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Abstract—With modern hardware heading for smaller feature
sizes and lower operating voltages, failure rates are expected
to increase. Instead of adding hardware to protect against
failures, which is expensive and inflexible, one can implement
error detection in software. The focus of the present work is
the AN encoding scheme. Improvements to code generation are
introduced that enable a high level of fault coverage, namely
over 98%, while reducing the performance overhead due to AN
encoding by up to 45%. This raises the general question of
whether code generation strategies can be designed that enable
fault detection with a minimal impact on performance.

I. INTRODUCTION

In an effort to maintain the exponential performance growth
that hardware has been experiencing for the last decades,
modern hardware is heading for smaller feature sizes and lower
operating voltages. This leads to reduced reliability in both
processors [1] and memories [2]. Furthermore, operating dark
silicon at near-threshold voltage [3] will render computations
unreliable. At the same time, the omnipresence of embedded
devices in every-day life and industry calls for a high level of
reliability, especially in safety-critical applications.

In the future, more resources will have to be spent on
protecting against hardware faults. Hardware-based protection
is expensive and inflexible. Software-based fault detection and
recovery [4], on the other hand, is cheap and can be easily
adapted to changing fault scenarios. In a prominent software-
based approach the values and operations of a program are
encoded, and faults are detected by checking whether values
are valid code words. To facilitate encoding and checks,
extra instructions have to be added to the program, which
significantly extends execution time. Longer execution times
are justified if unreliable results are turned into reliable ones.

This paper studies the AN encoding scheme [5]–[7]. It is
shown how the placement of instructions for checking leads to
better fault coverage, i.e. a higher percentage of detected faults.
To this end, we make two improvements to code generation:
(i) improved checks and (ii) pinning of checks. Remarkably,
using improved checks also reduces the performance impact
of AN encoding.

The structure of this paper is as follows. The concept of
AN encoding is introduced in Section II, while Section III
describes our specific implementation of AN encoding. Our
suggested improvements are assessed in Section IV, and our
results are analyzed in Section V. Related work is discussed
in Section VI. Section VII concludes our paper.

II. BACKGROUND AND MOTIVATION

Fault detection schemes rely on redundant representations
of data: AN encoding uses additional bits to represent encoded
values. To encode data, a 32-bit constant A is fixed, and any
32-bit integer value n is replaced with its encoded version
n̂ = n ·A. In order to avoid overflow due to encoding, n̂ must
be represented by 64 bits. In AN encoding, a check consists
of evaluating the boolean expression

n̂ mod A = 0. (1)

Whenever this evaluates to False, a fault is detected. Note
that this check requires an expensive modulo operation.

AN encoding is straightforwardly extended to pointers by
regarding the address stored in a pointer variable as an integer:
an address-valued variable p is replaced with p̂ = p·A. Checks
on p̂ are performed in the same way as above1. Note that
since modern 64-bit systems have 48-bit address buses, no
overflow will occur due to AN encoding provided A < 216. In
the present work we treat encoding of pointers as an optional
extension of AN encoding.

Since AN-encoded programs operate on encoded data, op-
erators must be replaced with encoded versions too. A detailed
account of how individual operators are treated can be found
in [6]. Here we put particular emphasis on how vulnerabilities
arise from certain encoded operations. We denote as m̂, n̂, p̂
the encodings of the values m, n, p respectively. Encoding
simple arithmetic operators is straightforward, e.g.

n̂+enc m̂ = n̂+ m̂.

Note that if pointers are encoded, replacement of operators
must also be applied to pointer arithmetic. To encode bitwise
operators, operands must be decoded:

n̂&enc m̂ = (n&m) · A.

Code is vulnerable whenever it operates on the non-encoded
values m, n. Memory operations are equally vulnerable, even
if pointers are encoded:

loadenc p̂ = load p.

To alleviate the vulnerability due to operating on non-encoded
values, encoded values should be checked before decoding.
For bitwise operations this leads to the dependency graph in
Figure 1a; for memory operations on encoded pointers the

1The semantics of the chosen implementation language may require casting
p to an integer before encoding it.
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graph in Figure 1b is obtained. In both graphs a check-node
is implemented by evaluating the boolean expression (1).

