
1ST INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 1

The Orchestration Stack:
The Impossible Task of Designing Software
for Unknown Future Post-CMOS Hardware

Marcus Völp†, Sascha Klüppelholz, Jeronimo Castrillon, Hermann Härtig, Nils Asmussen, Uwe Aßmann, Franz Baader, Christel Baier,
Gerhard Fettweis, Jochen Fröhlich, Andrés Goens, Sebastian Haas, Dirk Habich, Mattis Hasler, Immo Huismann, Tomas Karnagel,

Sven Karol, Wolfgang Lehner, Linda Leuschner, Matthias Lieber, Siqi Ling, Steffen Märcker, Johannes Mey, Wolfgang Nagel,
Benedikt Nöthen, Rafael Peñaloza‡, Michael Raitza, Jörg Stiller, Annett Ungethüm, and Axel Voigt
Center for Advancing Electronics Dresden (cfaed) — Technische Universität Dresden, Germany

† now at SnT-CritiX — University of Luxembourg, ‡ now at KRDB Research Centre — Free University of Bozen-Bolzano

Abstract—Future systems based on post-CMOS technologies will be wildly heterogeneous, with properties largely unknown today.
This paper presents our design of a new hardware/software stack to address the challenge of preparing software development for such
systems. It combines well-understood technologies from different areas, e.g., network-on-chips, capability operating systems, flexible
programming models and model checking. We describe our approach and provide details on key technologies.

F

1 INTRODUCTION

In 2012, the large-scale research project Center for Advancing
Electronics Dresden (cfaed) was set up in Dresden to explore new
materials and technologies for electronic information process-
ing, which potentially help overcoming the limits of today’s
CMOS-technology. The project consists of multiple sub-projects
that focus on promising concrete technologies, including recon-
figurable transistors based on silicon nanowires (SiNW) [43],
[17], [12] and carbon nanotubes (CNT) [38], [36], [32], [29],
organic electronics [31], chemical information processing (e.g.,
microchemomechanical labs-on-chip [42]) and self-assembling
nano-structures built with DNA origami [14]).
The long-term - allegedly impossible - task of cfaed’s Orches-
tration sub-project is to unleash the full potential of future - yet
unknown - computing platforms and to turn breakthroughs in
emerging materials and technologies into application perfor-
mance. We envision wildly heterogeneous computing systems
with potentially large numbers of possibly unreliable process-
ing elements and deep heterogeneous memory subsystems that
are in part built from the above technologies.
Since these new technologies are not yet available and their
characteristics unknown, we use heterogeneous CMOS systems
as a starting point for our research. Our objective is to initially
design CMOS-based systems such that they can be more easily
used for novel technologies and architectures. Since hetero-
geneity already is an important concept for overcoming barriers
limiting conventional CMOS-based architectures (e.g., power-
density problems [39], [16]), we can start with an already large
base of heterogeneity [9], [28], [10], [26], [33], [35], [37], [5], [34].
Sec. 2 describes the Orchestration Stack which addresses ex-
pected challenges for wildly heterogeneous systems and Sec. 3
presents initial implementations contributing to the stack.

2 THE ORCHESTRATION STACK

On the lowest layer of the Orchestration Stack (see Fig. 1) we as-
sume to have a variety of heterogeneous components based on

The research presented in this article is supported by the German research
council (DFG) and the state Saxony through the cluster of excellence “Center
for Advancing Electronics Dresden” (cfaed), cfaed.tu-dresden.de.

different technologies such as SiNWs, CNTs or classical CMOS
hardware (possibly with upcoming channel materials [21]) that
have different characteristics in terms of performance and costs.
These components can be specialized processing elements,
e.g., accelerators, heterogeneous memories [44] or interfaces to
bridge to peripherals, e.g., wireless communication devices, or
to novel computing fabrics, e.g., labs-on-a-chip. Components
can also be partially reconfigurable circuits combining different
processing elements or providing a platform for application-
specific and even software-delivered circuits.
All we require is that the com-

Tiled Architecture

Programming Interfaces

Adap�ve Algorithms

F
o
rm

a
l
q
u
a
n

�

ta

�

v
e
A
n
a
ly
si
s:

