
Schiller et al.

RESEARCH

Compile- and Run-time Approaches for the

Selection of E�cient Data Structures for

Dynamic Graph Analysis

Benjamin Schiller

1*
, Clemens Deusser

1
, Jeronimo Castrillon

2
and Thorsten Strufe

1

*Correspondence:
benjamin.schiller1@tu-dresden.de
1Privacy and Data Security,
Department of Computer Science,
TU Dresden, Nöthnitzer Straße
46, 01187 Dresden, Germany
Full list of author information is
available at the end of the article

Abstract

Graphs are used to model a wide range of systems from di↵erent disciplines

including social network analysis, biology, and big data processing. When

analyzing these constantly changing dynamic graphs at a high frequency,

performance is the main concern. Depending on the graph size and structure,

update frequency, and read accesses of the analysis, the use of di↵erent data

structures can yield great performance variations. Even for expert programmers, it

is not always obvious, which data structure is the best choice for a given scenario.

In previous work, we presented an approach for handling the selection of the

most e�cient data structures automatically using a compile-time approach

well-suited for constant workloads.

We extend this work with a measurement study of seven data structures and

use the results to fit actual cost estimation functions. In addition, we evaluate

our approach for the computations of seven di↵erent graph metrics. In analyses

of real-world dynamic graphs with a constant workload, our approach achieves a

speedup of up to 5.4⇥ compared to basic data structure configurations.

Such a compile-time based approach cannot yield optimal results when the

behavior of the system changes later and the workload becomes non-constant. To

close this gap we present a run-time approach which provides live profiling and

facilitates automatic exchanges of data structures during execution. We analyze

the performance of this approach using an artificial, non-constant workload where

our approach achieves speedups of up to 7.3⇥ compared to basic configurations.

Keywords: dynamic graph analysis; data structures; performance; measurement

study; compile-time optimization

1 Introduction
There is an emerging application domain that deals with the analysis of dynamic

graphs. They serve to model dynamic systems across di↵erent disciplines, such as

biological [1, 2], transportation [3], computer [4], and social networks [5, 6, 7]. The

analysis of such dynamic graphs is challenging and its complexity arises from the

frequent changes to their topologies and properties rather than their size alone. Due

to a proliferation of applications and the ever increasing size of dynamic systems,

performance has quickly become a major concern [8, 9, 10].

The general application pattern of dynamic graph analysis consists of a sequence

of graph modifications followed by a computation of metrics (cf. Figure 1). Several

metrics investigate local properties such as the clustering coe�cient and assorta-

tivity. Other metrics determine global properties like degree distribution, all-pairs

mailto:benjamin.schiller1@tu-dresden.de

Schiller et al. Page 2 of 22

shortest paths, and connected components. Each metric has a di↵erent interpre-

tation depending on the application domain. As an example, a high betweenness

centrality identifies users with high influence in social networking and potential

communication bottlenecks in computer networks. Such an analysis serves to better

understand the states of a system and improve its design in a variety of applica-

tions [11, 12, 13]. The analysis of the states of a dynamic graph can be implemented

using snapshot- or stream-based approaches [9]. We use snapshot-based algorithms

in the following since the problem of modifying and accessing the in-memory rep-

resentation of a dynamic graph is the same for both.

Figure 1 General application scenario of dynamic graph analysis

For performance reasons, dynamic graph analysis is implemented on an in-memory

graph representation [9, 10]. There are well understood representations of graphs,

such as adjacency lists and matrices, on which algorithms, data structures, and

complexity analyses have been studied extensively. For practical applications, how-

ever, it remains challenging to find the best suited match of algorithms and data

structures as the result often depends on the combination of a number of factors.

In the case of dynamic graphs this includes graph size and structure, frequency of

updates to its topology, and access patterns of the metric computation. Di↵erent

graph representations result in high performance deviations but are challenging for

programmers to predict [14, 15].

There exist many frameworks for the e�cient analysis of static graphs [16, 17,

18]. While they are all built for e�cient analysis, the graph representation is fixed

and selected by the developers. Many graph databases have been developed to

represent graph over time [19]. While they allow for complex queries of the graph

over time and the storage of additional properties, they are neither suited for a large

number of updates nor the e�cient computation of topological graph properties for

specific states[20]. A lot of work has been done to develop compact representations

of graphs. These approaches do not focus on runtime e�ciency but on obtaining

a small memory footprint [21]. They often are not even applicable to arbitrary

graphs as they are developed for separable or sparse graphs [22, 23]. Special graph

representations for dynamic graphs have also been developed. Their underlying data

structures are tuned for memory [8] or runtime e�ciency [24, 10, 25] but cannot be

adapted to di↵erent scenarios.

Schiller et al. Page 3 of 22

Many approaches have been developed for profiling programs to facilitate their

subsequent optimization. Frameworks like Pin [26] or JFluid [27] allow the in-

strumentation of existing programs to collect statistics about CPU usage, memory

consumption, or call frequencies of code fragments. In addition to this instrumenta-

tion, Brainy [28] enables the optimization of the data structures used by a program.

Based on benchmarks of available data structures, the approach uses machine learn-

ing to generate rules like, e.g., if operation o is called more than k times use data

structure d. After the analysis of a complete execution of the program, data struc-

tures are exchanged based on these general rules. This approach is not applicable to

the problem of dynamic graph analysis because the generated rules are generalized

for all data types and do not take into account the specific runtime properties of

handling vertices or edges in specific lists.

Other approaches attempt to exchange the used data structures during run-time.

Just-in-Time data structures (JitDS) [29] is an extension of the Java language en-

abling the combination of multiple representations for a single data structure. For

each instance, swap rules can be defined by an expert programmer to declare when

and how to switch between representations. While this approach is powerful, it relies

on the programmer’s intuition and foresight to define such rules. Chameleon [30]

provides a framework for run-time profiling without the need to adapt the program.

