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Authentication technologies based on biometrics, such as speaker recognition, are attracting more and
more interest thanks to the elevated level of security offered by these technologies. Despite offering many
advantages, such as remote use and low vulnerability, speaker recognition applications are constrained by
the heavy computational effort and the hard real-time constraints. When such applications are run on an
embedded platform, the problem becomes more challenging, as additional constraints inherent to this specific
domain are added. In the literature, different hardware architectures were used/designed for implementing a
process with a focus on a given particular metric. In this article, we give a survey of the state-of-the-art works
on implementations of embedded speaker recognition applications. Our aim is to provide an overview of the
different approaches dealing with acceleration techniques oriented towards speaker and speech recognition
applications and attempt to identify the past, current, and future research trends in the area. Indeed,
on the one hand, many flexible solutions were implemented, using either General Purpose Processors or
Digital Signal Processors. In general, these types of solutions suffer from low area and energy efficiency. On
the other hand, high-performance solutions were implemented on Application Specific Integrated Circuits or
Field Programmable Gate Arrays but at the expense of flexibility. Based on the available results, we compare
the application requirements vis-à-vis the performance achieved by the systems. This leads to the projection
of new research trends that can be undertaken in the future.
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1. INTRODUCTION

Speaker recognition is generally used in relation to speaker identification or speaker
verification techniques and approaches based on information contained in the acoustic
signal. The aim is to recognize a person from his/her voice. The field of applications
related to speaker recognition is very wide and encompasses domestic applications, mil-
itary applications, and automotive sector and access control applications [Singh et al.
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2012]. These applications could be deployed in an embedded systems. The embedded
systems design makes it imperative for hardware implementation platform choice to
be appropriate and to help fulfill application constraints.

Speaker recognition techniques generally uses a three-stage process:

(1) It starts with the acoustic analysis of the speech signal for features extraction.
(2) Then a speaker modeling stage is used.
(3) Finally, the decision to accept or reject the speaker is done in the last stage.

Speaker recognition applications are characterized by two main constraints, which
are the heavy computational burden and the hard real-time constraints. Additional
constraint that is related to memory access demands may depend on the type of the
performed recognition. In order to make these applications more popular, the afore-
mentioned challenges should be resolved. There are many techniques for accelerating
processes, each one with a focus on one or more particular aspect(s)/metric(s) and thus
leading, in general, to a diverse set of points of the design space.

In this article, we give a survey of the existing solutions of embedded speaker recog-
nition applications. Since speech recognition and speaker recognition have a number
of steps in common, we included speech recognition acceleration in the scope of the
survey. Indeed, certain works can be used for both types of applications. To the best of
our knowledge, there is only one work reported in the literature that surveyed speaker
recognition applications with a focus on implementation technologies [Alee et al. 2013].
However, the study that we conduct goes much deeper and takes into consideration a
greater number of selected articles in the scope of this work. Since it is very hard
to benchmark or compare the different existing systems, in several scenarios, we re-
sorted to a qualitative classification instead of a quantitative one. Additionally, several
discussions and possible future directions are proposed based on the aforementioned
classification. Thus, this work can be seen as a piece contributing to the determination
of the algorithm-architecture co-exploration.

The article is organized as follows. In Section 2, speaker recognition is motivated
and introduced. The algorithmic process and its analysis are detailed in Section 3. A
general overview of hardware implementation technologies for embedded systems is
given in Section 4. The scope of the survey and the classification of existing solutions in
the literature are given in Section 5. The classification is done based on performance,
flexibility, and the tradeoff between them. The following section discusses the overall
general trend and gives insights about possible future directions. Finally, Section 7
concludes the article.

2. SPEAKER RECOGNITION AS A PROMISING BIOMETRIC

Since the mid-2000s, we have witnessed the emergence of several applications ne-
cessitating individual authentication: financial applications, access control (security),
transmission of personal data, teleconferencing applications, and automotive sector.
These applications typically use authentication technologies based on biometrics. Bio-
metric authentication [Jain et al. 2004] is the automatic recognition of a person us-
ing distinguishing characteristics, that is, physical (biological) or personal behavioral
traits, which are automatically quantifiable. These characteristics need to be robust
and distinctive and can be used to identify or verify the claimed identity of an individ-
ual. Some biometric technologies are relatively simple and low in complexity despite
providing highly accurate recognition. They offer many advantages over traditional
authentication methods such as the use of passwords or keys and access cards that are
highly vulnerable to theft and falsification.