P
ro
b
a
b
il
is

�

c
M
o
d
e
l
C
h
e
ck
in
g

DB CFD …

SiNW CNT …

Emerging Materials

Fig. 1. The Orchestration Stack

ponents have a well-defined
interface that allows embed-
ding them into a tile-based
architecture and that enables
to exchange data and com-
mands using some kind of
network (e.g., a network-on-
chip (NoC) [18]). New mate-
rials providing this interface
can hence be embedded into
this architecture. In Sec. 3 we
present such an architecture
and illustrate first steps we
took towards our technical vi-
sion of fast reconfigurable hardware built from SiNWs or CNTs.
The operating system’s (OS) task is to isolate hardware compo-
nents and establish communication channels to other tiles and
remote memories. As is common practice, the OS consist of a
kernel and several servers on top of the kernel [15], [13], [30].
However, since no assumptions can be made on the compo-
nents, the classical user/kernel-mode separation of privilege
cannot be expected to be available. Hence, a fairly different
design is needed for the OS. Sec. 3 presents a first prototype.
The main challenge in programming wildly heterogeneous,
parallel systems is to master and hide the complexity from
upper layers of the stack while preserving the opportunities
provided by the underlying hardware. The keys for addressing
this challenge are heterogeneous programming interfaces in terms
of domain specific languages (DSLs), programming models and
runtime systems. These interfaces help separating the concerns

cfaed.tu-dresden.de


1ST INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 2

of core algorithmic problems and possible implementations
from structural properties of the architecture and particular
properties of the heterogeneous components. Along interfaces,
compilers are needed to lower the abstractions and, for exam-
ple, reason about parallel execution and data layouts. Com-
pilers must identify application resource demands specific to
the hardware while exploiting heterogeneous resources. This
includes methods for deciding where, when and how to run
which parts of the application and where to store data, which,
in turn, requires models of the specific heterogeneous resources.
Compilers should thus generate alternatives equipped with
meta-information for possible mappings of algorithms to re-
sources. Based on the generated meta-information, application
runtimes and OS-level resource managers negotiate desired and
available resources to find a global schedule of resources that
meets all application requirements. Once granted by the OS, the
runtime adjusts the application by switching to the respective
compiler generated alternative.
To benefit best from the flexibility of heterogeneous computing
platforms with dynamic resource (re)allocation mechanisms,
application algorithms need to provide a high degree of flex-
ibility. Within Orchestration we work on data base applications
(DB), computational fluid dynamics (CFD) and computational
biologyy and use them as drivers for our approach.
Last but not least, we integrate formal methods in our de-
sign process to quantitatively analyze low-level orchestration
protocols for stochastically modeled classes of applications
and systems [4]. The model-based formal quantitative analysis,
carried out using probabilistic model checking (cf. [11], [8]), is
particularly useful for the comparative evaluation of (existing
and future) design alternatives, to compare the performance of
heuristic orchestration policies with theoretical optimal solu-
tions or to determine optimal system parameter settings.

3 TOWARDS AN IMPLEMENTATION OF THE STACK

This section provides some details of and pointers to compo-
nents well fitting to the spirit of the Orchestration Stack. These
examples include some of our own work and some others we
found in the scientific literature.
SiNW Reconfigurable Circuits: As first steps to replace com-
mon CMOS circuits by new technology, we chose to start
rebuilding CMOS-based reconfigurable circuits using Silicon
NanoWire technology. SiNW technology promises simpler de-
sign and manufacturing processes, as it is doping-free, has
homogeneous physical and electrical characteristics [17] and
is inherently CMOS compatible. In SiNW transistors, polarity
is individually controllable via a separate polarity gate. Thus,
p-type and n-type transistors can be mixed on the die, which
eases wiring constraints and allows for tighter placement.
Making use of this property allowed us to reduce the transis-
tor count for a 6-function programmable logic cell over two
inputs from 92 transistors for CMOS-based circuits to 26 [40].
We also improved basic gates like NAND, NOR, X(N)OR,
majority/minority and MUX. Starting from this, we observe
the effects of these improvements on a larger circuit, an 8-bit
conditional carry adder. Using SiNW transistors, the speed can
be improved by 25%, the area by 14% and the transistor count
by almost 50%.
The Tomahawk Architecture: Tomahawk [2] is a CMOS-
based multiprocessor system-on-a-chip (MPSoC) with process-
ing elements and accelerators for digital signal processing
and database querying [1], [41], [23]. Processing elements are
equipped with local scratch-pad memories and connected via
a NoC. The Tomahawk architecture allows for connecting

