or the number of threads. These annotations characterize a parallel region
through calls to factitious built-in functions in conditional statements.

Pragma-based programming languages such as OpenMP or HMPP could benefit from
such abstractions.

PLASMA IR PLASMA [99] is a programming framework for writing portable SIMD pro-
grams. Supporting multiple types of high-level programming languages, its main compo-
nent is the intermediate representation (PLASMA IR). Abstractions are provided for pro-
grams to be compiled to different SIMD architectures including accelerators or processors
with SIMD extension.

The IR has four main categories of constructs: operators, vectors, distributors and vector
compositions. Operators act on either primitive types (e.g add, multiply elements) or aggre-
gations of primitive types called blocks (e.g permute blocks, retrievemaximumorminimum).
Vectors are blocks with a length attribute. Distributors are parallel operations performed on
vectors (e.g parallel addition of vectors, reduction of elements in a vector). Finally, vector
composition allow the encoding of operations such as concatenation, slicing or gathering.

The input source file is a PLASMA source, written independently of any SIMD device and
the generated code targets CPUs and NVIDIA GPUs. General loop transformations (e.g, loop
fusion, tiling [138, 75]), communication optimizations or more specific GPU optimizations
(e.g, memory coalescing [59]) can be performed within the IR.

PENCIL Baghdadi et al. designed PENCIL [24, 25], a portable intermediate language
to ease highly optimized GPU code generation, lowered from domain-specific languages
(DSLs). PENCIL extends a subset of C99 with specific constructs including directives, func-
tion attributes, and built-in functions. Pointer manipulation as arguments of functions is
not allowed, as well as recursive function calls. Furthermore, a for loop must have a single
iterator, non-changing start and stop values within the loop and a constant increment.

The main constructs of PENCIL are:

• the assume predicate which guarantees that a boolean condition e is held whenever
the control flow reaches the predicate,

• the independant directive which is a loop annotation indicating that a loop has no
dependencies,
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• summary functions that describe memory access patterns of functions in order to an-
alyze memory footprints

• the kill statement that signals that a variable or an array element is dead at the point
where the statement is called.

PENCIL is used in a polyhedral compilation flow that generates OpenCL code, using
PPCG [137], for programs written in VOBLA [30], a DSL for linear algebra.

PIR Zhao and Sarkar [141] designed PIR for Habanero-Java [44]. Constructed from
an abstract syntax tree (AST), PIR is a three-level IR. The high-level PIR (HPIR) is
a tree, the Region Structure Tree, based on the syntax of Habanero-Java constructs
(finish, async, isolated, foreach, forall) and more general ones such as for
and while. When reaching the middle-level (MPIR) parallel constructs are lowered to
async, finish and isolated; constructs that cannot be directly expressed become a com-
bination of these, for instance foreach is translated to a for with an async body. Finally
the low-level (LPIR) is alike a sequential flat IR where parallel constructs are expressed as
runtime APIs.

The May Happen in Parallel (MHP) analysis [21] or parallel loop chunking in the pres-
ence of synchronizations [118] can be performed at the HPIR, whereas other analysis such
as load elimination or data race detection can rather be performed at the MPIR.

SPIRE Unlike other IRs, Khaldi et al. [77] proposed amethodology to extend sequential IRs
with parallel semantics. Named SPIRE (Sequential to Parallel Intermediate Representation
Extension), it introduces a few key constructs that abstract execution, synchronization, data
distribution, communications, and the memory model.

Data and task parallelism are respectively represented with the parallel and spawn
construct. Reductions can be specified using reduced. Collective synchronizations are ab-
stracted using barrier, whereas atomic is used for mutual exclusions. The single con-
struct defines the sequential execution of statements within a spawned section. Further-
more, memory information can be specified for variables using private, shared or pgas.
Communications and point-to-point synchronization are handled with intrinsic functions:
send(), recv(), signal() and wait().

A proof of concept is demonstrated with the generation of OpenMP task parallelism in
PIPS [76] and the optimization of OpenSHMEM communications in LLVM [78].

INSPIRE INSPIRE [73] is the parallel IR of the Insieme1 compiler infrastructure.
The parallel execution of instructions is modeled as a job cooperatively executed by a

thread group. pfor is the main construct for work distribution. Data distribution within a
group is performed using redistribute. Point-to-point communications can be specified
using channels. In addition, several built-in functions are used for parallelismmanagement.

1Insieme Compiler project from the University of Innsbruck: www.insieme-compiler.org
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The functions getThreadID() and getNumThreads() respectively return the thread iden-
tification and the total number of threads. Threads are allowed to create sub-thread groups
with spawn(), which can be merged using merge() or mergeAll().

Several contributions demonstrate the usability of INSPIRE; Insieme’s runtime system
[131], a framework for the implementation and optimization of MPI programs based on the
Insieme compiler and runtime system [100].

2.2 Program Representations Using Graphs

As shown in the survey of Stanier and Watson [126], graphs are popular in modern com-
pilers. One of the most common is the control flow graph (CFG) [23]. The CFG repre-
sents all possible paths of a program during its execution. Formally, it is a graph CFG =

(V ,E,Entry,Exit) where:

• V is a set of nodes representing basic blocks in the program;
• E is a set of edges representing sequential control flow in the program;
• and Entry and Exit are respectively nodes representing the entry and exit points of
the program.

Basic blocks are sequences of instructions with no jumps, nor conditional branching.
Conditional branches mark the end of a basic block with two outgoing edges representing
the true of f alse paths. CFGs are useful for control- and data-flow analyses (e.g reaching
definitions, available expression, liveness analysis) and optimizations (e.g, unreachable code
elimination, common sub-expression elimination, copy or constant propagation) [22].

However, classic CFG properties are not sufficient for parallel programs. Indeed, the flow
of parallel programs involves in addition concurrency, synchronization, mutual exclusion
and sometimes, explicit communications. The wide implementation of the CFG in compilers
and their unsuitability for parallel programs is the main motivations for contributions to
provide adequate CFGs for parallel programs.

Another main representation is the program dependence graph (PDG) [64]. It is defined
as a graph PDG = (V ,E) where:

• V are nodes representing instructions;
• E either represent control or data dependences within the program.

Useful for dependence analyses, it can be applied to parallel programs if the parallel flow is
properly captured. Figure 2.1 is an example of a program and its corresponding CFG and
PDG.

Selected contributions in the literature

Extended flow graph Srinivasan and Wolfe [125] proposed the extended flow graph
(EFG), a hierarchical representation combining parallel control flow graphs (PCFG) and par-
allel precedence graphs (PPG).
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1 y = x + 7;
2 if (y < 5)
3 a = a + 7;
4 else
5 a = a - 7;
6 y += a;

Entry

y = x
+ 7 if
(y < 5)

a = a + 7 a = a - 7

y += a

Exit

y = x + 7

if (y < 5)

a = a + 7 a = a - 7

y += a

Figure 2.1: A program, its CFG (mid) and its PDG (left)

The PCFG is a graph G = (VG ,EG ,EntryG ,ExitG) where:

• VG is a set of basic block nodes or parallel block (called supernode);
• EG is a set of edges representing potential flow of control in the program;
• EntryG is the unique start node;
• ExitG is the unique exit node.

Within a supernode, the parallel execution is represented by the PPG.The PPG is a graph
P = (VP ,EP ,EntryP ,ExitP ) where:

• VP is a set of sections in a parallel block;
• EP is a set of wait-dependence arcs;
• EntryP is the co-begin node, where co-begin denotes the beginning of a parallel sec-
tion;

• ExitP the co-end node, denoting the end of the parallel section.

Finally, each section in a parallel block is also represented by a PCFG S =

(VS ,ES ,EntryS ,ExitS ) where EntryS and ExitS respectively represent the entry into and
the exit from the section.

The PCFG comes along with a parallel SSA form presented in the next section.

Parallel program graph Sarkar and Simons [116] proposed the parallel program graph
(PPG), a graph PPG = (N ,Econt ,Esync ,TYPE) where:

• N is a set of node representing arbitrary sequential computation;
• Econt are control edges;
• Esync are synchronization edges;
• TYPE is a node type mapping.
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Nodes can be identified as: START (beginning of the program), PREDICATE (conditional
statements, with two outgoing edges either true or false), COMPUTE (nodes with only
one outgoing edge) and MGOTO (creation of a parallel section where each successor of
the MGOTO node is a thread).

Authors demonstrate how the reaching definition analysis may be applied using the PPG
[115]. However, such representation is restricted to deterministic parallel programs.

Concurrent control flow graph Lee et al. [84] proposed the concurrent control flow
graph (CCFG). They introduce the notion of concurrent basic blocks (CBB) to incorporate
thread interaction. A CBB has the fundamental definition of a basic block in a sequential
program, but with three additional properties involving parallel program constructs: (i) only
the first statement can be a wait or contain a use of a conflicting variable, (ii) only the last
statement can be a post or contain a definition of a conflicting variable and (iii) if a CBB
contains a parallel execution, a mutual exclusion construct or barrier statement, then that
statement is the only one in the concurrent basic block except end parallel do.

A node that contains an end parallel do contains an assignment to the loop index
variable.

Based on this, a CCFG is a directed graph G = (N ,E,Ntype,Etype) where:

• N is the set of nodes representing basic blocks;
• E is the set of edges composed of control flow edges, synchronization edges and con-
flict edges;

• Ntype is a function telling the class of nodes;
• Etype , a function telling the type of edges.

The CCFG comes along with the concurrent SSA form presented in the next section.

OpenMP control flow graph Lin [85] introduced the OpenMP CFG (OMPCFG) to model
control flow in OpenMP programs. The graphs is composed of: basic nodes for basic blocks
and directive nodes for OpenMP directive blocks. Entry and Exit nodes are respectively the
unique entry and exit points of the graph. The OMPCFGmay serve for concurrency analysis
and static data race detection.

SPIR Choi et al. [51] proposed the Signal Processing Intermediate Representation (SPIR),
a dataflow graph for efficient mapping of streaming applications. It is graph G = (N ,E)

where:

• N is a set of nodes corresponding to either a task or the condition of an if statement;
• E are edges representing data transfer between tasks. Edges following if conditions
are annotated with true or false.

A possible application is task mapping onto processors maximizing throughput under
memory constraints.
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Kimble IR Benoit and Louise [33] introduced the Kimble IR, meant to support explicit
parallelism and perform automatic parallelization. It is a direct acyclic graphG = (N ,D,E)

where:

• N is a set of nodes corresponding to program constructs: function, loop, region, cluster
(a sequence of dependent statements), statement, guard or function call;

• D is a set of ordered pairs of nodes denoting a dependency between two nodes;
• E is a set of ordered pairs of nodes expressing a hierarchical relationship.

Gomet [32], an extension of GCC to support multi-grain parallelism on MPSoCs uses
Kimble IR. Program transformations such as reordering, function inlining and outlining can
be performed within the IR. In [34], they describe how it is used to determine the execution
cost on a given processor.

MPI control flow graphs TheMPI-CFG [119] extends the CFDwith communication nodes,
which are separate basic blocks expressing communication statements, and edges denoting
data transfer. Edges are also annotated with a value providing pieces of information about
process IDs whenever possible. Additional information may be provided if such ID is un-
known. An unknown process proven to be the only one executing a communication is
annotated sinдle . If one or more processes may be involved, unknown is the annotation.
Finally, multiple may be used if it is guaranteed that more than one process executes the
communication.

Point-to-point communications are typically abstracted using single communication
edges. But specific representations have been provided for each type of collective com-
munications such as broadcasting or scattering in order to reflect their unique semantics.

Strout et al. [129] demonstrate the MPI-CFG could be useful for static analysis. Fur-
thermore, they propose the MPI-ICFG for inter-procedural MPI calls, obtained through an
inter-procedural CFG [83] enhanced with communication edges.

Delite IR Delite [42] is a framework for the compilation of domain-specific languages to
heterogeneous targets. Its IR is three-level.

The lowest level, the generic IR, is a composed of a collection of nodes only linked if their
exist read-after-read or control dependencies; the nodes are free otherwise, hence named
sea of nodes. The mid-level is the parallel IR, extending the generic IR to express particular
parallelism patterns. For instance, a node with the label sequential op indicates that the node
is executed sequentially and another one with a reduce op label indicates are reductions.
Finally, since Delite’s input programs can be written in various DSLs, the highest level is the
domain-specific IR.

Different types of optimizations are performed depending on the level of IR. Domain-
specific and parallel-specific optimization are respectively applied in the high-level and mid-
level IR. Classic optimizations are mainly performed in the low-level IR.
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Tapir Tapir [117] extended LLVM IR with fork-join parallelism. Using three instructions,
that is, detach, reattach and sync, it extends the CFG to represent parallel task and syn-
chronizations. Parallel loops are represented as spawned blocks into a number of tasks cor-
responding to the number of loop iterations.

A certain number of LLVM analyses and optimization passes have been adapted to Tapir
including alias, data-flow analyses, and classic optimization passes.

2.3 The Static Single Assignment Form

The static single assignment (SSA) form [56] is a popular compilation technique that consists
in assigning variables only once. That is, if a variable v is assigned 3 times, in the SSA form,
each assignment will be uniquely identified asvi with i = 1..3. When necessary to deal with
control flow merges due to multiple possible paths (e.g after a if-then-else section), a φ-
function is used to abstract merging points. For example, the SSA form of the code sample
in Figure 2.1 is:

1 y1 = x1 + 7;
2 if (y1 < 5)
3 a2 = a1 + 7;
4 else
5 a3 = a1 - 7;
6 y2 = φ(a2, a3);

The SSA form is often combined with the CFG as it eases the identification of data depen-
dencies and thus enables more efficient data-flow optimization techniques. The SSA form
cannot accurately be applied on array computations within loops. More accurate represen-
tations, array SSA forms, therefore exist [82, 114].

However, applying the SSA form in a parallel program exhibits issues: How dowe handle
merging points at the end of a parallel section? How do we handle the concurrent update
of a shared variable within a task? Indeed, parallel sections may include writes by multiple
threads on the same variable. As the order of thread execution may be non-deterministic,
merging points at the end of such sections are necessary.

Selected contributions in the literature

Srinivasan et al. [124] pioneered parallel SSA (PSSA) forms. Their PSSA form features, in
addition to the φ-function, a ψ -function denoting parallel merge nodes. Nascent [128], a
Fortran parallelizing compiler, uses the PSSA form for optimizations forward substitution
and constant propagation in parallel programs. However, the PSSA form is limited to the
PCF Fortran standard, with a weak memory consistency model.

For better generalization, Lee et al. [84] also proposed the concurrent SSA form (CSSA)
similar to PSSA form but also capturing the update of a shared variable within a concurrent
task using π -functions. They redefined a larger set of compiler analysis and optimizations
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including copy propagation, dead code elimination, common sub-expression elimination,
and redundant load/store elimination.

As the CSSA form focuses only on event-based synchronizations, Novillo et al. [98]
proposed the CSSAME framework based on an extended CSSA form [84] to deal with mutual
exclusion. The CSSAME framework does not introduce any new term; they incorporate the
semantics of mutual exclusion synchronizations to be taken into account when building
the CSSA form. They show how constant propagation, dead code elimination, and lock
independent code motion can be performed in the presence of mutual exclusion.

Collard [55] aimed at representing accurately the array SSA form in the presence of
concurrency, event-based synchronization or mutual exclusion. The idea is to clearly define
the order of memory updates then applies array SSA form accordingly.

Chakrabarti and Banerjee [45] proposed an array SSA form in the context of the auto-
matic generation of message-passing programs from a program similar to High-Performance
Fortran standards. This work aims at maintaining accurate information about distributed
data in such a context. Therefore, they not only distinguish merging at dominance frontier
(through the Φd -term) and after each non-killing write of an array (through the Φw -term)
but also before any read that occurs on a distributed array variable (through the Φr -term).
The array SSA form in an automatic parallelizing compiler named PARADIGM in order to
perform data placement, generation and optimizations of data transfers for MPI final code
generation.

2.4 The Polyhedral Model

The polyhedral model [63] is a mathematical representation of a subset of imperative lan-
guages called static control programs (SCoP). A SCoP is amaximal set of consecutive instruc-
tions where the loop bounds (for loops), conditions (if statements) and arrays (excluding
pointers) are affine functions depending only on outer loop indexes (e.g, i , j) and constant
parameters (e.g, n). Each statement S can be associated to an iteration vector x ∈ Zp , where
the ith element of the vector is the loop index. The set of possible values for the iteration
vector is called the iteration domain. The iteration domain can be therefore specified by a
set of linear inequalities defining an integer polyhedron:

DS = {x⃗ ∈ Zp | Ax⃗ + c⃗ > 0} (2.1)

where x⃗ is the iteration vector, A is a constant matrix and c⃗ is a constant vector. Figure 2.2
illustrates the representation of a program in the polyhedral model.

Another characteristic of a SCoP is the scheduling function that describes the logical date
of execution for each statement instance. For instance, given the following code sample
where S1, S2 and S3 are instructions
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1 do i = 1, n
2 do j = 1, n
3 if (i <= n+2-j)
4 S1;

*.......,
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Figure 2.2: A loop, its corresponding iteration domain (bottom left) and poly-
hedral representation (right).

1 for (i = 0; i < N; i++)
2 S1;
3 for (j = 0; j < N ; j++)
4 S2;
5 S3;

the corresponding scheduling function is:

S1(i) = (i, 0)

S2(i, j) = (i, 1, j, 0)

S3(i, j) = (i, 1, j, 1)

The polyhedral model enables exhaustive analysis of nested loops. Several state-of-the-art
tools are based on polyhedral compilation techniques: Clan [16] or Pet [134] as extractors
of the polyhedral representation of a program; isl [135] or PolyLib [87] as libraries for ma-
nipulating polyhedra; CLooG [27] as a polyhedral-to-C code generator; PPCG [137] as C-to-
CUDA code generator.

Several compilers have integrated polyhedral compilation: PIPS [10], GCC through
Graphite [106], LLVM through Polly [66], IBM XL through PluTo [38] and a R-stream [91].

Consequently, advances in parallelism support impact both research and industrial com-
pilers.

Selected contributions in the literature

Contributions in the polyhedral model exhibit two approaches. Most researches attempt to
identify at least subsets of parallel programs compatible with the polyhedral representation.
However, extending the representation has also been addressed.

Basupalli et al. [28] integrated an OpenMP program verifier, OmpVerify, in the Eclipse
IDE for data race detection. To perform such an analysis, they first extract the initial de-
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pendences of the program (ignoring the parallel constructs), then they consider the parallel
construct omp for as a program transformation that assigns new time-stamps to instances
in the program. Finally, the task of the verifier is to ensure that this transformation does
not introduce any data race. However, some dynamic concurrent accesses may be difficult
to detect.

Liveness analysis for register allocation requires the computation of a set of conflicting
variables in a live range. Such computation is based on the notion of total order among each
iteration, which is not applicable to parallel programs. To put liveness analysis to work
with parallel programs, Darte et al. [57] proposed a method where conflicting variables are
computed based on the notion of partial order and the happens-before relationship that can
be computed with Presburger sets and relations [136].

The Insieme compiler also features the translation from INSPIRE [73] to polyhedral
representation. Therefore, Pellegrino et al. [101] developed a polyhedral-based approach to
exact dependence analysis of MPI communications. They define, for MPI point-to-point and
collective communications, semantically equivalent loops that fit in the polyhedral model.
Communications must be first rewritten in a normal form, in which an MPI program only
contains MPI_Send and MPI_Recv. Then a data dependence graph is generated in order to
apply a set a transformation including loop fission or code motion.

In order to perform static data race detection in X10 programs, Yuki et al. [140]
adapted the array dataflow analysis to a subset of the language, fitting in the polyhedral
model. The subset includes sequences of instructions, sequential for loops, the parallel
activation construct async and the termination construct finish. Similarly to [57] for
liveness analysis, the array dataflow analysis is based on the happens-before relationship of
instances.

Cohen et al. [52] studied polyhedral techniques applied to OpenStream [105], a
stream-programming extension of OpenMP, mainly for static analyses such as dependence
analysis and deadlock detection. The main idea is to exhibit the properties of OpenStream
programs that can be represented in polyhedral analysis.

Unlike previous approaches, Chatarasi et al. [47] proposed extensions to the polyhedral
model. They introduce the notion of space mapping, abstracting the multi-threaded loops
and phase mapping to distinguish different parallel phases (e.g. separated by barriers). They
demonstrate its usefulness for static data race detection.
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Figure 2.3: Timeline of attempts of revisiting existing IRs or designing new
ones. IRs marked with * are those that were extended with SPIRE. New IRs are
in italic. PR stands for polyhedral representation

2.5 Discussion

Using further classifications, we may observe different trends in terms of language support,
code generation, memory model or concrete application in compilers. Table 2.1 summarizes
the different contributions, their year of appearance and the characteristics of the type of
parallel programs supported.

2.5.1 Observations

Timeline. Figure 2.3 exhibits two eras of parallel IR proposals; flow graphs and SSA forms
prior to 2008, then from 2010 a variety of intermediate languages and extension of research
compiler IRs.

Language support Most contributions target only one parallel language or a restricted
set. PLASMA, SPIRE and INSPIRE are exception attempting to support a wider range of
languages.

Levels of abstractions for intermediate languages Wemay generally consider that any
contribution targeting GCC IR, LLVM IR or common graph representation are general-
purpose. However, Erbium, while being implemented in GCC, remains specific to streaming
applications. On the other hand, PLASMA IR is architecture-specific.

Erbium and PENCIL, unlike other languages, may be used as user programming lan-
guages.

IRs structure PIR and Delite IR distinguished themselves with their multi-level IRs en-
abling various types of optimizations. With the complementarity of the CFG and SSA form,
contributions of Srinivasan et al. [125, 124], and Lee et al. [84] can also be considered as
multi-level IRs.
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Table 2.1: Year of contributions and characteristics of their supported parallel
programs

Contributions Characteristics of supported parallel programs Year
Intermediate languages

[93] (Erbium) Streaming applications 2010
[99] (PLASMA IR) SIMD parallelism 2010
Pop, Cohen [105] Directive-based 2011
[141] (PIR) Habanero-Java 2011
[77] (SPIRE) Multithreaded, distributed, PGAS 2013
[73] (INSPIRE) Multithreaded, distributed, with accelerators 2013
[24] (PENCIL) DSLs 2015
[117] (Tapir) Multithreaded 2017

Graphs
[125] (EFG) PCF Fortran 1992
[116] (PPG) Deterministic multithreaded 1994
[84] (CCFG) Multithreaded 1998
[119] (MPI-CFG) MPI 2000
[129] (MPI-ICFG) MPI 2006
[85] (OMPCFG) OpenMP 2008
[51] (SPIR) Streaming applications 2009
[32] (Kimble IR) Multithreaded 2010
[42] (Delite IR) DSLs 2011

SSA form
[124] (PSSA) PCF Fortran 1993
[84] (CSSA) Multithreaded with event-based synchronizations 1998
[98] (CSSAME) Multithreaded with synchronizations and mutual exclusion 1998
[55] Multithreaded with synchronizations and mutual exclusion 1999
[45] HPF-like 2001

Polyhedral model
[28] OpenMP 2011
[101] MPI 2012
[140] X10 2013
[46] Multithreaded 2015
[47] Multithreaded 2016
[57] Multithreaded 2016
[52] OpenStream [105] 2016
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Table 2.2: Intermediate languages and some examples of their applications for
language support, code generation and integration in compilers

Intermediate languages Language support Code generation Compilers
[93] (Erbium) OpenStream [105] - GCC [92]
Pop and Cohen [105] OpenMP, OpenACC - GCC
[99] (PLASMA IR) OpenMP, Matlab, StreamIT CUDA PLASMA
[24] (PENCIL) VOBLA [30] OpenCL, CUDA DSL compilers
[77] (SPIRE) OpenMP, MPI, Chapel, OpenSHMEM OpenMP LLVM [78], PIPS [76]
[141] (PIR) Habanero-Java [44] - Habanero-Java compiler
[73] (INSPIRE) OpenMP, MPI, Cilk, OpenCL OpenMP, MPI Insieme [131, 100]

Table 2.3: IRs and their memory models scope

Contributions Shared Distributed Host-accelerator PGAS
[93] (Erbium) ✓
Pop and Cohen [105] ✓ ✓
[99] (PLASMA IR) ✓ ✓ ✓
[24] (PENCIL) ✓
[77] (SPIRE) ✓ ✓ ✓
[73] (INSPIRE) ✓ ✓ ✓
[117] (Tapir) ✓
[125, 124] (EFG + PSSA) ✓
[84] (CCFG + CSSA) ✓
[116] (PPG) ✓
[85] (OMPCFG) ✓
[51] (SPIR) ✓
[32] (Kimble IR) ✓
[119] (MPI-CFG) ✓
[129] (MPI-ICFG) ✓
[141] (PIR) ✓
[42] (Delite IR) ✓
[98] (CSSAME) ✓
Collard [55] ✓
Chakrabarti and Banerjee [45] ✓
Basupalli et al. [28] ✓
Chatarasi et al. [47] ✓
Darte et al. [57] ✓
Pellegrini et al. [101] ✓
Yuki et al. [140] ✓
Cohen et al. [52] ✓
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Table 2.4: Examples of applications for analyses/optimizations of graph-based
IRs, parallel SSA forms and polyhedral model.

Contributions Analyses Optimizations
[125] (EFG + PSSA) N/A Constant propagation [128]
[84] (CCFG + CSSA) Data-flow analyses Redundant load/store elimination
[116] (PPG) Reaching definitions analysis [115] N/A
[85] (OMPCFG) Data race detection N/A
[51] (SPIR) Processor assignment Task scheduling
[32] (Kimble IR) Execution cost [34] Function inlining/outlining
[119] (MPI-CFG) N/A N/A
[129] (MPI-ICFG) Activity analysis N/A
[141] (PIR) May-happen-in-parallel analysis Dead code elimination
[42] (Delite IR) Data-flow analyses Pattern matching, domain-specific
[98] (CSSAME) Detection of mutual exclusion Code motion
Collard [55] N/A N/A
Chakrabarti and Banerjee [45] Communication placement Communication optimization
Basupalli et al. [28] Data race detection N/A
Chatarasi et al. [46, 47] Data race detection N/A
Darte et al. [57] Liveness analysis N/A
Pellegrini et al. [101] Dependence analysis Communication optimization
Yuki et al. [140] Array data-flow analysis N/A
Cohen et al. [52] Deadlock detection N/A

Memory models Table 2.3 summarizes memory models scopes. Most IRs apply to the
shared memory model. Very few contributions concern distributed and host-accelerator
memory models. This could be surprising for the distributed model in particular as it has
been exploited for a very long time. However, the fact that distributed memory systems in-
volve a more restricted set of analyses and transformations could explain the limited amount
of contributions. Indeed, the main concern in distributed computing is data transfer. The
PGAS model is addressed only twice.