A large amount of biometric information has been used in various applications
and areas, including fingerprint, hand, iris, retina, face, voice, veins, and signature
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[Yampolskiy and Govindaraju 2008; Delac and Grgic 2004; Bowyer et al. 2013;
Bharadwaj et al. 2014]. In our case, we are interested in speaker recognition. Speaker
recognition is a technique for automatically recognizing a person communicating from
their voice characteristics. The system thus designed is based on certain criteria,
taking into account the physical structure of the speech of the individual and the
characteristics of its behavior (movement of the mouth, pronunciation, vocal tract,
etc.). Thus, speaker recognition refers to the automated method of identifying or
confirming the identity of an individual based on his voice. As argued in a recent pub-
lication [Fazel and Chakrabartty 2011], speaker recognition represents an interesting
biometric for two main reasons:

—First, it can be used remotely.
—Second, it relies on very common acquisition equipment, since microphones are now

embedded on most handheld personal devices.

Biometrics are a real alternative to passwords and other credentials for secure access
controls. Compared to authentication systems using an object or a password, biometric
information is more fluid and provides answers in terms of similarity percentage, while
100% is never achieved. This variation of the identification results of an individual is
more related to the quality of the biometric information capture and the modification
of the biometric features of individuals, which are generally stable over time.

In our case, we are interested in speaker recognition biometric technology. Each per-
son has her/his own voice that can be captured by a microphone recording. The sounds
are characterized by their frequency, intensity, and tone. Speech post-processing takes
into account distortions related to the used equipment and can analyze a bad sound
such as a telephone or radio transmission, while also fatigue, stress, or cold can cause
changes in the voice. Speaker recognition has the advantage of being well accepted by
the user, regardless of culture. Furthermore, in the case of a secure telephone transac-
tion, the voice is the only available information. The number of applications continues
to grow everyday. This technology is often used in environments where the voice is
already captured, such as call centers and telephony, where it is the easiest and conve-
nient biometric to use. Furthermore, the most important advantage of such technology
is that it is unable to imitate the voice of a person and it can be used remotely.

2.1. Speaker Recognition Branches

The speaker recognition discipline has many branches, which are either directly or
indirectly related. In general, it manifests itself in six different ways, as we can see in
Figure 1. Homayoon Beigi [Beigi 2011] categorizes these branches into two different
groups, Simple and Compound. The first group, that is, simple speaker recognition,
includes branches that are self-contained. The second group (i.e., compound branches)
covers those utilizing one or more of the branches of the first group along with eventual
additional techniques.

Simple speaker recognition branches include speaker verification, speaker identi-
fication, and speaker classification. Speaker verification is based on a system that
authenticates if a person is who she or he claims to be. Speaker identification assigns
an identity to the voice of an unknown speaker. However, the classification aims to
classify similar audio signals into individual bins such as gender, age, and events (mu-
sic, gunshots, screams). Nevertheless, the compound branches of speaker recognition
are segmentation, detection, and tracking. The segmentation goal is to divide the au-
dio utterance into parts covering streams of different speakers, music, and several
background conditions. The detection branch uses segmentation as well as identifica-
tion, because it aims at detecting a specific speaker in a stream of audio. The tracking
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Fig. 1. Speaker recognition branches.

approach consists of continuous detection, as speakers are tracked across the audio
stream.

From the previously mentioned branches, the focus is rather made on two main popu-
lar branches: speaker verification [Naik 1990] and speaker identification. As mentioned
in Beigi [2011], the latter can be divided into two types: a closed-set identification and
an open-set identification. This technique makes it possible to use the speaker’s voice
to verify his/her identity and control access to services such as voice dialing, bank-
ing by telephone, telephone shopping, database access services, information services,
voice mail, security control for confidential information areas, and remote access to
computers.

Furthermore, speaker recognition may be used based on various modalities, which
are related to the language, context, and other means. Thus, it can be classified into two
categories. The first category includes the systems that are independent of the content
of the pronounced sentence, that is, text-independent speaker recognition. In this mode,
the speaker can pronounce any phrase to be recognized. There is no constraint on the
message that the speaker has to say or the language he/she can use. It requires voice
characteristics of the speaker, regardless of the spoken word. The second category
includes systems that are executed based on required text, that is, text-dependent
speaker recognition. In this case, a list of previously recorded words is needed (vocal
signature).

