
E�cient data structures for dynamic graph

analysis

Benjamin Schiller1, Jeronimo Castrillon2, and Thorsten Strufe1

1 Privacy and Data Security, Department of Computer Science, TU Dresden
benjamin.schiller1@tu-dresden.de, thorsten.strufe@tu-dresden.de
2 Compiler Construction, Department of Computer Science, TU Dresden

jeronimo.castrillon@tu-dresden.de

In the era of social networks, gene sequencing, and big data, a new class
of applications that analyze the properties of large graphs as they dynamically
change over time has emerged. The performance of these applications is highly
influenced by the data structures used to store and access the graph in mem-
ory. Depending on its size and structure, update frequency, and read accesses
of the analysis, the use of di↵erent data structures can yield great performance
variations. Even for expert programmers, it is not always obvious, which data
structure is the best choice for a given scenario. In this paper, we present a
framework for handling this issue automatically. It provides compile-time sup-
port for automatically selecting the most e�cient data structures for a given
graph analysis application assuming a consistent workload on the graph. We
perform a measurement study to better understand the performance of five data
structures and evaluate a prototype Java implementation of our framework. It
achieves a speedup of up to 4.7⇥ compared to basic data structure configurations
for the analysis of real-world dynamic graphs.

1 Introduction

There is an emerging application domain that deals with the analysis of dynamic
graphs. They serve to model dynamic systems across di↵erent disciplines, such
as biological [6, 19], transportation [7], computer [11], and social networks [14, 5,
21]. Due to a proliferation of applications and the ever increasing size of dynamic
systems, performance has quickly become a major concern [17, 9, 10].

The general application pattern of dynamic graph analysis consists of a se-
quence of graph modifications followed by a computation of metrics. Several
metrics investigate local properties such as local clustering coe�cient and mo-
tif patterns. Other metrics determine global properties like degree distribution,
all-pairs shortest paths, and connected components. Such an analysis serves to
better understand a system, improve its design, and perform live analysis.

For performance reasons, dynamic graph analysis is implemented on an in-
memory graph representation [9, 10]. There are well understood representations
of graphs, such as adjacency lists and matrices. There is also plenty of mate-
rial about algorithms, data structures, and complexity analysis for the di↵erent
graph representations. For practical applications, however, it is challenging to

find the best suited match of algorithms and data structures. In the case of
dynamic graphs, the best match depends on many factors, including graph size
and structure, frequency of updates to its topology, and access patterns of metric
computation. Di↵erent graph representations result in high performance devia-
tions but are challenging for programmers to foresee.

There exist many frameworks for the e�cient analysis of static graphs [2,
1, 18]. While they are all built for e�cient analysis, the graph representation is
fixed and selected by the developers. For representing large graphs over time,
many graph databases have been developed [20]. While they allow for complex
queries of the graph over time and the storage of additional properties, they are
neither suited for a large number of updates nor the e�cient computation of
graph metrics at specific points in time. A lot of work has been done to develop
compact representations of graphs. These approaches do not focus on runtime
e�ciency but on obtaining a small memory footprint [4]. Often, these approaches
are not even applicable to arbitrary graphs as they are developed for specific
classes only [3, 25]. For dynamic graphs, some special graph representations have
also been developed. Their underlying data structures are tuned for memory [17]
or runtime e�ciency [10] but cannot be adapted to di↵erent scenarios.

Many approaches have been developed for profiling programs to allow for
their subsequent optimization. Frameworks like Pin [16] or JFluid [8] allow the
instrumentation of existing programs to collect statistics about various aspects.
In addition to this instrumentation, Brainy [12] allows for the optimization of
the data structures used by a program. Based on benchmarks of available data
structures, the approach uses machine learning to generate rules like, e.g., if
operation o is called more than k times use data structure d. After the analysis
of a complete execution of the program, data structures are exchanged based on
these general rules that are not fitted to the problem of dynamic graph analysis.

