
Fault Tolerance with Aspects: A Feasibility Study

Sven Karol Norman A. Rink Bálint Gyapjas Jeronimo Castrillon
Chair for Compiler Construction, cfaed, TU Dresden, Dresden, Germany

forename.surname@tu-dresden.de

Abstract
To enable correct program execution on unreliable hardware,
software can be made fault-tolerant by adding program state-
ments or machine instructions for fault detection and recovery.
Manually modifying programs does not scale, and extend-
ing compilers to emit additional machine instructions lacks
flexibility. However, since software-implemented hardware
fault tolerance (SIHFT) can be understood as a cross-cutting
concern, we propose aspect-oriented programming as a suit-
able implementation technique. We prove this proposition by
implementing an AN encoder based on AspectC++. In terms
of performance and fault coverage, we achieve comparable
results to existing compiler-based solutions.

Categories and Subject Descriptors D.4.5 [Reliability]:
Fault-tolerance; D.3.3 [Language Constructs and Features]

Keywords Aspect-oriented programming, generative pro-
gramming, arithmetic codes, AN encoding, SIHFT

1. Introduction
Shrinking transistors for performance is no longer the ulti-
mate goal in microchip production. With the rise of smart
embedded devices, energy efficiency and manufacturing costs
become equally important. This motivates the reduction of
gate voltages or even the use of partially defective processors.
Both approaches lead to less reliable hardware and hence
faulty program execution, as reported in [9, 18]. To enable
correct and reliable execution of applications on unreliable
hardware, programs can be augmented with instructions for
fault detection and recovery, which is referred to as software-
implemented hardware fault tolerance (SIHFT) [4]. SIHFT
is an attractive and cheap alternative to hardware-based so-
lutions, as it can be flexibly applied on existing commodity
hardware.

An obvious way of providing SIHFT is to manually rewrite
the program by adding statements for fault detection [11] and
recovery. While this approach offers maximum flexibility, it
has to be repeated for each new program. Furthermore, this
leads to a tangling of SIHFT-related statements with state-
ments that implement the program’s core functionality—as
is typical of cross-cutting concerns [20]. Hence, in applying
SIHFT, automated approaches are desirable, and compile-
time approaches are typically used. For instance, SIHFT-
related statements can be added by transforming a program’s
abstract syntax tree (AST) [7, 12]. Transformations can be
implemented at more low-level program representations by
extending compilers [3, 13–15].

While automated approaches avoid tangling and are appli-
cable to arbitrary programs, some drawbacks remain. First,
developing these use-case-specific weavers based on existing
tools typically involves writing boilerplate code, e.g., for AST
traversal. Second, these weavers have limited flexibility when
it comes to modifying the SIHFT scheme or selecting the
scope in which SIHFT is to be applied.

In this paper, we investigate and evaluate aspect-oriented
programming (AOP) [5] as an approach to SIHFT. This has
several advantages over existing approaches. First, SIHFT-
related code is cleanly separated from the program code.
Second, AST traversal and transformation are handled by
an aspect weaver. Third, the SIHFT scheme is implemented
more declaratively. Finally, AOP makes it easy to modify,
combine or create new SIHFT schemes. For our investigation
we focus on the simple, yet powerful fault detection scheme
known as AN encoding [1, 3], and we implement an aspect-
based AN encoder (ABAN).

2. Related Work
The authors in [2] describe a generic software-based approach
to memory-error correction for memories without error-
correcting codes. Similar to the present work, AOP is used
to encapsulate the encoding. However, in [2] only object-
oriented data structures in a specific embedded operating
system are considered. Our work is more general since it
can be applied to arbitrary data structures. Moreover, AN
encoding can detect faults in CPUs and memory.

The dual modular redundancy (DMR) scheme detects
faults by duplicating instructions and comparing their re-

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

MODULARITY’16, March 14–17, 2016, Málaga, Spain

ACM. 978-1-4503-3995-7/16/03...

http://dx.doi.org/10.1145/2889443.2889453

66

sults. Although DMR was originally developed as a hard-
ware approach, it can be implemented in software too.
Software-based DMR was implemented using AST transfor-
mations [12] and compilers [13].

3. AN Encoding
AN encoding enables the detection of hardware faults by
operating on encoded data. Only correctly encoded data is
valid. If a fault occurs, the encoding is destroyed, which can
be detected by an appropriate check. Specifically, any integer
value n is encoded by multiplying it with a fixed constant A:

ne = n ⇤A. (1)
Fault detection and recovery schemes usually rely on redun-
dancies in the representation of data. In AN encoding redun-
dancy is introduced in the form of extra bits that must be
afforded to correctly represent the encoded value ne .

