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Abstract—Errors in memory are known to be a major cause
of system failures. Moreover, it has recently been found that
single-error correcting, double-error detecting (SECDED) codes,
which are widely used in ECC memory modules, are incapable
of handling large fractions of errors that occur in practice. This
calls for more powerful error detection measures. However, the
higher the number of bit flips that can still be detected as an
error, the larger the memory overhead. Cost considerations and
the varying needs for reliability of different applications may
not always warrant laying down extra hardware to accommodate
overheads. Software-implemented error detection offers a flexible
alternative. In this work we propose the software-implemented
flexMEDiC scheme for detecting errors in the memory system,
including main memory, on-chip caches, and load-store queues.
It is shown that single and double bit flips are detected by
flexMEDiC, and evidence is given that suggests that up to five
bit flips within a single data word can still be detected as errors.
The average runtime overhead incurred by flexMEDiC is 1.55x.

I. INTRODUCTION

Faults in hardware are increasingly becoming a problem
for the reliability of computing applications. Faults lead to
erroneous application behavior with non-negligible probabil-
ities [1], [2], [3], and can cause entire system outages [4].
Growing fault rates are a consequence of the continuing trend
toward smaller feature sizes and tighter integration [5], [6],
[7], [8]. Moreover, variability in manufacturing processes and
measures to limit the temperature and energy footprint of
devices further reduce reliability [9], [10], [11].

Studies have shown that errors in DRAM are a major cause
of system failures and service disruptions [12], [1], [2]. In the
future, the vulnerability of systems to memory errors is likely
to increase as a result of the current trend toward reducing
power consumption and utilizing dim and dark silicon. Specif-
ically, to save energy, it has been suggested that refresh cycles
of DRAM modules be extended [13], [14], and that operating
voltages of SRAM be lowered [15]. Both strategies negatively
affect the capability to retain data and hence will lead to errors
in memory. When SRAM modules become unreliable, memory
errors are no longer only a problem for main memory, but will
also affect on-chip memories such as caches and load-store
queues. The need to protect load-store queues has recently
been stressed [16].

Services and applications with strict availability and relia-
bility requirements can be protected against memory errors by
employing ECC memory, which commonly relies on single-
error correcting, double-error detecting (SECDED) codes.
However, simple SECDED codes have been found insufficient

to protect against significant portions of memory errors [17].
Employing more complex measures in hardware may be ruled
out by cost considerations. In particular, on-chip memories
may not be able to afford the additional area required to
implement more complex codes for error detection.

Alternatively, error detection and correction, typically sub-
sumed as fault tolerance, can be implemented in software [18].
This has the advantage that costs and overheads can flexibly
be adjusted to an application’s need for reliability, cf. [19].
Moreover, software-implemented fault tolerance schemes can
be retrofitted onto existing systems. Many popular software-
implemented fault tolerance schemes rely on dual modular
redundancy (DMR) to detect errors [20], [21], [22], [16].
Since DMR implies that data is duplicated, a 100% memory
overhead would be incurred, which is usually avoided by
assuming that ECC memory is used. Given the observed
shortcomings of ECC memory [17], there is a clear need for
more comprehensive fault tolerance measures.

This work presents flexMEDiC, a software-implemented
error detection scheme that can be configured to detect varying
numbers of bit flips in memory at adjustable overheads. The
flexMEDiC scheme achieves this by encoding data with the
simple, yet effective, AN encoding scheme [23], [24]. The code
words are precisely the multiples of a fixed integer constant
A. Errors are detected when non-code words are encountered.
The choice of A determines the minimum distance between
code words and hence the maximum number of flipped bits
that can still be detected as an error. The memory overhead
also depends on the constant A. Thus, by varying A, memory
overhead and error detection capability can flexibly be traded
for each other.