Other approaches attempt to exchange data structures during run-time.
Chameleon [24] provides a framework for run-time profiling without the need
to adapt the program. In case the program uses data structure wrappers pro-
vided by the framework, data structures can be replaced during runtime which
comes at the high cost of performing a live monitoring of all data structures.
Based on fixed rules for exchanging data structures as well, CoCo [26] requires
the programmer to use wrappers provided by the framework in order to optimize
the selected data structures during run-time. With their use of pre-defined rules
that do not adapt to the current properties of the graph and read accesses of
the analysis, both approaches are not suited for the analysis of dynamic graphs.

In this paper, we focus on automatically selecting the best data representation
for an application at compile-time. We introduce our terminology in Section 2
and outline our approach and its components in Section 3. We benchmark and
discuss the performance of data structures in Section 4, evaluate our approach
in Section 5, and summarize our work in Section 6.

2 Terminology & notation

In this Section, we introduce our terminology and notations for graphs, dynamic
graphs, and their analysis. We introduce the di↵erent adjacency lists and oper-
ations on them and define the problem of selecting the best data structures.

Graphs and adjacency lists A graph G = (V, E) consists of a vertex set V =
{v1, v2, . . . } and an edge set E. In undirected graphs, edges are unordered pairs of
vertices and ordered pairs in directed graph. The adjacency list of an undirected
vertex is then defined as adj(v) := {{v, w} 2 E}. For directed vertices, incoming
and outgoing adjacency lists are defined by in(v) := {(w, v) 2 E} and out(v) :=
{(v, w) 2 E}. In addition, the vertices with bidirectional connections are stored
in the neighborhood list, i.e., n(v) := {w 2 V : (w, v) 2 in(v) ^ (v, w) 2 out(v)}.

Dynamic graphs As a dynamic graph, we consider a graph whose vertex and
edge sets change over time. Each change is represented by an update of V or E
that adds or removes an element. Applying any of these updates add(v), rem(v),
add(e), and rem(e) implies the modification of V , E, and adjacency lists.

We consider a dynamic graph at an initial point G0 = (V0, E0) and its de-
velopment over time: G0, G1, G2, The transition between two states G

i

and
G

i+1 of the graph can then be described by a set of updates we refer to as a batch
B

i+1. Then, the complete transition of a dynamic graph over time can be under-

stood as the consecutive application of batches to it: G0
B1��! G1

B2��! G2
B2��!

Analysis of dynamic graphs Analyzing a dynamic graph means to determine
its graph-theoretic properties at certain points in time, e.g., for G0, G1, G2,
Examples of such graph-theoretic metrics are degree distribution (DD), cluster-
ing coe�cient (CC), connected components (C), all-pairs-shortest path (SP),
and motif frequencies (M). They can be computed using snapshot- or stream-
based approaches. We use snapshot-based algorithms in the following since the
problem of modifying and accessing the in-memory representation of a dynamic
graph is the same for both.

Storing a graph in memory For directed and undirected graphs, di↵erent
lists are required to represent the graph and all adjacencies in memory. For both
types, the set of all vertices V and the set of all edge E must be stored. For each
vertex of an undirected graph, we must store the list of all adjacent edges adj.
In the case of directed graphs, separate lists of incoming and outgoing edges (in
and out) as well as neighboring vertices (n) must be maintained. Hence, there
is a total of 6 di↵erent list types which we denote as L := {V, E, adj, in, out, n}.
Each of these lists stores either edges (e) or vertices (v), denoted as T := {v, e}.
We refer to the data type of a list by t : L ! T with t(V) = t(n) := v and
t(E) = t(in) = t(out) = t(adj) := e.

Each list must provide operations to modify it or retrieve certain information.
To create and maintain a list, it must provide means to be initialized (init), add
elements to it (add), and remove existing elements (remove). It must provide
operations to fetch a specific element using a unique identifier (get) or iterate over
all elements (iterate). Often, it is also necessary to retrieve a random element
from a list (random), determine its cardinality (size), or determine if a specified
element is contained in the list (contains).

