
Rethinking On-chip DRAM Cache for Simultaneous
Performance and Energy Optimization

Fazal Hameed∗ and Jeronimo Castrillon†
Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Germany

Email: ∗fazal.hameed@tu-dresden.de, †jeronimo.castrillon@tu-dresden.de

Abstract—State-of-the-art DRAM cache employs a small Tag-Cache
and its performance is dependent upon two important parameters namely
bank-level-parallelism and Tag-Cache hit rate. These parameters depend
upon the row buffer organization. Recently, it has been shown that a
small row buffer organization delivers better performance via improved
bank-level-parallelism than the traditional large row buffer organization
along with energy benefits. However, small row buffers do not fully
exploit the temporal locality of tag accesses, leading to reduced Tag-
Cache hit rates. As a result, the DRAM cache needs to be re-designed for
small row buffer organization to achieve additional performance benefits.
In this paper, we propose a novel tag-store mechanism that improves
the Tag-Cache hit rate by 70% compared to existing DRAM tag-store
mechanisms employing small row buffer organization. In addition, we
enhance the DRAM cache controller with novel policies that take into
account the locality characteristics of cache accesses. We evaluate our
novel tag-store mechanism and controller policies in an 8-core system
running the SPEC2006 benchmark and compare their performance and
energy consumption against recent proposals. Our architecture improves
the average performance by 21.2% and 11.4% respectively compared to
large and small row buffer organizations via simultaneously improving
both parameters. Compared to DRAM cache with large row buffer
organization, we report an energy improvement of 62%.

I. INTRODUCTION

Recently, industry has introduced die-stacked DRAM technolo-
gies namely hybrid memory cube (HMC) [1], hybrid bandwidth
memory (HBM) [2], and DDR4-3DS [3], which are employed to
satisfy the huge memory and bandwidth requirements from emerging
applications [4] with large memory footprints. Die-stacked DRAM
technologies have been adopted as Last-Level-Cache (LLC) [5]–[9]
to improve the system performance by reducing the number of high-
latency off-chip accesses. The reason is that LLC performance plays
a significant role in determining the overall performance of a multi-
core system due to increasing latency gap between processor and
off-chip memory.

Fig. 1 depicts a typical multi-core cache hierarchy used in [5]–[7].
The DRAM cache is composed of multiple banks where each bank is
provided with a Row Buffer (RB) as shown in Fig. 2. When an access
is made to a DRAM bank, one row of the DRAM bank is fetched
into the bank’s RB. The data in the RB can be accessed at much
lower latency and lower energy than accessing it from the DRAM
bank. State-of-the-art DRAM cache use a large RB size (i.e. 2KB
or 4KB) per DRAM cache bank. This large RB organization incurs
high energy consumption via buffering large number of unnecessary
data. To reduce energy consumption, state-of-the-art employs multiple
small RB’s per bank instead of a single large RB per bank [10].
This small RB organization has shown improved performance benefits
compared to the large RB organization in the context of off-chip
memory due to an improved bank-level-parallelism. However, the
small RB organization has not been studied in the context of DRAM
cache.

State-of-the-art DRAM cache [5]–[7] is equipped with a small low
latency Tag-Cache which holds the tags of the recently accessed
DRAM cache sets. The Tag-Cache provides significantly fast tag
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Fig. 1. Typical DRAM based multi-core cache hierarchy for an N-core
system; see Section IV-A and Table III for core and cache parameters

lookup (see Table I) compared to the scenario when the tags are read
from the DRAM cache. The performance of DRAM cache depends
upon the Tag-Cache hit rate. However, we found that employing
small RB organization [10] using existing DRAM cache suffers from
reduced Tag-Cache hit rates. To address this problem, we rethink the
design of DRAM cache to make it viable for small RB organization.
More precisely, we make the following contributions:

1) We propose a novel tag-store mechanism (in Section III-A) that
provides significantly high Tag-Cache hit rate compared to the
small RB organization [10]. At the same time, it reduces the
DRAM cache miss rate compared to both small [10] and large
RB organizations [5]–[7].