Generally, AN encoding and related schemes [25], [26]
can be applied to facilitate encoded processing [27], which
serves to detect errors in both memory and the CPU. Encoded
processing necessitates that standard arithmetic and logical
operations be replaced with their encoded counterparts, leading
to large runtime overheads of up to several 10x or 100x [28].
The purpose of flexMEDiC is to protect the memory system,
including load-store queues and on-chip caches, but not in-
cluding the CPU’s register file. This implies that only load and
store operations must be replaced with their encoded variants.
As a result, flexMEDiC incurs an average runtime overhead of
1.55x, significantly lower than encoded processing. It is shown
that all single and double bit flips in memory are detected by
flexMEDiC. We also present evidence that up to five bit flips
within a data word can be detected when A = 58659 [29],
with a memory overhead of 16 bits per data word.
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For maximum flexibility and extensibility, flexMEDiC im-
plements AN encoding at the level of LLVM intermediate rep-
resentation (IR) [30]. It is shown that this leaves a number of
memory accesses vulnerable to errors, namely those accesses
that are inserted by the compiler backend when IR is lowered
to machine instructions. Therefore, the second component of
flexMEDiC, next to AN encoding, is a backend that applies
DMR-based error detection to the memory accesses it inserts.

This work is structured as follows. Section II introduces
AN encoding and identifies its shortcomings when applied at
the IR level. Section III explains the structure and implemen-
tation details of flexMEDiC. Section IV introduces the suite of
test programs on which flexMEDiC is evaluated in Section V.
Section VI discusses related work, and Section VII summarizes
the findings of the present work.

II. BACKGROUND

The flexMEDiC scheme facilitates the detection of errors
in memory by encoding data words before they are stored
to memory. Thus, in the absence of errors, only valid code
words reside in memory, and whenever a non-code word is
loaded from memory, an error is detected. In the flexMEDiC
scheme, integer data is encoded by multiplying with a fixed
integer constant A. Hence, the valid code words are precisely
the multiples of A. This is known as AN encoding [23], [24].

A. AN encoding

To achieve that only valid code words reside in memory,
integer values must be encoded before being stored, i.e.

mencoded = m · A, (1)

for any integer m. Consequently, whenever a value mencoded

is loaded from memory, it must be decoded before further
processing takes place, i.e.

m = mencoded/A. (2)

Thus, errors can be detected by evaluating the following
boolean expression for a value n that has been loaded from
memory:

n modA = 0. (3)

In the absence of errors, the value n is a valid code word,
and hence expression (3) evaluates to TRUE. If expression (3)
evaluates to FALSE, an error must have occurred in memory.

Like all error detection schemes, AN encoding relies on
redundant information. Specifically, if the value m is repre-
sented by km bits, and A is represented by kA bits, then the
encoded value mencoded requires km+kA bits. This means that
kA bits are used to store redundant information, and that the
memory overhead is kA bits per data word.

The maximum number of flipped bits that can still be
detected as errors is one less than the minimum Hamming
distance between code words. Previous work has studied how
this distance varies with the choice of A [29], [31]. Generally,
the larger the minimum Hamming distance, the larger kA and
hence the memory overhead of AN encoding. In flexMEDiC,
the choice of the constant A is left to the user, who can thus

Fig. 1: Dynamic load operations present in intermediate
representation (IR) or inserted by the compiler backend.

flexibly trade memory overhead for the maximum number of
detectable bit flips.

Implementing AN encoding for data in memory requires
that load and store instructions be instrumented with operations
that facilitate encoding and decoding, i.e. multiplication and
division respectively, cf. (1) and (2). This is conveniently done
by instrumenting programs at the level of LLVM intermediate
representation (IR) [30], which makes flexMEDiC readily ex-
tensible. However, in lowering the IR to machine instructions,
the compiler backend may insert additional memory accesses
to handle, e.g., register spills. At the IR level, such accesses
cannot be protected against errors.

B. Additional vulnerabilities

Figure 1 shows in blue the percentages of dynamically
executed load operations that originate from load instructions
present in the IR of twelve test programs. Load operations
that are inserted by the backend are displayed in red. The test
programs are labeled A–L (cf. Table I in Section IV). Evidently
there is always some proportion of loads that are inserted by
the backend, and in extreme situations (H, L) none or hardly
any of the loads appear in the IR.

Compiler backends for the C programming language insert
additional memory accesses for the following purposes: to
handle register spills; to save and restore callee-saved registers,
the frame pointer, and the return address; to pass function argu-
ments; to access jump tables. When error detection measures
are added to programs at the IR or source level, backend-
inserted memory accesses will be left vulnerable to errors.
To detect errors in these accesses, the flexMEDiC scheme’s
second component, next to AN encoding, is a modified com-
piler backend that uses DMR to protect all additional memory
accesses that it inserts.