The execution of add, remove, and get can be successful or fail depending
on the current state of the list. Therefore, we distinguish between successful
(s) and failed (f) execution and consider a set O of 12 di↵erent operations:
o 2 O := {init, rand, size, iterate, add

s/f

, remove
s/f

, contains
s/f

, get
s/f

}.

Problem definition In this paper, we consider the problem of selecting the
most e�cient data structures for representing a dynamic graph during analysis
in memory. Hence, we must find the most e�cient configuration cfg which maps
each list type to a data structure: cfg : L ! D. For undirected graphs, this
means to select data structures for V , E, and adj while directed graphs require
data structures for in, out, and n in addition to V and E. In the following we
focus on undirected graphs since all results can be transferred to directed graphs.

3 Compile-time optimization - our approach

Our approach for optimizing the data structure selection for dynamic graph
analysis is based on the assumption that workload and characteristics of the
dynamic graph do not change drastically over time. Then, we can estimate the
workload for the complete analysis of the graph based on the first batches.

To understand the performance of data structures, we benchmark their run-
times for the execution of all operations beforehand. This preparation phase must
be executed only once for a platform where the application should be executed.

To optimize a given application, the compile-time phase uses these bench-
marking results (cf. Figure 1): First, a given application is instrumented to enable
profiling. Second, it is executed for some batches to record access statistics for all
lists. Third, these statistics are analyzed using the runtime estimations obtained
during benchmarking to recommend the most e�cient configuration. Fourth and
finally, the program is re-compiled to use the recommended configuration.

Benchmarking The runtime of executing an operation o 2 O on a list of type
l 2 L depends on the element type t(l) 2 T , the data structure d 2 D used
to implement the list, and its cardinality size(l) 2 N+

0 . To approximate this
runtime, we perform measurements for data structures and data types with all
operations and list sizes s 2 [0, s

max

]. As a result, we obtain a function m
d,t

that
maps each operation o and list size s to a set of runtimes: m

d,t

: O ⇥ N ! Rk.
Based on these runtime measurements, we can define an estimation e

d,t

of the
actual runtime for performing a specific operation on a list of given size: e

d,t

: O⇥

N ! R with e
d,t

(o, 0) := 0 and e
d,t

(o, s) := m
d,t

(o, aggr(m
d,t

(o, min(s, s
max

)))).
The aggregation aggr(M) can then be defined arbitrarily, e.g., as the minimum,
maximum, average, or median of all values m0 2 M . Minimum and maximum
values would result in an optimistic or pessimistic estimation. Since the average
value can lead to distortions, we use the median value in the following.

—
—
—

Instrumentation Profiling Analysis Re-Compilation

—
—
—cfg*

cfg*c
l

(o)

m
d,t

(o, s) e
d,t

(o, s)D, T , O, S

BenchmarkingPreparation Phase
(once per platform)

Compile-time
Phase

Fig. 1. Compile-time optimization of data structures for dynamic graph analysis

Profiling Two actions are performed during the analysis of a dynamic graph:
graph modification and metric computation. Graph modification means that
the in-memory representation is changed to reflect the updates that occur in the
graph over time. For the computation of metrics, read operations like iterate
and contains are executed on certain lists depending on metrics and algorithms.

During profiling, we record the number of executions of each operation o on
a list of type l as c

l

: O ! N. In addition, we record the average list size as
size(l).

Analysis Given operation count c
l

and average cardinality size(l) for a list
type l, we can estimate the runtime of any data structure d using the estima-
tion e

d,t

as follows:
P

o2O c
l

(o) · e
d,t(l)(o, size(l)). An estimation of the most

e�cient data structure d⇤ 2 D for performing c
l

is then given by d⇤(c
l

) =
arg min

d2D
P

o2O c
l

(o) ·e
d,t(l)(o, size(l)). Hence, the most e�cient configuration

of all lists l can be estimated as cfg⇤(l) := d⇤(c
l

).