In case the program uses data structure wrappers provided by the framework, data

structures can be replaced during runtime which comes at the high cost of perform-

ing a separate monitoring of all data structures. Based on fixed rules for exchanging

data structures as well, CoCo [31] requires the programmer to use wrappers pro-

vided by the framework in order to optimize the selected data structures during

run-time. With their use of pre-defined rules that do not adapt to the current prop-

erties of the graph and read accesses of the analysis, both approaches are not suited

for the analysis of dynamic graphs.

In previous work [32], we presented a compile-time approach for optimized data

structure selection in the context of dynamic graph analysis. We benchmarked five

data structures as potential candidates and evaluated our approach for the compu-

tation of three graph metrics. In this article, we extend this work by benchmarking a

total of seven data structures, creating actual estimation functions via curve fitting,

and evaluating the impact on a total of seven graph metrics. Furthermore, we pro-

pose and evaluate a run-time approach for the selection of optimal data structures

during the execution of an application to handle highly dynamic workloads.

The remainder of this article is structured as follows: We introduce our termi-

nology in Section 2. In Section 3, we describe our compile-time approach, discuss

benchmarking and profiling results, and evaluate its performance benefits. We out-

line and evaluate our run-time approach in Section 4 and summarize our work in

Section 5.

2 Terminology and Notation
In this Section, we introduce our terminology and notations for graphs, dynamic

graphs, and their analysis. We introduce the di↵erent lists for representing graphs in

memory as well as the operations required to adapt them over time and access them

for analysis. Finally, we define the problem of selecting the best data structures for

these lists.

Schiller et al. Page 4 of 22

Graphs and Adjacency Lists A graph G = (V,E) consists of a vertex set V =

{v1, v2, . . . } and an edge set E. In undirected graphs, edges are unordered pairs of

vertices and ordered pairs in directed graphs. The adjacency list of a vertex in an

undirected graph is then defined as adj(v) := {{v, w} 2 E}. For directed graphs,

incoming and outgoing adjacency lists are defined by in(v) := {(w, v) 2 E} and

out(v) := {(v, w) 2 E}. In addition, the vertices with bidirectional connections

are commonly stored in the neighborhood list, i.e., n(v) := {w 2 V : (w, v) 2
in(v) ^ (v, w) 2 out(v)}.

Dynamic Graphs As a dynamic graph, we consider a graph whose vertex and edge

sets change over time. Each change is represented by an update of V or E that adds

or removes an element. Applying any of these updates add(v), rem(v), add(e), and

rem(e) implies the modification of V , E, and adjacency lists.

We consider a dynamic graph at an initial state G0 = (V0, E0) and its development

over time: G0, G1, G2, The transition between two states G
i

and G
i+1 of the

graph can then be described by a set of updates we refer to as a batch B
i+1. Then,

the complete transition of a dynamic graph over time can be understood as the

consecutive application of batches to it: G0
B1��! G1

B2��! G2
B3��!

Analysis of Dynamic Graphs Analyzing a dynamic graph means to determine its

topological properties at certain states, e.g., for G0, G1, G2, Examples of such

topological metrics are the degree distribution (DD), connected components (C),

assortativity (ASS), clustering coe�cient (CC), rich-club connectivity (RCC), all-

pairs-shortest paths (SP), and betweenness centrality (BC).

Representing a Dynamic Graph in Memory For directed and undirected graphs,

di↵erent lists are required to represent the graph and all adjacencies in memory.

For both types, the set of all vertices V and the set of all edges E must be stored.

For each vertex of an undirected graph, the list of all adjacent edges adj must be

represented. In the case of directed graphs, separate lists of incoming and outgoing

edges (in and out) as well as neighboring vertices (n) must be maintained. Hence,

there is a total of 6 di↵erent lists which we denote as L := {V,E, adj, in, out, n}.
Each list stores either edges (e) or vertices (v), denoted as T := {v, e}. We refer

to this element type stored in a list by t : L ! T with t(V) = t(n) := v and

t(E) = t(in) = t(out) = t(adj) := e.

Each list must provide operations to modify it and retrieve certain information.

To create and maintain a list, it must provide means to be initialized (init), add

elements to it (add), and remove existing elements (rem). It must provide operations

to fetch a specific element using a unique identifier (get) or iterate over all elements

(iter). Often, it is also necessary to retrieve a random element from a list (rand),

determine its cardinality (size), or determine if a specified element is contained in

the list (cont).

The execution of add, rem, and get can be successful or fail depending on the

current state of the list. Likewise, the execution of cont can return true or false.

For example, adding vertex v to V fails in case it already exists while the removal

of e from E is successful in case the edge exists. Similarly, the result of a contains

Schiller et al. Page 5 of 22

operation can be true or false, also considered as success or failure. Depending on

the data structure used to implement a list for storing elements of a specific type,

the runtime can di↵er significantly when an operation fails compared to a successful

execution. We do not need to make this distinction for the other operations: size

and iter can not fail and rand returns null in case the list is empty.

Therefore, we distinguish between successful (s) and failed (f) execution of add,

rem, get, and cont and consider a set O of 12 di↵erent operations: o 2 O :=

{init, add
s

, add
f

, rem
s

, rem
f

, get
s

, get
f

, iter, rand, size, cont
s

, cont
f

}.

Problem Definition In this article, we consider the problem of finding the most ef-

ficient data structures for representing a dynamic graph during analysis in memory.

Assume D to be a set of data structures that implement all required operations.

Then, we must find the most e�cient configuration cfg which maps each list to

a data structure: cfg : L ! D. For undirected graphs, this means to select data

structures for V , E, and adj while directed graphs require data structures for in,

out, and n in addition to V and E. In the following, we focus on undirected graphs

since all results can be transferred to directed graphs.

3 Compile-time Selection of E�cient Data Structures
In this Section, we describe a compile-time approach for the selection of e�cient data

structures for the analysis of dynamic graphs. Afterwards, we discuss benchmarking

results for di↵erent data structures and give examples. Then, we present results of

operation counts obtained during profiling for the computation of graph metrics

and the adaptation of a dynamic graph. Finally, we evaluate our approach on two

real-world datasets and summarize our results.