DMR-based error detection is used for the backend-inserted
memory accesses for two reasons. First, the majority of these
accesses are required to implement function calls. By using
DMR instead of AN encoding, the high-latency integer opera-
tions from (1)–(3) can be avoided, thus keeping function calls
efficient. Second, flexMEDiC is capable of detecting multiple
bit flips at the IR level, and this capability should not be
undermined by the backend, which necessitates that memory
accesses be fully duplicated.

All of the backend-inserted memory accesses, apart from
accesses of jump tables, operate on the local program stack.
Therefore, they can safely be duplicated also in multi-threaded
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Listing 1: Store and load instructions
with encoding and decoding.

some bb :
. . .

%1 = mul i 6 4 %0, %A ; encode
s t o r e i 6 4 %1, i 6 4 ∗ %p

. . .
%2 = load i 6 4 ∗ %p
%3 = srem i 6 4 %2, %A
%4 = icmp eq i 6 4 %3, 0 ; ch eck
br i 1 %4, l a b e l %next bb ,

l a b e l %e x i t b b

n ex t b b :
%5 = s d i v i 6 4 %2, %A ; decode

. . .

e x i t b b :
c a l l vo id @exit ( i 3 2 ENCODING )

Listing 2: Load instruction with
optimized checking.

some bb :
. . .

%1 = mul i 6 4 %0, %A ; encode
s t o r e i 6 4 %1, i 6 4 ∗ %p

. . .
%2 = load i 6 4 ∗ %p
%5 = s d i v i 6 4 %2, %A ; decode
%3 = mul i 6 4 %5, %A
%4 = icmp eq i 6 4 %3, %2 ; ch eck
br i 1 %4, l a b e l %next bb ,

l a b e l %e x i t b b

n ex t b b :
. . .

e x i t b b :
c a l l vo id @exit ( i 3 2 ENCODING )

applications. This is also true of the jump table accesses as
they are read-only. No memory accesses are duplicated for
AN encoding. Hence, flexMEDiC can immediately be applied
to multi-threaded applications.

III. IMPLEMENTATION

The flexMEDiC scheme has been designed with maximum
flexibility and modularity in mind. Its implementation consists
of two major components: the AN encoder and the DMR-
enhanced backend, both of which can be configured and
used independently, and can also be freely combined with
other fault tolerance schemes. We have implemented the AN
encoder as a compiler pass that operates on LLVM IR, and the
DMR-enhanced backend has been obtained by modifying the
LLVM backend for the x86 architecture. Figure 2 depicts how
flexMEDiC generates executable binaries that are protected
against memory errors.

A. The AN encoder

Listing 1 demonstrates how load and store operations are
instrumented at the IR level to implement the AN encoding
scheme that was introduced in Section II-A. Error checking
is performed immediately after load instructions. If a check
fails, the program exits with the special exit code ENCODING,
indicating that an error has been detected.

Fig. 2: Generation of protected binaries with flexMEDiC.

It has already been noted that the integer operations that
are used to implement the AN encoding scheme have high
latencies. Checking and decoding can be optimized if decoding
is performed first, cf. [32]. Then, the decoded value can be used
to check for errors with a multiplication rather than a modulo
operation, as in Listing 2. This is beneficial for performance
since multiplication typically has lower latency than modulo.
Note that optimizers cannot remove the sequence of sdiv and
mul instructions in Listing 2 since, when operating on integers,
division and multiplication are not inverse operations.

The AN encoder is configurable as the constant A can be
chosen freely at application compile time. It is flexible since,
as an LLVM IR pass, it can easily be modified and extended.

B. The DMR-enhanced backend

The backend-inserted memory accesses that must be pro-
tected against errors have been listed in Section II-B. The DMR
scheme we have implemented operates as follows. Whenever
a value is stored to memory, typically from a register, a
second copy of the value is written to an independent location.
When the value is re-loaded, the two copies are compared.
Disagreement between the two copies indicates the presence
of an error in memory. After an error has been detected in
a backend-inserted memory access, the executing program is
terminated with the special exit code BACKEND.

The remainder of this section discusses how the individual
backend-inserted memory accesses are handled in flexMEDiC.
Please refer to the accompanying technical report [33] for full
implementation details. While the wide-spread x86 architec-
ture is used to demonstrate the functionality of flexMEDiC,
compiler backends that target other processor architectures can
use analogous DMR-based measures to protect the memory
accesses they insert.