4 Benchmarking, profiling, and analysis results

In this Section, we discuss a benchmark of five data structures and give examples
of access statistics recorded during profiling and resulting recommendations.

Benchmarking We performed a measurement study to obtain m
d,v

(o, s) and
m

d,e

(o, s) for sizes s 2 [1, 105], and five Java data structures that provide the re-
quired operations: D = {Array, ArrayList, HashMap, HashSet, HashTable}.
All measurements are executed under Debian with a 64-bit JVM version 1.7.

We used implementations of vertices and edges and repeated all measure-
ments 1,000 times. A vertex is identified by a unique index, an edge by the
indexes of the two vertices it connects. Selected results for e

d,e

with s 2 [1, 103]
are given in Figure 23. In addition, the fastest data structure for each operation
and list sizes between 100 and 100,000 is given in Table 1.

����

����

����

����

����

����

����

����

��

����

�� ��� ��� ��� ��� ����

�
��
���

��
��
���
��
��
���
��
��
��
��
��
��
��
�

���������

�����
���������
�������
�������

���������

(a) ed,e(containss, s)

��

����

��

����

��

����

�� ��� ��� ��� ��� ����

�
��
���

��
��
���
��
��
���
��
��
��
��
��
��
��
�

���������

�����
���������
�������
�������

���������

(b) ed,e(gets, s)

��

����

��

����

��

����

�� ��� ��� ��� ��� ����

�
��
���

��
��
���
��
��
���
��
��
��
��
��
��
��
�

���������

�����
���������
�������
�������

���������

(c) ed,e(removes, s)

��

��

��

��

��

��

��

��

��

�� ���� ���� ���� ���� �����

�
��
���

��
��
���
��
��
���
��
��
��
��
��
��
��
�

���������

�����
���������
�������
�������

���������

(d) ed,e(removes, s)

����

��

����

��

����

��

����

�� ���� ���� ���� ���� �����

�
��
���

��
��
���
��
��
���
��
��
��
��
��
��
��
�

���������

�����
���������
�������
�������

���������

(e) ed,e(init, s)

Fig. 2. Selected runtime estimations ed,e for list sizes s 2 [1, 103] and s 2 [1, 103]

The runtime for certain operations di↵ers greatly for data structures and list
sizes. For example, Array is the fastest data structure for testing the existence
of an edge for list sizes 70 while HashSet is the best choice for larger lists (cf.
Figure 2a). The retrieval of an edge is fastest on Array and ArrayList up to list
sizes of 80 and faster on HashTable and HashMap for larger lists while HashSet
is far slower for all sizes (cf. Figure 2b).

It is interesting to see the extent to which runtimes depend on list sizes which
renders an accurate extrapolation impossible. From the runtimes for remove

s

on Array and ArrayList with sizes 100, is seems intuitive that the runtime
grows linearly with the list size in both cases (cf. Figure 2c). Clearly, this is not
the case as the runtime for Array does not grow linearly for s > 400 anymore
(cf. Figure 2d). Thereby, Array removes edges faster from lists with more than
750 elements. At a first glance, the measurements for init appear strange as the
runtime of HashMap and HashSet increase stepwise in contrast to the linear

3 Measurements for all data structures and larger lists can be found in the technical
report: http://bit.ly/1GjiMua

t s init adds addf rand size iter conts contf gets getf rems remf

v 10 A A A AL A AL A HS A A AL A
v 100 A A A AL A AL A A A A A A
v 1,000 A A A AL A AL A A A A A A
v 10,000 AL A A A A AL A HS A A A A
v 100,000 AL A A AL A AL A A A A A A

e 10 AL AL AL AL HM AL A AL A A AL AL
e 100 A HM HS AL A AL HS HS HM HM HS HS
e 1,000 A HM HS AL AL AL HS HS HM HM HS HM
e 10,000 AL HM HM AL AL AL HS HS HM HM HS HM
e 100,000 HT HM HM AL AL AL HS HS HM HT HM HS

Table 1. Fastest data structure depending on operation, type, and size

increase of the other data structures (cf. Figure 2e). The reason is that the
number of bits used for the hash function depends on the initial size and thereby
the number of hash buckets to initialize grows with log2s which explains the steps
at list sizes of 2k.