arbitrary, untrusted hardware components, e.g., freely pro-
grammable FPGAs. To unify the control over these tiles, each
tile is connected to the NoC via a Data Transfer Unit (DTU).
The DTU provides controlled message passing and memory
access to other networked components. It has two interfaces,
one for the untrusted component to access outside memory
and to send/receive messages, the other for higher privileged
components to control the permissions of these accesses. The
only requirement for the untrusted component to access mem-
ory and to send messages is the ability to access the DTU
registers. Notably, it does not require complex architectural
properties such as virtual memory for protection. In addition
to the DTU-mechanisms, the Tomahawk provides a logically
decoupled processing element called CoreManager, coordinat-
ing the processing elements and responsible for the allocation
and configuration of processing elements and global memory
and tile-to-tile data transfers (similar to [22]).
The M3 Operating System: Similar to other microkernel-based
approaches, M3 systems [3] are split into privileged kernels
and unprivileged servers and applications. However, unlike in
traditional OS approaches, the kernel cannot rely on processor
features like user/kernel mode and memory management units
to shield itself from applications.
Instead, in M3 systems, one or more M3 kernels run on dedi-
cated and privileged tiles, while servers and applications run on
unprivileged tiles. The key for isolation is that only privileged
tiles can configure DTUs to, e.g., create communication chan-
nels. With this design, arbitrary components can be integrated
as tiles and controlled by the M3 kernel. The configuration
of DTUs is controlled by means of capabilities modeled after
the L4 capability [27] system. Capabilities are created and
protected by the kernel and can be exchanged between servers
and applications. OS functionality like file systems or network
stacks are provided by servers on unprivileged tiles and can be
accessed from applications via DTU messages. For example, a
file system can be built as an untrusted FPGA.
Heterogeneous Programming Interfaces: As mentioned in
Sec. 2, we achieve separation of concerns with interfaces at
different levels. As an example at a lower level, we have
built a dataflow-based language together with a retargetable
compiler that generates optimized code for the Tomahawk
architecture [7]. This includes a mapping of actors to het-
erogeneous processing elements, and of data transfers to the
underlying message passing interface over the DTU. At higher
levels, we have made significant progress in new algorithms
for CFDs [19], [20], a DSL for computational biology [25] and
a general skeleton framework [24]. We also see great potential
on interfaces that allow describing memory access patterns, as
successfully shown by Ben Nun et al [6] using template meta-
programming for different GPU architectures.

4 CONCLUSION

It is much too early to draw conclusions on whether or not the
Orchestration Stack will successfully enable the effective and
efficient usage of novel post-CMOS technologies. However, our
initial experiences in building parts of the stack - mostly re-
stricted to CMOS - did not expose any obvious show stoppers.

REFERENCES

[1] O. Arnold, S. Haas et al., “An application-specific instruction set
for accelerating set-oriented database primitives,” SIGMOD, 2014.

[2] O. Arnold, E. Matus et al., “Tomahawk: Parallelism and het-
erogeneity in communications signal processing MPSoCs,” ACM
Transactions on Embedded Computer Systems, vol. 13, no. 3s, pp.
107:1–107:24, Mar. 2014.



1ST INTERNATIONAL WORKSHOP ON POST-MOORE’S ERA SUPERCOMPUTING (PMES) 3

[3] N. Asmussen, M. Völp et al., “M3: A hardware/operating-system
co-design to tame heterogeneous manycores,” in Proceedings of
the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’16.
New York, NY, USA: ACM, 2016, pp. 189–203.

[4] C. Baier, C. Dubslaff et al., “Probabilistic model checking for
energy-utility analysis,” in Horizons of the Mind. A Tribute to Prakash
Panangaden - Essays Dedicated to Prakash Panangaden on the Occasion
of His 60th Birthday, ser. Lecture Notes in Computer Science, vol.
8464. Springer, 2014, pp. 96–123.

[5] A. Barbalace, M. Sadini et al., “Popcorn: Bridging the programma-
bility gap in heterogeneous-ISA platforms,” in Proceedings of the
Tenth European Conference on Computer Systems (EuroSys ’15). New
York, NY, USA: ACM, 2015, pp. 29:1–29:16.

[6] T. Ben-Nun, E. Levy et al., “Memory access patterns: The missing
piece of the multi-gpu puzzle,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 19:1–
19:12.

[7] J. Castrillon and R. Leupers, Programming Heterogeneous MPSoCs:
Tool Flows to Close the Software Productivity Gap. Springer, 2014.