1) Register spills (spill): Typical instruction sequences for
spilling and restoring a register are shown in Listing 3. Values
are spilled to the function’s stack area, which is addressed
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Listing 3: Spill and restore.

mov rcx ,−0x30 ( rb p )
. . .

mov −0x30 ( rb p ) , r c x
add rcx , r s i

Listing 4: DMR-protected
spill and restore.

mov rcx ,−0 x38 ( r b p )
mov rcx ,−0 x30 ( r b p )

. . .
mov −0x30 ( r b p ) , r c x
cmp −0x38 ( r b p ) , r c x
j n e <e x i t >
add rcx , r s i

relative to the frame pointer in the rbp register. Additional
instructions are needed to duplicate the value of the spilled
register on the stack, cf. Listing 4. Error detection is facilitated
by the cmp and jne instructions in Listing 4: when the
comparison fails, control is transfered to an exit block which
terminates the program with the exit code BACKEND.

2) Return address (return): On the x86 architecture, the re-
turn address is passed on the stack. Hence, given the possibility
of memory errors, the return address can never be assumed to
be correct. We have modified the function calling convention
so that the return address is passed in register rbx, which we
reserve for this purpose. The first instruction in the called
function pushes rbx onto the stack, as in Listing 5. Now the
two copies of the return address reside side-by-side on the
stack. When the called function returns, one copy of the return
address is popped off the stack into register rbx. To check for
errors, the remaining copy on the stack is then compared with
the value in rbx. To return from the function call, the x86
ret instruction cannot be used since this entails reading the
return address from the stack, which constitutes a vulnerability
to memory errors. Instead, an indirect jump to the checked
return address is performed, cf. Listing 5, which necessitates
that the stack pointer (rsp) is incremented manually.

Listing 5: DMR-protected
return address.

push r b x
. . .

pop rb x
cmp ( r s p ) , r b x
j n e <e x i t >
add 0x8 , r s p
jmp ∗ r b x

Note that on architectures with a designated return register,
e.g. ARM or MIPS, protecting the return address against
memory faults does not require that an additional register be
reserved or that the calling convention be modified.

3) Function arguments (arg): When function arguments
are passed on the stack, they are vulnerable to memory errors.
To enable error detection, the calling convention has been
modified so that a duplicated copy of the argument sequence is
also put on the stack, next to the original sequence, cf. Figure 3.
Whenever one of the original arguments is loaded into a
register, it is compared with the corresponding argument in
the duplicated argument sequence.

Note that the standard calling convention on x86 has been
modified in two ways. First, the return address is passed in the

Fig. 3: DMR-protected function arguments on the stack.

register rbx, in addition to being put on the stack by the call
instruction. Second, a duplicated argument sequence resides
on the stack immediately above the original arguments. The
obligation to implement this calling convention rests entirely
with the caller. Thus, if a callee does not perform error
checking for the return address or arguments, the function call
will still work. In particular, library functions can be called
fully transparently from within protected functions. However,
calls in the opposite direction do not work: when a protected
function is called from an unprotected environment, neither
the rbx register nor the stack will be set up according to our
modified calling convention. Hence, executing the unprotected
function will lead to premature program termination with exit
code BACKEND.

4) Callee-saved registers (csr), frame pointer (fptr):
Callee-saved registers and the frame pointer are pushed onto
the stack at function entry, and restored immediately before
returning. Therefore, protecting these stack accesses is com-
pletely analogous to the handling of the return address.

5) Jump tables (jt): Jump tables are an efficient way of
implementing switch statements. A jump table is an array
of addresses of basic blocks. Unlike the previously discussed
memory accesses, jump tables do not reside on the stack, but
in the code segment. To protect jump tables against errors, the
backend duplicates each jump table. Before jumping to a jump
table entry, the entry is loaded into a register and compared
with the corresponding entry in the duplicated jump table.

The full flexMEDiC scheme requires that all backend-
inserted memory accesses are equipped with error detection
measures. However, the individual DMR-based measures that
have been presented in this section, i.e. spill, return etc.,
can be switched on and off independently by compiler flags.
This means that flexMEDiC’s protection of backend-inserted
memory accesses can easily be replaced with alternative im-
plementations if need be.