2) We propose an efficient RB management policy at the DRAM
cache controller (in Section III-C) that further improves the
performance via a high RB hit rate for the critical read requests.

3) We also found that cache writebacks have reduced temporal
locality with a low RB hit rate (less than 5%) that leads to
increased latency for the critical read requests. Therefore, we
propose an early precharge of writeback request to hide the
latency of future read requests.

Consequently, the paper is structured as follows. We first refer to
the prior work in Section II. Afterwards, our tag-store mechanism
along with controller optimizations is presented in Section III, which
is evaluated in Section IV. Section V finally concludes the paper.

II. BACKGROUND AND RELATED WORK

This section presents the details of the state-of-the-art Row Buffer
(RB) and DRAM cache organizations.

A. Large RB Organization

Typically a DRAM cache is organized into a number of logically
independent banks (see Fig. 2-a) where each bank consists of multiple
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TABLE I
LATENCY OF A READ REQUEST FOR DIFFERENT SCENARIOS IN

STATE-OF-THE-ART DRAM CACHE [5]–[7] EXCLUDING CONTROLLER
LATENCY

RB Hit Tag-Cache Tag Check Cache Line Total
Hit Latency Latency Latency

No No 24 cycles 40 cycles 64 cycles
Yes No 24 cycles 22 cycles 46 cycles
No Yes 2 cycles 40 cycles 42 cycles
Yes Yes 2 cycles 22 cycles 24 cycles

rows of data. In a large RB organization [5]–[9], [11], a single large
RB is available at each bank. When an access is made to a DRAM
bank, one row of the DRAM bank is fetched into the bank’s RB.
This operation is called as row-activate. Any subsequent access to
the row residing in the RB (called RB hit) will not require the row-
activate operation. When an access is made to a different row of the
same bank (called RB miss), the contents of the RB are substituted
by the new row after the current row residing in the RB is written
back to the DRAM bank. This operation is called as precharge. An
RB miss requires to store the contents of the current row (precharge

operation), time to read the new row (row-activate operation) and
the RB read/write access time. On the other hand, an RB hit only
requires the RB read/write access time which significantly reduces
access latency and energy compared to an RB miss.

B. DRAM Cache Organization

Various DRAM cache organizations [5]–[9], [12] have been pro-
posed in the past. Here we discuss the most recently organization
proposed in [5]–[7], shown in Fig. 2-(a). These works propose to
store the tags and data of DRAM cache in the same row. Each 4KB
DRAM row consists of 8 sub-rows where each sub-row comprises
one cache set with 7-way associativity (i.e. one sub-row consists of
one tag block and seven cache lines). Once the entire row is fetched
into the RB, the tag block must be be accessed before the cache
line. Both of these operations are directly performed on the RB. The
authors also propose a small low latency hardware structure namely
Tag-Cache that caches the tags of recently accessed DRAM cache
sets. Table I shows the latency of a read request for different scenarios
in state-of-the-art DRAM cache. Note that the latency values do not
show the queuing delay in the DRAM cache controller (time spent
in the DRAM cache controller before having an access to a DRAM
bank). Accesses that hit in the Tag-Cache are serviced with much
lower latency because they do not require DRAM cache access for
the tags. Similarly, accesses that hit in the RB are serviced with much
lower latency because they do not require DRAM bank access for
the cache line. The performance of a DRAM cache depends upon
both RB and Tag-Cache hit rates.

C. Small RB Organization

The small RB organization proposed in [10] employs multiple
small RBs per bank instead of a single large RB per bank. Their
approach divides the large DRAM row and RB into multiple sub-rows
and sub-RBs respectively as shown in Fig. 2-(b). They only fetch
the requested sub-row into one of the sub-RB instead of fetching
the entire row. Compared to large RB organization, the small RB
organization significantly improves the energy consumption due to
reduction in the energy consumed by the activate and precharge
operations on the smaller sub-rows. Additionally, in a large RB
organization the entire bank is unavailable while an operation is being
performed on the RB, and therefore any access to other rows of the
same bank will be delayed until the current operation on the RB
completes. Serialized accesses to two different rows of the same bank
suppresses the bank-level-parallelism, which increases the queuing
delay at the DRAM cache controller. The use of multiple RB’s in
small RB organization allows multiple accesses to the same bank in
parallel which improves bank-level-parallelism, herby reducing the
queuing delay.