2.2. Commercial Prototypes

Applications related to voice biometrics technology aims to be increasingly deployed in
civilian applications. They are growing continually and aim to provide security as well
as fraud avoidance. Many commercial applications of biometrics are based on knowl-
edge, such as pin numbers and passwords, or on tokens, such as badges and ID cards
[Saquib et al. 2010]. These applications may be divided into three clusters [Jain et al.
2004]: commercial applications dedicated to electronic data security or physical access,
government applications related to social security and several kinds of licenses, and
forensic applications such as terrorist identification or criminal exploration. Further
details are given in Table I.
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Table I. Commecial Prototypes

Commercial Government Forensic
prototypes Description Commercial applications applications applications
Agnito
(Leader for
voice ID
products)
�Spain

-Voice and speech
recognition

-Aims to prevent crime,
identify criminals,
and provide evidence
in court

-Physical access control,
time and attendances,
healthcare biometrics

-Financial transactions
-Mobile authentication

[agn 2015a]

-Voice
surveillance
[agn 2015b]

-Justice and low
enforcement

-Biometric criminal
identification

-Automatic Speaker
Identification
System (ASIS) [voi
2015a]

Speech
Technology
Center (SCT)
�Russia

-Technologies for
compact and
large-scale biometric
solutions

-Financial transactions
-Solution for real-time

speaker identification for
phone calls, mobile
devices [voi 2015c]

-Systems
designed for
large city
and national
system
deployments
[voi 2015b]

-Justice/law
enforcement,
logical access
control

Nuance
�Italy

-Biometric sensors and
detectors that aims to
the use of resources
and customer
interactions based on
better accuracy,
reliability, and ease of
use.

-Decreasing the number of
calls handled by contact
center agents based on
intelligent call routing
technology [aut 2015]

— —

DAON
�USA

-Biometric solutions
such as fingerprint
readers, iris
recognition, as well
as voice and speech
recognition.

-Border control and
airports systems and
other logical access
control systems [log 2015]

-Dedicated to
smart cards
and
signature
[ide 2015]

—

Voxomos
�India
[vox 2015]

-A novel voice solution
that makes Internet
information available
as speech in native
languages.

-Focused on speech
innovations and
integration of voice,
touch, text, and image to
lead the next-generation
user-experience of the
Web. Mobile, telecom,
education, as well as
healthcare applications.

— —

3. OVERVIEW OF SPEAKER RECOGNITION PROCESS

3.1. Generic Process

Generally, the speaker recognition biometric follows a well-defined two-phase process,
as illustrated in Figure 2. The first one, which is the enrollment phase (also known
as the training phase) aims at determining the parameters of a statistical model of a
specific speaker. The obtained model is then stored in a database. During the second
phase, which is recognition, the aim is to authenticate an unknown utterance of a
speech sample by comparing it to the trained speaker specific model. As already men-
tioned in Section 2.1, the recognition phase could be either the identification or the
verification.

Both processes include two main modules. The first one is a feature extraction mod-
ule. The last consists of extracting the parameters of the speech signal to obtain a
parametric representation of the speaker’s vocal tract. The second one is classification
[Mller 2007]. This task is performed through the execution of a pattern matching pro-
cess followed by a decision. In the case of identification, the closest speaker identifier is
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Fig. 2. Speaker recognition process.

returned, while in the case of verification, a threshold is considered to reject or accept
the identity of the speaker.

3.1.1. Feature Extraction. The speech signal is complex, as it combines different types
of information classified by their level of representation. The information, called low
level, is readily available from the digital signal analysis of the word. They include
information related mainly to physical traits of the individual (physiological and mor-
phological factors). Information called high level, such as the linguistic or emotional
state of the speaker, are much more complex to characterize. This information is re-
lated to the sociocultural factors of the individual. Six levels of information hierarchy
are identified:

(1) The level of sound: the parameters are linked to the analysis of the spectral envelope
of the signal.

(2) Prosodic level: refers to the melody of the speech utterance.
(3) Phonetic level: the distinction between different identifiable sounds of a given

language.
(4) The idiolect level: refers to linguistic particularities of an individual.
(5) The dialogic level: defines how an individual communicates, like his or her speaking

time in a conversation.
(6) The semantic level: the meaning of speech features.

Speaker characteristics can be categorized based on different features. According
to the physical interpretations of these characteristics, it is possible to divide them
into (i) spectral features in the short term, (ii) features of the vocal source, (iii) spectro-
temporal features, (vi) prosodic features, and (v) high-level features. For further details,
readers may refer to Kinnunen and Li [2010].
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Fig. 3. Algorithms for speaker recognition process.