Decoding of ne is achieved by dividing it by A, yielding
the original n. Validity of encoded values can be checked at
any point in time by evaluating the boolean expression:

0 = ne % A. (2)
In an AN encoded program, since arithmetic operations do

not necessarily preserve the encoding, they must be replaced
with encoded versions. The encoded versions of addition and
subtraction are identical to the usual ones. For multiplication
and division the situation is more involved (cf. [17, p. 27]):

ne ⇤e me = (ne ⇤me)/A, (3)
ne /e me = (A ⇤ ne)/me. (4)

Observe that the order of computation steps matters: if, for
multiplication, one of the operands was first divided by A, an
un-encoded intermediate value, vulnerable to hardware faults,
would result. Other operations, e.g., bitwise operation, need
special treatment too, for which refer to [17].

4. Aspect-Based AN Encoding (ABAN)
In AOP, a program is made up of four components: basic com-
pilation units containing class declarations and their enclosed
definitions (core concerns), aspects (cross-cutting concerns),
pointcuts, and advice functions (cf. [5, 6]). Core concerns are
the functional and algorithmic core of the program, which
is typically self-contained and functionally independent of
any aspect. Aspects define additional compilation units that
implement cross-cutting functionality. Advice functions and
pointcuts define how aspects cross-cut the functional core of
a program. A pointcut defines a set of joinpoints in a pro-
gram’s control flow where associated advice functionality
may augment the core functionality. To compile a program
with aspects, a weaver is required. Weavers take as input
the compilation units of the core program and aspects. From
this a modified version of the core program is produced that
includes the aspects’ advice code at the respective joinpoints.

4.1 AN Encoding as a Cross-Cutting Concern
To use AOP, places where AN encoding cross-cuts core
programs must be identified:

• Constant values must be encoded at object instantiation
time. Hence, an aspect must be provided that applies an
encoding advice at the joinpoints corresponding to object
constructors.

• Values must be decoded when a program generates output.
Hence, an aspect must be provided that applies a decoding
advice at “output” joinpoints.

• To replace operations with their encoded versions (cf.
Sec. 3), an aspect must be provided consisting of join-
points which match un-encoded operators and of advice
functions which implement the encoded operators.

While the set of aspects required for a basic AN encoder is
considerably small, we are currently not aware of any AOP
tool that allows us to implement ABAN directly. As a promi-
nent example, AspectJ [6] does not support joinpoints which
can address and modify operators. The tool that comes closest
to meeting our requirements is AspectC++ [19], which sup-
ports operator-execution joinpoints. However, at the time of
writing, AspectC++ does not support matching and advising
built-in operators. This can be overcome by implementing
wrapper classes for integer values. Joinpoints can then be de-
fined at operators which the wrappers overload. We therefore
decided to use this AspectC++ for our implementation.

4.2 Implementation in AspectC++

We define the wrapper classes Int, u_Int, and Bool
that encapsulate values of type int64_t, uint64_t, and
bool respectively. Furthermore, the wrapper classes over-
load the built-in operators for their encapsulated types.

Our implementation of ABAN is comprised of five aspect
declarations. an_encoding defines the constant A that is
shared across all aspects. The aspects an_Int, an_uInt,
and an_Bool specify encoding and decoding operations.
They also supply advices that lift the basic operators to
encoded ones. Listing 1 exemplifies how the initial encoding
step for integer values is realized using AspectC++. The
advice is applied before the construction joinpoint of
any Int object and performs the encoding by delegating to
the encode method. For the other types this works similarly.
1 advice construction("Int") : before() {
2 int n_args = JoinPoint::args();
3 if(n_args == 1 && JoinPoint::argtype(0) == "l") {
4 Int* p_Int = (Int*)tjp->target();
5 encode(p_Int);
6 }}

Listing 1: Encoding Int on initialization (in an_Int).

As explained in Sec. 3, some arithmetic operations must
be adjusted. As an example, we discuss the division operator.
According to Eq. 4, it should suffice to encode the dividend
a second time. However, since integer division is performed,
a correction term must be introduced to handle remainders.
This is shown in Listing 2. Before any division, the advice
first computes the remainder using the modulo operation
(Line 9–10), subtracts it from the dividend (Line 12), and
encodes the modified dividend a second time (Line 13).

67

1 // matching division on Int

2 pointcut division() = "% Int::operator /=(const Int&)";
3
4 // adding advice before division execution

5 advice execution(division()) : before(){
6 Int* dividend = (Int*)tjp->that();
7 Int* divisor = (Int*)tjp->arg(0);
8
9 int64_t rem = ((dividend->getN())/A)

10 % ((divisor->getN())/A);
11
12 dividend->n -= rem * A; // subtracting the remainder

13 encode(dividend); // encoding the dividend

14 }

Listing 2: Encoding of division operator (from an_Int).