III. PROPOSED DRAM CACHE ARCHITECTURE

Fig. 1 shows the high level overview of a DRAM-based multi-
core cache hierarchy enumerating our novel contributions. Similar
to [10], we employ small RB organization as shown in Fig. 2-(b).
The small RB organization has been shown to have performance
and energy benefits compared to the large RB organization [5]–[7]
as explained earlier. However, the main drawback of existing small
RB organization is that it suffers from reduced Tag-Cache hit rate.
To improve it, we developed the tag-store mechanism depicted in
Fig. 3-(a) and subsequently explained in Section III-A. We further
improve the row buffer hit rate via novel RB management policy
which is explained in Section III-C. Consequently, we present the
latency hiding techniques in Section III-D. Finally, the overheads of
our approach are discussed in Section III-E.
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A. Tag-store Mechanism

Our proposed Tag-store mechanism is illustrated in Fig. 3-(a)
where each 4 KB DRAM row comprises 7 cache sets with 8-way
associativity. The tag block (shown in green box in Fig. 3) stores
the tags of all cache lines within a set. Each DRAM row consists of
eight 512-Bytes sub-rows and we dedicate one sub-row for storing all
the tag blocks. In contrast, state-of-the-art Tag-store mechanism [6],
[7], [9] stores the tag block with in the same sub-row along with
the cache lines as shown in in Fig. 3-(b). An access to a cache
line in our proposed approach requires two sub-rows accesses (one
for the tag block and other for the cache line access) in contrast
to a single sub-row access (tag block and the cache line reside in
the same sub-row). To reduce the number of accesses to the tags in
DRAM, we employ a small low-latency Tag-Cache similar to [5]–
[7] that exploits the temporal locality by caching the tags of spatial
adjacent DRAM cache sets. Therefore, a Tag-Cache hit bypasses the
sub-row access dedicated for the tags while reading the tags directly
from the Tag-Cache. Let us assume that there is a DRAM cache read
request to a cache line that belongs to Set-6 in Fig. 3-(a). To elaborate
how our approach works along with the Tag-Cache, we describe the
implementation of the following important events to service the above
request:

Tag-Cache miss: On a Tag-Cache miss, the sub-row dedicated for
the tag blocks (i.e. Sub-row-0) is accessed to read the requested tag
block (i.e. tag block ”6”). This tag block indicates the location of
the cache line in Set-6 (stored in Sub-row-7). After reading the tag
block, the DRAM cache controller issues a read request to access the
requested cache line in Sub-row-7 (i.e. Set-6) which is forwarded to
the requesting core. After that, subsequent read requests are sent to
access the remaining tag blocks (i.e. tag blocks ”0” to ”5”) from Sub-
row-0 which are placed in the Tag-Cache. We exploit the temporal
locality of applications that these prefetched tag blocks will likely
be accessed in the near future. In contrast, using existing tag-store
mechanism [6], [7], [9] employing small RB organization [10] need
to fill only the requested tag block (i.e. tag block ”6”) in the Tag-
Cache. The reason is that accessing adjacent tag blocks will require
multiple sub-row accesses (see Fig. 3-b) which is not a viable option
in the small RB organization.

Tag-Cache hit: A Tag-Cache hit does not require any DRAM
cache lookup for the tag block (i.e. it is directly accessed from the
Tag-Cache), so a read request is directly sent to Sub-row-7 to access
the requested cache line in Set-6. The tag block ”6” is updated in the
Tag-Cache (e.g. to update LRU and dirty information etc.) but not
in the DRAM cache. In contrast to our approach, existing DRAM
cache [6], [7] always update the tag block both in the Tag-Cache and
DRAM cache. In our implementation, the tags in the DRAM cache
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mixes (see Table II)