To understand our first improvement, namely improved
checks, note that the check-nodes in Figures 1a and 1b are
independent of the decode-nodes. Thus the compiler may
schedule instructions for these nodes far apart, leaving inter-
mediate results vulnerable to faults. Using improved checks,
depicted as check’-nodes in Figures 2a and 2b, reduces
the sizes of vulnerable code sequences: since check’-nodes
depend on decode-nodes, instructions for checking will be
placed more tightly around the &-operation and the load-
instruction respectively. The check’-nodes are implemented
by evaluating the following boolean expression:

n ∗A = n̂. (2)

This implementation also improves performance since it does
not rely on an expensive modulo operation. Compilers without
sophisticated strength reduction will therefore produce faster
code.

Our second improvement is built on a simple observation:
Independent of how checks are implemented, a compiler may
be able to infer, in certain situations, that n̂ is a multiple of
A. If this is the case, and based on the optimization level, the
compiler may decide to delete instructions for checks. This
behavior is undesirable since the observation that n̂ is statically
a multiple of A ignores the fact that faults occur dynamically.
To avoid that checks are optimized away, we can pin checks.
This is achieved by placing a pseudo-copy instruction around
the argument of a check. The result of the pseudo-copy is
then fed to the actual check. The pseudo-copy instruction is
replaced with a conventional move instruction immediately
before register allocation. Thus checks cannot be optimized
away, but the register allocator can still coalesce source and
target register of the pseudo-copy. This technique was already
applied in [8]. Here we analyze its impact on fault coverage
and performance.

strategy type of check pinning
baseline (1) ✗

pinned (1) ✓

improved (2) ✗

imp., pinned (2) ✓

TABLE I: Code generation strategies.

III. IMPLEMENTATION

Our implementation of AN encoding is based on the encod-
ing compiler framework that was introduced in [8]. The code
transformations that facilitate AN encoding are implemented
at the level of LLVM intermediate representation (IR) [9].
However, unlike in [8], only a minimal number of checks
is inserted into AN-encoded programs. Specifically, there are
only three places where checks are performed:

(a) on the results of a load-IR-instruction,
(b) on the non-pointer argument of a store-IR-instruction,
(c) on values that are decoded, as explained in Section II.

The checks in (a) ensure that only valid code words enter
the program’s data-flow. This serves to protect memories,
including caches, against hardware faults. If a fault occurs
during computations on encoded data, it is highly unlikely that
a subsequent fault will turn the corrupted data word back into a
valid code word. Therefore the checks in (b) suffice to verify
that the final results of computations are valid code words
before they are committed to memory. Intermediate checks
are not necessary, except where values are decoded, cf. (c).
When pointers are encoded, the pointer arguments to load-
and store-instructions must be decoded immediately before
these instructions are executed, as in Figures 1b, 2b. Checks
are then performed on the pointer arguments due to (c).

Table I gives the definitions of the code generation strate-
gies for AN encoding that are analyzed in this paper. In
addition, encoding of pointers can be optionally enabled.

IV. EXPERIMENTAL SETUP AND RESULTS

The strategies from Table I are applied to the following
benchmark algorithms: Matrix-Vector Multiplication, Array
Copy, Bubblesort, and Quicksort. This set of algorithms
represents canonical features of computation, namely arith-
metic operations, data movement, and control-flow that can-
not be predicted at compile-time. The generated executables
are subjected to fault injection experiments and performance
measurements, which are conducted on an Intel Core i7 CPU
running at 3.6GHz with 32GB RAM.

For fault injection we use Intel’s Pin tool [10] together with
the BFI plug-in2. A single fault is injected into a given test
program at run-time as follows. First, one of the instructions
executed by the program is chosen at random. Then, a single
or multiple random bits are flipped in one of the registers
manipulated by the instruction. This fault injection procedure
is suitable for simulating transient faults in the combinational
logic of a CPU since such a fault will manifest itself in a
wrong result being stored in a register.

2https://bitbucket.org/db7/bfi
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Fig. 3: Fault coverage for encoding of integers only.

Fig. 4: Fault coverage for encoding of integers and pointers.

For each of our benchmark algorithms combined with
each of the code generation strategies we repeat the fault
injection procedure 10,000 times. In each of the fault injection
experiments program behavior is classified into one of five
categories:

1) CORRECT: Despite the injected fault the program pro-
duced correct output and terminated normally.

2) ANCRASH: The injected fault has been detected by one of
the inserted checks.

3) OSCRASH: The injected fault caused the operating system
to terminate the program, e.g. due to a segmentation fault.

4) HANG: The injected fault caused the program to take more
than 10x its usual execution time. The program is therefore
deemed to hang.