3.1.2. Pattern Matching. Whether to recognize the message uttered by a speaker or
his/her identity, we need to model the entities needed to be automatically recognized
later. In text independent speaker recognition, speaker recognition systems try to model
the different pronunciations that a speaker may have made for the same patterns.
Studying the speakers’ speech in several pronunciations of the same pattern, such
system can distinguish the characteristics of the speech signal variability allowing it
to separate the speakers from each other.

In order to store dependent speaker characteristics, it is important to use algorithms
and data types, which are able to capture common points between different representa-
tions of spectral patterns forming a given speaker model. It is also important to be able
to adapt according to frequency variations and temporal scales of the speech signal.
These patterns can be determined by speech segments. In the case of text-independent
mode, the phonetic content of the segment is unknown, which is not the case in the
text-dependent one. Therefore, these algorithms must be coupled with a measure that
would give a value of distortion (or similarity) between the speaker model and a given
pattern.

3.2. Algorithmic Background Analysis

Several approaches and algorithms were used to perform a speaker recognition process
[Malode and Sahare 2012]. The most popular ones are summarized in Figure 3. In this
subsection, we perform algorithmic analysis in terms of computational demands and
memory access demands.

3.2.1. Computational Demands Analysis. A feature extraction phase extracts from the
waveform the discriminatory information and constructs a representation that can be
parametric or not. A wide range of algorithms can be used to perform this step. In the
case of parametric representation, we mention Linear Predictive Coding (LPC) and
the Linear Prediction Cepstral Coefficient (LPCC) [Tuzun et al. 1994]. However, in
the non-parametric case (which is related to the human auditory non-linear frequency
characteristics), we cite the Mel-Frequency Cepstrum Coefficient (MFCC) [Togneri
and Pullella 2011], which is the most used. Indeed, MFCC performs better than other
approaches in the recognition accuracy. For both aforementioned approaches, the Fast
Fourier Transform (FFT) is used as one major step. With regards to other performed
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Table II. Characteristics of Pattern-Matching Algorithms

Algo. Pros Cons Complexity
DTW -Easy to implement

-Model randomly time wrapping
-Cannot scale well for large
vocabulary

-Not suitable for changing
environments

O(N2V )
N: sequences lenghts

V : number of words

HMM -High recognition rate
-Reduced time and complexity
-Suitable for large vocabulary

-Huge number of HMM parameters
-Large quantity of training data

O(N2T )
N: states number

T : observation sequence

length

GMM -Optimal classification performed
-Accuracy

Computational complexity O(M2)
M: Gaussian model

dimension

SVM -Improve the system robustness
-Easy Training
-Scalability for high dimensional

data

Kernel functions are needed O(M2)
M: training set size

VQ Reduced storage and computation
costs

Potential loss of information due to
quantization

O(KN)
K: input vector dimension

N: code book size

steps, they have lower complexity than the computation of the FFT. Then feature
extraction algorithms have complexity of O(N.log(N)), where N is the data size [Kumar
2015].

For the classification phase, there are also different well-known approaches for
matching speaker recognition algorithms. Some of them are based on statistical
pattern matching. This set includes Hidden Markov Model (HMM) [Rabiner 1989] and
Gaussian Mixture Model (GMM) [Reynolds 1995]. The complexity of the HMM algo-
rithm is O(N2T ), where N is the number of states and T is the observation sequence
length, while the complexity of the GMM classifier is quadratically dependent on the
dimension of the Gaussian models. Within the template matching techniques, we cite
Dynamic Time Wrapping (DTW), which is used in cases of text-dependent recognition,
as it uses a limited dictionary [Maruti et al. 2012]. The complexity of DWT is O(N2V ),
where N is the length of the sequence and V is the number of words in the dictionary (or
equivalent). Another well-known algorithm for pattern matching is Vector Quantiza-
tion (VQ) [Makhoul et al. 1985]. This approach is commonly used in the compression of
speech signals. It has a time complexity O(K.N), where K is the input vector dimension
and N is the codebook size. We find also the Support Vector Machine (SVM) algorithm
[Campbell et al. 2006], which constructs a set of hyper-planes in a high-dimensional
space for classification task. The complexity is of O(M3) with M being the training set
size.

All these algorithms have advantages as well as disadvantages depending on the
type of recognition. Table II summarizes some of their characteristics (advantages and
disadvantages) and provides the corresponding complexity. However, and even though
GMM is computationally heavy, the use of GMM is most common [Alee et al. 2013] due
to the fact that it can be utilized for text-independent speaker recognition. In addition,
GMM is based on a probabilistic framework and provides high-accuracy recognition.