are only updated after its eviction from the Tag-Cache.
RB miss: If there is an RB miss for the sub-row (i.e. Sub-row-0)

containing the tag block, then it is fetched into one of the small sub-
RBs available at the DRAM bank shown in Fig. 2-(b). Note that Sub-
row-0 only needs to be accessed after a Tag-Cache miss. If the sub-
row containing the requested cache line (i.e. Sub-row-6 in the above
example) does not reside in the RB, then it is fetched into one of the
small sub-RB’s. In contrast to our approach, state-of-the-art large RB
organization [?], [5]–[9] fetches all sub-rows (i.e. Sub-row-0 to Sub-
row-7) into the the large RB after an RB mis. Our proposed approach
only fetches the requested sub-rows instead of fetching all sub-rows
that provides significant energy saving compared to the large RB
organization. On the other hand, the small RB organization [10] only
fetches one sub-row after an RB miss because the tag block and the
cache line resides in the same sub-row (see Fig. 3-b). Compared to
the small RB organization, the additional latency incurred in fetching
the sub-row dedicated for the tag-blocks in our proposed approach
is compensated by significant improvement in the Tag-Cache hit rate
(see Section IV-B and Fig. 9 for evaluation).

B. Motivation for optimizations

Fig. 4 shows the distribution of the number of cache lines reused
in the RB before RB eviction for a 4KB RB size and using large
RB organization. Note that each 4KB RB contains 56 cache lines.
Fig. 4 shows that majority of the cache lines are unnecessarily fetched
into the large RB while they are not reused again. The inefficient
RB utilization motivates us to use small RB organization for energy
saving because smaller sub-rows requires less energy for the activate
and precharge operations compared to large rows. The low utilization
of the RB is mainly due to low RB hit rate (less than 5%) of cache
writeback accesses as illustrated in Fig. 8. These writeback accesses
causes eviction of highly reused rows from the RB which degrades
both performance and energy. Note that cache writeback accounts
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for 25% of total cache accesses as shown in Fig. 5. Therefore,
the writeback accesses requires special attention when allocating
a sub-RB from multiple sub-RB’s at the DRAM bank (details in
Section III-C). In addition, we propose early precharge of writeback
accesses to hide the latency of future read requests which is discussed
in Section III-D.

C. Row Buffer Management Policy

The use of small RB organization with multiple sub-RB’s at the
DRAM bank requires the DRAM cache controller to determine which
of the sub-RB to assign for a new sub-row activation. The commonly
used RB management policy for multiple RB’s is the traditional Least
Recently Used (LRU) policy employed in [10], [13]. However, the
LRU policy does not work well with writeback accesses that have a
low RB hit rate. Fig. 6-(a) illustrates a DRAM bank with four small
RB’s servicing a mix of highly reused row accesses (shown in grey
boxes) and rarely reused writeback row accesses (shown in white
boxes) for the LRU policy. On an RB miss, a newly requested row
is inserted into the Most Recently Used (MRU) position while the
RB in the LRU position is evicted to make room for the new row.
For instance, at time t = 0 following an RB miss, the new row RE

is inserted into the MRU position after evicting the row RD at the
LRU position. As writeback have a high access rate (see Fig. 5), they
cause eviction of some of the highly reused rows (e.g. RB and RC )
from the RB as shown in Fig. 6-(a). Subsequent accesses to these
highly reused rows will result in an RB miss, hereby affecting both
performance and energy. For instance, at time t = 3, an access to
highly reused row RC will result in an RB miss for the LRU policy
because RC was evicted at time t = 1 to make room for the rarely
reused row RF .

In contrast to the LRU policy used in [10], [13], our RB manage-
ment policy inserts the rarely reused writeback accesses in the LRU
position as shown in Fig. 6-(b). In our approach, the useful highly
reused rows are maintained near the MRU position which prevents
their eviction by rarely reused rows. For the example shown in Fig. 6-
(b), using our policy, an access to the row RC will result in an RB hit.
Thus, our proposed approach improves the RB hit rate compared to
state-of-the-art RB management policy (see Section IV-B and Fig. 8
for evaluation).