For storing vertices, Array (A) appears to be the fastest data structure overall
(cf. Table 1). It performs best for most operations and list sizes 10,000. Only
ArrayList (AL) appears faster for iterating over the complete list as well as
retrieving a random element.

When storing edges, Array and ArrayList are only fast for small lists of
size 10. As the lists grow, the fastest data structure depends on the respective
operation and even changes again the more the lists grow (cf. Table 1). For
example, HashMap (HM) performs best when executing add

s

on lists of size �
100 while ArrayList is fastest for lists of size 10. Similar results can be observed
for add

f

but for lists of size 100 and 1,000, HashSet (HS) is the best choice.
The reason for the di↵ering performance when storing vertices or edges lies in

their di↵erent identification. Vertices are identified by a unique identifier which
can simply be used as the index of Array or ArrayList. Therefore, performing
contains or get operations translates to a simple lookup at a deterministic loca-
tion in memory. In contrast, hash-based data structures perform the overhead of
looking up this identifier in the corresponding hash table and potentially deter-
mining its location in memory. Edges are identified by a hash computed from the
two unique indexes of the adjacent vertices. Their lookup in an array-based data
structure is time consuming since the complete list has to be scanned. While
this is still faster for small lists, hash-based data structures are faster for larger
lists as they only need to check for the respective hash in their hash table.

From these results, we assume that array-based data structures should be
recommended for storing vertices. Similarly, we see that for storing small edge
lists, array-based data structures should be recommended. For larger edge lists
with more than 100 elements, there is not a single data structure which appears
best. Hash-based data structure perform better than Array and ArrayList but
which one depends on the combination and count of the performed operations.

Profiling We instrumented the graph component of DNA (Dynamic Network
Analyzer), a framework for the analysis of dynamic graphs [22], to record c

l

and
size(l) for all list types l 2 L during graph modification and metric computation
using AspectJ [13]. Both make up the workload which we analyze and for which
we seek the fastest data structures.

First, we compare c
l

for two di↵erent workload types of dynamic graphs:
static and dynamic workload. We refer to a workload as static in case the list
sizes do not change significantly over time. In the example shown in Figure 3a,
batches are generated by selecting random pairs of edges and exchanging their
end-points, i.e., removing two existing edges and creating two new ones. This
results in an operation count where random edges are drawn from E and edge
removals and additions are performed on E and adj. We consider a workload
as dynamic in case the list sizes change over time. Such a workload is produced
when growing a graph, i.e., adding new vertices and further interconnecting them
(cf. Figure 3b). This workload is reflected by add operations on V , E, and adj
and the selection of random vertices from V for generating new edges.

��

���

����

�����

������

�������

������

����
�����

�����
������

����
�������

���������

����������

�����
�����

��������

��������

��
��
��
��
��
��
��
���
��
�

�
�

���

(a) Static workload: edge exchange

��

���

����

�����

������

�������

����
�����

�����
������

����
�������

���������

����������

�����
�����

��������

��������

��
��
��
��
��
��
��
���
��
�

�
�

���

(b) Dynamic workload: growth

��

���

����

�����

����
�����

�����
������

����
�������

���������

����������

�����
�����

��������

��������

��
��
��
��
��
��
��
���
��
�

�
�

���

(c) Degree distribution

��

���

����

�����

����
�����

�����
������

����
�������

���������

����������

�����
�����

��������

��������

��
��
��
��
��
��
��
���
��
�

�
�

���

(d) Connected components

��

���

����

�����

������

�������

����
�����

�����
������

����
�������

���������

����������

�����
�����

��������

��������

��
��
��
��
��
��
��
���
��
�

�
�

���

(e) Clustering coe�cient

Fig. 3. cl(o) for batch generation/application and metric computation

Second, we observe c
l

during the computation of metrics on an instance of a
dynamic graph: degree distribution (DD), connected components (C), all-pairs-
shortest paths (SP), clustering coe�cient (CC), and 4-vertex motifs (M). To
compute the degree distribution of a graph, the metric iterates once over V and
determines the degree of each vertex using the size operation of its adjacency list
adj (cf. Figure 3c). To determine the connected components of a graph, the met-