3.1 Compile-time Approach

Our approach for optimizing the data structure selection for dynamic graph analysis

is based on the assumption that workload and characteristics of the dynamic graph

do not change drastically over time. We refer to such a workload as constant and

call a workload non-constant in case access patterns or list sizes change significantly

over time. In this case, we can estimate the workload for the complete analysis based

on the first batches and determine the best configuration.

To understand and estimate the performance of data structures when executing

specific operations, we benchmark them beforehand. This preparation phase must

be executed only once for a platform where the application should be executed.

Figure 2 Compile-time optimization of data structures for dynamic graph analysis

Schiller et al. Page 6 of 22

An overview of our compile-time approach is given in Figure 2 and it consists

of five components: First, a given application is instrumented to enable profiling.

Second, it is executed for some batches to record access statistics for all lists. Third,

these access statistics are aggregated by the profiling component. Fourth, these

statistics are analyzed using the runtime estimations obtained during benchmarking

to recommend the most e�cient configuration. Fifth and finally, the program is re-

compiled to use the recommended configuration.

Benchmarking The runtime of executing an operation o 2 O on a list l 2 L
depends on the element type t(l) 2 T , the data structure d 2 D used to implement

the list, and its size s
l

2 N+. To estimate this runtime, we perform measurements for

data structures and element types with all operations and list sizes s 2 [1, s
max

]. As

a result, we obtain a set of measurements for each list size s: m
d,t,o

: [1, s
max

] ! Rk.

To obtain an estimation function e
d,t,o

from the runtime measurements m
d,t,o

,

we fit the following functions using the nonlinear least-squares (NLLS) Marquardt-

Levenberg algorithm provided by gnuplot [1]:

• f1(x) = a+ b · x+ c · x2

• f2(x) = a+ b · log(x)
We chose these functions to reflect the complexity classes O(1), O(s), O(s2), and

O(log(s)) of the operations on di↵erent data structures. We fit f1 and f2 via median

value and standard deviation of the data points in m
d,t,o

and select the function

with the smallest error as e
d,t,o

.

Instrumentation, Execution, and Profiling Two actions are performed during the

analysis of a dynamic graph: graph modification and metric computation. Graph

modification means that the in-memory representation is changed to reflect the

updates that occur in the graph over time, i.e., add and rem. For the computation

of metrics, read operations like iter, size, and contains are executed on certain lists

depending on metrics and algorithms.

In the first part of our approach, we instrument a given application such that

these accesses to data structures can be recorded. Then we execute the instrumented

application for some batches and aggregate the recorded access statistics for each

list l and o as c
l

: O ! N. We refer to c
l

as operation counts. In addition, we

record the average size of all instances of list l as s
l

. For example, c
V

(add) records

how many elements have been added to V and s
adj

denotes the average size of all

adjacency lists adj.

Analysis and Re-Compilation The analysis component takes as input operation

counts c
l

and average size s
l

for all lists l generated during profiling. From that, we

estimate the runtime of any data structure d as
P

o2O c
l

(o) ·e
d,t(l),o(sl). Then, the

most e�cient data structure d⇤ 2 D for executing c
l

for s
l

can be estimated by

d⇤(c
l

, s
l

) = arg min
d2D

X

o2O
c
l

(o) · e
d,t(l),o(sl).

[1]
http://gnuplot.sourceforge.net

http://gnuplot.sourceforge.net

Schiller et al. Page 7 of 22

Table 1 Estimation functions of get
s

and get

f

depending on data structure and element type

t d e

d,t,gets (x) e

d,t,getf
(x)

v

A 23.74 + 0.91 · x� 0.01 · x2
16.72 + 0.15 · x� 0.00 · x2

AL 24.49 + 1.41 · x� 0.01 · x2
41.09 + 1.82 · x+ 0.04 · x2

HAL 47.58 + 0.18 · x� 0.00 · x2
60.36 + 3.23 · x� 0.00 · x2

HM 73.57 + 0.93 · x� 0.00 · x2
57.48 + 15.46 · log(x)

HS 56.20 + 40.23 · x� 0.18 · x2
54.05 + 40.99 · x� 0.17 · x2

HT 153.87 + 18.14 · log(x) 98.70 + 19.96 · log(x)
LL 39.80 + 0.24 · x� 0.00 · x2

26.28 + 14.04 · x+ 0.22 · x2

e

A 22.92 + 1.88 · x+ 0.02 · x2
27.78 + 1.51 · x+ 0.02 · x2

AL 23.49 + 3.65 · x� 0.00 · x2
29.81 + 3.63 · x� 0.00 · x2

HAL 51.42 + 5.26 · x� 0.02 · x2
53.08 + 4.77 · x� 0.02 · x2

HM 371.51 + 1.38 · x� 0.00 · x2
357.04 + 1.44 · x� 0.00 · x2

HS 33.45 + 15.87 · x� 0.04 · x2
69.20 + 34.08 · x+ 0.01 · x2

HT 442.95 + 2.09 · x� 0.01 · x2
407.83 + 5.01 · x� 0.04 · x2

LL 31.36 + 11.18 · x+ 0.10 · x2
35.44 + 10.59 · x+ 0.11 · x2

Hence, the most e�cient configuration for all lists l can be estimated as

cfg⇤(l) := d⇤(c
l

, s
l

), l 2 L.

As a result, the analysis components returns the configuration cfg⇤ which was

estimated to be the most e�cient for executing the operation counts for the given

list sizes. Finally, we re-compile the application to use cfg⇤.

3.2 Benchmarking Results

We performed a measurement study of Java data structures to obtain m
d,v,o

(s)

and m
d,e,o

(s) for sizes s 2 [1, 105], and seven data structures that provide

the required operations: Array (A), ArrayList (AL), HashArrayList (HAL),

HashMap (HM), HashSet (HS), HashTable (HT), and LinkedList (LL), i.e.,

D = {A,AL,HAL,HM,HS,HT,LL}. HashArrayList is an implementation that

stores all elements simultaneously in a HashSet and an ArrayList to take advantage

of their respective performance for di↵erent operations as proposed by Xu [31]. For

the other data structures, we used the default Java implementations.

All measurements are executed on an HP ProLiant DL585 G7 server running a

Debian operating system with 64 2.6GHz AMD OpteronTM 6282SE processors.