IV. TEST PROGRAMS AND CODE GENERATION

To demonstrate the effectiveness of flexMEDiC, faults are
injected into the test programs in Table I. Due to simple
combinatorics, the spaces of faults that can affect a program
are quite large. Therefore, conducting exhaustive fault injection
is a processor-bound task, which, for the relatively small
programs in Table I, can still be carried out in reasonable time.

Some of the test programs (C, E, K) are borrowed from
the MiBench suite [34], and similar programs are often used
to evaluate fault tolerance schemes, e.g. [20], [35], [16].
The programs represent typical algorithmic tasks, e.g. sorting,

Lausanne, Switzerland REES 2017 March 31st, 2017

18



plain encoded fptr csr jt return arg spill all
test instr. ld. IR instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld. instr. ld.
A 34 10 8 100 10 106 11 100 10 100 10 107 11 100 10 100 10 109 12
B 432 58 35 624 39 630 40 632 40 624 39 631 40 624 39 624 39 641 42
C 112 27 25 268 29 274 30 276 30 268 29 275 30 268 29 268 29 285 32
D 1816 136 32 2056 136 2232 176 2104 144 2056 136 2288 176 2056 136 2056 136 2480 224
E 1926 500 484 5312 508 5336 512 5360 512 5312 508 5340 512 5312 508 5312 508 5396 520
F 454 157 77 1018 171 1046 185 1102 185 1090 195 1073 185 1018 171 1018 171 1313 237
G 597 146 96 1279 146 1399 165 1279 146 1315 158 1418 165 1279 146 1279 146 1492 196
H 813 224 2 1343 226 1455 251 1497 250 1343 226 1523 251 1343 226 1343 226 1765 300
I 198 54 36 451 43 453 44 461 44 450 46 455 47 450 46 463 50 482 53
J 43 10 8 98 10 104 11 98 10 98 10 105 11 98 10 98 10 107 12
K 413 93 87 1104 136 1136 144 1200 144 1104 135 1151 143 1104 135 1247 177 1406 201
L 15 5 0 15 5 19 6 15 5 20 7 20 6 19 7 15 5 37 12

TABLE II: Dynamic instructions and load operations for the test programs on x86 64.

graph traversal, manipulation of bit patterns, and linear algebra.
Test program L consists of a switch statement that selects one
of the many arguments of the enclosing function. It is included
here since it is the only program that passes function arguments
on the stack in the x86 64 calling convention.

The test programs are evaluated on the x86 64 architecture,
the 64-bit version of x86. Properties of the binaries generated
by flexMEDiC are summarized in Table II, namely: dynami-
cally executed instructions (instr.), dynamically executed load
operations (ld.), and the number of load operations that are
present at the level of LLVM IR (IR). The plain block in
Table II refers to the binaries without any error detection
measures. The encoded block refers to the binaries when only
AN encoding is applied. Subsequent blocks correspond to the
combination of AN encoding with the individual DMR mea-
sures in the backend. Finally, all refers to the full flexMEDiC
scheme, i.e. AN encoding plus all backend DMR measures.

All binaries are generated at optimization level -O3, and
AN encoding is applied with A = 58659, cf. [29]. The load
operations that are present in the IR are the same for each
block of Table II. Therefore, the numbers of load operations
are not repeated in blocks other than plain. Note that Figure 1
is based on the plain block of Table II.

V. EVALUATION

Faults occur rarely in individual devices. Therefore, one
must actively inject faults into systems or programs to evaluate
the effectiveness of fault tolerance schemes. The flexMEDiC
scheme is evaluated by symptom-based fault injection [27],
[36], [26]. This means that, instead of simulating a fault at the
circuit level, the resulting symptom, as seen by the executing

description

A array reduction
B bubblesort
C cyclic redundancy checker (CRC-32)
D DES encryption algorithm
E Dijkstra’s algorithm

arithmetic expression interpreter
F recursive expression tree evaluation
G token lexer for arithmetic expressions
H arithmetic expression parser
I matrix multiplication
J array copy
K quicksort
L switch

TABLE I: Suite of test programs.

program, is modeled. A fault in the memory system results in
the corruption of the data word returned by a load operation.
This symptom has been injected into executions of the test
programs from Table I, the detailed procedure for which is
described in the next section.

