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Heterogeneous computing systems

q Today’s heterogeneity
q Desktop/HPC: GPGPU, GP + ACC
q Embedded: RISCs, DSPs, ASIPs, …

è Resources: different 
performance/energy characteristics

q Tomorrow’s heterogeneity: Emerging 
technologies
q Heterogeneity beyond performance 

and energy
§ Reliability/error tolerance
§ Computation model
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Heterogeneity: Cfaed Vision

q German Excellence Cluster: Goal – “to explore new technologies for electronic 
information processing which overcome the limits of CMOS technology”
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Heterogeneity: Example SiNW

q SiNW: Silicon Nanowires
q Multi-gate devices with less performance penalty
q Reconfigurable P/N functionality

q Possibilities
q New micro architectures

q New pipeline structures
q New field programmable devices
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[Trommer15]



Heterogeneity: Example chemical processing

q Lab-on-Chips: for sensing, analysis and test
q Also for computing? 

q Different kinds of transistors
q Oscillators and other components
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Fundamentally different 
way of computation

[Voigt14]



Heterogeneity: Example DNA origami

q DNA origami: Self-assembled 2D/3D 
structures made of DNA strands

q Use structures to build advance electronic devices
q Example: Plasmonic waveguides
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Courtesy: Thorsten Lars-Schmidt
https://cfaed.tu-dresden.de/schmidt-home
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Consequence of heterogeneity
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Already difficult to program them today, what about tomorrow?
Need for models and abstraction
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Models: Introduction

q Von Neumann model makes things 
complicated
q Sharing state
q Data races

q Task graphs: A simple parallel 
programming model
q Intel TBB, .NET Task parallel library 

(TPL), OpenMP Tasks, …
q Runtime and data management, e.g., 

StarPU [Augonnet10]
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Directed acyclic task graphs

q Very well studied, see for example [Kwok99]
q Difficult problem for heterogeneous systems
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Dataflow models

q Also a graph representation: Nodes & edges are called actors & channels
q Implicit repetition, common in streaming, signal processing applications
q Communication: only through channels
q Multiple flavors of models: Rules that determine when an actor fires
q A graph models multiple possible executions:
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Dataflow models (2)

q Also a graph representation: Nodes & edges are called actors & channels
q Implicit repetition, common in streaming, signal processing applications
q Communication: only through channels
q Multiple flavors of models: Rules that determine when an actor fires
q A graph models multiple possible executions:
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Dataflow models (3)

q Synchronous Dataflow (SDF): every actor has a fixed behavior

q Cyclo-Static Dataflow (CSDF): every actor has a set of fixed behaviors
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Dynamic models and Kahn Process Networks

q Dynamic dataflow: set of firing rules per actor

q Kahn process networks (KPN): nodes are now called processes
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Analysis and synthesis
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PNargs_ifft_r.ID = 6U;
PNargs_ifft_r.PNchannel_freq_coef = filtered_coef_right
PNargs_ifft_r.PNnum_freq_coef = 0U;
PNargs_ifft_r.PNchannel_time_coef = sink_right
PNargs_ifft_r.channel = 1;
sink_left = IPCllmrf_open(3, 1, 1);
sink_right = IPCllmrf_open(7, 1, 1);
PNargs_sink.ID = 7U;
PNargs_sink.PNchannel_in_left = sink_left
PNargs_sink.PNnum_in_left = 0U;
PNargs_sink.PNchannel_in_right = sink_right
PNargs_sink.PNnum_in_right = 0U;
taskParams.arg0 = (xdc_UArg)&PNargs_src
taskParams.priority = 1;

ti_sysbios_knl_Task_create((ti_sysbios_knl_Task_FuncPtr
&taskParams, &eb);

glob_proc_cnt++;
hasProcess = 1;
taskParams.arg0 = (xdc_UArg)&PNargs_fft_l
taskParams.priority = 1;

ti_sysbios_knl_Task_create((ti_sysbios_knl_Task_FuncPtr
ft_Templ, &taskParams, &eb);

glob_proc_cnt++;
hasProcess = 1;
taskParams.arg0 = (xdc_UArg)&PNargs_ifft_r
taskParams.priority = 1;

ti_sysbios_knl_Task_create((ti_sysbios_knl_Task_FuncPtr
fft_Templ, &taskParams, &eb);

glob_proc_cnt++;
hasProcess = 1;
taskParams.arg0 = (xdc_UArg)&PNargs_sink
taskParams.priority = 1;

cf. Silexica’s tool flows



Example for SDFs

q Compute topology matrix, and solve system of equations 

q Solution: repetition vector serve to unroll the graph [1 3 2]

q Perform mapping and scheduling on the resulting directed acyclic graph (DAG) 
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Example for KPNs: Static & dynamic analysis

q Need to understand process interactions
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[Castrillon14]



KPN & DDF: Tracing

q Dynamic analysis based on execution traces [Castrillon10/13, Brunet15, Singh15]
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DAG representation for 
further analysis and synthesis



Models from functional specification

q Inspect functional specification of actors/processes (cf. 2nd talk)
q Instrumentation, emulation, cost models, …
q For timing, energy, errors, …

q Example
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Profiling: Execution counts, branch stats

[SAMOS14]



Models based on algorithmic descriptions

q When functional specification is not meant for synthesis
q Common/required in heterogeneous systems (special components)

q Need to match algorithms to hardware components [Castrillon10b, Castrillon11]

23 © J. Castrillon. Dataflow programming. PACT Tutorial. Oct 2015

Plain code

Plain code

Platform model + characterization of special components 

... ... ...
Algorithm library

N: Algorithmic actors
F: Existing implementation in target platform



Multiple-applications

q Use traces and mappings to reason about platform sharing
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Multiple-applications (2)

q Quickly discard “bad” multi-application configurations by observing the 
platform utilization profiles
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Summary

q Need programming models (and HW/SW stacks) to handle heterogeneity
q Even more dramatic in the post-CMOS era

q Dataflow models
q Natural way to describe some applications
q Amenable to analysis and synthesis for parallel execution

q Discuss different kinds of models and required analysis
q Need models of hardware for synthesis 
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