We guaranteed that no more than 60 processes were running during the evaluation

executed using a 64-bit JVM version 1.7. Our implementation of the benchmarking

phase is available as an open-source repository[2].

We used implementations of vertices and edges and repeated all measurements

50 times. A vertex v is identified by a unique index id(v). An edge e = (v, w)

is identified by a 32-bit (int) hash computed from the indexes of the connected

vertices, i.e., h(e) := (id(v) + id(w) · 216) mod 32. Selected results for m
d,e,o

and

e
d,e,o

with s 2 [1, 100] are given in Figure 3. Measurements for all operations and

list sizes can be found in the technical report[3]. As examples, we list the estimation

functions for get
s

and get
f

in Table 1.

The fastest data structure for each operation and list sizes between 10 and 100,000

based on our estimation functions is given in Table 2. The runtime for certain

[2]
https://github.com/BenjaminSchiller/DNA.gdsMeasurements

[3]
http://bit.ly/1UT9pnX

https://github.com/BenjaminSchiller/DNA.gdsMeasurements
http://bit.ly/1UT9pnX

Schiller et al. Page 8 of 22

(a) t = v, o = get

s

(b) t = e, o = get

s

(c) t = v, o = get

f

(d) t = v, o = get

f

(e) t = v, o = iter (f) t = e, o = iter

(g) t = v, o = rem

s

(h) t = e, o = rem

s

Figure 3 Selected runtime estimations (fitted functions e

d,t,o

with median of 50 measurements
m

d,t,o

) for list sizes s 2 [1, 100]

operations di↵ers greatly for data structures and list sizes. For example, Array is

the fastest data structure for testing the existence of an edge for small list sizes

(s = 10) while HashSet or HashArrayList are the better choice for larger lists.

Adding an edge to a list of sizes 10 or 100 is fastest for ArrayList while hash-based

data structures should be preferred for larger lists.

Schiller et al. Page 9 of 22

Table 2 Fastest data structure according to our estimation for di↵erent list sizes

v e

o 10

1
10

2
10

3
10

4
10

5
10

1
10

2
10

3
10

4
10

5

init LL LL LL LL LL LL LL LL LL LL
add

s

AL HS HAL HAL HS AL AL HS HT HT
add

f

A A A HS A A HS HS HS HS
rem

s

A A A A A A A HS HM HM
rem

f

A A A A A AL HS HS HS HM
get

s

A LL A A LL A HAL LL HM HT
get

f

A A A A A A HAL LL HM HM
iter AL HAL HAL HAL LL AL HAL LL LL A
rand A HAL A A A AL HAL A A HAL
size A LL A A A A A A A HAL
cont

s

A A A A LL A HS HS HAL HS
cont

f

A A A A HS A HS LL HM HS

A = Array, AL = ArrayList, HAL = HashArrayList
HM = HashMap, HS = HashSet, HT = HashTable, LL = LinkedList

For storing vertices, Array and HashArrayList appear to be the fastest data struc-

tures overall (cf. Table 2). They perform best for most operations and list sizes.

When storing edges, Array and ArrayList are only fast for small lists of size 10.

As the lists grow, the fastest data structure depends on the respective operation

and even changes again the more the lists grow (cf. Table 2). For example, HashSet

and HashTable perform best when executing add
s

on lists of size � 1,000 while

ArrayList is fastest for lists of size 10 and 100.

The reason for the di↵erence in performance when storing vertices or edges lies in

the identification of elements. Vertices are identified by a unique identifier which can

simply be used as the index of Array, ArrayList, or HashArrayList. Therefore, per-

forming contains or get operations translates to a simple lookup at a deterministic

location in memory. In contrast, hash-based data structures perform the overhead

of looking up this identifier in the corresponding hash table and potentially deter-

mining its location in memory. Edges are identified by a hash computed from the

two unique indexes of the adjacent vertices. Their lookup in an array-based data

structure is time consuming since the complete list has to be scanned. Representing

all possible indexes of an edge list in an array-based data structure would require

each list to map all possible hash values, and hence always be of size 232 which is

infeasible. While the lookup in array-based data structures is still faster for small

lists, hash-based data structures are faster for larger lists as they only need to check

for the respective hash in their hash table.

From these results, we assume that array-based data structures should be rec-

ommended for storing vertices. Similarly, we see that for storing small edge lists,

array-based data structures should be recommended as well. For larger edge lists

with more than 100 elements, there is not a single data structure which appears best.

Hash-based data structure perform better than Array and ArrayList but which one

depends on the combination and count of the performed operations.

3.3 Profiling Results

We instrumented the graph component of DNA (Dynamic Network Analyzer)[4], a

framework for the analysis of dynamic graphs [33], to record c
l

and s
l

for all lists

[4]
https://github.com/BenjaminSchiller/DNA

https://github.com/BenjaminSchiller/DNA

Schiller et al. Page 10 of 22

l 2 L during graph modification and metric computation using AspectJ [34]. In the

following, we present such results generated using the profiling component. With

these operation counts and average list sizes, we can perform an analysis to estimate

the most e�cient configuration.

(a) Constant workload (b) Non-constant workload

Figure 4 Operation counts for graph modification (o 2 {init, add
s

, size, cont

f

, get

s

, rem

s

})

First, we compare c
l

for two di↵erent workload types of dynamic graphs: constant

and non-constant workload. We refer to a workload as constant in case the list sizes

and operation counts do not change significantly over time. In the example shown in

Figure 4a, batches only consist of a similar amount of edge removals and additions.

Such a workload is characterized by an equal number of additions and removals to

E and adj without additions to V . We consider a workload as non-constant in case

the list sizes or operation counts change over time. Such a workload is produced

when growing a graph, i.e., adding new vertices and further interconnecting them

(cf. Figure 4b). This workload is reflected by add operations on V , E, and adj but

not a single removal.