ric performs a breadth-first search (BFS) by iterating over V and the adjacency
lists adj (cf. Figure 3d). Similarly, the all-pairs-shortest paths are computed by
performing such a BFS from every vertex resulting in a higher count. Comput-
ing the clustering coe�cient of a graph implies an iteration over all vertices and
iterations over all adjacency lists adj (cf. Figure 3e). For each neighbor pair,
contains operations are executed on the respective neighbor’s adjacency list to
test if the other neighbor is contained, some are successful, others fail. Similar
operations are executed when determining the motif occurrences in the graph.
In addition to a higher number of iterations and contains operations, the size
operation of adj is also executed.

Recommendations Using e
d,t

, we can determine the data structure expected
to perform best when executing a set of operations recorded in c

l

for a list type
l of size size(l). As an example, we estimated the best data structures for com-
puting the five metrics based on the recorded c

l

for size(adj) 2 {10, 100, 1000}.
For DD, C, SP, and CC, array-based data structures are recommended in all
cases. Because of the high number of executed contains operations performed
by M, the use of HashSet is recommended for list sizes of 100 and 1,000.

5 Performance evaluation

In this Section, we evaluate our approach on the analysis of two dynamic graphs:
one that produces a static workload (MD) and a second one that generates a
dynamic workload (FB). MD is the dynamic graph obtained from a molecular
dynamics simulation of an enzyme, the para Nitro Butyrate Esterase-13 [23].
The initial graph consists of 491 vertices representing the residues of the enzyme
and 1,904 edges. Edges exists between two vertices in case their Euclidean dis-
tance is shorter than 7Å. The simulation was performed for 50ns and snapshots
taken every 2.5ps. On average, each batch consists of 70 edge additions and 70
edge removals resulting in a static workload (cf. Figure 4a). The FB dataset is a
friendship graph of Facebook taken from KONECT, the Koblenz Network Col-
lection [15]. It represents users and their friendship relations as a list of edges
sorted by the timestamp they appeared. We take the initial graph consisting
of the first 1,000 edges and 824 vertices. With each batch, the next 100 edges
and corresponding vertices are added creating a dynamic workload. After 200
batches, the graph consists of 10,551 vertices and 21,000 edges (cf. Figure 4h).

For both datasets, we created the initial graph and applied the first five
batches. After the application of each batch one of the following metrics was
computed: DD, C, SP, CC, or M. Based on the operation counts c

l

of the five
batch applications and metric computations, we determine the recommended
data structures for V , E, and adj.

Then, we perform the same computation with the recommended data struc-
tures, as well as configurations where V , E, and adj are all using Array, Ar-
rayList, HashMap, HashSet, or HashTable. For MD, we execute between 5 and
10,000 batches. For FB, we execute between 5 and 200 batches. For comparison,

we compute the runtime of all five configurations relative to our recommended
data structures. All results are the average of 200 repetitions.

Static workload (MD) For MD, our approach recommended the use of Array
for V , HashMap for E, and ArrayList for adj for all metrics. Since the dataset
creates a static workload, we expect that our recommendation is valid indepen-
dent of the number of batches applied and the speedup achieved compared to
basic configurations stays the same.