D. Early Precharge of writeback requests

State-of-the-art DRAM cache [5]–[9], [11] use an open-page [14]
policy for precharging rows (i.e. writing the contents of the row from
the RB back to the DRAM array). This policy retains the rows in

the RB until they are evicted. When a row is evicted from the RB
in an open page policy, the content of that row must be precharged
before activating a new row. Since, a row is rarely reused following
writeback access, an early precharge of that row will reduce the
latency of subsequent RB miss. Thus, our approach performs an
early precharge of writeback access to hide the latency of future
read request.

E. Overheads

Since our tag-store mechanism has a non-power-of-two number
(i.e. 7 sets) of sets with in a row, the address bits cannot be simply
used to determine a set. We perform a modulo operation with respect
to 7 on the cache line address to identify one of the 7 sets within a
row. This implies that the tag entry needs to store additional 3-bits
for the set-id, which increases the tag entry size. Note that the tag
entry size per cache line in previous tag-store mechanism is 6-byte
(48-bits) as shown in Fig. 2-(a). In contrast, our tag entry size per
cache line is 51-bits instead of 48-bits. Each cache set in our tag-
store mechanism consists of one tag block (64 bytes = 512-bits) and
8 cache lines with 8-way associativity as shown in Fig. 3-(a). The 8
cache lines needs (51 x 8 = 408 bits) for their tag entries with 104 bits
(512 - 408 = 104 bits) still left unused. The increased tag size entries
for our policy does not incur additional DRAM storage overhead as
it utilizes the unused bytes in the tag block. A modulo with respect
to 7 will require four 3-bit adders using residual arithmetic. This
small modulo circuit takes one additional cycle and negligible energy
consumption compared to the large DRAM cache. We further assume
that this modulo operation happens in parallel with L3-SRAM cache
access. As the modulo operation latency is much smaller compared
to L3-SRAM cache access latency (see Table III), this does not incur
any additional latency overhead. Our RB management policy insert
a cache writeback in the LRU position instead of the MRU position,
which does not require any design changes to the traditional LRU
policy.

IV. EVALUATION

A. Experimental Setup

For the evaluation, an x86 simulator [15] with cycle accurate
DRAM timing model is extended to model our proposed DRAM
cache architecture. We simulate an 8-core system using various
application mixes from SPEC2006 [16], [17] shown in Table II. The
details of our system parameters are summarized in Table III for all
evaluated configurations. For all evaluated configurations, we employ
a MAP-I predictor for predicting DRAM cache misses from [11]
and Tag-Cache from [5]–[7]. The DRAM device energy consumption
values are taken from [18] which are shown in Table IV. We compare
our DRAM cache organization and controller policies with the state-
of-the-art for DRAM memory [10] and for DRAM cache [5]–[9]. We
compare the following different configurations when applied on top
of DRAM cache:

TABLE II
APPLICATION MIXES. VALUE IN PARENTHESIS DENOTES THE NUMBER OF

INSTANCES USED FOR THAT PARTICULAR APPLICATION

Mix 01 astar.t, bzip, leslie3d.r, libquantum, omnetpp,
milc, soplex.r, leslie3d.t

Mix 02 astar.t(2), leslie3d.r(2), libquantum(2), lbm(2)
Mix 03 bzip(2), leslie3d.t(2), milc, omnetpp, soplex.r, lbm
Mix 04 astar.t, leslie3d.r, milc, omnetpp(2), soplex.r(2), leslie3d.t
Mix 05 bzip, leslie3d.r(2), astar.t, lbm, milc(2), libquantum
Mix 06 soplex.r, lbm, omnetpp(2), libquantum, leslie3d.t(2), bzip



TABLE III
CONFIGURATION DETAILS FOR THE EXPERIMENTS

Core 3.2 GHz, out-of-order, 4-issue
Private L1$ 32 KByte, 8-way, 2-cycles
Private L2$ 512 KByte, 8-way, 5-cycles
Shared L3$ 8 KByte, 8-way, 20-cycles
Shared L4$ 4 channels, 512 MByte, 64-banks