A. Fault injection experiments

The symptom of a fault in the memory system is modeled
by flipping a number of bits in the result of a load operation.
To inject this symptom into an executing program, the Intel
Pin tool [37] for dynamic program instrumentation has been
used. In a first golden run, the targeted binary is executed under
the control of the Pin tool, and all dynamic load operations are
recorded. Based on this, all possible symptoms are determined.
E.g., for single bit flips on a 64-bit machine, the number of all
possible symptoms is 64 times the number of dynamic loads.
Subsequently, the targeted binary is executed once for each
symptom, and the program’s response to the injected symptom
is recorded. A fault injection experiment is a single execution
of the targeted binary with an injected symptom.

The outcome of a fault injection experiment is determined
by the program’s response to the injected fault, and responses
are classified into the following categories:

1) correct: Despite the fault, the program terminates
normally and produces correct output.

2) hang: If the program runs for longer than 10x its
normal execution time, it is deemed to hang and
hence is terminated. In practice, e.g. in safety-critical
embedded applications, a hardware watchdog may
terminate and restart long-running programs.

3) crash: The program terminates abnormally, e.g. due
to a segmentation fault.

4) sdc: Silent data corruption occurs when the program
terminates normally but produces incorrect output.

5) encoding: The fault is detected by AN encoding and
hence the program exits with code ENCODING.

6) backend: The fault is detected by one of the DMR-
based measures introduced by the backend. Hence the
program exits with code BACKEND.

To demonstrate that flexMEDiC can detect multiple bit
flips within a single data word in memory, we perform fault
injection experiments for the following symptoms: single bit
flips, double bit flips, and 5-bit flips. The chosen encoding
constant A = 58659 is expected to be capable of detecting up
to five bit flips [29]. For the single and double bit flips we
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(a) no error detection (b) flexMEDiC

Fig. 4: Single bit flips in memory.

(a) no error detection (b) flexMEDiC

Fig. 5: Double bit flips within a single data word.

(a) no error detection (b) flexMEDiC

Fig. 6: Five bit flips within a single data word; sampling of
0.01% of error patterns.

explore the full space of all possible symptoms. For 5-bit flips
this is not feasible in reasonable time since there are almost
4,000 times as many error patterns as for double bit flips.
Therefore, we randomly sample 0.01% of all error patterns.

B. Error detection results

Figures 4–6 summarize the results of our fault injection
experiments. Note that absolute numbers of fault injection
experiments are drawn along the vertical axes. When no error
detection mechanisms are used, i.e. for the plain binaries, there
are noticeable numbers of crash and sdc responses. On the
other hand, when flexMEDiC is applied, all errors are detected
as evidenced by Figures 4b–6b. However, for test programs
F and H there are a number of correct responses, which,
technically, means that the injected fault is not detected. The
correct responses occur when errors affect load operations that
are part of a call to the memcpy library function. Although
this function call is present in the IR, it is not protected by
the AN encoder from Section III-A since no data is actually
loaded into the program. The response correct ensues when
errors affect only those portions of the copied data that are
subsequently not used.

It is interesting to note that Figures 4–6 show very similar
distributions of program responses. This suggests that pro-
grams are not particularly sensitive to the number of bits
that are flipped; it seems to be more important which load
operations, viz. data words, are affected by errors.

C. Runtime overheads

Fault tolerance measures require some form of redundancy,
leading to performance penalties. The normalized runtimes for
the test programs are depicted in Figure 7, where geometric
means across the suite of test programs are shown. The bar
labeled all depicts the overhead of the full flexMEDiC scheme,
which is 1.55x.

According to Figure 7 the largest fraction of runtime
overhead is due to AN encoding, which is known to produce
large overheads [28], [25], [38]. Table III lists the overheads
of the various error detection measures introduced by the
DMR-enhanced backend. The numbers in Table III are, again,
geometric means across the suite of test programs, and have
been normalized to the binaries with AN encoding, i.e. the
encoded binaries. The total overhead introduced by the DMR-
enhanced backend is only 1.07x.

All runtime measurements have been conducted on an Intel
Core i7-4790 CPU running at 3.6GHz. Total system memory
is 32GB. The operating system is Ubuntu 16.04.1 LTS, with
a 4.4.0 Linux kernel.