The aspect an_compchk is responsible for applying
a simple checking strategy: wherever an operation is exe-
cuted, operands are first checked for valid encoding. This
is shown in Listing 3. The first advice (Line 3–4) adds
a check before unary operators on Int objects (pointcut
op_unary_Int). The second advice (Line 7–10) does
the same for binary infix operators on Ints (pointcut
op_infix_binary_to_Int).
1 aspect an_compchk : an_Int , an_uInt , an_Bool {
2 // check unary operators

3 advice execution(op_unary_Int()) : before(){
4 an_Int::check_validity((Int*)tjp->that()); }
5
6 // check binary operators

7 advice execution(op_infix_binary_to_Int()): before(){
8 an_Int::check_validity((Int*)tjp->that());
9 an_Int::check_validity((Int*)tjp->arg(0));

10 }...

Listing 3: Checking Int operands (in an_compchk).

5. Evaluation
The ABAN encoder is evaluated on two benchmark algo-
rithms: Matrix-Vector Multiplication (MV) and Quicksort
(QS). MV features many arithmetic operations and should
be well-protected against faults by AN encoding. QS, how-
ever, has dynamic control-flow and few arithmetic operations.
It is therefore not clear how well AN encoding in general
can protect QS. These benchmarks were also chosen to en-
able comparisons of ABAN with previous implementations
of AN encoding. For each of the benchmark algorithms three
binaries are generated: the native binary, without any modifi-
cations, a binary using the wrapper classes, and the ABAN-
encoded binary. All binaries are compiled with clang at
optimization level O2.

Two metrics are commonly used to evaluate SIHFT
schemes: fault coverage and performance penalty. Fault
coverage is the frequency of faults that are successfully de-
tected or do not affect program output. Note that faults can
be detected outside SIHFT schemes: for example, if a fault
causes a segmentation violation, this will be detected by the
operating system. Performance penalty means the run-time
overhead incurred due to the program transformations that
are introduced by the SIHFT scheme. In the following we
report measurements for both metrics that were obtained on
an Intel Core i7 CPU running at 3.6GHz with 32GB RAM.

5.1 Fault Injection Experiments and Fault Coverage
For each binary 16,000 fault injection experiments are con-
ducted. Using the Pin tool [8], a random single fault, consist-
ing of one or multiple bit-flips, is injected during program
run-time into one of the following places: registers, memory,
the address bus, or instruction opcodes. Injecting a fault into
a program results in one of five events. CORRECT: the fault
does not affect the program output; DETECTED: the fault is
detected by the SIHFT scheme; OSCRASH: the fault causes
the operating system to terminate the program; HANG: the
fault causes the program to hang; SDC: silent data corruption
occurs when the program terminates normally but produces
incorrect output. Based on the given definition, fault coverage
equals the frequency of non-SDC events.

The results of our fault injection experiments are shown in
Fig. 1. The native binaries already show good fault coverage,
which is raised by ABAN to 0.90 (MV, encoded) and 0.97
(QS, encoded). The results for QS are comparable to the ones
in [3, 14]. For encoded MV the fault coverage is noticeably
better than in [15]. This is unsurprising given that fault
coverage for native MV is already as good as for encoded
MV in [15]. It is unclear why the wrapper classes introduce
additional vulnerabilities for MV but not for QS.

5.2 Performance Penalty
Performance penalties are shown in Fig. 2 as ratios of exe-
cution times. An optimizing compiler would be expected to
remove any overhead due to the wrapper classes. The bars
wrapper/native show that this is too optimistic an expectation.
However, the overhead that ABAN introduces on top of the
wrapper classes (cf. encoded/wrapper) is remarkably low.
This may be due to the fact that encoding on top of the wrap-
per classes adds opportunities for exploiting instruction level
parallelism [10], but this conjecture remains to be verified.
The encoded/native ratios are comparable to overheads of AN
encoding that have been reported elsewhere [14, 15]. When
comparing with [14], one should bear in mind that only a
minimal number of checking instructions is introduced by
their AN encoder. Nonetheless the performance penalties are
of the same order of magnitude.

5.3 Suitability of AOP
Our experiments show that AOP is a viable and convenient
approach to SIHFT. The AN-related aspect code is fully
decoupled from program code, and the amount of boilerplate
code is minimal. This strongly suggests that ABAN has fewer
lines of code than previous approaches. ABAN is also more
portable than compiler-based approaches since it can be used
whenever the weaver is available.