3.2.2. Memory Access Demands Analysis. Depending on the type of recognition, whether
it is identification or verification, the memory access demands vary widely. Indeed, in
case of verification, the size of the stored models in the database has no impact. This
is due to the fact that the new model is compared to only the one it is supposed to
be. However, in the case of recognition, the given model should be compared to all the
stored models in the database. Consequently, the larger it is, the higher the memory
access demands and also the computational demands.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 3, Article 78, Publication date: April 2017.



Hardware Architectures for Embedded Speaker Recognition Applications: A Survey 78:9

Fig. 4. Data flow graph of the speaker recognition process.

To study memory access demands, it is important to use the appropriate formalism.
Hence, we modeled the speaker recognition process by means of a dataflow graph to put
the focus on the exchanged data between computing entities. Figure 4 illustrates this
graph. The green part represents the front-end processing phase (feature extraction) of
the speaker recognition application, which is also applicable for the speech recognition
front end. Since MFCC is the most commonly used algorithm (as will be shown later
in Section 5), it is used as a basis for detailing this phase and consists of describing
different kernels of the algorithm. The rest of the graph presents the second part of
the process, which concerns speaker identification (red part) and speaker verification
(purple part).

In the part of the graph modeling the extraction phase, nodes present the kernels of
the front end where edges model data transfer between these kernels. First, digitized
speech utterances are divided into overlapping frames as it is illustrated on the arrow,
from one speech input to M frames. Every frame is started every 10ms, and each frame
lasts for 25ms. After that, each frame is passed through a filter that increases the
energy of signal at higher frequency, thus emphasizing high frequencies. The output
is a pre-emphasised frame that passes through a hamming window to smooth the
signal in order to reduce spectral effects. This latter frame is then transformed from
time into frequency domain by means of an FFT function. The mel-filter bank kernel
is responsible for applying a triangular filter bank to approximate the frequency of
the human ear. Usually, for a 16KHz sampling rate, a set of 40 mel-filters are used.
Mel-weighted spectrum values are replaced by their natural logarithm through the log
compression kernel. Finally, a DCT (Discrete Cosine Transform) function is applied in
order to reduce spectral information that is acoustic vectors. All N frames are provided
as input to the DCT kernel and transformed to P acoustic vectors. We can notice that
all the previously mentioned steps could be seen as a Synchronous Dataflow [Lee and
Messerschmitt 1987]. Generally, 40 element vectors are reduced to 13 element cepstral
vectors. In other terms, 1s of utterances is transformed to approximately 100 acoustic
vectors. Thus, and because the data size is small, the front-end part of the process uses
less than 1% of the overall computation of the system. It is worth mentioning that
floating point computations are used.
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Fig. 5. Speech recognition process.

Regarding the pattern recognition phase within the identification process, we can
notice that the P acoustic vectors could be considered as one big token passing through
other steps. This token is in the form of a vector containing P elements. After the
enrollment phase, the speaker models obtained from feature vectors are stored in the
node of the database extract. After that, these feature vectors are passed once through
a similarity computation node, which has also as input all the matrix in the database.
As we can notice from the figure in the dotted square, similarity can be modeled
as a parallel process, where the feature vector are compared to all the speakers in
the database. A similarity is calculated for all the input models, in terms of distance
or probability, depending on the algorithm used. Then distances or probabilities are
passed through a matching node to pick up the closest speaker. In addition, the dotted
square matching node could be modeled as a reduction dataflow, where we have to
choose the minimum distance or the maximum probability likelihood every time.

For the verification branch, P features vector are passed to the comparison node.
Thus with the user id as input from the source node, we fetch from the database node
the speaker model corresponding to the declared id, and then the similarity score is
computed. This score is compared to the threshold to make a decision to accept or reject
the claimed id.

The study of the dataflow leads to the following conclusions. The first part that con-
cerns the feature extraction could be appropriate for pipelining given its structure,
whereas data-level parallelism can be considered in the back-end process. These re-
marks should be used for architecture improvements realization regarding memory as
well as computational requirements.