5) SDC: Silent data corruption has occurred, i.e. the program
terminated normally but produced incorrect output.

Software-based error detection aims to reduce the frequency
of SDC. For the purpose of evaluating our results we therefore
formally define fault coverage as the frequency of non-SDC
results after fault injection. Figures 3 and 4 show the frequen-
cies with which events from the five categories occur. Each
of the bars corresponds to one of the strategies from Table I.

The sets of bars on the right of each plot are based on the
same data as the bars on the left, only the CORRECT events
have been left out. We will discuss our findings in detail in
Section V.

To measure the performance impact of different code
generation strategies, we follow [11] to obtain cycles counts.
The number of cycles taken by each executable generated with
one of our strategies is divided by the cycles taken when no
AN encoding is applied. The resulting quotient is reported as
the slow-down due to AN encoding in Table II. The numbers
in Table II were obtained for an input array size of 1,000
elements, where each element is a 64-bit word.

V. DISCUSSION OF RESULTS

Figures 3 and 4 clearly show that pinning and improv-
ing checks both lead to increased fault coverage. If applied
individually, improving checks is more beneficial to fault cov-
erage than pinning checks. The highest coverage is generally
achieved when both strategies are combined. It is interesting
to note that more aggressive checking reduces the CORRECT
proportion. This is because faults that do not adversely affect
program execution are more likely to be detected if many
checks are performed.
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integer encoding only integer and pointer encoding
baseline improved pinned imp., pinned baseline improved pinned imp., pinned

Matrix-Vector 15.72 15.34 18.43 14.12 24.70 23.69 32.29 22.18

Array Copy 7.50 6.07 12.08 8.90 22.30 17.66 29.38 24.63

Bubblesort 3.46 2.77 3.93 3.18 8.08 6.31 9.52 7.21

Quicksort 1.95 1.76 1.98 1.79 3.42 3.00 3.92 3.22

TABLE II: Slow-down due to AN encoding.

integer encoding only integer and pointer encoding
improved over baseline imp., pinned over pinned improved over baseline imp., pinned over pinned

Matrix-Vector 2.5% 30.5% 4.3% 45.6%

Array Copy 23.6% 35.7% 26.3% 19.3%

Bubblesort 24.9% 23.6% 28.1% 32.0%

Quicksort 10.8% 10.6% 14.0% 21.7%

TABLE III: Speed-up due to improved checks.

Our code generation strategies do not only increase overall
fault coverage but also the proportion of detected faults, i.e. the
proportion of ANCRASH. The single major exception to
this rule is the Array Copy benchmark in Figure 4: when
improved checks and pinning are combined, the proportion
of OSCRASH increases and takes away some portion of
ANCRASH. This behavior is caused by faults that affect the
program counter, which are responsible for the vast majority
of OSCRASH events in the Array Copy benchmark. When
improved checks are also pinned, more checks appear in the
generated code. Each check is accompanied by a conditional
jump instruction to code that should be executed if the check
fails. The only register that is modified by the jump instruction
is the program counter. This means that more checks in the
Array Copy benchmark imply that more faults are injected
into the program counter, which, in turn, leads to a greater
proportion of OSCRASH.

Figure 3 can be summarized by noting that fault coverage
is raised from a low of 87.1% in the baseline strategy to
above 95.2% when checks are improved and pinned. When
pointers are also encoded, i.e. in Figure 4, coverage is raised
from a low of 94.6% to above 98.6%. Protecting pointers is
particularly relevant to the observed fault coverage since all of
the benchmarks operate on arrays: if a fault causes a bit-flip in
the lower bits of an address, it is very likely that the corrupted
address is still within the range of the array. Reading from
the corrupted address will thus return a valid code word, and
hence the fault cannot be detected. However, the computed
result will still be incorrect. The effectiveness of encoding
pointers comes at a price, as can be seen from Table II. When
pointers are encoded, even the slow-downs for the baseline
strategy are significantly worse than any of the slow-downs
for encoding integers only. The reason for this is that encoded
pointers require that every memory access is accompanied by
an expensive division operation.