Analyses and optimizations Table 2.4 gives examples of analyses and optimizations that
were applied for parallel graphs, SSA forms, and the polyhedral model. Classic data-flow
analyses and optimizations are often targeted. As for parallel-specific ones, data race detec-
tion is recurrent, mostly in the polyhedral model.

Type of compilation flow We may assume that contributions prior to 2008 could be ap-
plicable either in a source-to-source or a source-to-binary compilation flow. Polyhedral op-
timization is rather in the context of source-to-source. Erbium and Pop and Cohen’s contri-
bution [105] are more in a source-to-binary context. SPIRE has been demonstrated in both
contexts.

Concrete implementation in compilers Very few IRs have been concretely implemented
in an available compiler. Graphs and SSA forms applications seem very isolated. After
2008, GCC and LLVM were the most targeted compilers but Tapir seems to be the most
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viable contribution. PIR and INSPIRE were respectively designed for the Habanero-Java
[44] compiler and the Insieme2 compiler.

2.5.2 Perspectives

In the context of static compilation, the body of research in parallel IRs mainly focused on
including parallel semantics in the different type of representations. This has been useful
especially for parallel-specific analyses and transformations. The adaptation of classic op-
timization passes is also a step forward in the suitability of common compilers for parallel
programs. But this research area is still at early stages. Future research directions are there-
fore possible.

Memory hierarchy It is clear that the efficiency of parallel programs depends on the un-
derlying architecture. More specifically, the memory hierarchy and data placements is a
key factor of performance. Yet, very few contributions seem to take into account the tar-
get architecture to some extent, especially for SIMD architectures. Furthermore, despite the
considerable amount of proposed IRs in the shared memory model, no contribution seem to
address challenges related to NUMA architectures. Complementary to memory placement,
data layouts also considerably impact performance. However, no contribution takes this
aspect into account.

Pointer analysis Most popular parallel programming languages are based on the C lan-
guage. This makes inevitable the question of pointer analysis which is not addressed by any
of the proposed IRs. This is not surprising as, in the sequential context, pointer analysis is
already known to be complex due to the difficult understanding of the semantics of the C
language. Note however that many industrial applications that need to be parallelized in-
clude array traversal based on pointer arithmetics. Therefore, automatic parallelization for
such applications would require pointer analysis. Current automatic parallelizer do not fea-
ture such analyses and explicitly forbid the use of pointers in input programs. Consequently,
before even addressing this aspect in parallel compilation specifically, pointer analysis still
needs to mature in current compilers.

Expressiveness Besides performance factors, the level of expressiveness also matters.
Most contributions have a general-purpose application scope. However, the variety of appli-
cations makes it impossible to rely only on general-purpose solutions. Domain-specificities
are therefore mandatory to complement existing approaches. Narrower scopes for IRs
started to emerge with Erbium, PENCIL, and Delite. PENCIL (coupled with VOBLA and
PPCG) and Delite are particularly interesting as their compilation flow clearly exhibit
domain-specificities along with general-purpose optimizations. Further investigations in

2Insieme Compiler project from the University of Innsbruck: www.insieme-compiler.org
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this direction would be interesting for other types of application such as stencil computa-
tions.

Applicability As shown in the survey, very few contributionswere actually applied in real
compilers. While this may look disappointing, several aspects explain the difficulty of appli-
cation. Compilers such as GCC and LLVM have been in active development for years; GCC
since 1987 and LLVM since 2003. Extending their internal representations would, therefore,
require major, and probably difficult, refactoring. While SPIRE and Tapir are proofs that
such a task is not impossible, a lot of time is still necessary to (i) understand how classic
optimization passes extend with parallel specificities and (ii) implement these extensions.
Indeed, more complex memory models will probably be required to deal with the hetero-
geneity of upcoming architectures; contributions prior to 2008 may need to be revisited
in light of modern architectures. Though, the INSIEME and Habanero Java compilers also
demonstrate that another way is considering dedicated parallel compilation.

Optimizationmethodology One last aspect that can be discussed is the general approach
to optimizations. All proposed contributions are in the context of a classic compilation ap-
proach, i.e., fully automated with predefined heuristics. However, with the increasing com-
plexity of architecture, compilers become more and more limited in finding efficient trans-
formations. Consequently, other compilation approaches become appealing. For instance,
there is autotuning, that is, the dynamic search for efficient program variants. Note also that
hand-optimization by experts is an alternative. IRs designed with respect to such need are
therefore required. Among the contributions in this survey, PENCIL and Erbium seem to
provide, to some extent, facilities for this purpose.

Dynamic compilers Even though our focus is static compilation (and parallel IRs have
been mainly proposed in this context), the inherent non-deterministic nature of parallelism
at runtime suggests that dynamic compilation should play an important role in parallel com-
pilation. Automatic parallelization based on dynamic compilation already exists (e.g, thread-
level speculation [74, 72, 43, 86]), inwhich other types of program information, not accessible
from static analyses, are manipulated. For instance, pieces of information about memory ac-
cesses enable pointer analysis. Further studies on parallel IRs for dynamic compilers, worth
investigating, will probably expose differences between approaches.
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The Tensor Challenge

Un large éventail de domaines tels que le machine learning, la vision par ordinateur, le traite-
ment graphique ou du signal utilisent des algorithmes basés sur des principes d’algèbre linéaire
et tensoriel. Malgré leurs spécificités respectives, ces principes impliquent des calculs fondamen-
taux sur des vecteurs, des matrices et des tenseurs. Par conséquent, les applications numériques
provenant de différents domaines partagent des noyaux de calculs communs (par exemple, une
multiplication matrice-matrice ou matrice-vecteur). En programmation, les noyaux d’algèbre
linéaire et tensorielle sont exprimés sous forme de calculs sur des tableaux N−dimensions dans
des nids de boucles.

Selon le type de données manipulé ou le type d’opération, les nids de boucles peuvent néces-
siter beaucoup de calculs. Les optimisations visant à réduire les temps d’exécution de ces types
de programmes englobent différents axes de techniques de compilation, y compris les transfor-
mations de boucles, de disposition des données ou transformations algébriques.

Nous avons eu l’occasion d’étudier des problèmes spécifiques à des applications en dy-
namique des fluides pour lesquelles des transformations algébriques et de boucles sont néces-
saires. Nous aurions pu compter uniquement sur le compilateur ICC pour compiler efficacement
ces programmes. Pourtant, une étude avec ICC montre qu’il peut y avoir des heuristiques in-
téressantes qui ne sont pas choisies par le compilateur. Cela soulève le besoin d’avoir plus de
flexibilité dans les choix d’optimisation ; avoir la possibilité d’appliquer différentes heuristiques
de transformation est plus attrayante.

Bien qu’il existe plusieurs frameworks pour l’optimisation d’applications tensorielles, ceux-
ci semblent ne pas être aisément utilisable dans une variété de domaines. Ceci rend donc difficile
leur usage pour optimiser certaines applications en dynamique des fluides.

∗ ♣ ∗ ♣ ∗

We explore the research perspectives mentioned in Chapter 2 in the context of numerical
applications. This chapter introduces numerical applications and transformation techniques
often used for their optimization. We then focus on challenges encountered in the domain
of computational fluid dynamics to expose limitations in current relevant optimizing frame-
works.
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This chapter is based on:

Adilla Susungi, Norman A. Rink, Jerónimo Castrillón, Immo Huismann, Albert Co-
hen, Claude Tadonki, Jörg Stiller, and Jochen Fröhlich. Towards compositional
and generative tensor optimizations. In Proceedings of the 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE 2017). DOI: https://doi.org/10.1145/3136040.3136050

3.1 Numerical Applications

A wide range of domains such as machine learning, computer vision, signal or graphics pro-
cessing use mathematical algorithms based on linear and tensor algebra principles. Despite
their respective domain specificities, such applications involve fundamental computations
with vectors, matrices, and tensors, thereby sharing common kernels (e.g., matrix-matrix
or matrix-vector multiplication). In programming, linear and tensor algebra kernels are ab-
stracted as computations over N−dimensional arrays within loop nests.

Depending on the data manipulated, or the operation involved, loop nests can be
compute-intensive. Optimizations to reduce runtime execution for this class of programs
encompass different axes of compilation techniques including (but not limited to) loop, data
layout or algebraic transformations.

Loop Transformations

A set of loop transformations techniques [75] exist, among which we can cite popular ones
and their impact.

Loop interchange swaps dimensions in a loop nest. Given two loop nests, loop fusion
merges adjacent dimensions into a single dimension. Conversely, loop distribution split state-
ments of the same dimension into two adjacent dimensions. Loop unrolling unwinds several
instructions. Loop peeling isolates first or last iterations. Loop tiling divides the iteration
space into smaller blocks.

Minimizing memory accesses is an important concern in optimizing numerical appli-
cations. An example of solution is promoting cache reuse using techniques such as inter-
change, fusion, distribution or tiling. Loop unrolling eliminates some loop control, leading
to more speed-up. Loop peeling can be useful to eliminate data dependencies and expose
parallelism.  It can also serve as a step to peel off iterations before applying vectorization.

Data layout Transformations

Data layout transformations complement loop transformation for different purposes, e.g.
memory footprint reduction on memory-constrained systems, optimal data access per
threads in parallel programs or cache reuse improvement.

We can identify specific layout transformations. Data transposition consists in permuting
axes of an N-dimensional array. A typical use is to align data accesses with the storage policy

https://doi.org/10.1145/3136040.3136050
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of arrays in a programming model (e.g. row-major in C, column-major in Fortran). Padding
insert additional data to change the dimensions of an array. It can be used to align data in
the cache to avoid false sharing. Another example of improving thread access to memory
using layout transformations is memory coalescing for aligned accesses.

Specific types layout transformations are required for applications such as stencil com-
putations [67] or sparse data structures [96].

Algebraic Transformations

Previous work  [29, 142, 88] show the benefits of algebraic transformations thanks to as-
sociativity, distributivity and commutativity properties. For example, it is possible to con-
siderably reduce the algorithmic complexity of a program through transformations such as
expression splitting or factorization.

This far, we have presented several general transformation strategies. However, an im-
portant aspect is finding relevant compositions of transformations, which can be tightly
domain-specific. As an example, we show in the next sections how this applies to applica-
tions in computational fluid dynamics.

3.2 Computational Fluid Dynamics Applications: Overview

Numerical analysis is the study of problems based on continuous mathematics using numer-
ical approximations. Equation discretization is a fundamental process that can be performed
with different orders of approximation; for a nth-order approximation, the order of magni-
tude of error is O(xn+1). Therefore, the greater the order of approximation, the more precise
the discretization. The evolution of numerical methods has a direct correlation with that of
computers; with the help of increasingly powerful machines, the state-of-art of numerical
analysis advances with methods producing more and more accurate results.

Computational fluid dynamics (CFD) is the study of fluid flows using numerical methods.
Methods used in CFD can be classified between low order methods (first-order, second-order)
or high order methods (greater than second-order). While low order methods are widely
used in engineering applications for their robustness and reliability, high order methods
instead offer more accuracy  — needed for specific types of flows — at the cost of greater
computational intensity [60].

Navier-Stokes equations (NSE) govern fluid flows. They are crucial for the understanding
of various types of fluid dynamics including the movement of water currents, atmospheric
air mass or air motion surrounding vehicles. Several higher order numerical methods ex-
ist to solve NSE including the spectral element, finite difference or finite element methods.
Our method of interest is the spectral element methods which involve using the Helmholtz
equation in NSE solvers.

Fast and efficient NSE solvers require to focus on the Helmholtz operator. Huismann et
al. [69, 70] demonstrate that using a tensor-based representation of the Helmholtz operator
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enables algebraic transformations that lead to drastically reduced execution time when cou-
pled with the static condensation method [109], a well established CFD-related technique.

In a typical CFD application, the volume of interest is divided into thousands of mesh
points, where a computation is performed for each element of the mesh. For a given mesh
point e , the numerical solution is computed in a 3-dimensional spatial context. Each di-
mension has a maximum value of p, which is the polynomial order used to approximate the
solutions of the computation domain. Two CFD operators often computed in these meshes
are the Interpolation defined as

ve = (A ⊗ A ⊗ A)ue , (3.1)

and the Inverse Helmholtz:

ve = (S ⊗ S ⊗ S)D−1e (ST ⊗ ST ⊗ ST )ue . (3.2)

Computations are repeated for hundreds of thousands times, leading to execution times of
several weeks, even when parallelized across thousands of cores.

3.3 CFD-related Optimization Techniques

From a programming point of view, Interpolation and Inverse Helmholtz can be implemented
following the formula

vi jk =
∑
l,m,n

Akn · Ajm · Ail · ulmn . (3.3)

for Interpolation and

ti jk =
∑
l,m,n

ATkn · A
T
jm · ATil · ulmn (3.4)

pi jk = Di jk · ti jk (3.5)

vi jk =
∑
l,m,n

Akn · Ajm · Ail · plmn (3.6)

for Inverse Helmholtz. A naive implementation corresponds to Listing 3.1a and 3.1b, in which
we can recognize elements of the domain informations. (1) The outermost dimension with
loop index e corresponds to iteration points of the mesh where M is the maximum number
of elements. (2) The shape of tensor v reflects the 3-dimensional spatial context for which a
coefficient is computed for a given mesh point. (3) N the size of inner tensor dimensions is
equal to p + 1, where p is the polynomial order previously mentioned.

In the following, we present two levels of program transformations necessary for im-
proved speed-ups. Note that for conciseness, we no longer explicit dimensions of loops and
tensors involved in the mesh.
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1 for (e = 0; e < M; e++)
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++)
4 for (k = 0; k < N; k++)
5 for (l = 0; l < N; l++)
6 for (m = 0; m < N; m++)
7 for (n = 0; n < N; n++)
8 v[e][i][j][k] = A[k][n] * A[j][m] * A[i][l] * u[e][l][m][n];

(a) Interpolation
1 for (e = 0; e < M; e++) {
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++)
4 for (k = 0; k < N; k++)
5 for (l = 0; l < N; l++)
6 for (m = 0; m < N; m++)
7 for (n = 0; n < N; n++)
8 t[e][i][j][k] = A[n][k] * A[m][j] * A[l][i] * u[e][l][m][n];
9

10 for (i = 0; i < N; i++)
11 for (j = 0; j < N; j++)
12 for (k = 0; k < N; k++)
13 p[e][i][j][k] = D[e][i][j][k] * t[e][i][j][k];
14
15 for (i = 0; i < N; i++)
16 for (j = 0; j < N; j++)
17 for (k = 0; k < N; k++)
18 for (l = 0; l < N; l++)
19 for (m = 0; m < N; m++)
20 for (n = 0; n < N; n++)
21 v[e][i][j][k] = A[k][n] * A[j][m] * A[i][l] * p[e][l][m][n];
22 }

(b) Inverse Helmholtz

Listing 3.1: Naive implementations of the CFD kernels in C

3.3.1 Algebraic Optimizations

Interpolation is a good candidate for algebraic optimizations. Listing 3.1a depicts its naive
implementation. However, adding parentheses to Equation 3.3 enforces different legal eval-
uation orders thanks to associativity (c.f. Listings 3.2a, 3.2b and 3.2c for corresponding im-
plementations):

vi jk =
∑
l,m,n

(Akn · (Ajm · (Ail · ulmn)) , (3.7)

vi jk =
∑
l,m,n

(Akn · Ajm) · (Ail · ulmn) , (3.8)

vi jk =
∑
l,m,n

(Akn · ((Ajm · Ail ) · ulmn)) . (3.9)
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1 for (i1 = 0; i1 <= 6; i1 += 1)
2 for (i2 = 0; i2 <= 6; i2 += 1)
3 for (i3 = 0; i3 <= 6; i3 += 1)
4 for (i4 = 0; i4 <= 6; i4 += 1)
5 tmp1[i1][i2][i3] += A[i1][i4] * u[i4][i2][i3];
6
7 for (i1 = 0; i1 <= 6; i1 += 1)
8 for (i2 = 0; i2 <= 6; i2 += 1)
9 for (i3 = 0; i3 <= 6; i3 += 1)

10 for (i4 = 0; i4 <= 6; i4 += 1)
11 tmp2[i1][i2][i3] += A[i1][i4] * tmp1[i2][i4][i3];
12
13 for (i1 = 0; i1 <= 6; i1 += 1)
14 for (i2 = 0; i2 <= 6; i2 += 1)
15 for (i3 = 0; i3 <= 6; i3 += 1)
16 for (i4 = 0; i4 <= 6; i4 += 1)
17 v[i1][i2][i3] += A[i1][i4] * tmp2[i2][i3][i4];

(a) Equation 3.7
1 for (i1 = 0; i1 < N; i1 += 1)
2 for (i2 = 0; i2 < N; i2 += 1)
3 for (i3 = 0; i3 < N; i3 += 1)
4 for (i4 = 0; i4 < N; i4 += 1)
5 tmp1[i1][i2][i3][i4] += A[i1][i2] * A[i3][i4];
6
7 for (j1 = 0; j1 < N; j1 += 1)
8 for (j2 = 0; j2 < N; j2 += 1)
9 for (j3 = 0; j3 < N; j3 += 1)

10 for (j4 = 0; j4 < N; j4 += 1)
11 for (j5 = 0; j5 < N; j5 += 1)
12 tmp2[j1][j2][j3] += tmp1[j1][j4][j2][j5] * u[j5][j4][j3];
13
14 for (k1 = 0; k1 < N; k1 += 1)
15 for (k2 = 0; k2 < N; k2 += 1)
16 for (k3 = 0; k3 < N; k3 += 1)
17 for (k4 = 0; k4 < N; k4 += 1)
18 v[k1][k2][k3] += A[k1][k4] * tmp2[k2][k3][k4];

(b) Equation 3.8
1 for (i1 = 0; i1 < N; i1 += 1)
2 for (i2 = 0; i2 < N; i2 += 1)
3 for (i3 = 0; i3 < N; i3 += 1)
4 for (i4 = 0; i4 < N; i4 += 1)
5 tmp1[i1][i2][i3][i4] += A[i1][i2] * A[i3][i4];
6
7 for (j1 = 0; j1 < N; j1 += 1)
8 for (j2 = 0; j2 < N; j2 += 1)
9 for (j3 = 0; j3 < N; j3 += 1)

10 for (j4 = 0; j4 < N; j4 += 1)
11 tmp2[j1][j2][j3] += A[j1][j4] * u[j4][j2][j3];
12
13 for (k1 = 0; k1 < N; k1 += 1)
14 for (k2 = 0; k2 < N; k2 += 1)
15 for (k3 = 0; k3 < N; k3 += 1)
16 for (k4 = 0; k4 < N; k4 += 1)
17 for (k5 = 0; k5 < N; k5 += 1)
18 v[k1][k2][k3] += tmp1[k1][k4][k2][k5] * tmp2[k3][k5][k4];

(c) Equation 3.9

Listing 3.2: Variants of Interpolation in C
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Figure 3.1: Speed-ups for variants of Interpolation compared to naive evalua-
tion.

The runtime complexity for Listing 3.1a is O(p6). Yet finding a good evaluation order
can reduce it up to O(p4). We conducted experiments to evaluate the speed-ups obtained
for different variants; the results are shown in Figure 3.1. Starting with a naive evaluation
of the tensor contractions, i.e. without any smart reordering of operations to reduce the
algorithmic complexity, parallelization of the mesh loop across 24 cores leads to a speed-up
of 20×. In the following, this parallelized naive evaluation serves as our baseline. Figure 3.1
shows the speed-ups compared to this baseline for parallelized implementations of the three
Interpolation variants. E1, E2, E3 respectively correspond to Equations (3.7), (3.8), and (3.9).
E1 appears to be the best CPU-based variant as it best minimizes the algorithmic complexity.

3.3.2 Loop Transformations

Additional loop fusions and permutations can be applied to E1, E2, and E3. The results of
applying such transformations on E2 and E3 correspond to variant E2t and E3t in Figure 3.1;
this shows that fusions and permutations are not sufficient to reach the performance pro-
duced by the best algebraic transformation. Note that it is also best not to perform fusions on
E1. Indeed, p the polynomial order generally ranges from 1 to 13; hence tensor dimensions
are very small. This implies that usual transformations such as tiling or fusion are actually
performance degrader. The main transformations that contribute to speeding up the pro-
gram are loop unrolling, vectorization and permutations. Loop fusions have the particular
effect of hindering permutations opportunities, hence limiting optimal performances.

As an alternative to the algebraic transformation resulting into variant E1, one could
think of performing some loop invariant code motion. For example, it is possible to hoist
out A[i1][i4] and A[i2][i5]:

1 for (i1 = 0; i1 < N; i1 += 1)
2 for (i2 = 0; i2 < N; i2 += 1)
3 for (i3 = 0; i3 < N; i3 += 1)
4 for (i4 = 0; i4 < N; i4 += 1) {
5 a = A[i1][i4];
6 for (i5 = 0; i5 < N; i5 += 1) {
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7 b = A[i2][i5];
8 for (i6 = 0; i6 < N; i6 += 1)
9 v[i1][i2][i3] += a * b * A[i3][i6] * u[i4][i5][i6];

10 }
11 }

However, this induces the same issue caused by loop fusions; this transformation is not
beneficial as it inhibits good permutation opportunities (cf. Appendix A.2). Consequently,
such a variant is even slower than the original naive version.

Despite the small set of transformations applicable, it is not always clear when and how
to apply them; with the iterative process, polynomial orders may vary from one execution
instance to the other. For a better understanding of transformation heuristics, we conducted
a series of experiments to study optimizations heuristics chosen by ICC, the Intel compiler,
given a polynomial order.

Since ICC does not handle algebraic optimizations (cf. Appendix A.1), we assume as
input program the variant of Equation 3.7 (cf. Listing 3.2a). We name L1,L2,L3 the three
successive loop nests.

Experiments and outcomes

Using ICC version 18.0, our compilation instruction is
icc -O3 -xHost -qopt-report=1|2|5 -qopt-report-phase=vec,loop to gen-
erate heuristics reports with different verbosities. Observations are exposed in Table
3.1.

N = p + 1 ICC heuristics
2

ICC fully unrolls all loop dimensions in all three loop nests
and performs loop interchanges in L1 and L2 as they present such opportunity.
Loop interchange permutes the two innermost dimensions (i.e., (1 2 3 4) –> (1 2 4 3))

3
4
5
6
7
8 Loop collapsing of i2 and i3 (c.f. Listing 3.2a) and vectorization (with peeling for N = 9)

of innermost loops in L1 and L3 only.9
10

Compared to N=8,9, heuristics change for L2 only: loop interchange is applied,
then vectorization is performed on the 2nd dimension.

11
12
13 All innermost loops are vectorized (preceded by peeling for N = 13)

in addition to collapsing in L1 and L3 and loop interchange in L2.14

Table 3.1: ICC heuristics for different polynomial orders

These different results exhibit several aspects:

• Full unrolling is the de facto transformation for sizes below 8;
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• A unique loop interchange opportunity is taken into account in L1 and L2 (i.e., (1 2 3
4) –> (1 2 4 3)). Yet, L1 presents another opportunity, that is (1 2 3 4) –> (1 4 2 3). In
addition, it seems that this latter interchange strategy orders memory accesses more
efficiently than ICC’s choice;

• In L1, the loop collapsing opportunity from sizes above 8 is prioritized over the loop
interchange opportunities. Yet, with further manual experiments, collapsing did not
seem to be more efficient than interchanging.

• Vectorization in L2 only appears from sizes above 10. It is not fully clear why ICC’s
heuristics consider vectorization this late, in comparison to the other loops. A possible
explanation is the coupling with loop collapsing in L1 and L3. Perhaps the cost model
estimation assumes collapsing enables good vectorization. Furthermore, the vector-
ized dimension is the 2nd one. We cannot clearly state that the following dimensions
were unrolled before; reports did not provide such indications.

The clear tendency of chosen heuristics per polynomial order ranges is informative. Nev-
ertheless, other heuristics choices exist that would now need to be explored by hand.

3.4 Envisioned Tool Flow

Domain practitioners would spend a lot of time hand-writing different variants per poly-
nomial order to find an efficient one (and that is if they have a good knowledge of code
optimization techniques). An automated process, from a DSL to optimized C code genera-
tion as depicted in Figure 3.2, is more convenient. The iterative nature of the execution of
computations makes approaches such as iterative compilation [81] useful to find beneficial
transformations.

Intermediate
languageDSL Optimized C

Iterative search

Figure 3.2: Envisioned tool flow

CFDlang

CFDlang [112] is the DSL designed in our context. Using a compact representation of ten-
sors, it proposes a notation for tensor expression close to mathematics. The particularity of
CFDlang is its expressiveness scope. Full numerical applications are not meant to be writ-
ten but rather performance critical tensor expressions, such as Interpolation that are part of
larger applications.

The following code sample shows the implementation of Interpolation with CFDlang.
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1 var input A : [7 7]
2 var input u : [7 7 7]
3 var output v : [7 7 7]
4

5 elem [u v] 216
6

7 v = A # A # A # u . [[1 6] [3 7] [5 8]]

Tensors are declared using the var keyword, accompanied by the input or output quali-
fiers to explicit the program dataflow and a list of integers specifying the shape. CFDlang
decouples mesh dimensions from tensor shapes; instead of specifying v : [216 7 7 7],
where 216 is the mesh size, CFDlang provides the elem keyword to identify tensors with
mesh dimensions. The list of tensors is then followed by the actual size of the mesh. The
actual tensor expression is written similarly to the mathematical expression. The ⊗ oper-
ator which is a tensor product directly corresponds to CFDlang’s # (hash) operator, which
concatenates all tensors. In the presence of tensor contractions, expressions are followed
by a list of pairs of axes to be contracted, assuming axes of the concatenated tensor. As the
domain practitioners generally write Fortran code, CFDlang is designed to be integrated in
a Fortran interface as in Listing 3.3.

CFDlang is meant to serve as a front-end to an intermediate engine generating efficient
code. In the next section, we go through several potential frameworks for this purpose.

3.5 Existing Optimization Frameworks

In our CFD context, we need an intermediate engine that has three main features: the ability
to (1) perform algebraic transformations, (2) choose specific transformations and (3) search
optimizations iteratively. Furthermore, with CFDlang as a frontend, several types of tensor
operations need to be expressible (e.g. contractions or entrywise multiplications).

Several potential frameworks exist; we can assess their suitability in light of our require-
ments.

3.5.1 Linear and Tensor Algebra Frameworks

We focus on most relevant optimizing frameworks, therefore we do not take into account
scientific libraries such as Numpy [17], Libtensor [71] or Xtensor [19].