(DRAM) 128-bit wide channel, 4-cycle bus latency
tRAS-tRCD-tRP-tCAS-tWR = 72-18-18-18-18 (cycles)

Tag-Cache 38 KByte 1-cycle [5]–[7]
Miss Predictor Map-I [11], 256 entries
Main Memory 2 channels, 16 KB row buffer, 64-bit wide channel,

(DRAM) 800 MHz bus frequency
tRAS-tRCD-tRP-tCAS-tWR = 144-36-36-36-36 (cycles)

TABLE IV
PER-BIT ENERGY CONSUMPTION OF MEMORY OPERATIONS NORMALIZED

TO THE ENERGY OF ACCESSING THE ROW BUFFER TAKEN FROM [18]

Operation Normalized Energy
Array Read/Write 1.19

Precharge 0.39
Row Buffer Access 1.00

• LH-Cache-2KB: DRAM cache organization proposed by Loh
and Hill [8] with a 2 KB RB size employing large RB organi-
zation.

• LAMOST-2KB and LAMOST-4KB: The best performing
DRAM set mapping policy, namely LAMOST, which employs
a RB size of 2 KB [9] and 4 KB [6], [7]. Both of these
configurations employ large RB organization (recall Fig. 2-(a)
and Section II-A).

• LAMOST-Small: LAMOST with a small RB organization
(recall Fig. 2-(b) and Section II-C). The size of the DRAM
row and the sub-row is assumed to be 4 KB and 512 bytes
respectively.

• Ours-Small: Our Tag-store mechanism along with RB man-
agement and early writeback policies build on top of small RB
organization (i.e. sub-row size is 512 bytes) which are explained
in Section III.

B. Performance Analysis

The main performance results for the evaluated configurations
are illustrated in Fig. 7, which depicts the performance speedup
normalized to LH-Cache. As shown, our proposal improves the
overall performance by 44.8%, (21.2%, 19.2%) and 11.4% compared
to LH-Cache, LAMOST with (2KB, 4KB) RB sizes, and LAMOST-
Small configurations, respectively. The performance of DRAM cache
is primarily affected by two metrics namely DRAM cache read hit
latency and DRAM cache miss rate (depends upon associativity).
The DRAM cache hit latency comprises two components: the DRAM
array latency and the queueing delay at the DRAM cache controller.
The DRAM array latency strongly relies on the row buffer hit
rate (higher is better; Fig 8), Tag-Cache hit rate (higher is better;
Fig 9) while the queueing delay is strongly influenced by bank-level-
parallelism.

Table V provides a quantitative and qualitative comparison of im-
portant parameters for the evaluated configurations. The performance
of our approach is primarily enhanced via an improved DRAM
cache read hit latency compared to all configurations as shown
in Fig 10. This is because we simultaneously improve (i.e. close
to the best value) all of the important parameters. Although our
proposal (8-way associative cache) slightly increases the DRAM
cache miss rate compared to LH-Cache (29-way associative cache),

0.8

1

1.2

1.4

1.6

1.8

Mix_01 Mix_02 Mix_03 Mix_04 Mix_05 Mix_06 Average

LH-Cache-2KB LAMOST-2KB LAMOST-4KB
LAMOST-Small Ours-Small

O
ve
ra
ll	
N
or
m
al
iz
ed
	

H
M
-IP

C	
Sp
ee
du
p

Fig. 7. Performance comparison of different configurations

0%
10%
20%
30%
40%
50%
60%

Read Write WriteBack Overall

LH-Cache-2KB LAMOST-2KB LAMOST-4KB
LAMOST-Small Ours-Small

Ro
w
	B
uf
fe
r	H

it	
Ra

te

Fig. 8. DRAM Row Buffer hit rate for different configurations

but that is compensated by significant reduction in the read hit latency
(58.5%). LH-Cache provides the worst hit latency compared to all
configurations that is the primary reason for its worst performance.
LH-Cache has a low row buffer and Tag-Cache hit rate due to reduced
temporal locality as illustrated in Table V. In addition, LH-Cache also
suffers from reduced bank-level-parallelism due to the use of large
RB organization that further worsens the hit latency.