Second, we observe c
l

during the computation of seven metrics on an instance

of a dynamic graph: degree distribution, connected components, assortativity, clus-

tering coe�cient, rich-club connectivity, all-pairs shortest paths, and betweenness

centrality. We selected these metrics to cover all operations and their combinations

commonly found in graph analysis[5]. To compute the degree distribution of a graph,

an algorithm iterates once over V and determines the degree of each vertex using

the size operation of its adjacency list adj (cf. Figure 5a). Similar operation counts

can be observed for the rich-club connectivity (cf. Figures 5e) with the di↵erence

that the iteration is performed over E instead of V . To determine the connected

components of a graph, a breadth-first search is performed by iterating over V and

the adjacency lists adj (cf. Figure 5b). All-pairs-shortest paths and betweenness

centrality are computed by performing similar operations from every vertex result-

ing in a higher count (cf. Figures 5f and 5g). Computing the clustering coe�cient

of a graph implies an iteration over all vertices and iterations over all adjacency

lists adj (cf. Figure 5d). On these adjacency lists, contains operations are executed

to check which neighbors of a vertex are connected to each other. Some of these

operations fail, others are successful.

[5]
We omitted the computation of motif frequencies used in previous work because the resulting

operation counts and runtimes are very similar to those observed for the clustering coe�cient.

Schiller et al. Page 11 of 22

(a) Degree distribution (b) Connected components (c) Assortativity

(d) Clustering Coe�cient (e) Rich-club connectivity

(f) All-pairs shortest paths (g) Betweenness Centrality

Figure 5 Operation counts for metric computation (o 2 {size, iter, cont
s

, cont

f

})

During the profiling phase, executed for each program at the beginning of our

compile-time approach, the counts for graph modification as well as metric compu-

tation are recorded and used as basis for the recommendation.

3.4 Evaluation

Now, we evaluate our compile-time approach on the analysis of two real-world dy-

namic graphs: one that produces a constant workload (MD) and a second one that

generates a non-constant workload (FB). Our analysis scripts for performing the

evaluation are available as an open-source repository[6].

Datasets MD is the dynamic graph obtained from a molecular dynamics simu-

lation of an enzyme, the para Nitro Butyrate Esterase-13 [35]. The initial graph

consists of 491 vertices representing the residues of the enzyme and 1,904 edges.

Edges exists between two vertices in case their Euclidean distance is shorter than

7Å. During the simulation, a total of 20,000 snapshots were taken. On average, each

batch consists of 70 edge additions and 70 edge removals resulting in a constant

workload (cf. Figure 6a).

[6]
https://github.com/BenjaminSchiller/DNA.gdsAnalysis

https://github.com/BenjaminSchiller/DNA.gdsAnalysis

Schiller et al. Page 12 of 22

The FB dataset is a friendship graph of Facebook taken from KONECT, the

Koblenz Network Collection [36]. It represents users and their friendship relations

as a list of edges sorted by the timestamp they appeared. We take the initial graph

consisting of the first 1,000 edges and 898 vertices. With each batch, the next 100

edges and corresponding vertices are added creating a non-constant workload. After

200 batches, the graph consists of 11,941 vertices and 21,000 edges (cf. Figure 6b).

(a) MD (constant workload) (b) FB (non-constant workload)

Figure 6 Dataset statistics (development of |V | and |E| over time)

For both datasets, we create the initial graph and apply the first 20 batches.

After the application of each batch one of the following metrics was computed:

DD, C, RCC, ASS, SP, CC, or BC. Based on the operation counts c
l

of the 20

batch applications and metric computations, we determine the recommended data

structures for V , E, and adj.

Then, we perform the same computation with the recommended data structures,

as well as configurations where V , E, and adj are all using Array, ArrayList, HashAr-

rayList, HashMap, HashSet, HashTable, or LinkedList, referred to as basic config-

urations. In total, we compute the properties of MD for all 20,000 states and the

properties of FB for 201 states. For comparison, we compute the runtime of all

seven configurations relative the configurations recommended by out approach. All

results presented here are the median speedup of 50 repetitions.

Constant Workload ForMD, our approach recommended the use of HashMap for E

for all metrics (cf. Table 2). It recommended to use either Array or ArrayList for adj

and Array or HashArrayList for V . Since the dataset creates a constant workload,

we expect that our recommendation is applicable and therefore well-suited for the

analysis of the complete dataset.

Table 3 Recommendations for V , E, and adj depending on workload and computed metric

Metric
Constant workload (MD) Non-constant workload (FB)
V E adj V E adj

All-pairs shortest paths A HM AL HAL HAL LL
Assortativity A HM A HAL HAL A

Betweenness centrality HAL HM AL LL HAL LL
Clustering coe�cient A HM A HAL HAL AL
Degree distribution A HM A HAL HAL AL

Rich-club connectivity A HM AL HAL HAL AL
Connected components A HM AL HAL HAL AL

The relative speedup of our recommended configurations over all seven basic con-

figurations is given in Figure 7. Our recommended data structures achieve a speedup

Schiller et al. Page 13 of 22

up to 5.4⇥ and always outperform the basic configurations. The relative perfor-

mance is very similar when computing degree distribution, connected components,

and assortativity. This is most probably because these three metrics have a similar

access pattern to the graph (cf. Figures 5a, 5b, and 5c). For the other metrics (CC,

RCC, SP, and BC), the relative speedup greatly di↵ers with no basic configuration

outperforming the others.

(a) Degree distribution (b) Connected components (c) Assortativity

(d) Clustering coe�cient (e) Rich-club connectivity

(f) All-pairs shortest paths (g) Betweenness centrality

Figure 7 Speedup of compile-time approach (for analysis of constant workload (MD))

Non-constant Workload After profiling for the first 20 batches of FB, our approach

recommended the use of HashArrayList for representing E for all metrics. With a

single exception, the same data structure was recommended for V while the use of

either Array, ArrayList, or LinkedList was proposed for adj. We consider this work-

load to be non-constant because the sizes of V and E increase with each batch. We

expect that this significant change in list sizes renders the initial profiling meaning-

less for the far longer running analyses of all 200 batches. Based on the profiling

during the first twenty batches, we assume a total number of 1, 000+20·100 = 3, 000

edges as input of our analysis. But after 200 batches, E grows to a total of 21, 000

elements, 7⇥ more than the list size we assume based on our initial profiling. There-

fore, we expect that the recommendations generated by our approach are not always

Schiller et al. Page 14 of 22

the best choice throughout an analysis and can be outperformed by the other con-

figurations.