Pluto

Pluto [39] is a polyhedral-based source-to-source automatic parallelization tool. Using C
programs as input code, Pluto’s main goal is finding affine transformations for efficient tiling
of kernels delimited by #pragma scop/endscop. Generated code includes thread-level par-
allelism for multicore CPUs using OpenMP as well as vectorization. While Pluto performs
polyhedral optimizations automatically, users are free to enable or disable transformations
through appropriate options.
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1 subroutine Interpolation__CFDlang_Init(h, u)
2 type(Tensor_Handle), intent(inout) :: h
3 real(RDP), contiguous, intent(in) :: u(:,:,:,:)
4
5 integer :: n, n_element
6 character(len=8) :: n_str, ne_str
7 character(len=1024) :: source
8
9 n = size(u,1)

10 n_element = size(u,4)
11
12 write (n_str, "(I8)") n
13 write (ne_str, "(I8)") n_element
14
15 source = "type matrix : ["//n_str//" "//n_str//"]"//c_new_line//&
16 "type tensorIN : ["//n_str//" "//n_str//" "//n_str//" "//ne_str//"]"//c_new_line//&
17 "type tensorOUT : ["//n_str//" "//n_str//" "//n_str//" "//ne_str//"]"//c_new_line//&
18 " "//c_new_line//&
19 "var input A : matrix "//c_new_line//&
20 "var input u : tensorIN "//c_new_line//&
21 "var input output v : tensorOUT "//c_new_line//&
22 " "//c_new_line//&
23 "v = A # A # A # u . [[5 8] [3 7] [1 6]]"//c_new_line//&
24 c_null_char
25
26 call Tensor_Init_Context(h%ctx)
27 call Tensor_Init_Code_Gen(h%ctx, h%cg, source, &
28 rowMajor = 0, &
29 fuseElementLoop = 1, &
30 restrictPointer = 1, &
31 graphCodeGen = 1 &
32 )
33
34 call Tensor_Generate_C_Code(h%ctx, h%cg)
35
36 call Tensor_Init_Kernel(h%ctx, h%cg, h%k, cleanOnDestruction = 0 )
37 call Tensor_Build_Kernel(h%ctx, h%k)
38 call Tensor_Final_Code_Gen(h%ctx, h%cg)
39
40 call Tensor_Init_Execution(h%ctx, h%k, h%ex)
41 end subroutine Interpolation__CFDlang_Init

Listing 3.3: Fortran interface including a CFDlang code sample

The Tensor Contraction Engine (TCE)

TCE [29] is a domain-specific framework for quantum chemists; it focuses on tensor contrac-
tions which represent the main causes of bottlenecks in the scientific computations encoun-
tered in this domain. TCE is integrated in NWCHEM [132], an open-source computational
chemistry package. TCE translates the high-level specification of the program (in a math-
ematical form) into C/Fortran code. The output program is optimized using techniques to
minimize algorithmic complexity, memory footprint and communication costs.
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The Tensor Transposition Compiler (TTC)

TTC [123] is a compiler that generates high-performance C++/CUDA C code for tensor
transpositions. TTC explores different search spaces for opportunities of transformations.
When finding a good candidate, the key idea is to apply a blocking technique; the transpo-
sition is broken down into multiple independent 2D transpositions.

The Tensor Algebra Compiler (TACO)

TACO [79] is a C++ library for the compilation of dense and sparse linear and tensor alge-
bra expressions. TACO requires as input expressions using an index notation and a format
descriptor of tensors. Format descriptors include the specification of each tensor dimension
as dense or sparse and the order in which they are stored. Different sparse tensor storage
format as supported thanks to TACO’s representation of tensors based on trees. TACO is
able to generate code for tensor expressions involving dense or sparse operands, or both.

TensorFlow

TensorFlow [20] is an API for high-performance numerical computation mainly used for
deep neural networks. Computations can be deployed on various platforms, including CPUs,
GPUs, and TPUs (Tensor Processing Units). TensorFlow’s computation model is based on
data flow graphs. Computations are further optimized with XLA [18], a JIT-compiler. Ten-
sorFlow shares similarities with Theano [35].

Tensor Comprehensions (TC)

TC [133] is a C++ library coming along with an index notation language for the compilation
of machine learning kernels. Its compilation flow includes various optimizations ranging
from parallel-specific transformations thanks to Tapir LLVM [117] to polyhedral transfor-
mations thanks to ISL [135]. TC mainly generates CUDA code using autotuning techniques
but users still have a level of control on what optimizations should be applied through TC’s
API interface.

LGen and SLinGen

LGen [121, 122] is a compiler for high-performance basic linear algebra computations using
autotuning techniques. Input code provided in a mathematical form is successively trans-
formed into lowered form. Each lowering stage incorporates high-level loop optimizations
using ISL as well as C-code level transformations. A variant of LGen, SLinGen [120], has
been specifically designed for small-scale applications.
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3.5.2 Levels of Expressiveness and Optimization Control

None of the above-cited frameworks feature all requirements for the CFD tool flow. How-
ever, there are different degrees of unsuitability.

Due to its restriction to tensor contractions, TCE seems not to have suitable expressive-
ness. This is unfortunate as it is the only framework that considers algebraic transformations
problematics. Furthermore, optimizations heuristics proposed by TCE seeks trade-offs be-
tween program transformations (including loop fusions) and memory footprint. Our CFD
context does not present the same issues: the sizes of tensors makes memory footprint op-
timizations irrelevant for small sizes.

At this time, TACO is limited as it can handle only one kernel at a time. The scope of
TACO also seems to highly focus on sparse tensors problematics, yet the CFD applications
involve dense tensors only. Furthermore, TACO does not yet handle classic loop transfor-
mations either.

TTC’s asset, despite its restricted scope, is the search for good candidates for transposi-
tions. Unfortunately, this is not the primary need for the CFD applications.

TensorFlow and Theano operate differently; tensor computations are first built as com-
putation graphs. Before the actual execution of such graphs, optimizations may be applied
but they remain specific to the graphs structures. They also do not incorporate loop-level
optimizations.

Generally, frameworks that do not allow control over specific transformations are black-
boxes almost impossible to adapt to the CFD needs. Conversely, those that do allow some
control generally provide the capability of choosing a set of transformations to apply, which
is much more appealing. We consider Pluto and TC in this latter category which makes
them the most suitable candidates here. SLinGen is also a potential candidate thanks to
its autotuning features. Note that if the only unmatching criterion is the lack of algebraic
transformations, this level of transformation could be handled at the CFDlang level.

3.6 Outcomes

We exposed characteristics and optimization needs for certain CFD applications. One could
rely on the ICC compiler only to efficiently compile programs. Yet a study with ICC shows
that there may be heuristics that are not chosen by the compiler. This raises the need to have
more flexibility in optimization choices; having the ability to enforce different transforma-
tion orders is more appealing. Several tensor optimization frameworks exist, but they often
do not meet the needs of the CFD kernels. Beyond this context, they seem not to generalize
well from one domain to another.





Chapter 4

The NUMA Challenge

Contrairement à la plupart des contributions présentées dans l’état-de-l’art, nous abordons
plutôt les problèmes liés à l’optimisation de la mémoire. Nous nous intéressons particulièrement
aux questions de placements de données sur les architectures NUMA (Non-uniform memory ac-
cess – accès à la mémoire non uniforme) qui sont souvent négligées. Comme le montre notre
étude de cas sur un outil de compilation polyédrique [130], la prise en compte du NUMA peut
être cruciale pour complémenter les techniques de transformations usuelles. Généralement, cette
prise en compte implique l’usage de différents types de placement de données standard sur le
NUMA telles que la réplication des données accédées en lecture ou encore la répartition d’un
tableau sur différents nœuds NUMA. Pour aller plus loin, les méthodes de placement pourraient
être étendues et affinées pour plus de précision. Cependant, des décisions à l’exécution du pro-
gramme, telles que l’ordonnancement des threads, doivent complémenter cette démarche.

∗ ♣ ∗ ♣ ∗

As exposed in Chapter 2, intermediate representations do not always feature abstractions
for memory optimizations on parallel archtectures. We, therefore, study this aspect with a
focus on data placement on NUMA (Non-Uniform Memory Access) architectures. NUMA-
awareness is often overlooked, yet, important to complement the transformation techniques
mentioned in Chapter 3.

In this chapter, we explain what distinguishes such architectures and summarize vari-
ous NUMAmanagement solutions. We also demonstrate the complementarity of data place-
ments with other transformation techniques through a case study of data locality enhance-
ment, using Pluto [39] as a proof-of-concept. We show that codes generated by Pluto can
benefit from more data locality with additional NUMA placement heuristics. We then focus
on two placement techniques, i.e. interleaved allocation and replications, to study how far we
can exploit them in source-to-source compilation.

This chapter is based on:
Adilla Susungi, Albert Cohen, Claude Tadonki. More data locality for static con-
trol programs in NUMA architectures. In Proceedings of the 7th International
Workshop on Polyhedral Compilation Techniques (IMPACT 2017).

45
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Figure 4.1: 2-nodes NUMA machine

4.1 NUMA Architectures: Topologies and Management
Solutions

NUMA architectures constitute an important class of parallel architectures. These large-
scale systems organize the physically shared memory across several nodes connected
through cache-coherent high-performance links. With such a design, threads either access
the memory resources located on the same node as the core executing the thread —the local
node— or on a different node —a remote node (cf. Figure 4.1). Consequently, uncontrolled
data placement can yield traffic contention when all threads are accessing the same memory
bank. Furthermore, remote data access increase memory latencies.

NUMA systems were introduced as a cure to the scalability issues of symmetric multi-
processors with UniformMemory Access (UMA). Unfortunately, NUMA-unaware programs
running on NUMA platforms tend not to benefit from the additional computational power
and memory bandwidth offered by the multiple nodes of the system.

Figures 4.2 and 4.3 depict two different 2-nodes NUMA core distributions; The Pau ma-
chine follows a cyclic distribution of 32 cores (including hyperthreading) whereas the Taurus
machine follows a block distribution of 24 cores (without hyperthreading).

Different types of management solutions exist, ranging from operating systems features
to research contributions in the area of parallel programming languages.

4.1.1 Operating Systems

Many operating systems provide NUMA-aware data placements. The first touch policy is
common and performed by default when using the malloc function. It consists in not as-
signing a memory page at the time a malloc is specified, but instead, when the first write
is performed. A programmer can consider this policy for optimal data accesses. But this
approach becomes irrelevant when read accesses following the first write are performed by
another thread on a different node.

The affinity-on-next-touch policy addresses limitations of the first touch policy as it al-
lows dynamic page migration with respect to read accesses. Goglin and Furmento [65] im-
plemented this policy in the Linux kernel.
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Figure 4.2: The Pau machine following a cyclic distribution of cores.
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Figure 4.3: The Taurus machine following a block distribution cores.

Another approach, designed for the Linux kernel, is Carrefour [58] which focuses on
avoiding memory contention through decisions for page co-location (for the placement of a
page on the same node as the core accessing it), page interleaving (round-robin placement of
pages across nodes) or replication of pages on several nodes and thread clustering to promote
thread affinity according to the shared data.

4.1.2 NUMA APIs

While the above-mentioned strategies are implemented at the kernel level, several NUMA
APIs are accessible to users.

Operating system related

Linux Libnuma is the NUMAAPI for Linux. It features memory and process management
functions related to the following policies:
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• Local – allocation is performed on the node on which the process is currently running.
This is the default policy and is also based on the first touch policy.

• Preferred – allocation is first performed on a given set of nodes but if it fails, it is
performed on the closest nodes.

• Bind – allocation is strictly performed on a given set of nodes. If the allocation fails,
no fall-back is possible.

• Interleaved – allocation is performed in a round-robin fashion across NUMA nodes,
on a set of pages selected. As this operates at a page size granularity, this is ineffective
if the size of data allocated is smaller than a page size.

Libnuma comes along with numactl, a tool providing the same features as command
lines. However, changes through command lines apply only at the level of the entire pro-
gram.

Solaris The Locality Group Library (liblgrp) is included of Solaris. In this library, a lgroup
is a set containing multiple CPUs and a memory that is accessed with the same latency for
all CPUs. In multiple lgroups, any CPU can access any memory, with a variation according
to the distance between the CPU and the requested memory. It is then possible to retrieve
pieces of information about a given lgroup (number of resources, CPUs, size of free memory,
etc). Threads and memory placements can be performed with respect to lgroups.

Windows With Windows’s NUMA API, it is also possible to retrieve pieces of informa-
tion about the hardware and allocate memory on a specific NUMA node. However, unlike
libnuma, there is no such thing as memory allocation policies.

Operating system independent

hwloc The Portable Hardware Locality (hwloc) [40] is a portable software across several
operating systems including Linux, Solaris, Windows, BSD or Darwin / OS X. Its purpose is
to gather information about hardware through an API interface or command lines. It is also
possible to bind threads or processes using the API.

MAi The Minas Framework [107] includes high-level functions for data allocation and
placement for arrays. Several memory policy groups exist:

• The Bind group either divides data into blocks independently from the number of
threads or place data in one or a set of restricted nodes.

• The cyclic group distributes data in a round-robin fashion across memory pages.
• In the random group, memory pages are placed randomly on CC-NUMA nodes.

Data distribution over nodes can be performed using entire arrays or a block distribution.
Sizes for the block distribution can be either chosen by the programmer or automatically by
MAi.
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Majo and Gross API primitives in [89, 90] are proposed to specify block-cyclic or block-
exclusive data distribution on each dimension of an array. It is then possible to use OpenMP
as a front-end where the data distribution patterns are encoded as clauses of the schedule
construct.

4.1.3 Languages extensions

It is interesting to observe the extent of NUMA support in actual implementations of popular
languages.

HPF [4], Co-array Fortran or Chapel feature constructs for data distribution across pro-
cesses. Chapel also includes a NUMA model in its locale models, even though not fully ma-
ture. OpenMP only provides the OMP_PROC_BIND environment variable to disable thread
migration at execution time. GNU UPC [3] is a toolset providing a NUMA-aware execution
environment (including thread scheduling and memory allocations based on numactl) for
programs written in UPC. Current MPI implementations also feature options at execution
time for process binding. Finally, HPX [5] is an effort currently made to provide high-level
parallel programming solutions in the C++ language specification, including data locality
and thread placement constructs within the language as well as at execution time.

Therefore, NUMA support, when existing, mainly includes process binding at execution
time only. Very few languages provide means for high-level data distribution on NUMA
nodes. In the following, we present contributions proposing to fill this gap.

Case with OpenMP

Bircsak et al. [36] proposed an HPF-like data distribution: for each dimension, we can ei-
ther choose a block, cyclic or no distribution. Users do not specify the granularity; it sys-
tematically depends on the number of memories available. Directives for the location of
computations and thread migration are available.

Huang et al. [68] proposed block distributions with variable dimensions, data replica-
tions and thread affinity. They also introduce the concept of location as Chapel’s locales or
X10’s places so that users may specify which set of cores or which NUMA nodes a compu-
tation must run on. Note that these are considered as hints only as they do not expect the
programmer to have a deep understanding of the underlying hardware.

Muddukrishna, Jonsson and Brorsson [94] extended the OpenMP API with memory al-
location functions that enable the programmer to specify simple data distribution patterns
such as:

• standard – as a standard malloc;
• fine – element-wise distribution of arrays on interleaved pages among nodes;
• coarse – interleaved distribution of entire arrays among nodes.

With ForestGOMP, Broquedis et al. [41] extended the GNUOpenMP runtime implemen-
tation for NUMA support.
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In the MPC framework [102] there is no construct extensions; it is a complete NUMA-
aware implementation of OpenMP with full respect to the OpenMP 3.1 standard. Executing
a program with MPC requires only to specify for instance the number of nodes available.

Case with MPI and Pthreads

Beyond OpenMP, the MPC framework also provides an implementation of Pthreads and the
MPI 1.3 standard, with a few features frommore recent standards. Generally, the framework
is implemented in order to provide efficient hybrid OpenMP/Pthreads/MPI programming,
which is known to be difficult to properly exploit on NUMA clusters.

Case with Intel Threading Building Blocks (TBB)

Majo and Gross [90] introduce TBB-NUMA, a NUMA-aware parallel programming library
based on Intel TBB in which various data distribution patterns are available. Custom distri-
bution patterns can also be specified.

4.2 Case Study: Beyond Loop Optimizations for Data Locality

The purpose of this section is to highlight the benefits of integrating NUMA-awareness in
optimizing compilers for data locality. As a proof-of-concept, Pluto [39] is our demonstration
framework. Pluto is based on the polyhedral model, intensively used for the optimization
of loop nests that fit the model’s constraints (and many numerical applications do). Today,
polyhedral tools are capable of producing highly optimized parallel code for multicore CPUs
[39], distributed systems [37], GPUs [137] or FPGAs [103]. It is, however, interested to note
that NUMA optimizations are not applied.

In the tool flow of our demonstration framework [130], we clearly seperate optimizations
handled by Pluto with those we introduce; Pluto is in charge of all control flow optimizations
and parallelism extraction, whereas our post-pass implements data placement on NUMA
systems. Furthermore, as we did not emphasize on layout transformations in the previous
chapter, we take this opportunity to introduce them — more specifically transpositions —
along with NUMA optimizations. Indeed, layout transformations are often not first-class
citizens in polyhedral tools.

As Pluto outputs may be complex, we handle affordable cases.

4.2.1 Experimental Setup

Wepresent case studies of several PolyBench [11] programs: Gemver, Gesummv, Gemm, and
Covariance. The minimal set of Pluto options that we use are tiling for L1 cache, parallelism,
and vectorization. All programs are compiled with gcc -O3 -march=native which enables
vectorization by default. We execute them on a 2 sockets NUMA system with 36 Intel Xeon
cores E5-2697 v4 (Broadwell) @2.30 GHz distributed across 4 nodes (9 cores per node, L1
cache: 32K).
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1 for (i = 0; i < _PB_N; i++)
2 for (j = 0; j < _PB_N; j++)
3 A[i][j] = A[i][j] + u1[i] * v1[j] + u2[i] * v2[j];
4
5 for (i = 0; i < _PB_N; i++)
6 for (j = 0; j < _PB_N; j++)
7 x[i] = x[i] + beta * A[j][i] * y[j];
8
9 for (i = 0; i < _PB_N; i++)

10 x[i] = x[i] + z[i];
11
12 for (i = 0; i < _PB_N; i++)
13 for (j = 0; j < _PB_N; j++)
14 w[i] = w[i] + alpha * A[i][j] * x[j];

Figure 4.4: Original Gemver code

We apply interleaved allocations and data placements as NUMA optimizations. Simple
guidelines are used to decide which policy to choose:

• An array is replicated on all nodes if each thread performs read-only accesses on the
entire array. As replicating written arrays would require additional heuristics to en-
sure data coherence, we do not handle such cases.

• If an array is not replicated, then it is interleaved on all nodes (especially if it is multi-
dimensional) to reduce traffic contention.

Following this rule, Gemver appears to be the only program in which we apply additional
data replications.

Transpositions are performed at initialization time using indexes permutation only.

4.2.2 Observations

Gemver

We compare different versions of Gemver generated by Pluto:

• The default output of Pluto (named Default);
• The addition of NUMA placement only, considering replication and interleaved allo-
cation (named NUMA);

• The addition of transpositions only (named Layout);
• The addition of combined NUMA placement and transposition (named NUMA-
Layout).

Moreover, we consider two different Pluto outputs: the first output is generated using
the no fuse heuristic and the second using the smart fuse heuristic. The max fuse option is
not suitable for Gemver, therefore, we do not consider it. Figure 4.5 shows, for both outputs,
the speed-ups over their respective Default version executed on 1 core.
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The smart fuse version scales better than the no fuse version. This is due to the enhance-
ment of cache reuse thanks to the fusion of the two first loops. However, compared to a
naive parallel version of Gemver (i.e. the Default version executed in parallel), the two Pluto
outputs fare no better. This means that optimizing the temporal locality only is not suf-
ficient. As 10 cores is the threshold from which NUMA effects appear on the considered
machine, we can also see in Figure 4.5 that they poorly scale on 16 and 36 cores.

According to the aforementioned guidelines, we applied the exact same NUMA place-
ment in both outputs. This solution improves both, but no fuse provides the best performance
on 36 cores. When using interleaved allocation for an array, the different threads access-
ing it must perform row-major accesses to preserve node locality as much as possible. This
is what occurs with no fuse. However, with smart fuse, the first loop is permuted in order
to perform the fusion legally. Despite the benefit of this transformation to enhance cache
reuse, some node locality is lost since column-major accesses are still performed.

Thread binding using OMP_PROC_BIND seem not to significantly improve the perfor-
mances of the NUMA and NUMA-Layout versions. It may even lower the speed-up due to
inadequate thread binding with respect to the interleaved allocation. In this case, a finer
binding heuristic using, for example, GNU_CPU_AFFINITY can be useful. Another reason for
performance decrease can also be load imbalance. This can be adjusted thanks to a runtime
system.

We noticed that, when considering replications alone as NUMA placements, the positive
effects of thread binding are much more noticeable despite less speed-up. Interleaved allo-
cations, therefore, seem to inhibit the effects of thread binding since they may reduce node
locality per thread. Thread migration can then operate as a counterbalance.

On the other hand, layout transformations are better suited to smart fuse because data
reuse is much more enhanced. Furthermore, this allows threads to perform row-major ac-
cesses with respect to an interleaved mapping. Such a systematic transformation does not
align well with the schedule of the no fuse version, hence the degraded performance. There-
fore, at this level of optimizations, the best version of Gemver appears to involve smart fuse,
NUMA placement, and transposition.

Additional data replications using memcpy add 0.3 ms to all execution instances of ver-
sions with NUMA placement. They, therefore, have a negligible impact on the performance
observed.

Gesummv

For Gesummv, we consider Pluto outputs with no fuse and max fuse (no fuse and smart fuse
heuristics result into the same generated code). Results are depicted in Figure 4.6. Similarly
to the case of Gemver, optimized temporal locality alone does not provide better perfor-
mance than the naive parallel version for codes generated by Pluto (i.e. the Default version).
Both outputs also scale poorly without NUMA-aware placements. We applied interleaved
allocation, which brings a 3× speed-up on 16 cores and 4× speed-up on all 36 cores. As
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Figure 4.5: Speed-ups over Default versions executed on 1 core for Gemver
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Figure 4.6: Speed-ups over Default versions executed on 1 core for Gesummv

we observed that thread binding may not match with interleaved allocations, we consider
exploring the effects of changing the granularity of interleaving for further improvements.

Covariance

In the following, we no longer consider different Pluto outputs. Instead, we consider a naive
parallel version of Covariance (i.e. a parallel code without loop transformations that we
name Naive) and a Pluto output with the most suitable heuristic. For both programs, we
compare again versions with (i) NUMA placements only (interleaved data allocation, named
NUMA), (ii) transposition as shown in Listing 4.1 (named Layout), (iii) and both together
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(named NUMA-Layout). Their respective Default version correspond, again, to versions
without any NUMA or layout transformations.

Figure 4.7 shows that the Default version of Pluto delivers much better performances
than that of the Naive program. But Naive can be improved thanks to the data transposi-
tion. However, applying the same transposition to the Pluto output considerably reduces
the speed-up, similarly to what we observe for Gemver with no fuse.

NUMA allocations have a little positive impact on the Naive program and none on the
Pluto output. This is due to the fact that temporal locality already optimizes cache usage.

1 // Initializing the transposition
2 for (i = 0; i < N; i++)
3 for (j = 0; j < M; j++)
4 data[j][i] = ((DATA_TYPE) i*j) / M;
5
6 // Computation
7 #pragma omp parallel for private(i)
8 for (j = 0; j < _PB_M; j++) {
9 mean[j] = SCALAR_VAL(0.0);

10 for (i = 0; i < _PB_N; i++) {
11 mean[j] += data[j][i];
12 mean[j] /= float_n;
13 }
14 }
15
16 #pragma omp parallel for private(j)
17 for (i = 0; i < _PB_N; i++)
18 for (j = 0; j < _PB_M; j++)
19 data[i][j] -= mean[i];
20
21 #pragma omp parallel for private(j,k)
22 for (i = 0; i < _PB_M; i++)
23 for (j = i; j < _PB_M; j++) {
24 cov[i][j] = SCALAR_VAL(0.0);
25 for (k = 0; k < _PB_N; k++)
26 cov[i][j] += data[i][k] * data[j][k];
27 cov[i][j] /= (float_n - SCALAR_VAL(1.0));
28 cov[j][i] = cov[i][j];
29 }

Listing 4.1: Covariance with transposition of array data

Gemm

For Gemm, we also consider a Naive program and a Pluto output. As shown in Figure 4.8, all
versions scale very well, but additional locality optimizations and vectorization in outputs
generated by Pluto considerably improve performances. We measure the execution time of
multiple parallel versions without loop transformation (i.e. a Naive program without loop
tiling in this case) including two methods for eliminating column-major accesses. The first
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Figure 4.8: Speed-ups over Default versions executed on 1 core for Gemm

version eliminates such accesses through data transposition, and the second version is ob-
tained through loop interchange (ikj). Loop interchange is also the transformation that Pluto
performs, in addition to loop tiling. On this machine, loop interchange seems more appro-
priate than data transposition on the Naive program. We reproduced these experiments on
two other machines: a 4 core Intel Core i7-4910MQ CPU (Haswell) at 2.90GHz and a 16 core
Intel Xeon CPU E5-2660 (Sandy Bridge) at 2.20GHz. We observed the same tendency on the
Haswell with or without the -O3 option, but we noticed the opposite on the Sandybridge
when disabling this option. This is probably due to the lower AVX computation through-
put compared to memory bandwidth: the program (with these optimizations) is definitely
compute-bound on Sandybridge and NUMA optimizations have little impact.
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Outcomes

These results show that, on one hand, bandwidth-bound programs that cannot be improved
using Pluto’s default heuristics (Gemver and Gesummv) do benefit from NUMA placements
and transpositions. On the other hand, programs already benefiting a lot from Pluto’s heuris-
tics do not require additional NUMAplacement sincemost data accesses hit the cache. More-
over, in some cases, and depending on the machine, it seems wiser to rely on loop transfor-
mations rather than data layout transformations.

These case studies show the advantages of complementing polyhedral tools with data
placement on NUMA nodes and transposition. NUMA placements tend to improve a pro-
gram’s scalability, especially from the threshold from which the NUMA effect appears. In
addition, transpositions helps to improve the speed-up in general. Combining both is an
interesting alternative even though further optimizations are still necessary.

This far, our experiments involved the use of standard API constructs for data placements.
In the prospect of an intermediate language featuring NUMA abstractions, expressiveness
for both interleaved allocation and replication is required. But the API provides means to im-
plement more precise NUMA operations. These could, therefore, be reflected in the language
expressiveness. The following sections discuss possible refinements for data placement poli-
cies.

4.3 Refining NUMA Memory Allocation Policies

The implementation of numa_alloc_interleaved (and numa_alloc_onnode) is based on
the combination of two main functions:

• mmap that creates a new mapping in the virtual address space of the calling process.
• mbind that complements mmap by setting the NUMA memory policy. It requires to
choose, for a given memory range, an allocation policy mode for a certain number of
nodes.