[8] P. Chrszon, C. Dubslaff et al., “Family-based modeling and anal-
ysis for probabilistic systems - featuring ProFeat,” in Proc. of the
19th International Conference on Fundamental Approaches to Software
Engineering (FASE), ser. Lecture Notes in Computer Science, vol.
9633. Springer, 2016, pp. 287–304.

[9] F. Conti, C. Pilkington et al., “He-p2012: architectural heterogeneity
exploration on a scalable many-core platform,” in Proceedings of the
24th edition of the great lakes symposium on VLSI. ACM, 2014, pp.
231–232.

[10] K. V. Craeynest and L. Eeckhout, “Understanding fundamental de-
sign choices in single-isa heterogeneous multicore architectures,”
ACM Transactions on Architecture and Code Optimization, vol. 9,
no. 4, pp. 32:1–32:23, January 2013.

[11] C. Dubslaff, C. Baier, and S. Klüppelholz, “Probabilistic model
checking for feature-oriented systems,” Transactions on Aspect-
Oriented Software Development, vol. 12, pp. 180–220, 2015.

[12] P.-E. Gaillardon, H. Ghasemzadeh, and G. De Micheli, “Vertically-
stacked silicon nanowire transistors with controllable polarity:
A robustness study,” in Test Workshop (LATW), 2013 14th Latin
American, April 2013, pp. 1–6.

[13] D. B. Golub, D. P. Julin et al., “Microkernel operating system
architecture and mach,” in In Proceedings of the USENIX Workshop
on Micro-Kernels and Other Kernel Architectures, 1992, pp. 11–30.

[14] F. N. Gür, F. W. Schwarz et al., “Toward self-assembled plasmonic
devices: High-yield arrangement of gold nanoparticles on dna
origami templates,” ACS Nano, vol. 10, no. 5, pp. 5374–5382, 2016,
pMID: 27159647.

[15] P. B. Hansen, “The nucleus of a multiprogramming system,”
Communications of the ACM, vol. 13, no. 4, pp. 238–241, 1970.

[16] N. Hardavellas, M. Ferdman et al., “Toward dark silicon in
servers,” IEEE Micro, vol. 31, no. EPFL-ARTICLE-168285, pp. 6–
15, 2011.

[17] A. Heinzig, T. Mikolajick et al., “Dually active silicon nanowire
transistors and circuits with equal electron and hole transport,”
Nano Letters, vol. 13, no. 9, pp. 4176–4181, 2013, pMID: 23919720.

[18] A. Hemani, A. Jantsch et al., “Network on chip: An architecture for
billion transistor era,” in Proceeding of the IEEE NorChip Conference,
vol. 31, 2000.

[19] I. Huismann, J. Stiller, and J. Fröhlich, “Two-level
parallelization of a fluid mechanics algorithm exploiting
hardware heterogeneity,” Computers & Fluids, vol. 117, pp. 114
– 124, 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S004579301500167X

[20] ——, “Factorizing the factorization - a spectral-element solver
for elliptic equations with linear operation count,” Arxiv, vol.
abs/1601.08179, 2016, submitted to Journal of Computational
Physics. [Online]. Available: http://arxiv.org/abs/1601.08179

[21] ITRS technology working groups, “International technology
roadmap for semiconductors,” ITRS, Tech. Rep., 2013. [Online].
Available: http://www.itrs2.net/2013-itrs.html

[22] M. Jeffrey, S. Subramanian et al., “Swarm: A scalable architecture
for ordered parallelism,” Top Picks IEEE Computer Society, pp. 105–
117, May 2016.

[23] T. Karnagel, D. Habich, and W. Lehner, “Local vs. global
optimization: Operator placement strategies in heterogeneous
environments,” in Proceedings of the Workshops of the EDBT/ICDT
2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March 27th,
2015., ser. CEUR Workshop Proceedings, P. M. Fischer, G. Alonso
et al., Eds., vol. 1330. CEUR-WS.org, 2015, pp. 48–55. [Online].
Available: http://ceur-ws.org/Vol-1330/paper-10.pdf

[24] S. Karol, “Well-formed and scalable invasive software composi-
tion,” Ph.D. dissertation, Technische Universität Dresden, 2015.

[25] S. Karol, P. Incardona et al., “Towards a next-generation parallel
particle-mesh language,” in Proceedings of the 3rd Workshop on
Domain-Specific Language Design and Implementation, ser. DSLDI’15,
Prague, Czech Republic, Jul. 2015, pp. 15–18.