3.3. Speaker Recognition vs. Speech Recognition

Speech recognition, also known as Automatic Speech Recognition, is a technique de-
signed to recognize, in a series of sound signals, phonemes (minimum sound units) and
sentences spoken by a speaker. The process is based on matching techniques to com-
pare a sound wave to a set of samples made of words and phonemes. For this purpose,
several approaches were used, such as acoustic-phonetic, pattern recognition, as well
as artificial intelligence approaches (for further details, readers may refer to Rabiner
and Juang [1993]).

As illustrated in Figure 5, speech recognition processes involve three steps. The first
one is pre-processing, which consists of feature extraction. During this step, the speech
signal (that is a set of acoustic waves) is transformed into a sequence of pre-phonetic
symbols with no linguistic meaning but containing features values. The second step
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is acoustic modeling, which compares the symbols with specific phonetic waveforms.
Several well-known algorithms such as DTW, HMM [Fukunaga 1990], Neural Network,
as well as VQ [Bourlard and Morgan 1994] were used for this purpose [Lee et al. 1990].
Finally, recognized speech is obtained after performing a search based on the lexical
and language models. The final step consists of searching the corresponding speech,
using the lexical and language models. Further details can be found in Rabiner and
Schafer [2010].

Speech and speaker recognition processes have a lot of things in common. On the one
hand, both use recordings of the human voice and thus use the anatomical features
(i.e., age, gender, etc.). On the other hand, both have a phase related to feature extrac-
tion and pattern matching. Consequently, the approaches used are the same (MFCC,
HMM, DWT, VQ, etc.). However, there is a big difference between both processes [Furui
2005]. For instance, speaker recognition could be independent of the language while
speech recognition totally depends on it. Besides, the range of applications in speech
recognition differ from those of speaker recognition [Peacocke and Graf 1990]. Further
readings are provided in Lee et al. [2012].

Several works have been done in joint speech and speaker recognition approaches.
For instance, BenZeghiba [2005] tried to combine an approach where both speaker and
speech recognition are performed, leading then to diarization. In Reynolds and Heck
[1991], the authors improved speech recognition by adding a specific speaker-dependent
recognizer.

4. OVERVIEW OF HARDWARE ARCHITECTURE DESIGN SPACE OF EMBEDDED SYSTEMS

Generally, and based on the requirements of the speaker recognition systems, embed-
ded systems solutions try to achieve a specific list of metrics and constraints in order to
meet the system requirements. It is possible to divide the implementation technologies
by their minimization of these following aspects:

—Number of clock cycles: This number affects the performance by influencing the
system response time, in addition to energy consumption.

—Number of transistors (integration): This metric affects the area/size of the designed
system and the energy consumption.

—Energy consumption.
—Production costs: Theese costs include time to market as well as non-recurring engi-

neering costs (cost of the first product).

The problem of improving a metric can have a negative effect on another one. Si-
multaneous expertise in software and hardware is often required to optimize design
metrics. In Platzner and Wehn [2010], the authors scaled the implementation plat-
forms in terms of energy per Million of Operations per Second (MOPS) and MOPS per
area, as illustrated in Figure 6. We can conclude that the performance decreases when
the flexibility increases. In other words, the magnitude in performance and efficiency
varies from one solution to another, either hardware or software, depending on the
application in use.

To achieve the needed acceleration and the required metrics, there are many possible
hardware platforms:

—General Purpose Processors (GPP): Although the most flexible, these processors
exhibit very low performance (i.e., in terms of execution time and cost).

—Digital Signal Processors (DSP): This processor is optimized for signal processing
operations. However, a programmable DSP has the following problems: high cost,
large size, and high power consumption.
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Fig. 6. Hardware architecture design space [Platzner and Wehn 2010].

—Application Specific Integrated Circuits (ASICs): These are customized in one way
or another for a specific application. Despite offering the best performance, the high
costs and lack of flexibility reduce considerably the use of ASIC-based solutions.

—Field Programmable Gate Arrays (FPGAs): The main advantages of FPGA technol-
ogy are performance, time to market, cost, and reliability. In fact, the NRE (Non-
Recurring Engineering) costs in custom ASIC are much higher than those of FPGA-
based hardware solutions. Benefiting from the hardware parallelism, FPGAs offer
superior processing power to that of DSP. In the same time, FPGA’s flexibility in due
to its reconfigurability.

—Application Specific Instruction set Processors (ASIPs): ASIP is a dedicated processor
to a field of well-determined application or set of applications. It is intended to
accelerate the most commonly used functions.

Figure 6 contains many intersections between these well-known hardware plat-
forms. The one between the ASIP and FPGA design spaces is particularly interesting,
as it highlights hybrid computing platforms, such as reconfigurable processors
[Chattopadhyay 2013]. The strength of these platforms is their adaptability to reflects
the changing technology landscape.