Listing 4.2 shows the implementation of numa_alloc_interleaved in Libnuma 1.
Regardless of the input program, interleaved allocation generally reduces traffic con-

tention. However, to promote more data locality, we can explore the possibility of fine-
tuning interleaved allocation with respect to a given program, i.e. compute the exact page
granularity of interleaving that maximizes data locality. This requires to implement a vari-
ation of numa_alloc_interleaved thanks to mmap and mbind.

To compute the exact page granularity, we need to determine thread array regions that
are obtained using the thread scheduling policy, with respect to the NUMA topology. Hy-
potheses for such statement implies that thread migration is deactivated and threads are
binded to their respective cores.

1Source available at: https://github.com/numactl/numactl/blob/master/libnuma.c

https://github.com/numactl/numactl/blob/master/libnuma.c
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1 void * numa_alloc_interleaved(size_t size) {
2 char *mem = mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);
3 if (mem == (char *)-1)
4 return NULL;
5 if (mbind(mem, size, pol, bmp ? bmp->maskp : NULL, bmp ? bmp->size + 1 : 0,

mbind_flags) < 0)↪→
6 numa_error("mbind");
7 return mem;
8 }

Listing 4.2: Implementation of numa_alloc_interleaved

4.3.1 Thread array regions and page granularity

In OpenMP, the schedule(static, C) directive, where C is a chunk size, describes a
round-robin distribution of the iteration range per chunks of C iterations among T threads
(where T is the maximum number of threads executing the loop). The maximum value of
the iteration range in noted N .

Let M = N × C
T . The iteration range Ik of a thread k over a parallel dimension (inner

dimensions excluded) is

Ik =
M∪
p=0

Sp , Sp = {i | C · (p ·T + k) ≤ i < C · (p ·T + k) +C}. (4.1)

Further simplifications of I are possible depending on the type of distribution. Typically, a
block distribution is specified with schedule(static, N/T). In this case,

Ik = {i | N · k
T
≤ i < N · k

T
+C}. (4.2)

A cyclic distribution produces a much simpler definition:

Ik =
M∪
p=0

Sp , Sp = p ·T + k . (4.3)

Let A an array and i1, · · · , im the indexes of the loop iterating over A. We note i// the
loop index iterating over a parallel dimension. We can determine the thread array region of
a thread k using I :

TARk = {A(i1, · · · , im) |

iq ∈ Ik , if iq = i//

iq ∈ [0,max ], otherwise
}

where [0,max ] represents the full iteration range of iq .
Let ELTSIZE the size of elements in an array. We note |TARk | the cardinal of TARk . If

TARk is a full set, the page granularity for a given threadGk is computed as follows:

Gk =
|TARk | × ELTSIZE

PAGESIZE
.
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If TARk is a disjoint set Gk = д1 ∪ · · · ∪ дm such that д1 = · · · = дm , then

Gk =
|д | × ELTSIZE
PAGESIZE

where д = д1 ∨ · · · ∨ дm .
Defining the final page granularity to be passed onto the allocation function is easy when

G1 = · · · = GT . However, approximations are necessary whenTARk is a disjoint set and/or
G1 , · · · , GT .

Example: Block distribution

We assume T = 4, N = 4096, sizeo f = 8 and PAGESIZE = 4096. We illustrate these
principle using the first kernel of Gemver.

1 #pragma omp parallel for
2 for (i = 0; i < N; i++)
3 for (j = 0; j < N; j++)
4 A[i][j] += u1[i] * v1[j] + u2[i] * v2[j];

We focus on arrays A and u1 as their iteration ranges involve the parallel dimension.
With no thread scheduling specification, OpenMP defaults to schedule(static, N/T)
which is a block distribution. Computing all Ik following Equation 4.2:

For array A

TAR0 = {A(i, j) | i ∈ [0, 1023] and j ∈ [0, 4095]}
TAR1 = {A(i, j) | i ∈ [1024, 2047] and j ∈ [0, 4095]}
TAR2 = {A(i, j) | i ∈ [2048, 3071] and j ∈ [0, 4095]}
TAR3 = {A(i, j) | i ∈ [3072, 4095] and j ∈ [0, 4095]}

Therefore, |TAR0 | = · · · = |TAR3 | = 4194304 and GA = 8192 pages.

For array u1

TAR0 = {u1(i) | i ∈ [0, 1023]}
TAR1 = {u1(i) | i ∈ [1024, 2047]}
TAR2 = {u1(i) | i ∈ [2048, 3071]}
TAR3 = {u1(i) | i ∈ [3072, 4095]}

Therefore, |TAR0 | = · · · = |TAR3 | = 1024 and Gu1 = 2 pages.

4.3.2 Implementation

A custom interleaving function is dependent on the type of core distribution across
NUMA nodes. The example of implementation in Listing 4.3 tightly matches the cyclic dis-
tribution illustrated in Figure 4.2; this characteristic is emphasized from lines 21 to 25.
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1 // bsize is the page granularity.
2 void *numa_alloc_block(size_t size, int bsize) {
3 void *mem, *offset;
4 struct bitmask *bmp;
5 int nodeid;
6 size_t i;
7
8 bmp = numa_allocate_nodemask();
9 mem = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);

10
11 nodeid = 0; // start with first NUMA node
12 offset = mem;
13
14 int lbsize = 0;
15 numa_bitmask_setbit(bmp, nodeid);
16 for (i = 0; i < size; i+=PAGESIZE) {
17 mbind(offset, PAGESIZE, MPOL_BIND, bmp->maskp, bmp->size, 0);
18 *((int *)offset) = 0;
19
20 offset = (void *)((uintptr_t)offset + PAGESIZE);
21 lbsize++;
22 if (lbsize == bsize) {
23 numa_bitmask_clearbit(bmp, nodeid);
24 nodeid = (nodeid == 1) ? 0 : nodeid + 1;
25 numa_bitmask_setbit(bmp, nodeid);
26 lbsize = 0;
27 }
28 }
29 numa_bitmask_clearbit(bmp, nodeid);
30 return mem;
31 }

Listing 4.3: An implementation of a custom interleaving function following a
cylic distribution of cores over 2 NUMA nodes.

4.3.3 Limitations

There are several limitations to this approach. First, wemay not observe significant speed-up
depending on the topology. While the goal of this methodology is to enhance data locality,
it becomes irrelevant if the main issue of an application is traffic contention and there is
no significant distance between nodes. In this case, page granularity does not matter. We
performed a few experiments on the Pau machine (c.f. Figure 4.2) and observed variable
results that did not allow us to conclude that the methodology is efficient.

Furthermore, these analyses need to meet several preconditions, especially concerning
the thread binding. OpenMP proposes OMP_PROC_BIND, which seems to bind a thread
k to a core k . This has been observed during experiments, however, in case of doubt,
GNU_CPU_AFFINITY allows to precisely bind threads to cores.

Another limitation is that if N or C are not powers of 2, we need to approximate the
page granularity. Finally, the application scope is restricted; typical programs on which this
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could work are static control programs (i.e. programs that fit in the polyhedral model).

4.4 Data Replications Implementation

In this section, we discuss data replications. Note that we only consider replication on read-
only variables; coherency management is required for write accesses, which is not in the
scope of this thesis.

In gemver, we suggested that A, u1 and u2 could be interleaved due to the thread access
pattern. Similarly, we can also assume that v1 and v2 could be replicated. Indeed,

TARk = {v1(j) | j ∈ [0,max j ]}

where j is inner to the parallel dimension i .

4.4.1 Conditional Branching

In [130], we relied on a replication scheme dependent on the specification of conditions on
parallel loop indexes. In Listing 4.4, we present the generated code following this idea.

1 #pragma omp parallel for
2 for (i = 0; i < n; i++) {
3 if (0 <= i && i < (n/N_n))
4 for (j = 0; j < n; j++)
5 A[i][j] += u1[i] * v1_1[j] + u2[i] * v2_1[j];
6
7 if (n/N_n <= i && i < 2 * (n/N_n))
8 for (j = 0; j < n; j++)
9 A[i][j] += u1[i] * v1_2[j] + u2[i] * v2_2[j];

10
11 ...
12 }

Listing 4.4: Implementation of a replication with conditional branching

The potentially excessive conditional branching is not appealing. With no parallelism,
classic loop transformations such as hoisting out the if conditions or index splitting could
be applied. The context of parallel programming introduces several challenges.

Challenge 1: Optimizations depend on the organization of cores.

The choice of transformations is tightly dependent on the organization of cores. In Listings
4.4 and 4.8, we present the replication on a block distribution of cores in the NUMA system.
Therefore, an appealing optimization here is index splitting. If we consider a replication on
a cyclic distribution of cores as in Figure 4.2, the replication can be rewritten as in Listing
4.5.
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1 #pragma omp parallel for private(j) schedule(static,1)
2 for (i = 0; i < N; i++) {
3 if ((i % 2) == 0)
4 for (j = 0; j < N; j++)
5 A[i][j] += u1[i] * v1_1[j] + u2[i] * v2_1[j];
6
7 if ((i % 2) != 0)
8 for (j = 0; j < N; j++)
9 A[i][j] += u1[i] * v1_2[j] + u2[i] * v2_2[j];

10 }

Listing 4.5: Replication on a 2-nodes NUMA topology with cyclic distribution
of cores

An optimized version could be as in Listing 4.6 where we apply a technique similar to
loop tiling; the “tile” loop (i.e. the nesting level where t is the loop index) is, in fact, a
loop iterating over the range of thread identifiers and the “point” loop is the former parallel
dimension.

1 #pragma omp parallel for schedule(static, C) private(this_i, i, j)
2 for (t = 0; t < T; t++)
3 for (i = C*t; i < C*(t+1); i++) {
4 this_i = ((t % 2) * N)+i;
5 for (j = 0; j < _PB_N; j++)
6 A[i][j] = A[i][j] + vu1[this_i] * v1[j] + vu2[this_i] * v2[j];
7 }

Listing 4.6: Replication without conditional branching on a 2-nodes NUMA
topology with cyclic distribution of cores

Some types of distributions will probably be left out. Perhaps could we assume that
common patterns are cyclic or block distributions. But topologies remain unpredictable.

Challenge 2: The parallel programming language itself can be the hindering factor.

The semantics of the parallel programming language can be a limiting factor. Until now, we
presented examples of OpenMP programs. However, we have encountered issues due to the
semantics of the parallel section.

Considering Listing 4.4 where the replication follows the block distribution of cores,
we mentioned earlier that index-splitting could be an optimization technique corresponding
to Listing 4.7 a priori. The main idea is to create distinct parallel sections. Unfortunately,
OpenMP does not provide enough user control over thread pools to ensure that Section 1
and Section 2 have different thread pools. Any #pragma omp parallel section starts the
thread counter to 0. Even creating a parallel section using #pragma omp sections with
inner parallel sections does not provide more flexibility. But contrary to OpenMP, Pthreads
seems to propose means allowing such implementations.
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1 // Section 1
2 #pragma omp parallel for
3 for (i = 0; i < n/N_n; i++)
4 for (j = 0; j < n; j++)
5 A[i][j] += u1[i] * v1_1[j] + u2[i] * v2_1[j];
6
7 // Section 2
8 #pragma omp parallel for
9 for (i = n/N_n; i < 2* n/N_n; i++)

10 for (j = 0; j < n; j++)
11 A[i][j] += u1[i] * v1_2[j] + u2[i] * v2_2[j];
12
13 ...

Listing 4.7: Idealistic implementation of data replication with index-splitting

4.4.2 Replication Storage

This far, we considered cases where replications are stored in distinct arrays. But the storage
mode impacts the implementation.

Alternatively to Listing 4.4, we could store all replication into the same array with an
extra dimension which size corresponds to the number of replications. In this case, the
generated code matches the implementation presented in Listing 4.8; this does not require
to change access patterns.

1 #pragma omp parallel for
2 for (i = 0; i < n; i++)
3 for (k = 0; k <= N_n; k++) {
4 if (k * (n/N_n) <= i && i < (k+1) * (n/N_n))
5 for (j = 0; j < n; j++)
6 A[i][j] += u1[i] * v1_1[k][j] + u2[i] * v2_1[k][j];
7 }

Listing 4.8: Implementation of replication with conditional branching and ad-
ditional looping

Assuming an idealistic implementation of index splitting where it is possible to custom
thread pools, a compact replication with a change on the access pattern could be performed
as in Listing 4.9. Given an arrayA(M), let B = compactreplicate(A), resulting into B(M ∗N )

where B(i) = B(i + k ∗M), 1 ≤ k ≤ N , 0 ≤ i < M .

The presented solutions can be, however, difficult to automatize. Various aspects need
to be verified such as array bounds, thread identifiers or aligned array allocations. One
last alternative, probably the easiest to implement and the most reliable, is as in Listing
4.10; we store replications in a two-dimensional array and dynamically find the proper node
indexation. Unlike other variants that need to ensure that the thread binding is accurate,
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1 #pragma omp parallel for
2 for (i = 0; i < n/N_n; i++)
3 for (j = 0; j < n; j++)
4 A[i][j] += u1[i] * new_v1[j] + u2[i] * new_v2[j];
5
6 #pragma omp parallel for
7 for (i = n/N_n; i < 2*n/N_n; i++)
8 for (j = n; j < 2*n; j++)
9 A[i][j] += u1[i] * new_v1[j] + u2[i] * new_v2[j];

10
11 ...

Listing 4.9: Compact storage of replications

such a dynamic retrieval of node identification allows a portable implementation of select,
but at the cost of function calls overheads.

1 #pragma omp parallel for
2 for (i = 0; i < n; i++) {
3 k = get_node_current_thread();
4 for (j = 0; j < n; j++)
5 A[i][j] += u1[i] * new_v1[k][j] + u2[i] * new_v2[k][j];
6 }

Listing 4.10: Replication relying on dynamic retrieval of node identifiers.

4.5 On Run-time Decisions

Data placements are necessary but they may not be relevant without proper runtime deci-
sions. In this section, we exhibit an example of interaction between a data placement policy
and thread binding policies at runtime.

On platforms with a cyclic core distribution, an interleaved allocation policy lacking
data locality may not be solvable through adjustable page sizes. Let us consider an array
u[16] and its mapping on a cyclic core distribution across 2 nodes. Assuming an interleaved
allocation per 1 page size that contains only 4 elements, Figure 4.9a shows an example of
a poor combination of work distribution and thread binding. It is appealing to readjust the
thread binding with respect to data placement if means are provided for a fine control, and
the programmer knows what he is doing. Otherwise, it is best to let the operating system
decide on the proper migration of threads and pages.

Further adjustments at the static level may be performed as in Figure 4.9b with program-
ming languages providing constructs for thread scheduling. This also allows the adjustment
of thread workloads to some extent. For programming languages that do not provide such
constructs, it is necessary to reason with the understanding of how the operating system
takes decisions.
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4.6 Outcomes

We presented NUMA architectures and how NUMA-awareness can complement loop and
data layout transformations. NUMA-awareness must involve runtime decisions such as
thread binding. However, in the context of static data placement, two main types of data
allocation can be considered. On one hand, we have interleaved allocations that might be
refined for further data locality if traffic contention is not the only issue. On the other hand,
we have data replications and their implementation that may involve different storage mode
and code transformations methods. It is therefore interesting to take into account, at least,
abstractions for standard NUMA data placements. In addition, more abstractions can be
proposed for further (and easier) placement exploration.
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*** Background fill gray represents elements mapped on and threads bind to cores on node
0 (respectively node 1 with white). ***
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(b) Combination for optimal data locality according to the number of threads.

Figure 4.9: Different combinations of work distribution and binding policies
for a 1-dimensional array of size 16



Chapter 5

TeML: the Tensor Optimizations
Meta-language

Nous présentons la conception et l’implémentation de TeML, un langage intermédiaire génératif
et extensible doté de capacités de méta-programmation. TeML se distingue des autres méta-
langages pour l’optimisation d’application tensorielles de par son expressivité de haut niveau et
son degré de compositionnalité.

Le niveau d’abstraction adopté pour exprimer les calculs tensoriels est proche de celui utilisé
par des outils tels que TensorFlow ou Theano. En outre, TeML permet de décrire en quelques
lignes des schémas d’optimisations (qui peuvent être effectué par des outils tels que Pluto) à
appliquer aux calculs tensoriels spécifiés. Nous fournissons également le moyen de caractériser
des opérateurs tensoriels de haut niveau ainsi que des concepts liés au placement de données sur
les architectures NUMA. De plus, sa conception basées sur une programmation de type fonction-
nelle permet de composer et de générer plusieurs variantes de programme à partir du même pro-
gramme TeML. Cette caractéristique permet à TeML d’être exploité dans la conception d’outils
pour différents domaines d’applications tensorielles. Dans l’évalution de TeML, nous parvenons
à démontrer que la flexibilité offerte permet d’exprimer des schémas d’optimisations plus effi-
caces que celles proposées par Pluto.

∗ ♣ ∗ ♣ ∗

Our case study in Chapter 3 showed that tensor optimizations tools do not generalize
well from one domain to another. An example of hindering factor is using as a front-end
a language which expressiveness is irrelevant for a given domain. This is all the more true
if the tool’s compilation flow is domain-specific or tailored for restricted optimization tech-
niques. In addition, there may be a lack of flexibility to extend such a tool.

Another issue, whether concerning domain-specific or more general solutions, is that
there is real difficulty in composing complex transformations; after a few steps, it is hard
to keep track of the sequence of transformations due to the core design of the intermediate
representation used or the lack of formal semantics.

67
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We, therefore, present the design and implementation of TeML, a generative and exten-
sible intermediate language with meta-programming capabilities to close this gap. Although
NUMA optimizations cannot be fully managed statically, as we have seen in Chapter 4 that
it is beneficial to couple runtime solutions with static data placements, TeML also incor-
porate NUMA-awareness to mitigate the severe lack of high-level abstractions for NUMA
placements.

This chapter is based on:

Adilla Susungi, Norman A. Rink, Jerónimo Castrillón, Immo Huismann, Albert Co-
hen, Claude Tadonki, Jörg Stiller, and Jochen Fröhlich. Towards compositional
and generative tensor optimizations. In Proceedings of the 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE ’17). https://doi.org/10.1145/3136040.3136050

Adilla Susungi, NormanA. Rink, Albert Cohen, JerónimoCastrillón, andClaude Ta-
donki. Meta-programming for Cross-Domain Tensor Optimizations. In Pro-
ceedings of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (GPCE ’18). https://doi.org/10.1145/
3278122.3278131

5.1 Overview

TeML is a transformation meta-language, i.e. a language that has the ability to express pro-
gram transformations using high-level constructs. This provides an appealing level of flex-
ibility in composing sequences of transformations. Transformation meta-languages have
an advantage over standard intermediate languages that make it difficult to compose and
trace transformations paths. Therefore, they have been used in various contexts such as em-
pirical tuning, interactive compilation or optimization meta-programming. Transformation
meta-languages come in various forms such as scripting languages, intermediate languages,
pragma-based ormulti-stage and rely on various levels of abstraction for the input programs.

In our domain of interest, i.e. loop nests optimizations, a limited number of meta-
languages exist that we can name: Poet [139], Goofi [95], X [61], URUK [53, 54], CHiLL
[48, 113], Loo.py [80], Halide [110], XFOR [62], TVM [50], Lift [127], Clay [26]. Note that
we can distinguish those that are based (at least to some extent) on the polyhedral model
(e.g. URUK, CHiLL, XFOR, Clay) from those that are not (e.g. Halide, TVM, Lift). Loo.py is
partially based on the polyhedral model. Also, despite being included among transformation
meta-languages, Lift is in a different league: it relies on a traditional functional programming
style using combinators and transformations are described through rewriting rules. Hence,
contributions of this thesis relate to concepts in above-cited meta-languages except Lift.

TeML distinguishes itself from its predecessor on three main differences:

https://doi.org/10.1145/3136040.3136050
https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3278122.3278131
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Program abstraction. In TeML, we propose high-level abstractions for tensor com-
putations allowing to express and easily compose algebraic transformations with other types
of transformations. Existing meta-language do not propose such abstractions. Those tightly
based on the polyhedral model do not feature means for computation specification along
with the sequence of transformations. Hence, they do not have expressiveness for com-
posing algebraic transformations. On the other hand, meta-languages enabling both spec-
ification of computations and transformations propose constructs for simpler optimization
problems, sometimes domain-specific.

Degree of compositionality. The second difference is that TeML integrates meta-
programming capabilities following a unified functional design for program specification
and transformation. This allows TeML to be much more compositional. Indeed, existing
meta-language rely on an imperative composition of transformations and, when possible, a
functional declaration of computations. Such level of unification and expressiveness is key
for TeML’s cross-domain applicability.

Architectural awareness. Finally, we incorporate some level of NUMA-awareness
but not only through providing high-level constructs mapping to a NUMA API. We also
propose abstractions concepts such as the type of program transformations inherent to data
replications. This type of expressiveness does not exist in other languages.

TeML is designed with one goal in mind: modular and generative program specifications
and transformations with unambiguous semantics. We achieve this by considering a pro-
gram as a list of declarations using immutable functions. In addition, tensors have decoupled
data layouts and NUMA allocation policy control. As shown in Figure 5.1, besides the declar-
ative part of a TeML program, additional constructs for initialization, allocation and code
generation specifications are available.

Declarations are performed using functions returning either tensors or loops through
⟨Texpression⟩ and ⟨Lexpression⟩ respectively. Returned objects may be stored in a physical
or a virtual memory depending on the type of construct used: if a construct starts with v or
@, then the returned object is stored in the virtual memory. The physical memory (the main
memory) is a collection of memory blocks distributed over different NUMA nodes whereas
the virtual memory is a single block. Most objects are stored in the main memory but the
virtual memory specifically serves to store abstract views of objects in the main memory.

In the following section, we present different aspects of TeML’s design.

5.2 Tensors

The underlying structure of a tensor is an N -dimensional array. In this section, we introduce
different ways of declaring N−dimensional arrays.
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⟨program⟩ ::= ⟨stmt⟩ ⟨program⟩
| ϵ

⟨stmt⟩ ::= ⟨id⟩ = ⟨expression⟩
| ⟨id⟩ = @⟨id⟩ : ⟨expression⟩
| codegen (⟨ids⟩)
| init (…)

⟨expression⟩ ::= ⟨Texpression⟩
| ⟨Lexpression⟩

⟨Texpression⟩ ::= scalar ()
| tensor ([⟨ints⟩])
| eq (⟨id⟩, ⟨iters⟩? → ⟨iters⟩)
| vop (⟨id⟩, ⟨id⟩, [⟨iters⟩?, ⟨iters⟩?])
| op (⟨id⟩, ⟨id⟩, [⟨iters⟩?, ⟨iters⟩?] → ⟨iters⟩)

⟨Lexpression⟩ ::= build (⟨id⟩)
| stripmine (⟨id⟩, ⟨int⟩, ⟨int⟩)
| interchange (⟨id⟩, ⟨int⟩, ⟨int⟩)
| fuse (⟨id⟩, ⟨id⟩, ⟨int⟩)
| unroll (⟨id⟩, ⟨int⟩)

⟨iters⟩ ::= [⟨ids⟩]
⟨ids⟩ ::= ⟨id⟩ (, ⟨id⟩)*
⟨ints⟩ ::= ⟨int⟩ (, ⟨int⟩)*

Figure 5.1: TeML core grammar

5.2.1 N−dimensional Arrays

Basic declaration

A simple multi-dimensional array declaration is performed using:

• tensor (T , [s1, …, sN ]) ,

whereT is the data type of the array elements and [s1, …, sN ] are the sizes of the dimensions,
i.e. the shape. We provide scalar (T ) for pure scalar variables. However, scalars can also
be viewed as 1-dimensional arrays with 1 element which can be declared using tensor.

Transpositions

We support two types of transposition for different purposes:

• transpose(t , [r1, r2]) for transposing the physical or virtual tensor t into a physical
tensor,
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• vtranspose(t , [r1, r2]) for transposing the physical or virtual tensor t into a virtual
tensor.

Both operations produce a new tensor object in the intermediate language by swapping the
dimensions r1, r2 of t .

Using either transpose or vtranspose have different impact on the generated code.
The transpose construct generates a loop explicitly performing data transposition. As an
example, we consider the following code sample.

1 A = tensor(int, [N,N])
2 At = transpose(A, [1, 2])
3

4 # Computation using At
5 # ...

The C code generation from such a code includes the declaration of both A and AT , the
initialization of A followed by its transposed copy stored in AT , then the use of AT in the
computation to eliminate column-major accesses.

1 // Declaration of both A and At
2 int A[N][N];
3 int At[N][N];
4

5 // Initialization of A
6 for (i = 0; i < N; i++)
7 for (j = 0; j < N; j++)
8 A[i][j] = ...
9

10 // Transposition into At
11 for (i = 0; i < N; i++)
12 for (j = 0; j < N; j++)
13 At[i][j] = A[j][i];
14

15 // Computation using At
16 for (i = 0; i < N; i++)
17 for (j = 0; j < N; j++)
18 ... = At[i][j];

However, vtranspose serves us to abstract and modify the access function of a tensor.
Therefore, a tensor created with vtranspose will not appear in the generated code. For
example, the following code sample

1 A = tensor(2, int, [N,N])
2 At = vtranspose(A, [1, 2])
3

4 # Computation using At

generates a C code that only includes a declaration of A, then its transposed access in the
computation as a result of a vtranspose specification in TeML.
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Figure 5.2: From left to right: shift-lower, shift-upper, Hilbert matrices

1 // Declaration of A only
2 int A[N][N];
3

4 // Initialization of A
5 for (i = 0; i < N; i++)
6 for (j = 0; j < N; j++)
7 A[i][j] = ...
8

9 // Computation using transposed access to A
10 for (i = 0; i < N; i++)
11 for (j = 0; j < N; j++)
12 ... = A[j][i];

Special cases

If initialization of special cases is needed, dedicated constructs can be used:

• zeros(T, [s1, ..., sN ])
• ones(T, [s1, ..., sN ])
• identity(T, [s1, s2])
• shift_lower(T, [s1, s2])
• shift_upper(T, [s1, s2])
• hilbert(T, [s1, s2])

Such constructs use the same parameters as tensor. Besides zeros and ones, other
specifications are restricted to matrices. Note that in the case of the lower- and upper- shift
matrices, one type may be obtained with the transposition of its counterpart. For instance,

1 B = shift_upper(double, [4, 4])

corresponds to

1 A = shift_lower(double, [4, 4])
2 B = transpose(A, [1, 2])
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Replications and multiplexing

In Chapter 4, Section 4.4, we exposed potential implementations of data replications. There-
fore, NUMA-awareness consists in introducing appropriate program abstractions, in addi-
tion to allocation functions. The particularity of replications is the management of multiple
copies; we need to choose within a parallel loop different copies of the same data structure,
depending on the thread scheduling.