(a) MD : |V |, |E|

��

����

��

����

��

����

��

����

��

����

��

�� ����� ����� ����� ����� ����� ����� ����� ����� �����������

�����
���������
�������
�������

���������
����

(b) MD : DD

��

����

��

����

��

����

��

����

�� ����� ����� ����� ����� ����� ����� ����� ����� �����������

�����
���������
�������
�������

���������
����

(c) MD : CC

��

����

��

����

��

����

��

����

��

����

��

�� ����� ����� ����� ����� ����� ����� ����� ����� �����������

�����
���������
�������
�������

���������
����

(d) MD : C

��

��

��

��

��

���

���

���

�� �� �� �� �� ��� ��� ���

�����
���������
�������
�������

���������
����

(e) MD : DD

��

����

��

����

��

����

��

�� �� �� �� �� ��� ��� ���

�����
���������
�������
�������

���������
����

(f) MD : CC

��

��

��

��

��

���

���

�� �� �� �� �� ��� ��� ���

�����
���������
�������
�������

���������
����

(g) MD : C

(h) FB : |V |, |E|

��

��

���

���

���

���

�� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����

�����
���������
�������
�������

���������
����

(i) FB : DD

��

����

��

����

��

����

��

����

��

�� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����

�����
���������
�������
�������

���������
����

(j) FB : CC

��

��

��

��

��

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ���� ���� ���� ���� ����

�����
���������
�������
�������

���������
����

(k) FB : C

Fig. 4. Speedup for MD and FB depending on total number of batches

For all metrics, we see that the speedup of our recommended data struc-
tures compared to basic configurations is independent of the number of batches
applied. Our recommended data structures achieve a speedup up to 4.7⇥ and
always outperform the five basic configurations (cf. Figures 4b, 4c, and 4d). Us-
ing Array for all lists achieves the second best performance when computing
the clustering coe�cient while it is the slowest tested configuration for comput-
ing the connected components and the degree distribution. The performance of
HashMap is contrary: it performs second best for DD and C but slowest for CC.

The fact that our recommended data structures outperform all other tested
combinations suggests that our estimation of the actual runtime based on e

d,t

is
accurate and the recommendation valid for all subsequent batches. In Figures 4e,
4f, and 4g, we depict the absolute measured speedup (filled boxes) together with
the speedup that we estimated (checked boxes) based on e

d,t

and c
l

. In most

cases, our analysis overestimates the speedup by up to 3⇥. Still, we are able to
correctly estimate the order of configuration, i.e., a configuration with a higher
estimated speedup also has a higher actual speedup.

Hence, we have shown that our approach achieves speedups over basic data
structure configurations in case of a static workload. These recommendations
are based on a short profiling phase and the results independent of the duration
of the analysis afterwards.

Dynamic workload (FB) After profiling for five batches, our approach rec-
ommended for FB the same data structures as for MD : Array for V , HashMap
for E, and ArrayList for adj. We consider this workload to be dynamic because
the sizes of V and E increases with each batch. We expect that this signifi-
cant change in list sizes renders the initial profiling meaningless for long running
analyses. Based on the profiling during the first five batches, we assume a total
number of 1, 000 + 5 · 100 = 1, 500 edges as input of our analysis. But after 200
batches, E grows to a total of 21, 000 elements, 14⇥ more than the list size we
assume based on our initial profiling. Therefore, we expect that the recommen-
dations generated by our approach is not always the best choice, especially in
case many batches are applied.

The relative speedup for FB depending on the number of analyzed batches
is shown in Figures 4i, 4j, and 4k. In some cases, the speedup increases with
the number of batches, in others it decreases. For the analysis of the clustering
coe�cient, even an analysis with 10 batches using recommendations based on
5 batches, the basic configuration with Array for all lists is faster. With more
batches, this di↵erence increases further.

We have shown that our approach is not able to recommend data structures
that achieve better performance than basic configurations in all cases. For dy-
namic workloads, the speedup changes significantly with the number of batches.
Hence, our static optimization is not well-suited for the optimization in case of
dynamic workloads.