AOP enables easy experimenting with different SIHFT
strategies by modifying advice functions and pointcuts, e.g.,
using control-flow-specific pointcuts, SIHFT can be applied
selectively at run-time. AOP is thus well-suited for prototyp-
ing new SIHFT strategies. The performance impact of the

68

�

���

���

���

���

�

��
������

��
��������

��
�������

��
������

��
��������

��
�������

�
��
�
��
��
��

��
��
�

�������
��������
�������
����
���

Figure 1: Fault coverages for different binaries.

�

�

��

��

��

��

��
���������������

��
����������������

��
��������������

��
���������������

��
����������������

��
��������������

��
��

��
�
�
��
���

Figure 2: Performance penalties due to wrappers and ABAN.

wrapper classes may vanish in the future since pointcuts at
built-in operators are planned in AspectC++ [16].

One of the downsides of ABAN is that the joinpoint models
of existing AOP tools might be too coarse to realize exten-
sions of AN (cf. [17]) which require adapting if-statements.
Another drawback is the lack of control over how the weaving
affects generated code. However, compiler-based approaches
suffer from this too unless all stages of the compilation pro-
cess are suitably modified.

6. Conclusion and Outlook
We have introduced ABAN as an alternative approach to im-
plementing AN encoding, discussed its fault-coverage and
performance and compared it to other implementation ap-
proaches with reasonable results. In the future, we intend to
investigate selective encoding strategies and more sophisti-
cated encodings such as �-encoding [7]. Also, the impact of
the wrapper classes on performance and compilation should
be investigated more thoroughly.

Acknowledgments
This work was supported by the German Research Foundation
(DFG) within the Cluster of Excellence “Center for Advancing
Electronics Dresden” (cfaed).

References
[1] A. Avizienis. Arithmetic error codes: Cost and effectiveness

studies for application in digital system design. IEEE Trans.
on Computers, C-20(11):1322–1331, 1971. ISSN 0018-9340.

[2] C. Borchert, H. Schirmeier, and O. Spinczyk. Generative
software-based memory error detection and correction for
operating system data structures. In Proc. of DSN’13, pages
1–12. IEEE, 2013.

[3] C. Fetzer, U. Schiffel, and M. Süßkraut. AN-encoding com-
piler: Building safety-critical systems with commodity hard-
ware. In Proc. of SAFECOMP’09, LNCS/5775. Springer, 2009.

[4] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante.
Software-Implemented Hardware Fault Tolerance. Springer,
2006. ISBN 0387260609.

[5] G. Kiczales, A. Mendhekar, J. Lamping, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming.
In Proc. of ECOOP’97, LNCS/1241. Springer, June 1997.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In Proc. of
ECOOP’01, LNCS/2072, pages 327–353. Springer, 2001.

[7] D. Kuvaiskii and C. Fetzer. �-encoding: Practical encoded
processing. In Proc. of DSN’15. IEEE, June 2015.

[8] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumenta-
tion. In Proc. of PLDI’05, pages 190–200. ACM, 2005.

[9] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells
and platters: An empirical analysis of hardware failures on a
million consumer PCs. In Proc. EuroSys’11. ACM, 2011.

[10] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by
duplicated instructions in super-scalar processors. IEEE Trans.
on Reliability, 51(1):63–75, 2002.

[11] M. Rebaudengo, M. S. Reorda, M. Torchiano, and M. Vi-
olante. Soft-error detection through software fault-tolerance
techniques. In Proc. of DFT’99, pages 210–218. IEEE, 1999.

[12] M. Rebaudengo, M. Reorda, M. Violante, and M. Torchiano. A
source-to-source compiler for generating dependable software.
In Proc. of SCAM’01, pages 33–42. IEEE, 2001. .

[13] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August. SWIFT: Software implemented fault tolerance. In
Proc. of CGO’05, pages 243–254. IEEE, 2005.

[14] N. A. Rink and J. Castrillon. Improving code generation for
software-based error detection. In Proc. of REES’15. To appear,
2015.

[15] N. A. Rink, D. Kuvaiskii, J. Castrillon, and C. Fetzer. Compil-
ing for resilience: the performance gap. In Proc. of ERPP’15.
Edacentrum, 2015.

[16] Roadmap of AspectC++. URL http://www.aspectc.
org/Roadmap.php. Visited: 2015-11-06.

[17] U. Schiffel. Hardware Error Detection Using AN-Codes. PhD
thesis, TU Dresden, Germany, 2011.

[18] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in
the wild: A large-scale field study. In Proc. of SIGMETRICS’09,
pages 193–204. ACM, 2009.

[19] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++:
An aspect-oriented extension to the C++ programming lan-
guage. In Proc. of CRPIT’02. Aus. Com. Soc., 2002.

[20] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton.
N degrees of separation: multi-dimensional separation of
concerns. In Proc. of ISCE’99, pages 107–119. IEEE, 1999.

69