Table II shows that if only integers are encoded, the Matrix-
Vector Multiplication benchmark incurs by far the greatest
slow-down. This is due to the expensive encoded version of
multiplication, cf. [6], [8]. When pointers are also encoded,
the slow-down of the Array Copy benchmark is similar to
that of Matrix-Vector Multiplication. In other words, the Array
Copy benchmark is the one that suffers the worst from pointer
encoding. This is unsurprising given that the Array Copy
algorithm essentially consists of memory accesses. Table II

also proves our claim from Section I that improved checks
reduce the slow-down due to AN encoding. For definiteness
the speed-ups achieved by using our improved checks are listed
in Table III. The best speed-up, namely 45.6%, occurs for the
Matrix-Vector Multiplication benchmark.

We conclude this discussion by comparing with previously
reported results. The levels of fault coverage achieved for the
sorting algorithms in [6] are similar to ours. In [7] fault-
coverage for AN encoding is reported between 92%–99%,
albeit for a different set of benchmarks. The corresponding
slow-downs are in the range of 2x–64x. Variants of AN en-
coding, namely ANB and ANBD encoding, were also studied
in [7]. For these encoding schemes slow-downs of up to more
than 256x were observed, but a fault coverage of well over
99% is consistently achieved across benchmarks.

VI. RELATED WORK

Following the comparative discussion at the end of the
previous section we now give a more general account of
previous work on software-based error detection techniques.

AN encoding and its variants, ANB and ANBD encoding,
were proposed in [5]. ANB extends AN encoding by assigning
a static signature to each variable. This enables efficient de-
tection of exchanged operands, which may be the result of bit-
flips in addresses, as explained in Section V. ANBD encoding
also assigns a dynamic version to each variable, and thus
detects faults that lead to lost updates. The implementations
of AN encoding and its variants in [6], [7] were also based on
LLVM [9]. In [6] a detailed account of how operations must
be modified in order to operate correctly on encoded values is
given. ANB and ANBD encoding achieve fault coverage rates
of well over 99% but slow-downs may be as bad as several
100x. The trade-off between fault coverage and performance
in AN encoding was analyzed in [8].

Dual modular redundancy (DMR) detects faults by dupli-
cating instructions and comparing results. To facilitate DMR,
automated source-to-source transformations were implemented
in [12], which requires compiler optimizations to be disabled
in order to ensure that the transformations are not undone by
optimization passes. EDDI [13] implements DMR at compiler
level, with a focus on instruction scheduling to exploit instruc-
tion level parallelism. It was also noted in [13] that the order
in which instructions are scheduled can affect the efficiency of

19 REES 2015



detecting faults that lead to invalid control-flow. SWIFT [14]
adds control-flow checking to EDDI and also implements
simple optimizations at compiler level. ESoftCheck [15] is
similar to SWIFT but implements optimizations to remove so-
called non-vital checks. The fault coverage that is achieved by
EDDI is comparable to ours, while SWIFT detects practically
all faults. DMR schemes usually lead to slow-downs below 2x.
The advantage of AN encoding over DMR schemes is that
permanent hardware faults can also be detected. Moreover,
duplication of memory accesses causes issues when DMR
schemes are applied on shared memory systems. In AN encod-
ing memory operations are protected without being duplicated.

∆-encoding [16] merges AN encoding with DMR. Similar
ideas were already pursued in [17], [18]. Although the focus
of [18] was on fault recovery, it was already acknowledged
that scheduling checks close to the uses of values may im-
prove reliability of software-based error detection schemes.
Like SWIFT, ∆-encoding also achieves practically full fault
coverage. The slow-downs incurred by ∆-encoding are greater
than in DMR schemes but generally much lower than for AN
encoding. However, ∆-encoding is implemented in [16] as a
source-to-source transformation and we believe that it would
benefit from improved code generation strategies analogous to
our improved checks.

VII. CONCLUSION AND OUTLOOK

Our work has demonstrated that clever implementation
decisions can affect instruction scheduling in ways that benefit
the quality of software-based error detection. The presented
improvements to AN encoding have led to fault coverage of
over 98% while reducing the performance overhead by up
to 45%. However, slow-downs due to encoding, especially
when pointers are encoded, remain large. Our data shows that
encoding pointers is crucial to a high level of fault coverage.

In general terms, we have demonstrated that fault coverage
can be improved while at the same time lowering the perfor-
mance overhead. This motivates the development of encoding-
specific compiler intrinsics and passes that aid the compiler
in generating efficient code that is hardened against hardware
faults. Specifically, one could look into ways of giving hints to
the compiler that will allow it to reduce the sizes of vulnerable
code sequences. Furthermore, understanding the wide variation
of speed-ups in Table III might lead to ideas for further
improving performance.
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