5. CLASSIFICATION

5.1. Scope of the Survey

As the embedded domain is characterized by real-time, cost, and energy constraints,
efficient design of hardware solutions is required. If we check the various existing
hardware solutions and see their relevance to speaker recognition applications, then
we can identify three main clusters:
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Table III. Hardware Accelerations Based on ASIC

Ref.
Speech/
Speaker

Recognition

Algo.
F. E.

Algo.
P. M.

Tech.
node

Performance Architecture
realization

improvement
Freq. Power Area

[Pihl et al.
1996]

Speech — HMM 0.8μm 154MHz 835mW 16.5mm2

Core:
8.4mm2

Reduce Memory
bandwith by half

[Han et al.
2003]

Speech MFCC HMM 0.35μm 20MHz 13.4mW N/A Speech IC to reduce
the circuit
complexity

[Nedevschi
et al. 2005]

Speech MFCC HMM 0.18μm N/A N/A 2.56mm2 -12× faster/SW
solution

-Reduce complexity,
cost and energy
consumption (UI
specific
recognition)

[Jia-
ChingWang
et al. 2014]

Speaker/
Verif.

LPC SVM 90nm up to
100MHz

8.12mW 7.9×7.9
mm2

Core:
4.42×4.42

mm2

-Whole process
implemented

-Large number of
support vectors

—Efficient solutions but with no/low flexibility represent the first cluster. It includes
ASICs as well as FPGA-based solutions.

—The second cluster includes flexible solutions with low performance such as DSP and
GPP-based solutions.

—The third cluster considers the performance-flexibility tradeoff and brings forth spe-
cially tailored solutions.

We conducted studies on the different literature databases, such as Springer,
googlescholar, IEEE (Institute of Electrical and Electronics Engineers), ACM (Associ-
ation for Computing Machinery), and ScienceDirect, in order to select the most recent
work on accelerating speech/speaker recognition applications. The early works related
to speech recognition date to 1996, while the first works related to speaker recognition
date to 2009.

In the following, the main features extracted from state-of-the-art works will be
presented in tabular form. In all the upcoming tables, we denote “not supported” by “–”
and “not available” by “N/A.”

5.2. Performance Based Solutions

5.2.1. State of the Art. In the first cluster, we can pinpoint ASICs, an efficient customized
hardware solution, as it has a small size, and small energy consumption with high
speed. The ASIC has a major drawback in particular, unlike the printed circuit, which
can be controlled at all points of the circuit using conventional apparatus; it cannot be
tested in detail after its realization. In the case of non-functioning, diagnosis is diffi-
cult to do, especially if testability was not thought out at design time. Diagnosis can be
made only through often-complex test programs, which are difficult to develop. Before
starting the manufacture of an ASIC, it will be necessary to perform a detailed phys-
ical simulation. The ASIC has disadvantages as well as advantages, such as greater
resistance to radiation, reduced costs, and a high integration rate (higher density).

Various previous research on hardware designs has described the implementation
of the speech as well as the speaker recognition process based on ASICs. These works
are listed in Table III, where the used algorithm feature extraction (Algo. F. E.), al-
gorithm for pattern matching (Algo. P. M.), the technology node (Tech. node), and the
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Table IV. Speaker Recognition Acceleration Based on FPGA

Ref.

Speaker
Identif./

Verif.

Algo.
F. E.

Algo.
P. M.

Tech.
node

Performance Architecture
realization

improvement
Exec.
time Freq. #LUT #Models

[Ramos-
Lara et al.
2009]

Verif. MFCC SVM 90nm 4647.44μs 50MHz 6138(F.E.)
647(P.M.)

52 -Affordable prices
-Reduced area in the FPGA

(fixed-point format)
[Sarkar
and Saha
2010]

Identif. LFCC VQ 130nm N/A 100MHz 1496(F.E.) 131 -Reduce redundant frames at
pre-processing

-Low identification time
[Wang
et al. 2011]

Identif. LPCC SVM 90nm 10s 50Mhz N/A NIST
2010/ 9

-Focus on training
-Reduce com. time cost and

bandwidth using data-
packed mechanism
(1.05 speedup w.r.t. data-
unpacked mechanism)

-HW/SW co-designed solution
-89.9% identification rate

[EhKan
et al. 2011]

Identif. text
ind.

MFCC GMM 150nm 90× faster/
SW impl.