Replications can be performed using a simple assignment such as t_1 = t. We then
handle the choice of different replications within a loop using virtual tensors carrying multi-
plexing properties; i.e. they point to concrete tensors that are used depending on conditions.
For more clarity, let us recall an implementation of replications using conditional branching
where v12 is a replication of v11 (resp. v22 and v21 ).

1 #pragma omp parallel for
2 for (i = 0; i < n; i++) {
3 if (0 <= i && i < (n/N_n))
4 for (j = 0; j < n; j++)
5 A[i][j] += u1[i] * v1_1[j] + u2[i] * v2_1[j];
6

7 if (n/N_n <= i && i < 2 * (n/N_n))
8 for (j = 0; j < n; j++)
9 A[i][j] += u1[i] * v1_2[j] + u2[i] * v2_2[j];

10 }

We then assume tensorV1 to abstract the conditional use of v11 and v12 (resp. V2 for v22
and v21 ). This is the idea of the TeML construct used for this purpose, that is:

• select(t1, · · · , tn),

where t1, · · · , tn are replication to be mapped on different nodes. The number of arguments
n is equal to the number of NUMA nodes considered. The TeML equivalent of the C code
above is then:

1 v1_1 = tensor(double, [N, N])
2 v2_1 = tensor(double, [N, N])
3 v1_2 = v1_1
4 v2_2 = v2_1
5

6 V1 = select(v1_1, v1_2)
7 V2 = select(v2_1, v2_2)
8

9 // Computation using V1 and V2
10 // instead of v1_1, v1_2, v2_1 and v2_2

5.2.2 Compute Expressions

New tensors may be declared as the results of computations. Computations are defined as
compositions of 3-address binary operations. The corresponding syntax in TeML is:
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• op(t1, t2, [[s11 , · · · , s1n ], [s21 , · · · , s2n ]] -> [s31 , · · · , s3n ]),

where [s11 , · · · , s1n ] and [s21 , · · · , s2n ] are the subscripts of t1 and t2 respectively. The con-
nector -> indicates that the following subscript, here [s31 , · · · , s3n ], should be associated to
the output tensor. Tensor objects in TeML carry as an attribute the compute expression from
which they result.

We use a naming convention to enforce a nesting order. For instance, a loop index ik
iterates over the dimension at depth k .

In order to compose beyond 3-address expressions, an op can be combined with their
counterpart functions vop generating virtual tensors;

• vop (t1, t2, [[s11 , · · · , s1n ], [s21 , · · · , s2n ]]).

vop constructs return tensor images holding sub-expressions eventually expanded re-
cursively at instances of op. Therefore, the shape of such virtual tensor is irrelevant. Fur-
thermore, it is not necessary to use the -> connector in a vop.

For both op and vop constructs, t1 and t2 may result from other op and vop. This means
that if an input tensor is virtual, a subscript should not be associated with it, as they serve
as temporary tensors. Therefore, we could redefine op and vop as:

• op(t1, t2, [([s11 , · · · , s1n ]), ([s21 , · · · , s2n ])] -> [s31 , · · · , s3n ])
• vop (t1, t2, [([s11 , · · · , s1n ]), ([s21 , · · · , s2n ])]),

where the parenthesis around subscripts indicate that their specification is optional, with
respect to the nature of their respective tensors.

Data replication through a simple assignment as proposed in the previous section implies
the use of the C function memcpy. However, one can enforce copies to be performed through
loops using eq, which enables layout manipulations:

• eq(t , ([s1, · · · , sn ]) -> [s11 , · · · , s1n ]).

Using immutable functions enforces a single-assignment form for output dependencies.
Consequently, we lose track of such re-computations at code generation. To avoid this, the
keyword @T aliases an output tensor toT whenever preceding an operator. When generating
code, any tensor that appears to be an alias is replaced by the original tensor.

5.2.3 Tensor Operations

Low-level arithmetic operators offer a high degree of expressiveness. But it is possible to
characterize patterns in tensor computations and thus propose higher-level constructs.
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1 A = tensor(double, [2, 2, 2])
2 B = tensor(double, [2, 2, 2])
3 C = mul(A, B, [[i1, i2, i3], [i1, i2, i3]] -> [i1, i2, i3])

1 for i1 from 0 to N1
2 for i2 from 0 to N2
3 for i3 from 0 to N3
4 C[i1][i2][i3] = A[i1][i2][i3] * B[i1][i2][i3]

(a) op construct

1 A = tensor(double, [2, 2, 2])
2 B = tensor(double, [2, 2, 2])
3 C = vmul(A, B, [[i1, i2, i3], [i1, i2, i3]])
4 D = mul(A, C, [[i1, i2, i3], ] -> [i1, i2, i3])

1 for i1 from 0 to N1
2 for i2 from 0 to N2
3 for i3 from 0 to N3
4 C[i1][i2][i3] = A[i1][i2][i3] * B[i1][i2][i3]

(b) vop and op constructs

1 A = tensor(double, [2, 2, 2])
2 B = eq(A, [i1, i2, i3] -> [i1, i2, i3])

1 for i1 from 0 to N1
2 for i2 from 0 to N2
3 for i3 from 0 to N3
4 B[i1][i2][i3] = A[i1][i2][i3];

(c) eq construct

1 A = mul(B, C, [[i1, i2, i3], [i1, i2, i3]] -> [i1, i2, i3])
2 A1 = @A:mul(B, D, [[i3, i2, i1], [i1, i2, i3]] -> [i3, i2, i1])

1 A[i1][i2][i3] = B[i1][i2][i3] * C[i1][i2][i3];
2 A[i3][i2][i1] = B[i3][i2][i1] * D[i1][i2][i3];

(d) Aliasing

Listing 5.1: Examples of TeML code samples and their corresponding C code

Tensor contraction. If, say, the 3rd dimension of A and the 1st dimension of B have the
same size d , a contraction along these dimensions is

Ci jlm =
d∑

k=1

Ai jk · Bklm . (5.1)
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The resulting tensor C is 4-dimensional. From Equation (5.1) it is clear that the contraction
generalizes the matrix-matrix multiplication. Note, however, that one can contract along
with any pair of dimensions of A and B, not only the last and first respectively, as long as
the contracted dimensions have the same size.

Outer product. The outer product ofA and B produces a 6-dimensional tensorC such that

Ci jklmn = Ai jk · Blmn . (5.2)

Entry-wise operations. The entry-wise tensor multiplication of A and B produces a 3-
dimensional tensor C:

Ci jk = Ai jk ⟨op⟩ Bi jk . (5.3)

where ⟨op⟩ is an arithmetic operation.

These operations are mapped directly to the following constructs in TeML:

• outerproduct (t1, · · · , tn),
• contract (t1, t2, [[r11 , r21], …, [r1n , r2n ]]),
• entrywise_add (t1, · · · , tn), respectively _mul, _sub and _div.

The semantics of contract and its arguments are as follows. The last argument is a list of
pairs, in which each pair [r1i, r2i] specifies that the dimension r1i of t1 and r2i of t2 are
contracted together. If t1 is N -dimensional, then r1i can take numerical values ranging from
1 to N , and analogously for t2. Note in particular that the order of the first two arguments
of contract matters since the ranks in the last argument are tied to either t1 or t2.

The use of such high-level tensor operators can be illustrated through the different eval-
uations of Interpolation. Listings 5.2a–5.2c show the intermediate language code for the
different variants of Interpolation introduced in Chapter 3, i.e. Equations 3.7–3.9 that we
recall respectively:

vi jk =
∑
l,m,n

(Akn · (Ajm · (Ail · ulmn))

vi jk =
∑
l,m,n

(Akn · Ajm) · (Ail · ulmn)

vi jk =
∑
l,m,n

(Akn · ((Ajm · Ail ) · ulmn))

Equations 3.8 and 3.9 each contain a term (A · A) that does not involve a contraction and
therefore gives rise to the outerproduct in Figures 5.2b and 5.2c respectively.
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1 A = tensor(double, [N, N])
2 u = tensor(double, [N, N, N])
3
4 tmp1 = contract(A, u, [[2, 1]])
5 tmp2 = contract(A, tmp1, [[2, 2]])
6 v = contract(A, tmp2, [[2, 3]])

(a) Equation 3.7
1 A = tensor(double, [N, N])
2 u = tensor(double, [N, N, N])
3
4 tmp1 = outerproduct(A, A)
5 tmp2 = contract(A, u, [2, 1])
6 v = contract(tmp1, tmp2, [[2, 3], [4, 2]])

(b) Equation 3.8
1 A = tensor(double, [N, N])
2 u = tensor(double, [N, N, N])
3
4 tmp1 = outerproduct(A, A)
5 tmp2 = contract(tmp1, u, [[2, 2], [4, 1]])
6 v = contract(A, tmp2, [[2, 3]])

(c) Equation 3.9

Listing 5.2: Intermediate language codes for equations

5.2.4 Initializations

Generally, tensor declarations must have their corresponding initialization using init.
However, it is not required in specific cases, especially for tensor types distinguished by
their layout or initialization values.

Replicated arrays need not have their corresponding init instance. Matrices such as
the triangular or skew-symmetric would require explicit init instances but distinguishing
them enforces an appropriate initialization pattern at code generation. On the other hand,
special cases such as in Figure 5.2 have pre-defined initialization values and therefore do
not require an explicit init instance. But they may be distinguished by their layout or
initialization values. Languages such as Matlab or Scipy provide such expressiveness, which
can, therefore, be part of TeML’s expressiveness too.

5.3 Loop Generation and Transformations

The compute expression of tensors need to be expanded into concrete loop nests. To do so,
build is the construct that is used:

• build (t ),
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taking as input a tensor t and returning a loop. In other words, the build construct is the
bridge between tensor expression specifications and their corresponding loop objects on
which transformations can be applied using dedicated constructs. Note that build can-
not be used on simple N-dimensional arrays, i.e. generated with primitive or special case
initialization constructs.

Transformation constructs generally take as parameters loops and integers denoting the
dimension depth at which the transformation should occur. Given loops l , l1 and l2, and
dimension depths d,d1,d2, we implemented primitives such as:

• stripmine (l ,d,v), where v is the stripmining factor;
• interchange (l , [d1,d2]);
• tile(l, v), where v is the tiling factor;
• unroll (l ,d);
• part_unroll (l ,d,v);
• fuse (l1, l2,d);
• unroll_and_fuse (l1, l2,d);
• parallelize (l ,d, s), where s is a thread schedule (corresponds to OpenMP
schedule);

• vectorize (l ,d).

For illustration purposes, we provide a full picture of writing optimizations for Inverse
Helmholtz (c.f. Chapter 3):

ti jk =
∑
l,m,n

ATkn · A
T
jm · ATil · ulmn

pi jk = Di jk · ti jk

vi jk =
∑
l,m,n

Akn · Ajm · Ail · plmn

Step 1: Declaration of tensors.

We declare A, u, and D.

1 A = tensor(double, [N, N])
2 u = tensor(double, [N, N, N])
3 D = tensor(double, [N, N, N])

We prepare the transposed view of A using a virtual transposition to express AT .

1 At = vtranspose(A, 1, 2)

Having declared the arrays, we proceed with the tensor computations specifications. The
contractions are decomposed as in Equation (3.7). We also express the entry-wise multipli-
cation betweenD and tmp3 (see Equation (3.5)), where tmp3 is the last intermediate value of
the first set of contractions. We use the vtranspose construct over a few tensors to match
future loop interchanges.
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1 tmp2t = vtranspose(tmp2, 1, 2)
2 tmp3t = vtranspose(tmp3, 1, 3)
3 tmp4t = vtranspose(tmp4, 1, 3)
4 tmp5t = vtranspose(tmp5, 2, 3)
5 tmp1 = contract(At, u, [2, 1])
6 tmp2 = contract(At, tmp1, [2, 2])
7 tmp3 = contract(At, tmp2t, [2, 3])
8 tmp4 = entrywise(D, tmp3t)
9 tmp5 = contract(A, tmp4t, [2, 1])

10 tmp6 = contract(A, tmp5t, [2, 2])
11 v = contract(A, tmp6, [2, 3])

Later wemight want to apply transpositions to the first set of contractions, whichwould lead
to transposed accesses of D. Therefore, we already declare a tensor Dt that is a transposed
version of D.

1 Dt = transpose(D, 1, 3)

Step 2: Building the loops.

We then build the loops corresponding to the computations.

1 ld = build(Dt)
2 l1 = build(tmp1)
3 l2 = build(tmp2)
4 l3 = build(tmp3)
5 l4 = build(tmp4)
6 l5 = build(tmp5)
7 l6 = build(tmp6)
8 lv = build(v)

Step 4: Applying transformations.

We now apply transformations. Several dimensions can be interchanged in the loops com-
puting tmp1, tmp2, tmp3, tmp4, and tmp5.

1 l1a = interchange(l1, [4, 3])
2 l1b = interchange(l1a, [4, 2])
3 l2a = interchange(l2, [2, 1])
4 l2b = interchange(l2a, [1, 4])
5 l3a = interchange(l3, [3, 2])
6 l3b = interchange(l3a, [1, 3])
7 l3c = interchange(l3b, [1, 2])
8 l3d = interchange(l3c, [1, 4])
9 l4a = interchange(l4, [3, 1])

10 l5a = interchange(l5, [3, 2])
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1 for (i1 = 0; i1 <= 12; i1 += 1)
2 for (i2 = 0; i2 <= 12; i2 += 1)
3 for (i3 = 0; i3 <= 12; i3 += 1)
4 for (i4 = 0; i4 <= 12; i4 += 1)
5 tmp1[i1][i2][i3] += A[i4][i1] *

u[i4][i2][i3];↪→
6
7 for (i1 = 0; i1 <= 12; i1 += 1)
8 for (i2 = 0; i2 <= 12; i2 += 1)
9 for (i3 = 0; i3 <= 12; i3 += 1)

10 for (i4 = 0; i4 <= 12; i4 += 1)
11 tmp2[i1][i2][i3] += A[i4][i1] *

tmp1[i2][i4][i3];↪→
12
13 for (i1 = 0; i1 <= 12; i1 += 1)
14 for (i2 = 0; i2 <= 12; i2 += 1)
15 for (i3 = 0; i3 <= 12; i3 += 1)
16 for (i4 = 0; i4 <= 12; i4 += 1)
17 tmp3[i1][i2][i3] += A[i4][i1] *

tmp2[i2][i3][i4];↪→
18
19 for (i1 = 0; i1 <= 12; i1 += 1)
20 for (i2 = 0; i2 <= 12; i2 += 1)
21 for (i3 = 0; i3 <= 12; i3 += 1)
22 tmp4[i1][i2][i3] = D[i1][i2][i3] *

tmp3[i1][i2][i3];↪→
23
24 for (i1 = 0; i1 <= 12; i1 += 1)
25 for (i2 = 0; i2 <= 12; i2 += 1)
26 for (i3 = 0; i3 <= 12; i3 += 1)
27 for (i4 = 0; i4 <= 12; i4 += 1)
28 tmp5[i1][i2][i3] += A[i1][i4] *

tmp4[i4][i2][i3];↪→
29
30 for (i1 = 0; i1 <= 12; i1 += 1)
31 for (i2 = 0; i2 <= 12; i2 += 1)
32 for (i3 = 0; i3 <= 12; i3 += 1)
33 for (i4 = 0; i4 <= 12; i4 += 1)
34 tmp6[i1][i2][i3] += A[i1][i4] *

tmp5[i2][i4][i3];↪→
35
36 for (i1 = 0; i1 <= 12; i1 += 1)
37 for (i2 = 0; i2 <= 12; i2 += 1)
38 for (i3 = 0; i3 <= 12; i3 += 1)
39 for (i4 = 0; i4 <= 12; i4 += 1)
40 v[i1][i2][i3] += A[i1][i4] *

tmp6[i2][i3][i4];↪→

(a) Before transformations

1 for (i1 = 0; i1 <= 12; i1 += 1)
2 for (i2 = 0; i2 <= 12; i2 += 1)
3 for (i3 = 0; i3 <= 12; i3 += 1)
4 Dt[i1][i2][i3] = D[i3][i2][i1];
5
6 for (i1 = 0; i1 <= 12; i1 += 1)
7 for (i2 = 0; i2 <= 12; i2 += 1)
8 for (i3 = 0; i3 <= 12; i3 += 1)
9 for (i4 = 0; i4 <= 12; i4 += 1)

10 tmp1[i1][i4][i2] += A[i3][i1] *
u[i3][i4][i2];↪→

11
12 for (i1 = 0; i1 <= 12; i1 += 1)
13 for (i2 = 0; i2 <= 12; i2 += 1)
14 for (i3 = 0; i3 <= 12; i3 += 1)
15 for (i4 = 0; i4 <= 12; i4 += 1)
16 tmp2[i2][i4][i3] += A[i1][i2] *

tmp1[i4][i1][i3];↪→
17
18 for (i1 = 0; i1 <= 12; i1 += 1)
19 for (i2 = 0; i2 <= 12; i2 += 1)
20 for (i3 = 0; i3 <= 12; i3 += 1)
21 for (i4 = 0; i4 <= 12; i4 += 1)
22 tmp3[i3][i2][i4] += A[i1][i3] *

tmp2[i4][i2][i1];↪→
23
24 for (i1 = 0; i1 <= 12; i1 += 1)
25 for (i2 = 0; i2 <= 12; i2 += 1)
26 for (i3 = 0; i3 <= 12; i3 += 1)
27 tmp4[i3][i2][i1] = Dt[i3][i2][i1] *

tmp3[i1][i2][i3];↪→
28
29 for (i1 = 0; i1 <= 12; i1 += 1)
30 for (i2 = 0; i2 <= 12; i2 += 1)
31 for (i3 = 0; i3 <= 12; i3 += 1)
32 for (i4 = 0; i4 <= 12; i4 += 1)
33 tmp5[i1][i3][i2] += A[i1][i4] *

tmp4[i2][i3][i4];↪→
34
35 for (i1 = 0; i1 <= 12; i1 += 1)
36 for (i2 = 0; i2 <= 12; i2 += 1)
37 for (i3 = 0; i3 <= 12; i3 += 1)
38 for (i4 = 0; i4 <= 12; i4 += 1)
39 tmp6[i1][i2][i3] += A[i1][i4] *

tmp5[i2][i3][i4];↪→
40
41 for (i1 = 0; i1 <= 12; i1 += 1)
42 for (i2 = 0; i2 <= 12; i2 += 1)
43 for (i3 = 0; i3 <= 12; i3 += 1)
44 for (i4 = 0; i4 <= 12; i4 += 1)
45 v[i1][i2][i3] += A[i1][i4] *

tmp6[i2][i3][i4];↪→

(b) After transformations

Listing 5.3: Generated codes for Inverse Helmholtz
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5.4 Memory Allocations

TeML features several allocation policy mapping to the C language and corresponding API
calls:

• alloc (t ) for standard allocation corresponding to malloc;
• alloc_align (t ,n) for data alignment with a factor of n, corresponding to
_mm_malloc;

• alloc_interleaved (t ) for interleaved allocation on NUMA nodes correspond-
ing to numa_alloc_interleaved. Refined allocations can be performed with
alloc_interleaved (t ,v) where v is a value denoting the number of pages to be
mapped per round robin tour. This corresponding to our custom numa_alloc_block
function;

• alloc_onnode (t ,n) for allocation on a specific node n corresponding to
numa_alloc_onnode.

Listing 5.4 depicts a TeML implementation of NUMA placements for the first kernel of
Gemver.

5.5 Implementation and Code Generation

In this section, we provide more insight about the TeML-to-C process. We generate C
code using the command python tmc.py input_file.tml. The tmc.py file implements
3 stages of processing: parsing, full syntax tree processing, and code translation.

Parsing

Most of TeML’s syntax matches that of Python. Therefore we use RedBaron [13], a parser
for Python programs, to process TeML programs. As some TeML elements are not part
of Python’s syntax, we first pre-process our inputs to transform them into fully Python-
compliant programs. A typical example is the connector -> which is transformed into a
comma.

Redbaron generates the full syntax tree (FST) of the program in which different types of
nodes can be distinguished (cf. Figure 5.3). Our two main nodes of interests are assignment
and atomtrailers nodes; all declarations are captured as assignment nodes whereas memory
allocations, initializations, and code generation instructions are captured as atomtrailers
nodes.

Full syntax tree processing

The FST processing consists into creating tensor and loop data structures out of assignment
nodes.
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1 A = tensor(double, [n, n])
2 u1 = tensor(double, [n])
3 v1 = tensor(double, [n])
4 u2 = tensor(double, [n])
5 v2 = tensor(double, [n])
6
7 u1_1 = u1
8 u1_2 = u1
9 u1_3 = u1

10 u2_1 = u2
11 u2_2 = u2
12 u2_3 = u2
13
14 U1 = select(u1, u1_2, u1_3, u1_4)
15 U2 = select(u2, u2_2, u2_3, u1_4)
16
17 t1 = vmul(U2, v2, [[i1], [i2]])
18 t2 = vmul(U1, v2, [[i1], [i2]])
19 t3 = vadd(t1, t2)
20 t4 = @A:add(A, t3, [[i1, i2], ] -> [i1, i2])
21
22 alloc_interleaved(A)
23 alloc_onnode(u1, 0)
24 alloc_onnode(u1_1, 1)
25 alloc_onnode(u1_2, 2)
26 alloc_onnode(u1_3, 3)
27 alloc_onnode(u2, 0)
28 alloc_onnode(u2_1, 1)
29 alloc_onnode(u2_2, 2)
30 alloc_onnode(u2_3, 3)

Listing 5.4: An example of NUMA placement in Gemver using TeML

The main attributes of a tensor data structure are the name, the data type, the shape,
the compute expression returning the tensor and its ancestor (which is another tensor from
which the current is derived).

Each tensor instruction returns a new data structure with attributes filled with respect
to the operation used. This tensor object is then added to either a list of concrete tensors
and a list of virtual tensors. If an attribute does not apply, it is left to the nil value. Tensor
initialization characteristics and allocation policies are updated after the creation of data
structures.

Loop structures are linked list of loop dimensions. We also maintain a list of all loops,
whether created with build or transformations. However, while build and fuse instanti-
ate new loop structures, other transformation constructs return altered copies of their input
loops.
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1 8 -----------------------------------------------------
2 AssignmentNode()
3 # identifiers: assign, assignment, assignment_, assignmentnode
4 operator=''
5 target ->
6 NameNode()
7 # identifiers: name, name_, namenode
8 value='l'
9 value ->

10 AtomtrailersNode()
11 # identifiers: atomtrailers, atomtrailers_, atomtrailersnode
12 value ->
13 * NameNode() ...
14 * CallNode() ...
15 9 -----------------------------------------------------
16 EndlNode()
17 # identifiers: endl, endl_, endlnode
18 value='\n'
19 indent=''
20 10 -----------------------------------------------------
21 EndlNode()
22 # identifiers: endl, endl_, endlnode
23 value='\n'
24 indent=''
25 11 -----------------------------------------------------
26 AtomtrailersNode()
27 # identifiers: atomtrailers, atomtrailers_, atomtrailersnode
28 value ->
29 * NameNode()
30 # identifiers: name, name_, namenode
31 value='init'
32 * CallNode()
33 # identifiers: call, call_, callnode
34 value ->
35 * CallArgumentNode() ...
36 * CallArgumentNode() ...

Figure 5.3: A RedBaron FST sample

Code translation

The codegen construct takes as input a list of loops. Such loops may be results of sim-
ple builds or sequences of transformations. We, therefore, assume loops to be passed onto
codegen to be ready for direct translation into C code. Of course, prior to the loops, we also
print tensor declarations, allocations and initializations.

5.6 On Data Dependencies

The question of data dependencies is inherent to the principles of loop transformations.
Throughout the thesis work, dependency management has been thought of in various ways
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that we discuss in this section. We first recall dependency definitions.

Definition 5.6.1 (Dependency). LetO1 andO2 be two operations. There is a dependency from
O1 to O2, noted O1 → O2, if O1 is executed before O2 and they both have access to the same
memory location.

Different types of dependencies exist:

• Read-after-write (flow dependency), when O1 writes a datum read by O2;
• Write-after-read (anti dependency), when O1 read a datum later written by O2;
• Write-after-write (output dependency), when O1 and O2 write the same datum.

In the context of loop executions, the Definition 5.6.1 may be considered at different
granularity: inter- and intra-loop dependencies. Different stages of TeML’s design greatly
influenced our vision of dependency management.

5.6.1 Dependency Checks using Explicit Construct

The early design of TeML1 was much less functional. We represented the input program
using an abstraction closer to imperative nested loops, that is,

1 with i as piter:
2 with j as siter:
3 A[i][j] = k1(A[i][j], u1[i], v1[j], u2[i], v2[j])

were we:

• used a with construct accompanied with as piter or as siter to qualify declared
loop indexes as used in a parallel or a sequential loop, respectively;

• abstracted statements as functions performing element-wise operations and kept im-
plicit the actual arithmetic operators2.

With such a design, the order in which loops are specified directly determines (at least part
of) inter-loop dependencies.

As for intra-loop dependencies, we considered explicit constructs carrying meta-
informations. For instance, the following code sample exposes different types of depen-
dencies.

1 with i1 as siter:
2 A[i1] = f(B[i1])
3

4 with i2 as siter:
5 with i3 as siter:
6 C[i2] = f(C[i2], A[i3])

1That is, Ivie in [130]
2Still preserved in the compilation flow thanks to pieces of information from the input code
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We can identify:

• RAW dependencies from the initialization of B to B[i1], from A[i1] to A[i3], from the
initialization of C to C[i2], then from C[i2] to C[i2];

• A WAW dependency from C[i2] to C[i2];
• A WAR dependency from C[i2] to C[i2].

Consequently, we considered representing dependencies as follows:

1 with i1 as siter:
2 A[i1] = f(B[i1])
3

4 B[i1].__raw(_INIT_)
5

6 with i2 as siter:
7 with i3 as siter:
8 C[i2] = f(C[i2], A[i3])
9

10 A[i3].__raw(A[i1])
11 C[i2].__raw(_INIT_, C[i2])
12 C[i2].__waw(C[i2])
13 C[i2].__war(C[i2])

Such an idea could be used in the current state of TeML since subscripts may be exposed
when using an op construct. However, additional features would be required to capture
dependencies across high-level tensor operators in which subscripts are implicit.

5.6.2 Decoupled Management

With the current design of TeML, we find the following approach to dependencies more
convenient.

Inter-loop dependencies We are interested in inter-loop dependencies, especially for the
general data-flow. In this case, it is most importantly read-after-write dependencies that we
need. Dependencies at this level can be represented as a data-flow graphG = (N ,E) where:

• N is the set of nodes representing tensor computations;
• E is the set of edges denoting the data-flow.

Intuitively, such a graph is built using the following rule. Each instance of build creates
a new node in G. If G , ∅, an edge from an existing node n to the new node n′ is created if
the output of the computation represented in n is an input to that of n′.