[26] N. Kavaldjiev and G. Smit, “An energy-efficient network-on-chip
for a heterogeneous tiled reconfigurable systems-on-chip,” in Dig-
ital System Design, 2004. DSD 2004. Euromicro Symposium on, Aug
2004, pp. 492–498.

[27] G. Klein, K. Elphinstone et al., “seL4: Formal verification of an
OS kernel,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. New York, NY, USA: ACM, 2009,
pp. 207–220.

[28] R. Kumar, K. I. Farkas et al., “Single-isa heterogeneous multi-core
architectures: The potential for processor power reduction,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 36. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 81–.

[29] S. Li, Z. Yu et al., “Carbon nanotube transistor operation at 2.6
GHz,” Nano Letters, vol. 4, no. 4, pp. 753–756, 2004.

[30] J. Liedtke, “On µ-kernel construction,” in Proceedings of the 15th
ACM Symposium on Operating System Principles (SOSP), Copper
Mountain Resort, CO, Dec. 1995.

[31] B. Lüssem, M. L. Tietze et al., “Doped organic transistors operating
in the inversion and depletion regime,” Nat Commun, vol. 4, 11
2013.

[32] I. Meric, N. Baklitskaya et al., “RF performance of top-gated,
zero-bandgap graphene field-effect transistors,” Electron Devices
Meeting, 2008. IEDM 2008. IEEE International, pp. 1–4, 2008.

[33] T. D. Ngo, “Runtime mapping of dynamic dataflow applications
on heterogeneous multiprocessor platforms,” Theses, Université
de Bretagne-Sud, Jun. 2015. [Online]. Available: https://hal.
archives-ouvertes.fr/tel-01167316

[34] E. B. Nightingale, O. Hodson et al., “Helios: Heterogeneous mul-
tiprocessing with satellite kernels,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles (SOSP
’09). New York, NY, USA: ACM, 2009, pp. 221–234.

[35] W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm
for heterogeneous MPSoCs,” ACM Transactions on Embedded Com-
puting Systems (TECS), vol. 14, no. 1, p. 14, 2015.

[36] S. Rodriguez, A. Rusu, and J. M. de la Rosa, “Overview of carbon-
based circuits and systems,” in 2015 IEEE International Symposium
on Circuits and Systems (ISCAS), May 2015, pp. 2912–2915.

[37] W. Sheng, S. Schürmans et al., “A compiler infrastructure for
embedded heterogeneous MPSoCs,” Parallel Computing, vol. 40,
no. 2, pp. 51–68, 2014.

[38] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-
temperature transistor based on a single carbon nanotube,” Nature,
vol. 393, no. 6680, pp. 49–52, May 1998.

[39] M. Taylor, “A landscape of the new dark silicon design regime,”
Micro, IEEE, vol. 33, no. 5, pp. 8–19, Sept 2013.

[40] J. Trommer, A. Heinzig et al., “Reconfigurable nanowire transistors
with multiple independent gates for efficient and programmable
combinational circuits,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 169–174.

[41] A. Ungethüm, D. Habich et al., “Query processing on low-energy
many-core processors,” HARDBD@ ICDE, 2015.

[42] A. Voigt, R. Greiner et al., “Towards computation with mi-
crochemomechanical systems,” International Journal of Foundations
of Computer Science, vol. 25, no. 04, pp. 507–523, 2014.

[43] W. Weber, A. Heinzig et al., “Reconfigurable nanowire electronics
– a review,” Solid-State Electronics, vol. 102, pp. 12 – 24, 2014,
selected papers from ESSDERC 2013. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0038110114001439

[44] Y. Xie, “Future memory and interconnect technologies,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, March
2013, pp. 964–969.

http://www.sciencedirect.com/science/article/pii/S004579301500167X
http://www.sciencedirect.com/science/article/pii/S004579301500167X
http://arxiv.org/abs/1601.08179
http://www.itrs2.net/2013-itrs.html
http://ceur-ws.org/Vol-1330/paper-10.pdf
https://hal.archives-ouvertes.fr/tel-01167316
https://hal.archives-ouvertes.fr/tel-01167316
http://www.sciencedirect.com/science/article/pii/S0038110114001439
http://www.sciencedirect.com/science/article/pii/S0038110114001439

	Introduction
	The Orchestration Stack
	Towards an Implementation of the Stack
	Conclusion
	References