(a) Degree distribution (b) Connected components (c) Assortativity

(d) Clustering coe�cient (e) Rich-club connectivity

(f) All-pairs shortest paths (g) Betweenness centrality

Figure 8 Speedup of compile-time approach (for analysis of non-constant workload (FB))

The relative speedup for the analysis of FB for all metrics is shown in Figure 8.

Note that the speedup for LinkedList lies between 7.5 and 245 for computing DD,

C, ASS, and CC and is truncated in these plots. As for the constant workload, the

relative speedups for computing degree distribution, connected components, and

assortativity are similar. For all metrics, there is at least one standard configura-

tion that closely matches the runtime of the recommended data structures. When

computing all-pairs shortest paths, the standard configurations with Array and

ArrayList outperform our recommendations with only 80% of the total runtime.

3.5 Summary of the compile-time approach

The fact that our recommended configurations outperform all other tested combi-

nations for MD suggests that our estimation of the actual runtime based on e
d,t,o

is

accurate and the recommendation valid for all subsequent batches. We have shown

that our compile-time approach achieves speedups over basic configurations in case

of a constant workload. These recommendations are based on a short profiling phase

and the results independent of the duration of the analysis afterwards.

Schiller et al. Page 15 of 22

In contrast, our evaluation has shown that our compile-time approach is not al-

ways able to accelerate the analysis for all metrics when applying a non-constant

workload (FB). We assume that this is because of the increase of list sizes over the

complete analysis period which also a↵ects the operation counts.

Hence, we conclude that our compile-time approach is well suited for constant but

not for non-constant workloads. Therefore, we propose a run-time approach that

analyzes the workload during the execution of an application and exchanges data

structures accordingly to account for changes in list sizes and operation counts over

time.

4 Run-time Selection of E�cient Data Structures
In this Section, we present a run-time approach for the selection of e�cient data

structures for the analysis of dynamic graphs. Then, we perform a performance

analysis using an artificial workload. Finally, we summarize the insights gained

from the analysis.

4.1 Run-time Approach

For our run-time approach, we assume that the workload (i.e., list sizes or operation

counts) of an application changes drastically over time. In such a case, there is not

a single data structure configuration which performs best throughout the complete

execution and it would be necessary to continually change the data structures dur-

ing execution for optimal performance. Based on this assumption, we propose an

approach to monitor the list sizes and operation counts at run-time, use that infor-

mation to make regular recommendations for the best configuration for the current

workload, and finally exchange the data structures used to represent the dynamic

graph in memory.

Our approach for the run-time optimization of graph data structures consists of

the following components, shown in Figure 9: instrumentation, execution, profiling,

analysis, and hot swap.

The instrumentation adds capabilities to the program to record the access statis-

tics and list sizes during execution and perform a hot swap of data structures if

required. Like in our compile-time approach, the profiling component regularly gen-

erates operation counts and average list sizes. The analysis component takes these

statistics as well as the cost functions generated during the benchmarking phase as

input to recommend a data structure configuration. In case this recommendation

di↵ers from the currently used configuration, the hot swap component replaces the

lists in memory with new instances of the recommended data structure. Afterwards,

the execution of the program is continued.

Hot Swap In our compile-time approach, the recommended data structures are

assigned to the respective lists and the program is re-compiled. In the run-time

approach, these changes must be applied during the execution of the program. In

case a new recommendation appears more e�cient than the current one, we pause

the execution and exchange the current data structures for the recommended ones.

To exchange the data structure we create new instances of the recommended data

structure and fill them with the elements representing the current state of the graph.

Afterwards, we update all references that point to the respective list.

Schiller et al. Page 16 of 22

Figure 9 Run-time optimization of data structures for dynamic graph analysis

4.2 Performance analysis

To analyz the performance of our run-time approach, we generated an artificial

workload where the operations executed on V and E as well as their sizes change

over time to investigate how our approach performs compared to basic configuration

for highly dynamic scenarios. We execute this workload for each of the 7 basic data

structure configurations we used before and for our run-time approach. The run-

time approach always begins execution using Array as the data structure for all

lists. For each execution, we measure the runtime for processing the workload as

well as the overhead of recommending data structures and exchanging them.

Workload and Execution To understand the characteristics of the performance in

detail, we designed a synthetic workload. It consists of 4 separate steps, each of

which is applied first to V and then E, resulting in a total of 8 di↵erent operations

on the data structures:

1 cont:V, cont:E - 100k contains operations of random elements

2 get:V, get:E - 100k get operations of random elements

3 iter:V, iter:E - 10k iterations over all elements

4 add:V, add:E - 1k additions of new elements

Each of these individual operations is performed 10 times before moving on to the

next, forming a round consisting of 80 operations. We execute 4 such rounds, leading

to a total of 320 separate operations.

We start such an execution with a random graph consisting of 10k vertices and

edges. We then apply add:V and add:E 10 times at the end of each round, leading

to a final list size of 50k elements once the workload has finished executing (cf.

Figure 10).

All runtimes shown in the following are the average of 50 repetitions.

Basic Configurations The runtimes for executing a single round of the workload

using the seven basic configurations are shown in Figure 11a.

As the sizes of V and E do not change during the execution of cont, get, and

iter, their runtimes only depend on the data structure used but remain similar

for all repetitions. In contrast, each application of add:V and add:E increases the

respective list size by 1k leading to an increase in their runtime with each repetition.

As indicated by our benchmarks, array-based data structures (Array, ArrayList,

HashArrayList) are most e�cient for the execution of cont:V, get:V, and iter:V. For

Schiller et al. Page 17 of 22

Figure 10 List sizes (development of |V | and |E| during application of the artificial workload)

Table 4 Recommended data structures (for workload and set size, underlined: swap required)

list size cont:V get:V iter:V add:V cont:E get:E iter:E add:E

10k A A AL HS HAL HM AL HS
20k A A AL HS HS HM AL HS, HM
30k A A AL HS HS HM A HM
40k A A AL HS HS HM A HM

add:V, hash-based data structures (HashArrayList, HashSet, HashTable) perform

best.