A finer granularity for dependencies may then be attached to each node.
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1 for i in range(0, N):
2 for j in range(0, N):
3 A(i) += A(i+1) * A(i) * A(i-1)

Dependency Direction vector Combinator vectors

D1 A(i) - A(i+1) (>, =) (seqpos, reduce)
D2 A(i) - A(i-1) (<, =) (seqneg, reduce)
D3 A(i) - A(i) (=, =) (map, reduce)

Figure 5.4: A loop and its dependency informations

Intra-loop dependencies Dependencies within a loop concern operations between in-
stances of loop execution, i.e. precise computation of tensor elements. At this level, in
addition to what type of dependency occurs, we are interested in the direction of the depen-
dency.

Definition 5.6.2 (Direction vector). Let a loop l of depth n. Let O1 and O2, two dependent
operations in l occurring respectively at instance I = (i1, · · · , in) and J = (j1, · · · , j2). The
direction vector D(I , J) = (d(i1, j1), · · · ,d(in , jn)) such that

d(ik , jk ) =


>, if jk − ik > 0

<, if jk − ik < 0

=, if jk − ik = 0

(5.4)

We may collect all dependencies in a loop to form the direction matrix.

Definition 5.6.3 (Direction matrix). Let n be the depth of a loop andm the number of depen-
dencies. The direction matrix is a matrixM of size n ×m whereMi = Di(I , J), i < m.

We adapt the notion of direction vector to our needs. The notations “>”, “<”, and “=” can
be substituted with combinators which semantics respect the directions. Consequently, “=”
is substituted with two type of combinators: map and reduce. We can preserve “>” and “<”
with their respective substitute seqpos and seqneg. However, if there is no need to distinguish
both directions, we use seq. Using combinators is especially interesting to formalize effects
on different types of parallel loops.

Transformation effects on direction matrices

We assume that no transformation exposing parallelism can be performed. (In any case, we
do not support skewing.)

Strip-mining, unrolling, peeling, parallelization and vectorization do not modify the di-
rection matrix. Loop interchange, however, permutes it. We consider loop fusion to recreate
a direction matrix for the newly form loop.
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Determining preservation of dependencies

As transformations can be freely applied regardless of legality, semantic equivalence of code
is to be ensured at code generation. We do not support operations exposing task parallelism
explicitly. Therefore, we assume the task parallelism to be already exposed. The list of loop
provided at codegen are generated in the order dictated by the initial builds steps. Indeed,
when deriving new loops from transformations over old loops, pieces of information on the
flow are preserved. However, within a loop, we still need to establish that (i) the list of
dependencies is preserved and (ii) the direction matrices respect the original ones.

5.7 Evaluation

Table 5.1 describes a range of common tensor kernels from different application domains.
These kernels serve as benchmarks for our evaluation of TeML that assess three different
aspects of the language:

1. The capability to express tensor computations efficiently. Here we compare with Ten-
sorFlow [20], whose abstractions for tensor expressions are similar to TeML’s tensor
operations from Section 6.2.2.

2. The ability to reproduce loop optimization paths of existing tools. It is natural to com-
parewith Pluto [39], which gives access to powerful polyhedral-based transformations
through an interface allowing to enable or disable transformation heuristics.

3. The ability to easily extend optimization paths by composing with additional transfor-
mations, leading to the generation of C programs that outperform the ones generated
with Pluto.

As this section unfolds, it will become clear that not all kernels from Table 5.1 can be mean-
ingfully used in the evaluations of all of the three aspects.

All experiments reported in this section were performed on an Intel(R) Core(TM) i7-
4910MQ CPU (2.90GHz, 8 cores when hyperthreading is enabled, 8192 KB of shared L3
cache) running the Ubuntu 16.04 operating system. The generated C programs (either
from TeML or Pluto) were compiled with the Intel C compiler ICC 18.02 using the flags
-O3 -xHost -qopenmp. We used Pluto version 0.11.4, and TensorFlow version 1.6 with
support for AVX, FMA, SSE, and multi-threading.

5.7.1 Expressing Tensor Computations

Most benchmark kernels can be implemented using TeML’s more abstract tensor operations,
which keeps the kernel code short. As shown in Table 5.2, TensorFlow, and TeML programs
are of comparable sizes in terms of lines of code (LOC). We provide a full implementations
of sddmm in Figure 5.5.

Most TensorFlow kernels use either einsum or tensordot. The latter is the equivalent
of TeML’s contract. TensorFlow’s einsum operation is more low-level than tensordot
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Table 5.1: Kernels used in experiments and their respective application do-
mains

Name Domain

Matrix Multiplication mm Linear algebra
transposed tmm

batch bmm
Grouped Convolutions gconv

Deep learning

Matricized Tensor Times
Khatri-Rao product

mttkrp Machine learning

Sampled Dense-Dense
Matrix Product

sddmm Data analytics

Interpolation interp
factorized finterp

Helmholtz helm

Fluid dynamics

Blur blur
Coarsity coars

Image processing

Table 5.2: Comparison of benchmarks implementations in Tensorflow and
TeML

Tensorflow TeML
N°

lines
Constructs used

N°
lines

Constructs used

Matrix Multiplication 3 matmul 3 contract
transposed 3 matmul:transpose=True 4 transpose, contract

batch 3 einsum or tensordot 3 contract

Grouped Convolutions N/A
Not implemented.
Incompatible with einsum.

5 vmul, add

Matricized Tensor Times
Khatri-Rao product

4 einsum or tensordot, multiply 5 vcontract, contract

Sampled Dense-Dense
Matrix Product

4 einsum or tensordot, multiply 6 vcontract, entrywise_mul

Interpolation 3 einsum or tensordot 5 vcontract, contract
factorized 6 einsum or tensordot 6 contract

Helmholtz N/A
Required division
not well supported.

9
contract, entrywise_mul,
div, outerproduct

Blur N/A No stencil support. 64 op, vop

Coarsity 6 einsum or multiply, subtract 6
ventrywise_mul,
entrywise_sub
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and can thus be used when the semantics of tensordot are too restrictive, e.g. in batched
matrix multiplication. In TeML, the same functionality can be implemented using also low-
level operations, i.e. add and mul. Batched matrix multiplication (C = AB) must be built
with more low-level operations in both frameworks due to the batch index b:

1 C[b][i][j] += A[b][i][k] * B[b][k][j]

Note that einsum is not flexible enough to implement all kernels that can be expressed in
TeML, as evidenced by the convolution kernel gconv and the stencil kernel blur in Table 5.1.
Tensorflow does also not have a dedicated construct for outer products, but its documenta-
tion explicitly recommends using einsum for this purpose.3

In summary, practically all of TensorFlow’s constructs for building tensor expressions
have equivalents in TeML that can be used as effectively. Moreover, kernels that are not
well-supported by TensorFlow, e.g. the stencil kernel blur, can be expressed in TeML using
its fundamental arithmetic operations. Extending TeML with a more abstract operation for
stencils is left for future work.

5.7.2 Reproducing Loop Optimization Paths

For the tensor kernels from Table 5.1 we have identified the fastest program variants that can
be generated with Pluto by manipulating its heuristics for loop fusion, tiling, interchange,
vectorization, and thread parallelism. Table 5.3 lists the TeML equivalents of the loop opti-
mization paths that caused Pluto to generate the fastest programs. Note that the TeML trans-
formations vectorize and parallelize have been implemented with compiler-specific
pragmas for vectorization and OpenMP pragmas for thread parallelization.

The stencil kernel blur is not included in Table 5.3 since Pluto’s best optimization path
for this kernel performs loop skewing, which cannot yet be expressed in TeML. Also, as
standard matrix multiplication has been thoroughly studied, our analysis focuses on bmm,
which presents a less conventional computation pattern.

Since the sequences of TeML loop transformations in Table 5.3 reproduce the effects of
Pluto’s optimizations, C programs generated either from TeML or Pluto for the kernels listed
in Table 5.3 have equal execution times. For space reasons we have omitted plots of these
execution times since theywould only show relative speed-ups of 1.0× (withinmeasurement
accuracy) between Pluto and TeML.

5.7.3 Performance

We now study opportunities for composing optimization paths with TeML that lead to gen-
erated C programs that outperform programs generated with Pluto. For completeness, we
also indicate the performance of the corresponding TensorFlow kernels. Figure 5.6 shows

3https://www.tensorflow.org/api_docs/python/tf/einsum

https://www.tensorflow.org/api_docs/python/tf/einsum
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1 import tensorflow as tf
2 from tensorflow.python.client import timeline
3 import sys
4
5 B = tf.random_normal([4096, 4096])
6 C = tf.random_normal([4096, 4096])
7 D = tf.random_normal([4096, 4096])
8
9 tmp = tf.tensordot(C, D, [[1], [0]])

10 A = tf.multiply(B, tmp)
11
12
13 T = int(sys.argv[1])
14
15 sess = tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=T))
16
17 options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
18 run_metadata = tf.RunMetadata()
19 sess.run(A, options=options, run_metadata=run_metadata)

(a) TensorFlow
1 B = tensor(double, [4096, 4096])
2 C = tensor(double, [4096, 4096])
3 D = tensor(double, [4096, 4096])
4
5 tmp = vcontract(C, D, [[2, 1]])
6 A = entrywise_mul(B, tmp)
7
8 l = build(A)
9

10 init(B, 1)
11 init(C, 1)
12 init(D, 1)
13 init(A, 0)
14
15 codegen([l])

(b) TeML

Figure 5.5: Implementations of sddmm which computation corresponds to
A(i,j) = B(i,j) * C(i,k) * D(k,j) in index notation.
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Table 5.3: Equivalents of Pluto optimization paths in TeML. Kernel data sizes
in parentheses

mttkrp
(250*250*250)

sddmm
(4096*4096)

bmm
(8192*72*26)

gconv
(32*32*32*32*7*7)

interp
(50000*7*7*7)

helm
(5000*13*13*13)

coars
(4096*4096)

parallelize(l, 1)
interchange(l, 2, 3)

interchange(l, 2, 3),
parallelize(l, 1),
vectorize(l, 3)

tile(l, 32)
interchange(l, 7,8)
paralellize(l, 1)
vectorize(l, 8)

interchange(l1, 4, 5)
interchange(l1, 5, 6)
parallelize(l1, 1)
vectorize(l1, 9)
paralellize(l2, 1)
vectorize(l2, 9)

interchange(l1, 4, 5),
vectorize(l1, 5),
interchange(l2, 4, 5),
vectorize(l2, 5),
parallelize(l1, 1),
parallelize(l2,1),
parallelize(l3, 1)

fuse_outer(l4, l5, 5),
fuse_outer(l4, l6, 5),
parallelize(l1, 1),
parallelize(l2, 1),
parallelize(l3, 1),
parallelize(l4, 1),
vectorize(l1, 2),
vectorize(l2, 3),
vectorize(l3, 4)

tile(l, 32)
parallelize(l, 1)
vectorize(l, 4)

speed-ups relative to the sequential C implementation that is the starting point for apply-
ing optimizations with Pluto. Speed-ups are shown for the best program variants generated
with Pluto and TeML, and for TensorFlow kernels whenever they exist (cf. Table 5.1).

Pluto’s best variants formttkrp, bmm, and sddmm still offer opportunities for data trans-
position, which can significantly improve performance if copy overheads are negligible. The
relevant loop nest in the mttkrp kernel is this:

1 for (int i = 0; i <= (I-1); i++)
2 for (int j = 0; j <= (J-1); j++)
3 for (int k = 0; k <= (K-1); k++)
4 for (int l = 0; l <= (L-1); l++)
5 A[i][j] = B[i][k][l] * D[l][j] * C[k][j];

The loop interchange j ↔ l would eliminate the column-major access of D, and j ↔ k

would eliminate that of C . Both column-major accesses cannot be eliminated at the same
time (without negatively affecting the access patterns of A and B). Pluto chooses to inter-
change j ↔ k (cf. Table 5.3), which only eliminates the column-major access of C . The
following TeML meta-program implementsmttkrp and resolves the column-major access of
D by means of data transposition, yielding a speed-up of 1.74× compared to Pluto, with the
cost of transposition included (Figure 5.6a).

1 B = tensor(double, [250, 250, 250])
2 C = tensor(double, [250, 250])
3 D = tensor(double, [250, 250])
4 Dt = transpose(D, [[1, 2]])
5 tmp = vcontract(B, Dt, [3, 1])
6 A = contract(tmp, C, [2, 1])
7 ld = build(Dt)
8 l = build(A)
9 l1 = parallelize(l, 1)

10 l2 = interchange(l1, [2, 3])

For bmm, however, when executing on more than two cores, the copy overhead that results
from the transposition loop is greater than the cost of transposed data accesses, making it
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difficult to outperform Pluto (Figure 5.6b). Similarly, an additional transposition makes sd-
dmm’s execution about 2× slower. When TeML does not apply the additional transposition
to the bmm and sddmm kernels, performance is on par with the generated Pluto program as
explained in Section 5.7.2. This shows that initially appealing transformations do not always
guarantee a gain in performance.

Sequences of contractions are central to both the interp and the helm kernel. In interp,
the C implementation of the first contraction is as follows.

1 for (int i1 = 0; i1 <= (N-1); i1++)
2 for (int i2 = 0; i2 <= (N-1); i2++)
3 for (int i3 = 0; i3 <= (N-1); i3++)
4 for (int i4 = 0; i4 <= (N-1); i4++)
5 t[i1][i2][i3] += A[i1][i4] * u[i4][i2][i3];

Pluto chooses to permute the loops into i1, i2, i4, i3 . However, all transposed accesses
are eliminated if the loops are ordered into i1, i4, i2, i3 with TeML. Figure 5.6e shows that
this potentially yields slightly better performance. Applying the analogous permutation to
helm inhibits the fusions that Pluto chooses to apply (cf. Table 5.3) but leads to noticeably
better performance than Pluto’s fusions (cf. Figure 5.6f).

Loop unrolling considerably speeds up gconv (Figure 5.6d) as small inner dimensions
lend themselves well to full unrolling. While Figure 5.6d looks promising, one has to be
cautious when comparing with Pluto since it cannot apply an unrolling heuristic analogous
to TeML.

For the coarsity kernel we were unable to identify transformations that outperform
Pluto’s heuristics.

Concerning TensorFlow

Performance comparison against TensorFlow, in Figure 5.6, is not fair. Unlike Pluto and
TeML, TensorFlow does not let the programmer configure loop optimizations to be applied
to a kernel flexibly. Instead, TensorFlow operators are optimized atomically thus missing
possible cross-operator optimizations opportunities [108]. Another point is, since Tensor-
Flow is targeted at the machine learning domain, it is not reasonable to expect it to perform
well at optimizing kernels from other application domains such as interp. Finally, the ver-
sion used may influence the results. As explained in the experimental setup, the TensorFlow
version used is a version built with AVX and multi-threading support. Had we built a ver-
sion with XLA, different results could have been obtained. Unfortunately, we were unable
to properly built a version with both AVX and XLA support.

Comparing against other APIs

Performance comparisons with other APIs such as Halide or TVM would require this work
to bemore focused on compilation techniques. In this case, performance evaluation onGPUs
is mandatory since most of the presented benchmarks would typically run on GPUs. At this
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Figure 5.6: Speed-ups relative to sequential (i.e. single-core) C implementa-
tions
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point in our work we are more focused on language design and expressiveness. Hence the
focus of our experiments on expressiveness comparisons with Tensorflow and the capability
at least reproduce performances of programs generated by Pluto to ensure that TeML meets
this essential requirement.

5.8 Conclusion

This chapter provides an informal description of TeML. TeML distinguishes itself from other
transformation meta-languages for loop nest optimizations by its level of abstraction and
degree of compositionality. Its level of abstraction is close in spirit to languages such as
TensorFlow or Theano and allows describing, in a few lines, optimization schemes of Pluto,
a state-of-art polyhedral compiler, as well as more specific, platform- or input-dependent
ones. We provide means to abstract high-level tensor operators as well as NUMA-related
concepts. Furthermore, its highly compositional design allows to compose and generate
multiple program variants from the same TeML (meta-)program.



Chapter 6

Formal Specification of TeML

La sémantique de TeML est expliquée au moyen de représentations arborescentes permettant de
raisonner sur les interactions entre les expressions tensorielles et les transformations de boucles.
La représentation arborescente d’une expression tensorielle permet de capturer des informations
telles que les dimensions du tenseur ou encore le pattern de calcul auquel le tenseur est associé.
Celle des nids de boucles, quant à elle, permet de capturer les informations sur les itérateurs de
boucles ainsi que les expressions tensorielles desquelles les nids de boucles sont inférées.

Nous spécifions d’abord la sémantique d’opérateurs de bas niveau. Ceci permet de définir
celles d’opérateurs de haut niveau au travers de compositions. D’autre part, la sémantique de
certaines transformations de boucles peut s’exprimer au travers de la composition d’autres types
de transformations de boucles.

En raison de l’utilisation de la notation d’index, une inférence de domaine est requise. Nous
la calculons en utilisant des opérations sur des ensembles et des relations de Presburger. Nous
démarrons également une discussion concernant la spécification des règles de typage ainsi que
la possibilité de les combiner avec la formalisation de l’inférence de domaine. Une telle combi-
naison pourrait permettre de filtrer les programmes incohérents, i.e. ne respectant pas les règles
de définition des différents opérateurs tensoriels et transformations de boucles, ainsi que ceux
incompatible avec une inférence de domaine.

∗ ♣ ∗ ♣ ∗

In this chapter, we formally specify TeML. We first provide its denotational semantics,
then we detail its range inference algorithm.

The denotational semantics is an extract of:

Adilla Susungi, NormanA. Rink, Albert Cohen, JeronimoCastrillon, andClaude Ta-
donki. Meta-programming for Cross-Domain Tensor Optimizations. In Pro-
ceedings of the 17th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (GPCE ’18). https://doi.org/10.1145/
3278122.3278131

95

https://doi.org/10.1145/3278122.3278131
https://doi.org/10.1145/3278122.3278131
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n

t1 t2

Figure 6.1:
⟨n, [t1, t2]⟩

n

n1 n2

Figure 6.2: ⟨n, [⟨n1, []⟩, ⟨n2, []⟩]⟩

6.1 Formal specification

This section gives the denotational semantics of TeML. As explained in the previous chapter,
TeML manipulates tensor expressions and loop nests. As both can be represented as trees,
domain of trees feature prominently in TeML’s denotational semantics.

6.1.1 Domains of trees

Trees are pairs ⟨n, ts⟩, where n is the root node and ts is a list of subtrees whose roots are
the children of n. Thus, the pair ⟨n, []⟩, where [] is the empty list, is a leaf node. Figures 6.1
and 6.2 illustrate this notation of trees.

Tensor expressions are represented as trees whose nodes have a certain structure: the
nodes are triples (op, S, I), where op is an operation or identifier, S is the shape of the tensor
expression (i.e. a list of its dimensions), and I is a list of iterators. The trees in Figures 6.3–
6.5 provide examples of this representation. Note that only identifiers, i.e. nodes (op,S, I)
with op = id, may appear as leaf nodes. Internal nodes represent operations. It is not
meaningful to give an iterator list for an operation, which is indicated by the special value
• in Figures 6.3–6.5. Thus, the domain T of tensor expressions can be given the following
recursive definition:

T = { ⟨(op, S, I), ts⟩ | (ts = []) ∨ (ts = [t1, . . . , tk ] ∧ ti ∈ T) ,
I , • ⇒ ts = [] ∧ op = id } . (6.1)

For identifiers we also allow I = ϵ , indicating that the iterator list has not been set yet. Note
that ϵ , [], and also ϵ , •.

Shapes can also take the special value •. This happens only for intermediate tree nodes
(=, •, •) that represent assignment operations. TeML assignments do not produce tensor-
valued expressions in the target language and thus have no meaningful shape (viz. dimen-
sions) at the meta-level.

Loop nests are also represented as trees of a certain structure: the nodes are iterators
and the children of a node are either loop nests or tensor expressions. Thus, the domain L
of loop nests can be recursively defined as

L = { ⟨id, [x1, . . . ,xk ]⟩ | xi ∈ L ∪ T } . (6.2)

This is sufficient to represent arbitrary loop nests, as exemplified by Figure 6.6. Figures 6.3–
6.5 also give the tree representations (underlined, in the ⟨ , [ ]⟩ notation) of the perfect loop
nests returned by build.
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1 A = tensor([N1, N2])
2 B = eq(A, [i1, i2] -> [i2, i1])

(=, •, •)

(B, [N2, N1], [i2, i1]) (A, [N1, N2], [i1, i2])

El Jbuild(B)Kσ2 = ⟨i1, [⟨i2, [σ2(B)]⟩]⟩ :

1 for (int i1 = 0; i1 <= (N1-1); i1++)
2 for (int i2 = 0; i2 <= (N2-1); i2++)
3 B[i2][i1] = A[i1][i2];

σ1 = PstmtJA = tensor([N1,N2])K∅ = {A 7→ ⟨(A, [N1,N2], ϵ), []⟩ }

σ2 = PstmtJB = eq(A, [i1, i2]→ [i2, i1])Kσ1
= {A 7→ ⟨(A, [N1,N2], ϵ), []⟩ ,

B 7→ ⟨(=, •, •), [⟨(B, [N2,N1], [i2, i1]), []⟩,
⟨(A, [N1,N2], [i1, i2]), []⟩]⟩ }

Figure 6.3: Matrix transposition implemented with eq. The tree on the left
depicts σ2(B). The target language (C) code on the right results from build(B).

So far we have always referred to iterators by their names.However, the iterators that
appear as nodes in the tree representation of loop nests carry additional information, namely
their inferred ranges. The range of an iterator is a triple (lb, ub, st) consisting of integer
values lb (lower bound), ub (upper bound), and st (step).

6.1.2 State

The state of a TeML meta-program maps identifiers to trees representing either tensor ex-
pressions or loop nests. Thus, the domain S of states is defined as

S = identifier→ (T+ L) . (6.3)

Hence, a specific state σ ∈ S is formally a function

σ : identifier→ (T+ L) . (6.4)

6.1.3 Valuation functions

We now specify the behavior of TeML programs in terms of valuation functions. For each
syntactic category (statement, expression etc.) there is a valuation function that defines how
a syntactic entity manipulates a specific state σ ∈ S:

Pprog : program→ (S→ S) , (6.5)
Pstmt : stmt→ (S→ S) , (6.6)
Et : Texpression→ (S→ T) , (6.7)
El : Lexpression→ (S→ L) . (6.8)
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1 A = tensor([N, N])
2 B = tensor([N, N])
3 C = tensor([N, N])
4 D = @C:add(A, B, [[i1, i2], [i1, i2]]

-> [i1, i2])↪→

(=, •, •)

(C, [N, N], [i1, i2]) (+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

El Jbuild(D)Kσ4 = ⟨i1, [⟨i2, [σ4(D)]⟩]⟩ :

1 for (int i1 = 0; i1 <= (N-1); i1++)
2 for (int i2 = 0; i2 <= (N-1); i2++)
3 C[i2][i1] = A[i1][i2] + B[i1][i2];

σ1 = PstmtJA = tensor([N ,N ])K∅ = {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ }

σ2 = PstmtJB = tensor([N ,N ])Kσ1
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ }

σ3 = PstmtJC = tensor([N ,N ])Kσ2
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ ,

C 7→ ⟨(C, [N ,N ], ϵ), []⟩ }

σ4 = PstmtJD = @C : add(A,B, [[i1, i2], [i1, i2]]→ [i1, i2])Kσ3
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ ,

C 7→ ⟨(C, [N ,N ], ϵ), []⟩ ,
D 7→ ⟨(=), •, •), [⟨(C, [N ,N ], [i1, i2]), []⟩,y]⟩ },

where y = ⟨(+, [N ,N ], •), [⟨(A, [N ,N ], [i1, i2]), []⟩,
⟨(B, [N ,N ], [i1, i2]), []⟩]⟩

Figure 6.4: The @id construct. The tree on the left depicts σ4(D). The C code
on the right results from build(D).

Pprog is given in Figure 6.7 and is straightforward: for the empty program ϵ ,Pprog yields
the identity on S; for programs with at least one statement, Pprog relies on function compo-
sition (◦) andPstmt. The definition ofPstmt is split across Figures 6.8 and 6.9 since it depends
on whether the right-hand side of an assignment is a tensor or a loop expression.

6.1.3.1 Tensor expressions

Figure 6.8 defines the valuation function Et . Given a tensor expression as its argument, Et
constructs the tree that represents this tensor expression. The tree that is constructed for
scalar consists of the node (□, [], •), which sets the shape of a scalar to the empty list []
and forbids iterators to index scalars since the last component of the triple is •. When a tree
is constructed for tensor, the last component of the triple is left empty, indicated by ϵ in
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1 A = tensor([N, N])
2 B = tensor([N, N])
3 C = tensor([N, N])
4 D = vadd(A, B, [[i1, i2], [i1, i2]])
5 E = mul(C, D, [[i1, i2], ] -> [i1, i2])

(+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

(=, •, •)

(E, [N, N], [i1, i2]) (*, [N, N], •)

(C, [N, N], [i1, i2]) (+, [N, N], •)

(A, [N, N], [i1, i2]) (B, [N, N], [i1, i2])

El Jbuild(E)Kσ5 = ⟨i1, [⟨i2, [σ5(E)]⟩]⟩ :

1 for (int i1 = 0; i1 < (N-1); i1++)
2 for (int i2 = 0; i2 < (N-1);

i2++)↪→
3 E[i1][i2] = C[i1][i2] *

(A[i1][i2] + B[i1][i2]);↪→

σ1 = PstmtJA = tensor([N ,N ])K∅ = {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ }

σ2 = PstmtJB = tensor([N ,N ])Kσ1
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ }

σ3 = PstmtJC = tensor([N ,N ])Kσ2
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ ,

C 7→ ⟨(C, [N ,N ], ϵ), []⟩ }

σ4 = PstmtJD = vadd(A,B, [[i1, i2], [i1, i2]])Kσ3
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ ,

C 7→ ⟨(C, [N ,N ], ϵ), []⟩ ,
D 7→ ⟨(+, [N ,N ], •), [⟨(A, [N ,N ], [i1, i2]), []⟩,

⟨(B, [N ,N ], [i1, i2]), []⟩]⟩ }

σ5 = PstmtJE = mul(C,D, [[i1, i2], ]→ [i1, i2])Kσ4
= {A 7→ ⟨(A, [N ,N ], ϵ), []⟩ , B 7→ ⟨(B, [N ,N ], ϵ), []⟩ ,

C 7→ ⟨(C, [N ,N ], ϵ), []⟩ ,
D 7→ ⟨(+, [N ,N ], •), [⟨(A, [N ,N ], [i1, i2]), []⟩,

⟨(B, [N ,N ], [i1, i2]), []⟩]⟩ ,
E 7→ ⟨(=, •, •), [⟨(E, [N ,N ], [i1, i2]), []⟩,

⟨(*, [N ,N ], •), [⟨(C, [N ,N ], [i1, i2]), []⟩,σ4(D)]⟩]⟩ }

Figure 6.5: More complex tensor expression, including assignment to tensor E.
The trees on the left depict σ4(D) (top tree) and σ5(E) (bottom tree) respectively.
The target language (C) code on the right results from build(E).
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1 for (int i1 = 0; i1 <= (N-1); i1++) {
2 C[i1] = A[i1] - B[i1]; // tC
3 for (int i2 = 0; i2 <= (N-1); i2++) {
4 E[i1][i2] = D[i2] * C[i1]; // tE
5 F[i1][i2] = E[i2][i1]; // tF
6 }
7 for (int i3 = 0; i3 <= (N-1); i3++) {
8 G[i1] = G[i1] + F[i1][i3] // tG
9 }

10 }

⟨i1, [tC,
⟨i2, [tE, tF]⟩,
⟨i3, [tG]⟩
]⟩

Figure 6.6: Loop nest (in C) and its tree representation. tC, tE, tF, tG refer to
the trees for appropriate tensor expressions.