VI. RELATED WORK

Many software-implemented fault tolerance schemes have
been proposed [18]. The EDDI [20] and SWIFT [21] schemes
detect errors by duplicating a program’s data flow, which
is achieved by duplicating values in registers and machine
instructions. This form of DMR has been developed in various
directions. ESoftCheck [39] and Shoestring [19] aim to reduce
the overhead of DMR by checking for errors less frequently.
DRIFT [40] performs delayed checking to generate faster
instruction schedules. The DAFT [22] scheme offloads error
detection to separate threads. Modern CPU’s SIMD extensions
have been used for DMR-based error detection [41] and also
for error recovery [42]. All of these schemes, starting with
SWIFT, have in common that memory is assumed to be
protected by other measures, typically ECC memory.
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The nZDC scheme [16] also makes the assumption that
memory is already protected against errors. However, instruc-
tions that access memory are still duplicated in nZDC since
the processor’s load-store queue is assumed to be vulnerable to
faults. Since the nZDC scheme duplicates all memory accesses,
and not just those that access local memory, it is limited
in handling multi-threaded applications correctly, as already
noted in [16]. The DMR-enhanced backend presented in this
work also leads to a significantly lower runtime overhead than
nZDC, which is because it is more selective in duplicating
memory accesses than the nZDC scheme.

Software-implemented encoded processing of data [27]
can detect errors in both the CPU and memory, without
the need for hardware support. Protecting processors by AN
encoding was suggested in [24], and IR-based implementations
appeared in [28], [25], [38]. AN encoding leads to large
runtime overheads, which are affected by the scheduling of
error checking instructions [32]. Overheads can be reduced
when AN encoding is combined with DMR [43], [44], [26].
The present work combines AN encoding and DMR differently
from previous schemes in that it applies them at different
levels, i.e. at the IR level and in the compiler backend.

That return addresses and frame pointers need protection
has already been observed in the context of protecting an
operating system against hardware faults [45]. The DMR-based
protection of return addresses presented in the present work
can be regarded as a mechanism that detects errors in control-
flow. General mechanisms for protecting against control-flow
errors have also been proposed [35], [46].

VII. SUMMARY AND OUTLOOK

Memory errors reduce the reliability of applications. While
ECC memory can alleviate the impact of memory errors,
it has been found that simple SECDED codes, which are
widely used, cannot handle large fractions of errors that affect
applications in practice. Software-implemented fault tolerance
schemes offer the flexibility of being adjustable to an applica-
tion’s reliability needs. This work has presented the software-
implemented flexMEDiC scheme for detecting multiple bit
flips in memory. It has been shown that flexMEDiC can detect
all single and double bit flips within data words in memory.
Furthermore, evidence has been produced that up to five bit
flips within a single data word can be detected. The average

Fig. 7: Mean runtime overheads
for the binaries from Table II.

mean
overhead

fptr 1.020
csr 1.009
jt 1.013
return 1.027
arg 1.005
spill 1.012
all 1.073

TABLE III: Over-
heads normalized to
the encoded binaries.

runtime overhead incurred by flexMEDiC is 1.55x across a
suite of representative test programs.

The flexMEDiC scheme has been implemented modularly.
Memory accesses that are present in the IR of programs are
protected by AN encoding. By varying the encoding constant
A, one can trade the memory overhead of AN encoding for
its capability to detect multiple bit flips. Additional memory
accesses may be inserted by the compiler backend when the
IR is lowered to machine instructions. Therefore, flexMEDiC
comes with a compiler backend that protects the memory
accesses it inserts by DMR. The backend can be configured
to protect only subsets of memory accesses, which means that
parts of flexMEDiC can easily be replaced with other error
detection measures.

We have evaluated flexMEDiC with A = 58659, which is
known to have good properties [29]. Evidence suggests that up
to five bit flips can still be detected as errors with this A. It is
generally difficult to determine the minimum distance between
code words in AN encoding. Nonetheless, it would be useful
to extend flexMEDiC with a mechanism that can automatically
find an optimal encoding constant A given the number of bit
flips that should still be detectable as errors.

It is worth stressing that, thanks to the AN encoder com-
ponent, flexMEDiC relies on DMR only for local memory
accesses. Hence, no accesses of memory that is potentially
shared are duplicated, which implies that flexMEDiC can
safely be applied to multi-threaded applications. Future work
should verify this.
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