For operations executed on E, the results are more diverse: While HashArrayList,

HashMap, and HashSet are the best choices when executing cont:E, HashMap is

the fastest data structure for obtaining elements (get:E). When executing iter:E,

ArrayList performs best. When adding elements, all hash-based data structures

(HashArrayList, HashMap, HashSet, HashTable) outperform the others.

HashArrayList always performs well when either HashSet or ArrayList do so. This

is expected because HashArrayList takes advantage of their respective benefits to

execute these operations and shows the usefulness of this combined data structure.

Run-time approach The best data structure for the execution of an operation de-

pends on the element type and its size. Therefore, the data structures recommended

by the analysis component of our run-time approach should change accordingly as

the artificial workload is executed. These recommendations, depending on opera-

tion, element type, and size are shown in Table 4.

Our approach correctly recommends the data structure which ran the fastest dur-

ing the execution using the basic configurations (cf. Figure 11a): For all investigated

list sizes, Array is recommended for the execution of cont:V and get:V. When exe-

cuting get:V, ArrayList is proposed and HashSet for adding vertices (add:V). When

obtaining elements from E (get:E), HashMap is recommended for all sizes. For the

execution of cont:E, HashArrayList is recommended for list sizes below 20k while

HashSet is selected for larger ones. Similarly, Array is recommended for executing

iter:E on lists with 30k and more elements but ArrayList for smaller ones. When

executing add:E, the recommendation changes during the second round: HashSet is

recommended for |E| 21k and HashMap for larger ones.

The runtimes of our run-time approach (denoted as RT) for executing a single

round of this workload are shown in Figure 11b. Our approach achieves runtimes

Schiller et al. Page 18 of 22

(a) Basic configurations

(b) Run-time approach

Figure 11 Workload runtimes (execution of artificial (non-constant) workload, round 3)

consistent with the expectation of following our recommendation of the fastest ba-

sic configuration (cf. Figure 11a). The only anomaly introduced in the run-time

approach are spikes that can occur on the first execution of each operation batch.

The reason for this behavior is that we have to execute a new operation at least

once on the old data structure before we can recognize that swapping the data

structure would be beneficial. For example, take the execution of get:E : During the

first execution of this operation, E is still stored in HashSet, the best choice for

the previously executed cont:E. During this first execution, the accessed operations

are recorded by the profiling component and used by the analysis component to

recommend a data structure that is best suited for this new workload. Afterwards,

the hot swap component replaces these data structures with the recommended ones

which leads to the performance improvement for the following executions.

Schiller et al. Page 19 of 22

Figure 12 Overhead of run-time approach (consisting of hotswap and recommendation)

When using our run-time approach, overhead is produced by the recommenda-

tion of data structures and the regular execution of the hot swap component. The

cumulative overhead of these two operations for all 4 runs is shown in Figure 12.

At a total execution time using our run-time approach of 821.24sec, this overhead

accounts for 6, 11%. The overhead is composed of the time for recommending data

structures (18.82sec, 2.29%) and hot swap (31.38sec, 3.82%).

Comparison For the artificial workload, our approach, including its overhead,

achieves a speedup over all basic configurations (cf. Figure 13). The fastest runtime

of a basic configuration is achieved by HashArrayList with a speed of 1.12. This is

not surprising as this data structure combines the benefits of HashSet and ArrayList

both of which are also recommended by our approach. The highest speedup of 7.34

is achieved in comparison to the basic configuration using HashSet for all lists.

Figure 13 Speedup of run-time approach (for application of artificial workload, 4 rounds)

4.3 Summary of the Run-time Approach

We proposed a run-time approach for recommending and exchanging the data struc-

tures used to represent a dynamic graph in memory. We evaluated our approach

using an artificial, regularly changing workload. Our approach outperformed basic

configurations by up to 7.34⇥. This shows that in scenarios where the workload

behavior changes over time, our approach has the potential to achieve significant

Schiller et al. Page 20 of 22

performance improvements for the analysis of dynamic graphs. Some questions,

however, remain open and need to be investigated in future work:

What is the best recommendation given a realistic execution history? We currently

assume that any overhead is justified when making our recommendation, which is

obviously not a generally valid assumption. The problem of determining whether a

system has shifted its workload su�ciently that the cost of the overhead of swapping

data structures is outweighed by the performance gain of a faster data structure is

not trivial. This problem can be broken up into several sub-problems: How can the

di↵erence between a dynamic system changing its behavior and just making a few

anomalous requests be determined? We currently assume that a realistic application

of dynamic graph analysis will not erratically change its workload, but rather stay

consistent to a slowly changing usage profile. We believe that this assumption is

valid and supported by real world data, but the degree of consistency and the

velocity of overall change varies from application to application. Determining these

factors is critical in order to answer the above question and make an accurate

recommendation. How much information should be taken into account when making

our recommendations? This question pertains to how much of the execution history

is relevant for our recommendation. On the one hand, correct processing of more

information can never make the result less accurate, on the other hand taking into

account too much information might make the system inflexible over time and

significantly increase the overhead of our recommendation.

It may not be avoidable to use a certain degree of machine learning to make

the best recommendation due to the sheer number and complexity of the involved

variables.

On a lower level, closer to the implementation of data structures themselves, it

should be investigated how the actual exchange of data structures can be improved.

Instead of treating the swap between any two data structures over the same in-

terfaces, more e�cient ways to swap between specific data structures should be

investigated.

5 Summary, conclusion, and outlook
In this work, we considered the problem of finding the most e�cient data structures

for representing a graph for the application of dynamic graph analysis.

We proposed a compile-time approach for optimizing these data structures. As

a case study, we performed a measurement study of seven data structures, fitted

estimation functions from the results, implemented our approach on top of a Java-

based framework for dynamic graph analysis, and evaluated it using real-world

datasets. Our results show that our optimization achieves speedups of up to 5.4⇥
over basic configurations on real-world datasets.