6 Summary, conclusion, and outlook

In this work, we considered the problem of finding the most e�cient data struc-
tures for representing a graph for the application of dynamic graph analysis.
We proposed a compile-time approach for optimizing these data structures. We
performed a measurement study of data structure performance, implemented
our approach on top of a Java-based framework for dynamic graph analysis, and
evaluated it using real-world datasets. Our results show that our optimization
achieves speedups up to 4.7⇥ over basic configurations on real-world datasets.

We observed constant speedups for static workloads, independent of the anal-
ysis duration. For dynamic workloads, this speedup changes significantly with
the analysis duration. Thereby, our approach is well-suited for improving the
analysis of dynamic graphs with a static workload but not capable of adapting
to the drastic changes of list sizes that occur in dynamic workloads. Therefore, we

propose to investigate possibilities to perform dynamic optimizations that profile
an application during execution and allow for hot-swapping data structures.

In future work, we will also investigate the benefits of our approach for larger
graphs. Furthermore, we will perform a more extensive parameter study with
synthetic workloads and benchmark the internals more comprehensively to gain
insights and generalize our results.

References

1. Bader, et al.: Snap, small-world network analysis and partitioning. In: Parallel and
Distributed Processing (2008)

2. Batagelj, et al.: Pajek-program for large network analysis. Connections (1998)
3. Blandford, et al.: Compact representations of separable graphs. In: ACM-SIAM

Symposium on Discrete algorithms (2003)
4. Blandford, et al.: Experimental analysis of a compact graph representation (2004)
5. Braha, et al.: Time-dependent complex networks: Dynamic centrality, dynamic

motifs, and cycles of social interactions. In: Adaptive Networks (2009)
6. Candau, et al.: Structural, elastic, and dynamic properties of swollen polymer

networks. In: Polymer Networks (1982)
7. Chabini: Discrete dynamic shortest path problems in transportation applications.

Journal of the Transportation Research Board (1998)
8. Dmitriev: Profiling java applications using code hotswapping and dynamic call

graph revelation. In: ACM SIGSOFT Software Engineering Notes (2004)
9. Ediger, et al.: Massive streaming data analytics: A case study with clustering

coe�cients. In: Parallel & Distributed Processing (2010)
10. Ediger, et al.: Stinger: High performance data structure for streaming graphs. In:

IEEE High Performance Extreme Computing (2012)
11. Gonçalves, et al.: Characterizing dynamic properties of the sopcast overlay net-

work. In: Parallel, Distributed and Network-Based Processing (2012)
12. Jung, et al.: Brainy: e↵ective selection of data structures. In: SIGPLAN (2011)
13. Kiczales, et al.: An overview of aspectj. In: Object-Oriented Programming (2001)
14. Kossinets, et al.: Empirical analysis of an evolving social network. Science
15. Kunegis: Konect: the koblenz network collection. In: WWW (2013)
16. Luk, et al.: Pin: building customized program analysis tools with dynamic instru-

mentation. ACM Sigplan Notices (2005)
17. Madduri, Bader: Compact graph representations and parallel connectivity algo-

rithms for massive dynamic network analysis. In: IEEE PDP (2009)
18. Malewicz, et al.: Pregel: a system for large-scale graph processing. In: ACM SIG-

MOD International Conference on Management of data (2010)
19. Marti: Dynamic prop. of hydrogen-bonded networks. Physical Review E (2000)
20. McColl, et al.: A brief study of graph databases. arXiv:1309.2675 (2013)
21. Mucha, et al.: Community structure in time-dependent networks. Science (2010)
22. Schiller, Strufe: Dynamic network analyzer - building a framework for the graph-

theoretic analysis of dynamic networks. In: SummerSim (2013)
23. Schiller, et al.: Stream - a stream-based algorithm for counting motifs in dynamic

graphs. In: AlCoB (2015)
24. Shacham, et al.: Chameleon: adaptive selection of collections. In: Sigplan (2009)
25. Sun, et al.: Compact matrix decomposition for large sparse graphs. In: SDM (2007)
26. Xu: Coco: Sound and adaptive replacement of java collections. In: OOP (2013)