PprogJϵK = idS (6.9)
PprogJs pK = PprogJpK ◦PstmtJsK (6.10)

Figure 6.7: Definition of Pprog. ϵ denotes an empty program, s a statement,
and p a program.

.

Equation (6.12). A list of iterators is filled in for ϵ when the tensor is used in an expression.
The example in Figure 6.3 demonstrates this: the tensor referred to by A has no iterator list
(in either state σ1 or σ2); but when A is used in the expression eq, an iterator list is filled in
based on the arguments of eq (cf. state σ2).

The symbol □ denotes a placeholder for an identifier, which can only be filled in once
the identifier on the left-hand side of an assignment has been seen . Therefore, filling in an
identifier for □ is deferred to the valuation function Pstmt, cf. Equations (6.16), (6.17) and
their discussion below.

For eq, the function Et constructs a tree representing an assignment operation. This
also uses a placeholder to defer filling in the identifier for the tensor on the left-hand side
of the constructed assignment. The grammar in Figure 5.1 allows the iterator list I0 to be
absent, i.e. I0 = ϵ . The where-clause after Equation (6.13) specifies when this is possible and,
indeed, also required. When I0 = ϵ , the identifier t must refer to a tensor expression that
already has a valid iterator list (I ′ , ϵ), and this then becomes the iterator list of y (I ′′ = I ′).
However, if I0 , ϵ , then t must refer to a tensor expression with no iterator list (I ′ = ϵ), and
then I0 is filled in as the iterator list of y (I ′′ = I0). The handling of the optional arguments
I0 and I1 of vop is completely analogous.

op is syntactic sugar for vop followed by eq. Equation (6.15) makes this precise. The
notation σ {t 7→ x } means that the map σ is augmented with a mapping of the identifier t to
x . Generally, an existing mapping for t in σ (t ∈ dom(σ)) is overwritten. In Equation (6.15),
however, t is chosen to be a fresh identifier not already mapped by σ .

Note that the arguments I0, I1 of op are simply passed on to vop in Equation (6.15). The
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Et Jscalar()K = λσ .⟨(□, [], •), []⟩ (6.11)

Et Jtensor(S)K = λσ .⟨(□,S, ϵ), []⟩ (6.12)

Et Jeq(t , I0 → I1)K =
λσ .let ⟨(op, S, I ′), ys⟩ = σ(t)

y = ⟨(op, S, I ′′), ys⟩
x = ⟨(□,S ′, I1), []⟩

in ⟨(=, •, •), [x ,y]⟩ , (6.13)

where
 I ′ , ϵ ∧ I ′′ = I ′ , if I0 = ϵ

I ′ = ϵ ∧ I ′′ = I0 , if I0 , ϵ

Et Jvop(t0, t1, [I0, I1])K =
λσ .let ⟨(op0, S0, I ′0), ys0⟩ = σ(t0)

⟨(op1, S1, I ′1), ys1⟩ = σ(t1)

y0 = ⟨(op0,S0, I ′′0 ), ys0⟩
y1 = ⟨(op1,S1, I ′′1 ), ys1⟩

in ⟨(op, S ′, •), [y0,y1]⟩ , (6.14)

where
 I ′i , ϵ ∧ I ′′i = I ′i , if Ii = ϵ

I ′i = ϵ ∧ I ′′i = Ii , if Ii , ϵ

Et Jop(t0, t1, [I0, I1]→ I2)K =
λσ .let x = Et Jvop(t0, t1, [I0, I1])Kσ

in Et Jeq(t , ϵ → I2)K (σ {t 7→ x }) , (6.15)
where t is an identifier not in dom(σ)

PstmtJid = et K = λσ .let x = Et Jet Kσ
x ′ = x [id/□]

in σ {id 7→ x ′} (6.16)

PstmtJid1 = @id2 : et K = λσ .let x = Et Jet Kσ
x ′ = x [id2/□]

in σ {id1 7→ x ′} (6.17)

Figure 6.8: Valuation functions Et andPstmt for tensor expressions. The place-
holder □ is filled with an identifier by Pstmt. The shape S ′ in eq and vop must
be inferred.
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mul operation in Figure 6.5 is an example of when one of the iterator list arguments must
be omitted, specifically I1 = ϵ .

The purpose of Pstmt is to produce a new state from its argument σ by adding a new
mapping for an identifier (id in Equation (6.16) or id2 in Equation (6.17)). The target of this
new mapping is an expression tree x ′ that is produced by first evaluating Et Jet K in the state
σ and then, in Equation (6.16), replacing potential occurrences of □ with the identifier id
(in symbols: x [id/□]). Now id occurs in the expression tree x ′ and will thus make it into
the target language program generated by TeML; but id is also mapped in the new state
σ {id 7→ x ′}. This is the double meaning of id made precise. Equation (6.17) does not lead to
this double meaning since □ is replaced with id2 from the @id2 construct, of which Figure 6.4
gives a worked example. Generally, the right panes of Figures 6.3–6.5 give step-by-step
evaluations of Pprog, broken down into evaluations of Pstmt.

Since TeML assignments have a 3-address format, nested evaluations of Et do not occur.
This is also clear from Figure 6.8. Therefore, there can never be more than once occurrence
of □ in the tree x in Equations (6.16) and (6.17).

In Equation (6.13) the shape S ′ must be inferred from the properties of y; and S ′ in
Equation (6.14) must be inferred fromy0, y1. Inferring the shape of a tensor expression from
the shapes and iterator lists of its component expressions is straightforward and follows a
strategy analogous to the typing of tensor expressions in [111]. Inference fails for malformed
tensor expressions, in which case TeML cannot generate a valid target language program.
Also analogous to [111], the assignments in Equations (6.16), (6.17) are malformed if id or
id2, respectively, has not been introduced with tensor.

6.1.3.2 Loop expressions

The definitions of El in Figure 6.9 freely identify iterators with triples (lb, ub, st) that specify
iterator ranges (cf. the last paragraph of Section 6.1.1). When a loop nest is built around a ten-
sor expression in Equation (6.18), the upper bounds ubk must be inferred based on the posi-
tions inwhich iterators are used to index tensors in the expressionσ(t). This is done straight-
forwardly during shape inference. A special case occurs if x = ⟨(id, S, [i1, . . . , ir]), []⟩,
i.e. all iterators in σ(t) appear on the left-hand side of the assignment. Then ubk = Sk − 1,
where Sk is the k-th dimension in S . Note that the where-clause after Equation (6.18) en-
forces that loop nests are only built around assignments of tensors. Example evaluations
of El Jbuild(id)K appear (underlined) in the bottom left corners of Figures 6.3–6.5, together
with the corresponding loop nests in the target language, i.e. C.

Equation (6.19) implements a version of stripmining that does not transform tensor
indices inside tensor expressions. The definition for interchange in Equation (6.20) is
straightforward: it swaps the position of iterators. Note that fuse in Equation (6.21) fuses
identical outer iterators of two loop nests, and fuse_inner in Equation (6.22) fully fuses
loops at nesting level r . Observe that the definitions of both fusions require that the forms
of the loop arguments satisfy certain matching conditions.
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El Jbuild(t)K = λσ .let r = “number of iterators in σ(t)”
ik = (0, ubk , 1) for k = 1, . . . , r

in ⟨i1, . . . , ⟨ir , [σ(t)]⟩ . . . ⟩ , (6.18)
where σ(t) = ⟨(=, •, •), [x ,y]⟩

El Jstripmine(l , r ,v)K =
λσ .let ⟨i1, . . . ⟨ir ,xs⟩ . . . ⟩ = σ(l)

(b, e, 1) = ir

i ′r = (0, (e − b)/v − 1, 1)
i ′r+1 = (b +v · i ′r ,b +v · i ′r + (v − 1), 1)

in ⟨i1, . . . ⟨i ′r , [⟨i ′r+1,xs⟩]⟩ . . . ⟩ (6.19)

El Jinterchange(l , r1, r2)K =
λσ .let ⟨i1, . . . ⟨ir1 , . . . ⟨ir2 ,xs⟩ . . . ⟩ . . . ⟩ = σ(l)

in ⟨i1, . . . ⟨ir2 , . . . ⟨ir1 ,xs⟩ . . . ⟩ . . . ⟩ (6.20)

El Jfuse(l1, l2, r)K =
λσ .let ⟨i1, . . . ⟨ir ,xs⟩ . . . ⟩ = σ(l1)

⟨i1, . . . ⟨ir ,ys⟩ . . . ⟩ = σ(l2)

in ⟨i1, . . . ⟨ir ,xs | | ys⟩ . . . ⟩ (6.21)

El Jfuse_inner(l , r)K =
λσ .let ⟨i1, . . . ⟨ir−1,xs⟩ . . . ⟩ = σ(l)

[⟨ir ,xs1⟩, . . . , ⟨ir ,xsn⟩] = xs

in ⟨i1, . . . ⟨ir−1, [⟨ir ,xs1 | | . . . | | xsn⟩]⟩ . . . ⟩ (6.22)

El Junroll(l , r)K =
λσ .let ⟨i1, . . . ⟨ir−1, [⟨ir ,xs⟩]⟩ . . . ⟩ = σ(l)

(b, e, s) = ir

k = (e − b)/s + 1

in ⟨i1, . . . ⟨ir−1,xs ′0 | | . . . | | xs ′k−1⟩ . . . ⟩ , (6.23)
where xs ′j is obtained from xs by replacing
the iterator ir with the constant s · j + b (6.24)

PstmtJid = el K = λσ .let x = El Jel Kσ in σ {id 7→ x } (6.25)

Figure 6.9: Valuation functions El and Pstmt for loop expressions. The symbol
| | denotes concatenation of lists.
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The definition for unroll in Equation (6.24) is standard, but note that unrolling the out-
ermost loop, i.e. r = 1 in Equation (6.24), generally results in a sequence of loops and tensor
expressions. Technically, such a sequence is not an element of the domain L. Therefore, we
should instead work with the domain L′ defined as

L′ = L ∪ { ⟨•, [x1, . . . ,xk ]⟩ | xi ∈ L ∪ T } . (6.26)

The trees ⟨•, [x1, . . . ,xk ]⟩ represent sequences of top-level loops and tensor expressions
x1, . . . ,xk , i.e. loops and tensor expressions not nested inside a loop. A tree of the form
⟨•, [x ]⟩ also result when build is applied to a tensor expression that has no iterators, i.e. an
expression formed of scalars only. We have omitted such corner cases of degenerate loops
from the general exposition since TeML’s focus is on meaningful transformations of real,
i.e. non-degenerate loops.

The definition of Pstmt in Equation (6.25) is completely standard. No placeholders for
identifiers are required for loop expressions. This is ultimately because loops have no mean-
ingful names at the level of target language programs.

6.1.3.3 Parallelization

The TeML core language (cf. Figure 5.1) can be extended with the loop expressions
parallelize and vectorize that specify that a loop be parallelized or vectorized, re-
spectively, using pragmas or intrinsic functions. Our representation of loops as trees in
L does not capture this, which is not a problem since neither parallelization nor vectoriza-
tion changes the structure of a loop. Further work is required to enable more fine-grained
control over parallelization, including for instance the generation of atomic sections or op-
timized parallel reductions. This would necessitate extending both TeML’s expressiveness
and its code generation process.

6.2 Compositional definitions

In this section, we extend TeML with additional loop and tensor expressions that implement
more abstract operations on loops and tensors. These abstract operations enhance TeML’s
expressiveness and, from the perspective of a TeML implementation, are considered built
into the language. Nonetheless, the key observation in this section is that more abstract
operations can be defined in terms of the TeML core language by means of the composition
in Equation (6.10). This facilitates amodular implementation of TeML and also demonstrates
the flexibility of the language.

6.2.1 Loop transformations

The loop transformations in the TeML core language, as defined in Figure 6.9, appear to be
rather restrictive. For example, interchange only operates on immediately adjacent loops,
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i1

i2

i4

i5

xs

a: Initial loop
nest.

i1

i′2

i′3

i4

i5

xs

b:
stripmine(_, 2, 2).

i1

i′2

i′40

i′50

xs′0

i′41

i′51

xs′1

c: unroll(_, 3).
i1

i′2

i′40

i′50

xs′0

i′51

xs′1

d: fuse_inner(_, 3).

i1

i′2

i′40

i′50

xs′0 xs′1

e: fuse_inner(_, 4).

Figure 6.10: The standard loop transformation unroll-and-jam as a sequence
of TeML core transformations.

and unroll performs complete unrolling of a loop. We now demonstrate how common,
more flexible loop transformations can be composed from the ones in the core language.

6.2.1.1 Partial unrolling

Partial unrolling of a loop nest l by a factorv can be achieved by first stripmining l , also with
the factor v . According to Equation (6.19), this introduces a new loop rooted at the iterator
i ′r+1. Fully unrolling the new loop will result in the partial unrolling of the original loop l .
Hence,

PstmtJl ′ = part_unroll(l , r ,v)K = Pprog

t
l1 = stripmine(l , r ,v)
l ′ = unroll(l1, r + 1)

|
(6.27)

Note that in the present section all identifiers that appear only in the argument of the
valuation function Pprog are considered fresh, i.e. they are not in dom(σ) for any state σ
that Pstmt is applied to. An implementation of TeML can always introduce as many fresh
identifiers as needed.
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6.2.1.2 Unroll-and-jam

Unroll-and-jam is a variant of loop unrolling typically applied when considering non-
innermost loop nests. When applied to a loop nest l , unroll-and-jam first unrolls a loop
that is not the most deeply nested one in l . (This is the unroll part.) This typically results in
several copies of identical nested loops, which are subsequently fused. (This is the jam part.)
Figure 6.10 illustrates the steps taken when unroll-and-jam is applied at nesting level 2 to
a loop nest that initially has depth 4. Figure 6.10 immediately generalizes to a definition of
unroll_jam in TeML,

PstmtJl ′ = unroll_jam(l , r ,v)K =

Pprog

uwwwwwwwwwwv

l0 = part_unroll(l , r ,v)
l1 = fuse_inner(l0, r + 1)

l2 = fuse_inner(l1, r + 2)

. . .

ld−1−r = fuse_inner(ld−2−r ,d − 1)
l ′ = fuse_inner(ld−1−r ,d)

}����������~
, (6.28)

where d is the depth of the original loop nest l . Note that the steps stripmine and unroll
from Figure 6.10 have been combined into the previously defined part_unroll.

6.2.1.3 Tiling

In order to increase data locality, tiling organizes the iteration space of a loop nest into blocks.
This can be achieved bymultiple applications of stripmining, each ofwhich introduces blocks
into a single loop, cf. Equation (6.19). The auxiliary transformation stripmine_n expands
into the multiple applications of stripmining required for tiling,

PstmtJl ′ = stripmine_n(l ,n,v)K =

Pprog

uwwwwwwwv

l1 = stripmine(l , 1,v)
l2 = stripmine(l1, 3,v)
. . .

ln−1 = stripmine(ln−2, 2(n − 1) − 1,v)
l ′ = stripmine(ln−1, 2n − 1,v)

}�������~
. (6.29)

Note that if d is the depth of the original (perfect) loop nest l , then the depth of the resulting
loop nest l ′ is d + n.

To arrange the new loops that have been introduced by stripmining into the right order
for tiling, several interchanges are needed. To this end, we introduce interchange_n that
permutes an iterator i in a loop nest through the next n iterators (towards the innermost
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i1 i3 i5 xs

a: Initial loop nest.

i′1 i′2 i′3 i′4 i′5 i′6 xs

b: stripmine_n(_, 3,v) has introduced i ′2, i
′
4, and i

′
6.

i′1 i′3 i′5 i′2 i′4 i′6 xs

c: After three times interchange_n.

Figure 6.11: Tiling.

loop),

PstmtJl ′ = interchange_n(l , r ,n)K =

Pprog

uwwwwwwwwwwwwwv

l1 = interchange(l , r , r + 1)

l2 = interchange(l1, r + 1, r + 2)

. . .

ln−1 = interchange(ln−2, r + n − 2,
r + n − 1)

l ′ = interchange(ln−1, r + n − 1,
r + n)

}�������������~
. (6.30)

Finally, TeML’s loop transformation tile can be defined,

PstmtJl ′ = tile(l ,v)K =

Pprog

uwwwwwwwwwwv

l0 = stripmine_n(l ,d,v)
l1 = interchange_n(l0, 2, 2d − 2)
l2 = interchange_n(l1, 3, 2d − 3)
. . .

ld−1 = interchange_n(ld−2,d,d))
l ′ = interchange_n(ld−1,d + 1,d − 1)

}����������~
, (6.31)

where d is the depth of the original loop nest l , and the resulting loop nest l ′ has depth 2d .
Figure 6.11 demonstrates how tile handles a loop nest of initial depth 3. First, stripmining
introduces the additional iterators i ′2, i

′
4, and i ′6 in Figure 6.11b. Then, three applications of

interchange_n move these iterators towards the deep positions in the loop nest, cf. Fig-
ure 6.11c.
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6.2.2 Tensor operations

Tensor operations that are more abstract than the fundamental arithmetic operations, such
as add and mul, allow algorithms to be expressed more concisely in TeML. In particular,
more abstract operations largely hide the explicit, and therefore error-prone, manipulation
of iterator lists. As was the case for loop transformations, abstract tensor operations can
be defined in terms of TeML’s core operations, requiring only a few simple side rules for
iterator lists and shapes that a TeML implementation can easily check.

6.2.2.1 Entrywise operations

If the tensors t0 and t1 have the same shapes, the core arithmetic operations add, sub and
mul can be applied to all entries (viz. components) of t0 and t1 simultaneously. Let r denote
the length of the shapes of t0 and t1. The entrywise application of arithmetic operations is
enforced in the following definitions by the fact that the same iterator list I = [i1, . . . ir] is
used for both t0 and t1,

Et Jventrywise_op(t0, t1)K = Et Jvop(t0, t1, [I , I ])K , (6.32)
Et Jentrywise_op(t0, t1)K=Et Jop(t0, t1, [I , I ]→ I)K . (6.33)

Theses formulae generalize to arbitrary numbers of arguments. In fact, TeML’s entrywise
operations accept an arbitrary number of tensors are arguments.

6.2.2.2 Transposition

Transposition amounts to reordering an iterator list:

Et Jtranspose(t , [[r1, r2], . . . , [r2k−1, r2k ]])K = Et Jeq(t , I → I ′)K , (6.34)

where I is a list of fresh iterators for t , and I ′ is obtained from I by swapping pairs of itera-
tors at positions r2i−1 and r2i , for i = 1, . . . ,k . Since transpose is defined in terms of eq, it
results in an assignment to a real tensor in the target language program, with different itera-
tor lists for the assignee and the tensor t . The corresponding virtual operation vtranspose
does not introduce any operations into the target language program, it simply causes TeML
to reorganize iterator lists.

6.2.2.3 Contraction

Contraction generalizes matrix multiplication to tensors of higher dimensions. Thus, con-
traction is fundamental to many complex algorithms that operate on tensors. In particular,
the vector dot product and matrix-vector multiplication are low-dimensional instances of
contraction.

Let S0 and S1 be the shapes of tensors t0 and t1, and let these shapes have lengths s0
and s1 respectively. The tensors t0 and t1 can be contracted along dimensions r0 and r1,



6.2. Compositional definitions 109

respectively, if the r0-th dimension of t0 has the same extent as the r1-th dimension of t1; in
other words, if the r0-th entry of S0 equals the r1-th entry of S1. Then,

PstmtJt ′ = contract(t0, t1, [r0, r1])K = Pprog

t
t2 = vmul(t0, t1, [I , J ])
t ′ = add(t ′, t2, [I ′, ϵ]→ I ′)

|
, (6.35)

where

I = [i0, . . . , i(r0 − 1), k, i(r0 + 1), . . . , is0] ,
J = [j0, . . . , j(r1 − 1), k, j(r1 + 1), . . . , js1] ,
I ′ = (I \{k}) | | (J \{k}) .

The iterator k appears at position r0 in I , and at position r1 in J ; it no longer appears in the
iterator list I ′ for the resulting tensor t ′. Contraction of more than one pair of dimensions
is defined analogously, but the formulae become unwieldy.

Contraction is a reduction operation and therefore fundamentally requires an accumu-
lator. In Equation (6.35), the resulting tensor t ′ also acts as the accumulator, which is why
t ′ appears both as the result and the argument of the add operation. Because of the add
in Equation (6.35), t ′ is a real tensor, which in the target language program is backed by
memory. This is why the virtual counterpart vcontract cannot be given a definition in
terms of more fundamental TeML operations: in a virtual operation, TeML does not have at
its disposal a real tensor that can play the role of the accumulator. Therefore, vcontract
must be considered fundamental. Of course, when generating target language code, TeML
can introduce a temporary variable in the target language that acts as the accumulator.1

6.2.2.4 Outer product

The outer product, often simply referred to as the tensor product, combines the components
of tensors t1, . . . , tn into a single tensor whose shape then is the concatenation of the shapes
of t1, . . . , tn . In formulae,

PstmtJt ′ = vouterproduct(t1, . . . , tn)K =

Pprog

uwwwwwwwv

sn−1 = vmul(tn−1, tn , [In−1, In ])
sn−2 = vmul(tn−2, sn−1, [In−2, ϵ])
. . .

s2 = vmul(t2, s3, [I2, ϵ])
t ′ = vmul(t1, s2, [I1, ϵ]→ I ′)

}�������~
, (6.36)

1It is possible to define vcontract by fully unrolling the iterator k in Equation (6.35), which would effec-
tively amount to removing t ′ as an argument to add. However, this would eliminate the loop rooted at iterator
k and thus deprive TeML of additional opportunities for loop transformations.
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PstmtJt ′ = outerproduct(t1, . . . , tn)K =
Pprog

t
s = vouterproduct(t1, . . . , tn)
t ′ = eq(s, ϵ → I ′)

|
, (6.37)

where I ′ = I1 | | . . . | | In , and the iterator lists I1, . . . , In are pairwise disjoint, so that no
iterators appear more than once in the concatenated list I ′. Note that the implementation
of outerproduct is not quite as modular as Equation (6.37) suggests: to construct the final
iterator list I ′, the iterator lists I1, . . . , In from the definition of vouterproduct are needed.

6.3 Range Inference

We mentioned throughout this chapter the notion of range inference, that is, understanding
the use of loop indices in tensor subscripts in order to deduce tensor shapes, as well as
iteration ranges. Such a concept is necessary for languages using index notation. Halide
implements range inference heuristics based on an iterative approach. Other languages and
APIs using index notation (and exploiting Halide in their tool flow) benefit from it, i.e, TVM
and Tensor Comprehensions.

Our range inference algorithm is not iterative and is based on Presburger sets and rela-
tions.

Background

Definition 6.3.1. Let p, q and r be positive natural integers. −→ ⊆ Zp ×Zq is a (p,q)-atomic
affine relation parametrized by n⃗ ∈ Zr if there exists A ∈ ℓ,p + q(Z), A∃ ∈ ℓ, s(Z),
B ∈ ℓ, r(Z) and c⃗ ∈ Zℓ such that:

x⃗ −→ y⃗ ⇔ ∃z⃗ ∈ Zs : A *.,
x⃗

y⃗

+/-+A∃z⃗ + Bn⃗ + c⃗ ≥ 0⃗

Definition 6.3.2. A Presburger relation−→ is a finite union of (p,q)-atomic affine relations.
Also, we define the domain: dom −→ = {x⃗ ∈ Zp | x⃗ −→ y⃗} and the range: ran −→ =

{y⃗ ∈ Zq | x⃗ −→ y⃗}.

Affine relations come along with useful operations to compute range inference. We are
particularly interested in a range’s lexicographic maximum.

Definition 6.3.3. Let be a relation −→ ⊆ E × F and a total order ≺ over F . The maximum
of −→ w.r.t. ≺ is the relation defined as follows:

min
≺
−→ = {(x ,ymax) | ymax = max

≺
{y | x −→ y}} (6.38)
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The algorithm

Range inference using sets and relations is performed as in Algorithm 1. We consider the set
of constraints as a Presburger set inwhich (a) no qualifier is used and (b)∧ is the only possible
logical operator. We define a relation in Zp ×Zq where Zp is the set of constraints and Zq is
the set of writes (in other words, the subscript of the output tensor). Using operations over
relations, we can directly compute the minimum valid shape of the output tensor (and the
iteration domain of the loop). Figure 6.12 is a concrete example demonstrating how this can
be computed using ISCC an interface to isl. TeML’s implementation includes building such
ISCC scripts and extracting its results. While there exists Python wrapper for isl, islpy2, we
find more convenient to make use of ISCC scripts due to ISCC features that are not in islpy.

This approach to range inference may be complemented with typing rules to discard
programs on which such an algorithm cannot be performed.

Algorithm 1 Non-iterative range inference using Presburger sets and relations
Input: A the set of all subscripts, T the set of all input tensors.
Output: Dom, the iteration domain and LexRan, the shape of the output tensor

1. Create a set D bounding all subscript terms with the shape of their corresponding
tensor:

for a in A do
Let S = shape(tensor(a))
for t in terms(a) do

Let k be the position of t in a
Add 0 ≤ t < S[k] to D

end for
end for

2. BuildWrite , the set of writes intersected with D;
3. Compute Dom and Ran, the domain and range ofWrite;
4. Compute LexRan, the lexicographic maximum of Ran
5. Return Dom and LexRan.

6.4 Towards Type Safety

Though deeper investigation is need to define TeML’s type system, we discuss the definition
of typing rules.

We can use a polymorphic typeTens(N1, · · · ,Nr ) for tensors; the polymorphism allows
to encode the shape of a tensor. As for loops, we consider a static type Loop since the deno-
tational semantics of constructs returning loops already carry all necessary information for
loop construction.