The data structure configuration proposed by our approach outperformed all seven

default configurations for the computation of all metrics for a constant workload. For

non-constant workloads, we achieved speedups in many but not all cases. Thereby,

our approach is well-suited for improving the analysis of dynamic graphs with a

constant workload but not capable of adapting to the drastic changes of list sizes

that can occur in non-constant workloads.

To close this gap, we developed a new run-time based approach for the adaptation

of graph data structures during the execution of an application. We analyzed the

Schiller et al. Page 21 of 22

performance of our approach using a synthetic workload designed to capture most

operations and generate a non-constant workload. In this scenario, our approach

performed as expected and achieved speedups over basic configuration of up to

7.3⇥.

In future work, we will further investigate the benchmarking phase of our ap-

proaches to generate more appropriate cost estimation functions. In addition, we

will perform an extensive parameter study to understand the di↵erent aspects of

the proposed run-time approach and look for methods to determine when to use

which approach.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work is partly supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center
for Advancing Electronics Dresden” (cfaed) and the Collaborative Research Center (SFB 912) “Highly Adaptive
Energy-e�cient Computing“ (HAEC).

Author details
1Privacy and Data Security, Department of Computer Science, TU Dresden, Nöthnitzer Straße 46, 01187 Dresden,
Germany. 2Department of Computer Science, TU Dresden, Georg-Schumann-Straße 7A, 01187 Dresden, Germany.

References
1. Candau, et al.: Structural, elastic, and dynamic properties of swollen polymer networks. In: Polymer Networks,

(1982)
2. Marti: Dynamic prop. of hydrogen-bonded networks. Physical Review E (2000)
3. Chabini: Discrete dynamic shortest path problems in transportation applications. Journal of the Transportation

Research Board (1998)
4. Gonçalves, et al.: Characterizing dynamic properties of the sopcast overlay network. In: Parallel, Distributed and

Network-Based Processing (2012)
5. Kossinets, et al.: Empirical analysis of an evolving social network. Science (2006)
6. Braha, et al.: Time-dependent complex networks: Dynamic centrality, dynamic motifs, and cycles of social

interactions. In: Adaptive Networks, (2009)
7. Mucha, et al.: Community structure in time-dependent networks. Science (2010)
8. Madduri, Bader: Compact graph representations and parallel connectivity algorithms for massive dynamic

network analysis. In: Parallel and Distributed Processing (2009)
9. Ediger, et al.: Massive streaming data analytics: A case study with clustering coe�cients. In: Parallel and

Distributed Processing (2010)
10. Ediger, et al.: Stinger: High performance data structure for streaming graphs. In: High Performance Extreme

Computing (2012)
11. Zhao, et al.: On the application of betweenness centrality in chemical network analysis: Computational

diagnostics and model reduction. Combustion and Flame (2015)
12. Trequattrini, et al.: Network analysis and football team performance: a first application. Team Performance

Management (2015)
13. Ambedkar, et al.: Application of centrality measures in the identification of critical genes in diabetes mellitus.

Bioinformation (2015)
14. Hunt, John: Java Performance. Prentice Hall Press, (2011)
15. Shirazi: Java Performance Tuning. O’Reilly Media, Inc., (2003)
16. Batagelj, et al.: Pajek-program for large network analysis. Connections (1998)
17. Bader, et al.: Snap, small-world network analysis and partitioning. In: Parallel and Distributed Processing

(2008)
18. Malewicz, et al.: Pregel: a system for large-scale graph processing. In: ACM SIGMOD International Conference

on Management of Data (2010)
19. McColl, et al.: A brief study of graph databases. arXiv:1309.2675 (2013)
20. Ciglan, et al.: Benchmarking traversal operations over graph databases. In: International Conference on Data

Engineering Workshops (2012)
21. Blandford, et al.: Experimental analysis of a compact graph representation (2004)
22. Blandford, et al.: Compact representations of separable graphs. In: ACM SIAM Symposium on Discrete

Algorithms (2003)
23. Sun, et al.: Compact matrix decomposition for large sparse graphs. In: SIAM International Conference on Data

Mining (2007)
24. Bader, et al.: Stinger: Spatio-temporal interaction networks and graphs (sting) extensible representation.

Georgia Institute of Technology, Technical Report (2009)
25. Macko, et al.: Llama: E�cient graph analytics using large multiversioned arrays. PhD thesis, Ph. D.

Dissertation. Harvard University (2014)
26. Luk, et al.: Pin: building customized program analysis tools with dynamic instrumentation. ACM Sigplan

Notices (2005)

Schiller et al. Page 22 of 22

27. Dmitriev: Profiling Java applications using code hotswapping and dynamic call graph revelation. In: ACM
SIGSOFT Software Engineering Notes (2004)

28. Jung, et al.: Brainy: e↵ective selection of data structures. In: ACM Sigplan Notices (2011)
29. De Wael, et al.: Just-in-time data structures. In: ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming and Software (Onward!) (2015)
30. Shacham, et al.: Chameleon: adaptive selection of collections. In: ACM Sigplan Notices (2009)
31. Xu: Coco: Sound and adaptive replacement of java collections. In: European Conference on Object-Oriented

Programming, (2013)
32. Schiller, et al.: E�cient data structures for dynamic graph analysis. In: Workshop on Complex Networks and

Their Application (2015)
33. Schiller, Strufe: Dynamic network analyzer - building a framework for the graph-theoretic analysis of dynamic

networks. In: SummerSim (2013)
34. Kiczales, et al.: An overview of aspectj. In: Object-Oriented Programming, (2001)
35. Schiller, et al.: Stream - a stream-based algorithm for counting motifs in dynamic graphs. In: Algorithms in

Computational Biology (2015)
36. Kunegis: Konect: the koblenz network collection. In: World Wide Web (2013)

	Abstract
	Introduction
	Terminology and Notation
	Compile-time Selection of Efficient Data Structures
	Compile-time Approach
	Benchmarking Results
	Profiling Results
	Evaluation
	Summary of the compile-time approach

	Run-time Selection of Efficient Data Structures
	Run-time Approach
	Performance analysis
	Summary of the Run-time Approach

	Summary, conclusion, and outlook