Compared to all variants of LAMOST configurations, our proposal
provides simultaneous improvement in DRAM cache read hit latency
and miss rate. It has a better miss rate compared to all variants of
LAMOST configurations because it provides high associativity (i.e.
8-way) compared to LAMOST (i.e. 7-way). The hit latency compared
to LAMOST with (2KB, 4KB) RB sizes is reduced via an improved
bank-level-parallelism (see Section II-C) because we employ small
RB organization. On the other hand, the hit latency compared to
LAMOST-Small configuration is improved via an enhanced Tag-
Cache (70% improvement) and row buffer hit rate (6.7% improve-
ment). The Tag-Cache hit rate improvement using our proposal
compared to LAMOST-Small configuration is achieved because our
tag-store mechanism exploits the spatial locality by prefetching all
adjacent tag blocks in the Tag-Cache (details in Section III-A). In
contrast, LAMOST-Small configuration only fill the requested tag
block in the Tag-Cache. Another drawback of LAMOST-Small con-
figuration is that it inserts writeback sub-row accesses in the highest
priority MRU position which causes eviction of some of the highly
reused sub-rows. Our proposed RB management policy mitigates the
negative impact of low locality writeback accesses by inserting them
in the low priority LRU position which improves the row buffer hit
rate by 6.7% compared to LAMOST-Small configuration.

C. Energy Analysis

The results of our energy analysis are summarized in Fig. 11.
As shown, reducing the RB size significantly reduces DRAM cache
energy consumption due to reduction in the energy required for the
row-activate and precharge operations. The DRAM cache energy
savings of our proposal using small RB organization are 72%,
62%, and 79% compared to LH-Cache-2KB, LAMOST-2KB and
LAMOST-4KB configurations, respectively, because they employ
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Fig. 9. Tag-Cache hit rates for different configurations

TABLE V
COMPARISONS OF DIFFERENT CONFIGURATIONS. THE RED COLOR

INDICATES A BAD VALUE FOR A PARAMETER

Configuration Tag-Cache Avg. RB Avg. Bank-level-
Hit Rate Hit Rate Miss Rate parallelism

LH-Cache 14.4% 8.6% 17.7% Worst
LAMOST-2KB 75.8% 35.0% 20.8% Worst
LAMOST-4KB 80.5% 38.4% 20.8% Worst
LAMOST-Small 46.5% 33.9% 20.8% Best

Ours-Small 79.4% 36.2% 19.0% Best
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Fig. 10. DRAM cache latency for read request for different configurations
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Fig. 11. Energy comparison of our proposed organization compared to state-
of-the-art approaches

large RB organization. Our proposal slightly increases the energy
consumption compared to LAMOST-Small configuration. However,
this slight increase in the energy consumption is compensated by
11.4% improvement in performance. The reason for this increase is
that our proposed Tag-store mechanism requires additional sub-row
accesses for the tag block because the tag block and the cache line
resides in different sub-rows. However, caching the tag blocks in the
Tag-Cache bypasses any future sub-row accesses for the tags while
reading the tags directly from the Tag-Cache.

V. CONCLUSIONS

This paper introduces our novel policies for on-chip DRAM cache
that simultaneously improve important parameters namely bank-
level-parallelism (via a small RB organization), Tag-Cache hit rate
(via exploiting temporal locality) and RB hit rate (via mitigating

the negative impact of writeback accesses). Our proposal not only
retain the energy benefits of small RB organization but it also
improves the performance by considering the locality characteristics
of applications. Our proposed row buffer management policy and the
optimization at the DRAM cache controller minimizes the negative
impact of low locality writeback accesses that further improves
the latency of critical read requests. We have performed detailed
comparisons of our proposed policies with state-of-the-art approaches
applied on top of DRAM based cache hierarchy. For an 8-core system,
our approach improves the performance by 48.8%, 21.2%, and 11.4%
compared to the state-of-the-art. The proposed policies comes with
negligible hardware overheads which makes them applicable to wide
range of DRAM devices.
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