2islpy: https://github.com/inducer/islpy

https://github.com/inducer/islpy
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1 # TeML script
2 A = tensor(double, [500, 26, 72])
3 B = tensor(double, [500, 72, 26])
4
5 C = mul(A, B, [[i1, i2, i4], [i1, i4, i3]] -> [i1, i2, i3])
6 l = build(C)

1 # ISCC script
2 C := { S[i1, i2, i4, i3]: 0 <= i1 < 500 and 0 <= i2 < 26 and 0 <= i4 < 72 and 0 <=

i3 < 26 };↪→
3 W := { S[i1, i2, i4, i3] -> C[i1, i2, i3]} * C;
4 R := ran W;
5 D := dom W;
6 L := lexmax R;
7 print D;
8 print L;

which returns

1 # Iteration domain
2 { S[i1, i2, i4, i3] : 0 <= i1 <= 499 and 0 <= i2 <= 25 and 0 <= i4 <= 71 and 0 <=

i3 <= 25 }↪→
3
4 # Range inference of C (incrementing with 1 gives the actual shape)
5 { C[499, 25, 25] }

Figure 6.12: Range inference for batch matrix multiplication

A set of typing rules is exposed in Figures 6.13 and 6.14. scalar and tensor require
strings but only those denoting existing data types: strinд ∈ [“int”, “float”, “int64”, · · · ] (for
C code generation). In addition, the shape required for tensormust contain a list of positive
integers. A well-formed arithmetic operation means that (i) the size of subscript lists match
the size of the input tensor shapes, (ii) concrete tensors must be associated to a subscript
list, whereas virtual ones should not. Therefore, if no subscript list is associated with both
input tensors, then they must all be virtual and have an irrelevant shape. Most high-level
tensor operators are constrained by parameters such as ranks and shapes with respect to
their semantics. This level ensures that tensors are well formed at least regardless of the
application domain. Though, one could relax or enforce such constraints with respect to
a domain [49]. Our typing rules for loops only discard constructs with illegal parameters
(.e.g., interchanging a loop with out of legal range ranks).

6.5 Conclusion

In this chapter, we formally specify TeML. The semantics of TeML is explained by means of
tree representations allowing to reason about interactions between tensor expressions and
loop transformations. Due to the use of index notation, range inference is required, which
is directly computed using operations over Presburger sets and maps. This enables possible
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T : strinд

scalar(T ) : Scal
T-Scalar

T : strinд ∀n ∈ S,n ∈ N+

tensor(T , S) : Tens(S)
T-Array

t : Tens(S) 1 ≤ r1, r2 < r r1 , r2
transpose(t , r1, r2) : Tens(swap(S, r1, r2))

T-Transpose

t1 : Tens(S1) · · · tn : Tens(Sn)

outerproduct(t1, · · · , tn) : Tens(S1 | | · · · | | Sn)
T-Outerproduct

t1 : Tens(S1) t2 : Tens(S2) S1[r1k ] = S2[r2k ]
1 ≤ r1k ≤ r1 1 ≤ r2k ≤ r2(∀k ∈ [1,p])

contract(t1, t2, [[r11 , r21 ] · · · [r1p , r2p ]]) : Tens(S ′)
T-Contract

where
S ′ = S1 \ {r11 , · · · , rk1 } | | S2 \ {r12 , · · · , rk2 }

t : Tens

build(t) : Loop
T-build

l : Loop 1 ≤ r ≤ r 1 < v ≤ m

stripmine(l , r ,v) : Loop
T-Stripmine

l : Loop 1 ≤ r1, r2 < r r1 , r2
interchange(t , r1, r2) : Loop

T-Interchange

l1 : Loop l2 : Loop 1 < r < r1 1 < r < r2

fuse(l1, l2, r) : Loop
T-Fuse

l : Loop

unroll(l) : Loop
T-Unroll

l : Loop 1 ≤ r ≤ r

unroll_jam(l , r) : Loop
T-Unrollljam

l : Loop 1 ≤ r ≤ r 1 < v ≤ m

part_unroll(l , r ,v) : Loop
T-Partunroll

l : Loop 1 < v ≤ m

tile(l ,v) : Loop

Figure 6.13: General typing rules. m represents the maximum bound of the
dimension denoted by r . S = (N1, · · · ,Nr )
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t1 : Tens(S1) t2 : Tens(S2)
F1 = [r11 , · · · , rn1 ] F2 = [r12 , · · · , rn2 ] F ′ = [r ′1, · · · , r ′n ]

OR
t1 : Tens(S1) t2 : Tens(ϵ)

F1 = [r11 , · · · , rn1 ] F ′ = [r ′1, · · · , r ′n ]
OR

t1 : Tens(ϵ) t2 : Tens(S2)
F2 = [r12 , · · · , rn2 ] F ′ = [r ′1, · · · , r ′n ]

OR
t1 : Tens(ϵ) t2 : Tens(ϵ) F ′ = [r ′1, · · · , r ′n ]

AND
rk1 , rk2 ∈ N+

lenдth(Fk ) = lenдth(Sk ) (1 < k ≤ 2)

op(t1, t2, [F1?, F2?]→ F ′) : Tens(S ′)

where (S ′) must be inferred.

Figure 6.14: Typing rule of op. The same applies to eq and vop. Note that
vop(t1, t2, [F1?, F2?]) : Tens(ϵ). S = (N1, · · · ,Nr )

coupling with a type system to ensure that programs that are not compliant to proper range
inference are filtered out.



Chapter 7

Conclusion and Perspectives

Traduction en Français

Diverses représentations intermédiaires pour les programmes explicitement parallèles ont
été proposées ces 25 dernières années. Ces contributions portent essentiellement sur la créa-
tion de nouveaux langages ou sur l’extension de RIs populaires telles que le graphe de flot de
contrôle, la forme d’assignation unique ou le modèle polyédrique. De nombreuses perspec-
tives de recherches demeurent donc ouvertes. Premièrement, la conception de base des RIs
est discutable. En raison de problèmes tels que la portabilité ou la recherche de transforma-
tions pertinentes et puissantes pour un programme donné, les RIs actuels de compilateurs
rendent difficile la résolution de ces problèmes. Par conséquent, différentes alternatives aux
chaînes de compilation classiques ont été explorées, incluant par exemple des chaînes de
compilation multi-couches où différents niveaux d’expertise sont assemblés pour composer
une chaîne puissante, ou encore des outils de recherche empiriques d’optimisations. Dans
de tels contextes, différents types de représentations intermédiaires peuvent être nécessaires
pour (i) composer efficacement des séquences de transformations et (ii) traiter la génération
de plusieurs versions d’un programme.

Deuxièmement, l’expressivité est discutable. Très peu de contributions abordent la ques-
tion des spécificités du domaine d’application et de l’architecture. La plupart des RIs de l’état-
de-l’art sont à portée générale et ignorent les architectures cibles. Des RIs générales sont
bien entendu nécessaires mais une complémentarité apportée par des RIs spécifiques à un
domaine est importante. De plus, la compilation parallèle sans tenir compte de l’architecture
est forcément incomplète.

Nous avons donc conçu TeML avec plusieurs spécificités ; TeML est:

• Unméta-langage fonctionnel avec une grande capacité de composition pour composer
et générer facilement différentes séquences de transformations (notamment les trans-
formations de boucle et de layout) ;

• Spécifiquement conçu pour l’optimisation d’applications tensorielles ;

115
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• NUMA-aware, c’est-à-dire, qu’il intègre un support de haut niveau pour les emplace-
ments de données sur NUMA.

Nous avons également spécifié formellement la sémantique de TeML, y compris
l’algorithme d’inférence de domaines sur lequel elle s’appuie.

Le travail présenté dans cette thèse peut être naturellement suivi de deux perspectives
principales.

Une conception et une implémentation robuste

Divers aspects de TeML restent à être améliorés.

• L’état actuel de TeML fournit principalement une abstraction pour des boucles par-
faitement imbriquées, de la création de boucles à leurs transformations. Des abstrac-
tions adéquates pour les boucles imparfaitement imbriquées sont donc nécessaires.

• Nous utilisons une approche conservatrice de la notation d’index afin de faciliter
l’identification des dimensions de boucles. Si TeML est utilisé uniquement comme
langage intermédiaire, cela ne pose aucun problème. Cependant, pour une utilisa-
tion en méta-programmation, il semble préférable d’assouplir une telle contrainte et
d’améliorer l’identification de la boucle.

• Nos travaux et expériences se concentrent sur les tenseurs de type dense. Une applica-
tion plus large nécessite la prise en charge de tenseurs sparse, y compris une représen-
tation correcte (différentes méthodes de stockage telles que Coordinate (COO), Com-
pression Sparse Row (CSR), Block CSR), les formats DIA ou ELL) ou la prise en charge
de transformations de disposition et de code spécifiques.

• Une étude des problématiques liées à la disposition des données en vue d’une vec-
torisation efficace, ainsi que la manière dont cela pourrait être représenté dans TeML,
serait intéressante et pourrait être étendue au support pour les GPUs.

Une spécification formelle complète

Nous avons mis l’accent sur la sémantique formelle décrivant la construction et la transfor-
mation du programme. Cependant, la sémantique du placement des données dans les hiérar-
chies demémoire reste à être spécifiée. De plus, la gestion de la dépendance des données dans
la sémantique pourrait être utile. Il serait également intéressant d’étudier en profondeur la
spécification du système de type et de renforcer sa connexion avec la sémantique dénota-
tionnelle et l’inférence de domaines non itérative. Il s’agit d’un sujet intéressant car des
questions concernant les propriétés des transformations méta-programmées seraient mises
en avant. Etant donné que TeML partage des fonctionnalités avec d’autres méta-langages
d’optimisation, nous pensons qu’un tel travail est une étape vers la formalisation de ce type
de méta-langage.

∗ ♣ ∗ ♣ ∗
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Various parallel intermediate representations have been proposed for the last 25 years,
for which our survey provides an overview. Belwal and Surdachan [31] published a survey
on IRs for heterogeneous multi-core; they include IRs for automatic parallelization as well as
the compilation of explicitly parallel programs. Our survey takes a different point of view,
much more focused on explicitly parallel programs. Consequently, we take into account a
considerable amount of contributions not included in [31]: extensions of commonly used IRs
such as the control flow graph and the static single assignment form, different approaches
of polyhedral compilation and parallel intermediate languages.

Contributions of the state-of-art generally focus on extending existing IRs for the sup-
port of parallel execution. This leaves rooms for several research perspectives. First, the core
design of IR is questionable. Due to issues such as portability or finding relevant and power-
ful transformations for a given program, current compiler IRs make it difficult to tackle such
challenges. Therefore, different alternative to classic compilation chains have been explored;
this includes, for example, multi-layer compilation chains where different levels of expertise
are put together to compose a powerful chain or empirical autotuning tools in which opti-
mizations are iteratively performed using performance feedback until a program variant,
suitable for the target architecture, is found. In such contexts, different types of intermedi-
ate representations may be required to (i) efficiently compose sequences of transformations
and (ii) address the generation of multiple versions of a program.

Second, the expressiveness is questionable. Very few contributions address the question
of domain- and architecture-specificities. Most of IRs in the state-of-art are general purpose
and unaware of target architectures. General purpose IRs are necessary, as well as domain-
specific ones. Moreover, parallel compilation without architecture awareness is incomplete.

Therefore we have designed TeML with several specificities; TeML is:

• A functional meta-language with a high-degree of composition capability to compose
and generate easily different sequences of transformations (include loop-level and lay-
out transformations);

• Domain-specific to tensor optimizations in numerical applications;
• NUMA-aware with high-level support for data placements.

We also formally specified the semantics of TeML, including the range inference algo-
rithm on which it relies.

The work presented in this thesis can be naturally followed up with two main perspec-
tives.

A robust design and implementation

There is room for further improvements in various aspects of TeML.

• The current state of TeML mainly provides abstractions for perfectly nested loops,
from the creation of loops to their transformations. Adequate abstractions for imper-
fectly nested loops are therefore required.
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• We make use of a conservative approach to the index notation in order to ease the
identification of loop dimensions. If TeML is purely used as an intermediate language,
this is not problematic. However, for a use in meta-programming, it seems preferable
to relax such a constraint and improve loop identification.

• Our work and experiments are focused on dense tensors. A wider application scope
requires the support for sparse tensor algebra including proper representation (i.e. dif-
ferent storing methods such as the Coordinate (COO), Compressed Sparse Row (CSR),
Block CSR (BCSR), DIA or ELL formats) or support for specific layout and code trans-
formations.

• It is also crucial to extend TeML for GPU support. Indeed, many numerical appli-
cations rather run on GPUs. Data placement problematics related to GPUs could be
therefore investigated. Generally, a good support for heterogeneous computing is
required. Note that the CFD applications on their larger scope do leverage heteroge-
neous execution involving GPUs and MPI processes.

A full formal specification

We have emphasized on formal semantics describing program construction and transforma-
tion. However, semantics for data placement on memory hierarchies are still left to do. In
addition, encoding data dependency management in the semantics may be useful. It would
also be interesting to deeply investigate TeML’s type system specification and strengthen-
ing its connection with the denotational semantics and non-iterative range inference. This
is an interesting topic as questions regarding properties of meta-programmed transforma-
tions would be raised. As TeML shares features with other optimization meta-languages,
we believe that such a work is a step towards the formalization of such type of languages.
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Appendix A

ICC Optimizations Reports

A.1 Naive Interpolation

1 Intel(R) Advisor can now assist with vectorization and show optimization
2 report messages with your source code.
3 See "https://software.intel.com/en-us/intel-advisor-xe" for details.
4

5 Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version
18.0.2.199 Build 20180210↪→

6

7 Compiler options: -qopenmp -xHost -O3 -o interpol_naive -g -qopt-report=5
-qopt-report-phase=vec,openmp,loop,par↪→

8

9 Begin optimization report for: main(int *, char **)
10

11 Report from: Loop nest, Vector & Auto-parallelization optimizations [loop, vec, par]
12

13

14

15 Intel(R) Advisor can now assist with vectorization and show optimization
16 report messages with your source code.
17 See "https://software.intel.com/en-us/intel-advisor-xe" for details.
18

19 Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version
18.0.2.199 Build 20180210↪→

20

21 Compiler options: -qopenmp -xHost -O3 -o interpol_naive -g -qopt-report=5
-qopt-report-phase=vec,openmp,loop,par↪→

22

23 Begin optimization report for: main(int *, char **)
24

25 Report from: Loop nest, Vector & Auto-parallelization optimizations [loop, vec, par]
26

27

28 LOOP BEGIN at interpol_naive.c(66,3)
29 remark #25444: Loopnest Interchanged: ( 1 2 3 4 5 6 7 ) --> ( 1 2 3 5 6 4 7 )

i
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30 remark #25440: unrolled and jammed by 4 (pre-vector)
31 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
32

33 LOOP BEGIN at interpol_naive.c(67,5)
34 remark #25440: unrolled and jammed by 4 (pre-vector)
35 remark #15423: loop was not vectorized: has only one iteration
36

37 LOOP BEGIN at interpol_naive.c(68,7)
38 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
39

40 LOOP BEGIN at interpol_naive.c(70,4)
41 remark #15344: loop was not vectorized: vector dependence prevents vectorization
42 remark #15346: vector dependence: assumed ANTI dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
43 remark #15346: vector dependence: assumed FLOW dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
44

45 LOOP BEGIN at interpol_naive.c(71,6)
46 remark #15344: loop was not vectorized: vector dependence prevents vectorization
47 remark #15346: vector dependence: assumed ANTI dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
48 remark #15346: vector dependence: assumed FLOW dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
49

50 LOOP BEGIN at interpol_naive.c(69,2)
51 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
52

53 LOOP BEGIN at interpol_naive.c(72,8)
54 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
55 ...
56 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
57 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [

interpol_naive.c(73,47) ]↪→
58 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access

[ interpol_naive.c(73,59) ]↪→
59 ...
60 remark #15381: vectorization support: unaligned access used inside loop body
61 remark #15335: loop was not vectorized: vectorization possible but seems inefficient.

Use vector always directive or -vec-threshold0 to override↪→
62 remark #15305: vectorization support: vector length 4
63 remark #15309: vectorization support: normalized vectorization overhead 1.971
64 remark #15450: unmasked unaligned unit stride loads: 5
65 remark #15475: --- begin vector cost summary ---
66 remark #15476: scalar cost: 200
67 remark #15477: vector cost: 42.500
68 remark #15478: estimated potential speedup: 1.260
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69 remark #15488: --- end vector cost summary ---
70 remark #25436: completely unrolled by 7
71 LOOP END
72 ...
73

74 LOOP BEGIN at interpol_naive.c(67,5)
75 <Remainder>
76 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
77

78 LOOP BEGIN at interpol_naive.c(68,7)
79 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
80

81 LOOP BEGIN at interpol_naive.c(70,4)
82 remark #15344: loop was not vectorized: vector dependence prevents vectorization
83 remark #15346: vector dependence: assumed ANTI dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
84 remark #15346: vector dependence: assumed FLOW dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
85

86 LOOP BEGIN at interpol_naive.c(71,6)
87 remark #15344: loop was not vectorized: vector dependence prevents vectorization
88 remark #15346: vector dependence: assumed ANTI dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
89 remark #15346: vector dependence: assumed FLOW dependence between v[e][i1][i2][i3]

(73:3) and v[e][i1][i2][i3] (73:3)↪→
90

91 LOOP BEGIN at interpol_naive.c(69,2)
92 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
93 remark #25436: completely unrolled by 7
94

95 LOOP BEGIN at interpol_naive.c(72,8)
96 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
97 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
98 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
99 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
100 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [

interpol_naive.c(73,47) ]↪→
101 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access

[ interpol_naive.c(73,59) ]↪→
102 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [

interpol_naive.c(73,47) ]↪→
103 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access

[ interpol_naive.c(73,59) ]↪→
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104 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [
interpol_naive.c(73,47) ]↪→

105 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access
[ interpol_naive.c(73,59) ]↪→

106 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [
interpol_naive.c(73,47) ]↪→

107 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access
[ interpol_naive.c(73,59) ]↪→

108 remark #15381: vectorization support: unaligned access used inside loop body
109 remark #15335: loop was not vectorized: vectorization possible but seems inefficient.

Use vector always directive or -vec-threshold0 to override↪→
110 remark #15305: vectorization support: vector length 4
111 remark #15309: vectorization support: normalized vectorization overhead 2.065
112 remark #15450: unmasked unaligned unit stride loads: 5
113 remark #15475: --- begin vector cost summary ---
114 remark #15476: scalar cost: 50
115 remark #15477: vector cost: 11.500
116 remark #15478: estimated potential speedup: 1.200
117 remark #15488: --- end vector cost summary ---
118 remark #25436: completely unrolled by 7
119 LOOP END
120

121 LOOP BEGIN at interpol_naive.c(72,8)
122 LOOP END
123

124 ...
125

126 LOOP BEGIN at interpol_naive.c(66,3)
127 <Remainder>
128 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
129

130 LOOP BEGIN at interpol_naive.c(67,5)
131 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
132

133 LOOP BEGIN at interpol_naive.c(68,7)
134 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
135

136 LOOP BEGIN at interpol_naive.c(70,4)
137 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
138

139 LOOP BEGIN at interpol_naive.c(71,6)
140 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [

interpol_naive.c(72,8) ]↪→
141 remark #25436: completely unrolled by 7
142

143 LOOP BEGIN at interpol_naive.c(69,2)



A.2. Naive Interpolation with Loop-invariant Code Motion v

144 remark #15541: outer loop was not auto-vectorized: consider using SIMD directive [
interpol_naive.c(72,8) ]↪→

145 remark #25436: completely unrolled by 7
146

147 LOOP BEGIN at interpol_naive.c(72,8)
148 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_naive.c(73,3) ]↪→
149 remark #15389: vectorization support: reference A[i3][i6] has unaligned access [

interpol_naive.c(73,47) ]↪→
150 remark #15389: vectorization support: reference u[e][i4][i5][i6] has unaligned access

[ interpol_naive.c(73,59) ]↪→
151 remark #15381: vectorization support: unaligned access used inside loop body
152 remark #15335: loop was not vectorized: vectorization possible but seems inefficient.

Use vector always directive or -vec-threshold0 to override↪→
153 remark #15305: vectorization support: vector length 4
154 remark #15309: vectorization support: normalized vectorization overhead 2.000
155 remark #15450: unmasked unaligned unit stride loads: 2
156 remark #15475: --- begin vector cost summary ---
157 remark #15476: scalar cost: 13
158 remark #15477: vector cost: 3.250
159 remark #15478: estimated potential speedup: 1.160
160 remark #15488: --- end vector cost summary ---
161 remark #25436: completely unrolled by 7
162 LOOP END
163

164 LOOP BEGIN at interpol_naive.c(72,8)
165 LOOP END
166

167 ...
168 ===========================================================================

A.2 Naive Interpolation with Loop-invariant Code Motion
1 LOOP BEGIN at interpol_hoist.c(50,3) inlined into interpol_hoist.c(96,3)
2 remark #25445: Loop Interchange not done due to: Data Dependencies
3 remark #25446: Dependencies found between following statements: [From_Line# ->

(Dependency Type) To_Line#]↪→
4 remark #25447: Dependence found between following statements: [55 -> (Output) 55]
5 remark #25447: Dependence found between following statements: [57 -> (Output) 57]
6 remark #25447: Dependence found between following statements: [61 -> (Anti) 57]
7 remark #25447: Dependence found between following statements: [61 -> (Anti) 55]
8 remark #25451: Advice: Loop Interchange, if possible, might help loopnest. Suggested

Permutation : ( 1 2 3 4 5 ) --> ( 2 1 3 5 4 )↪→
9 remark #15542: loop was not vectorized: inner loop was already vectorized

10

11 LOOP BEGIN at interpol_hoist.c(51,5) inlined into interpol_hoist.c(96,3)
12 remark #15542: loop was not vectorized: inner loop was already vectorized
13

14 LOOP BEGIN at interpol_hoist.c(52,7) inlined into interpol_hoist.c(96,3)
15 remark #15542: loop was not vectorized: inner loop was already vectorized
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16

17 LOOP BEGIN at interpol_hoist.c(53,4) inlined into interpol_hoist.c(96,3)
18 remark #15542: loop was not vectorized: inner loop was already vectorized
19

20 LOOP BEGIN at interpol_hoist.c(54,6) inlined into interpol_hoist.c(96,3)
21 remark #15542: loop was not vectorized: inner loop was already vectorized
22

23 LOOP BEGIN at interpol_hoist.c(56,8) inlined into interpol_hoist.c(96,3)
24 remark #15542: loop was not vectorized: inner loop was already vectorized
25

26 LOOP BEGIN at interpol_hoist.c(60,8) inlined into interpol_hoist.c(96,3)
27 remark #25085: Preprocess Loopnests: Moving Out Load and Store [

interpol_hoist.c(61,5) ]↪→
28 remark #15389: vectorization support: reference A has unaligned access [

interpol_hoist.c(61,33) ]↪→
29 remark #15389: vectorization support: reference u has unaligned access [

interpol_hoist.c(61,45) ]↪→
30 remark #15381: vectorization support: unaligned access used inside loop body
31 remark #15305: vectorization support: vector length 2
32 remark #15399: vectorization support: unroll factor set to 3
33 remark #15309: vectorization support: normalized vectorization overhead 0.513
34 remark #15417: vectorization support: number of FP up converts: single precision to

double precision 3 [ interpol_hoist.c(61,5) ]↪→
35 remark #15418: vectorization support: number of FP down converts: double precision to

single precision 1 [ interpol_hoist.c(61,5) ]↪→
36 remark #15300: LOOP WAS VECTORIZED
37 remark #15450: unmasked unaligned unit stride loads: 2
38 remark #15475: --- begin vector cost summary ---
39 remark #15476: scalar cost: 15
40 remark #15477: vector cost: 6.500
41 remark #15478: estimated potential speedup: 1.410
42 remark #15487: type converts: 4
43 remark #15488: --- end vector cost summary ---
44 remark #25015: Estimate of max trip count of loop=1
45 LOOP END
46

47 LOOP BEGIN at interpol_hoist.c(60,8) inlined into interpol_hoist.c(96,3)
48 <Remainder loop for vectorization>
49 remark #25436: completely unrolled by 1
50 ...
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RÉSUMÉ

La compilaধon tradiধonnelle est confrontée à de nombreux défis face aux besoins d'opধmisaধons de programmes pour
architectures parallèles. Un défi parধculier est la concepধon de langages et représentaধons intermédiaires (RIs) appropriés.
Bien que différentes RIs aient été proposés pour repousser les limites de la compilaধon tradiধonnelle, la plupart ne sont
toujours pas adaptées pour appliquer des transformaধons de programmes perধnentes. Différentes alternaধves sont donc
de plus en plus exploitées, telles que l'autotuning ou la compilaধon interacধve. Ces dernières nécessitent l'usage de langages
intermédiaires fondamentalement différents, par exemple, les méta-langages pour la transformaধon de programmes. Dans
ceħe thèse, centrée sur les besoins en applicaধons numériques, nous étudions ce type de meta-langages; nous addressons
parধculièrement quatre quesধons: (i) Comment introduire une expressivité spécifique à un domaine? (ii) Comment repenser
leur concepধon pour améliorer leur flexibilité dans la composiধon de transformaধons et la généraধon de plusieurs variantes
de programmes? (iii) Jusqu'où pouvons-nous introduire du support pour le NUMA (Non-Uniform Memory Access)? (iv) En
tant que nouvelle classe de méta-langages, comment formaliser leur sémanধque? Nous répondons à ces quesধons au
travers de la concepধon et sémanধque de TeML, un méta-langage pour l'opধmisaধon d'applicaধons tensorielles.

MOTS CLÉS

compilaধon, opধmizaধon, transformaধon de programme, architectures parallèles, meta-langages, langages
dédiés, sémanধque

ABSTRACT

Tradiধonal compilaধon faces numerous challenges with program opধmizaধons for parallel architectures. A parধcular chal-
lenge is the design of proper intermediate languages and representaধons to enable the applicaধon of relevant opধmizaধon
techniques. Various parallel intermediate representaধons and languages have been proposed. However, they sধll fall short
of being adequate for nowadays applicaধons and target architectures. To overcome this issue, different alternaধves are
more and more exploited such as empirical autotuning or interacধve compilaধon. Such alternaধves require fundamentally
different types of intermediate languages such as transformaধon meta-languages. In this thesis, we study transformaধon
meta-languages for numerical applicaধons; we parধcularly address four quesধons: (i) How dowe introduce domain-specific
expressiveness? (ii) How do we rethink their design to enhance their flexibility in composing opধmizaধons paths and gen-
eraধng mulধple program variants? (iii) How far can we introduce NUMA (Non-Uniform Memory Access) awareness? (iv)
As a new class of meta-languages, how do we formalize their semanধcs? We answer these quesধons through the design
and semanধcs of TeML, a tensor opধmizaধons meta-language.

KEYWORDS

compilaধon, opধmizaধon, program transformaধon, parallel architectures, meta-languages, domain-specific lan-
guages, semanধcs
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