48MHz 16317(F.E.)
34193(P.M.)

400 Large number of voice streams
simultaneously in real time

[Li et al.
2012]

Identif. text
dep.

MFCC VQ 90nm 14.976ms 50MHz N/A 301 –Speedup: 17.6 w.r.t. Matlab
PC execution

-Identification rate is 93.3%
[Ramos-
Lara et al.
2013]

Verif. MFCC SVM 90nm 4647.44μs 50MHz 4218(F.E.)
1296(P.M.)

52 -Low cost
-fast identity verification

[Ehkan
et al. 2015]

— MFCC — 0.15μm N/A — 39452(F.E.) — -Parallelism and pipelining
during the signal processing

-Improvement of the memory
requirements and
computational usage

performance (in terms of frequency, power, and area), and the architecture realization
impact on the algorithmic demands are given. In Jia-Ching Wang et al. [2014], the au-
thors opted for a high-speed and low-power solution on an ASIC (recall here that ASICs
are certainly efficient but not flexible), while Han et al. [2003] focused on increasing
the speed and the area efficiency of the system, which was implemented on an ASIC in
order to accelerate the pattern comparison and the decision parts of the speech recogni-
tion process. In addition, in Nedevschi et al. [2005], the authors concentrated on power
consumption, high volume, and the memory bandwidth by parallelizing computation
bottlenecks. Thus, they opted for a solution that is at the same time scalable, retain-
able, and flexible. This improvement enabled the possibility of changing the language
as well as the algorithm used. However, in Pihl et al. [1996], authors tried to reduce
the memory bandwidth needed for the speech recognition process without affecting the
recognition performance.

FPGAs offer another solution with high performance due to the fine-grained
parallelism available in the configurable logic blocks. The FPGA configuration (or pro-
gramming) is done on the field, thus allowing design modifications post-manufacturing,
unlike for ASICs. Furthermore, an FPGA solution has advantages over ASICs such
as lower development costs, which leads to a smaller NRE. It also offers simplicity of
modifications, as well as shorter time to market than dedicated circuits. Although both
of these fields, that is, speech recognition and speaker recognition, are close, most of
the research works in the literature are concerned with the first area. Many dedicated
hardware optimizations based on FPGA for these types of applications were presented
through several research works, as shown in the Table IV (for speaker recognition–
related works) and Table V (for speech rcognition–related works). In these tables,
we give for each cited work the algorithm used for features extraction (Algo. F. E.),
the algorithm for pattern matching (Algo. P. M.), the technology node (Tech. node), and
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Table V. Speech Recognition Acceleration based on FPGA

Ref.

Algo.
F. E.

Algo.
P. M.

Tech.
node

Performance Architecture
realization

improvementSpeedup Freq. Power

[Vargas
et al. 2001]

LPC HMM 0.25μm 500× faster/
classic Viterbi

N/A N/A -Parallel Viterbi implementation
-2.64ms/4 words
-99.7% of exactitude rate

[Wang
et al. 2002]

MFCC HMM 0.35μm — — — -Decrease the required computational
power and the memory size

-4284 4 input LUT
-1408 3 input LUT
-Improves accuracy

[Yoshizawa
et al. 2006]

MFCC HMM 0.18μm Speed: 45.5s 80MHz 421.5mW -Noise robustness
-56.9μs/word

[Bourke and
Rutenbar
2008]

— HMM N/A 1.3 100MHz 196mW Low-power

[Cheng
et al. 2009]

MFCC GMM 90nm 2.677
(6.64s⇒2.48s)

100MHz N/A Word recognition accuracy: 93.42%

[Lin and
Rutenbar
2009]

N/A HMM N/A 10× faster N/A N/A Large-vocabulary recognizer

[Vu et al. 2010] MFCC — 90nm N/A as low as
4.1 MHz

N/A -Low-cost speech recognition systems
-10% resource utilization

[Chen
et al. 2011]

N/A GMM 65nm 2.18 faster/ SW
impl.

N/A N/A -Offloading computation-intensive parts
-416 LUT

[Lakshmi and
Rao 2013]

MFCC HMM 90nm 4.7s ⇒1.49s 120MHz N/A 93.33% of word accuracy

[Bapat
et al. 2013]

N/A HMM 180nm
and 65nm

2 62.5MHz 210mW -50% reduction in decoding latency
-442,000 NAND2 gate

[He et al. 2013] MFCC GMM 40nm 3.02
and
2.25

62.5 MHz 54.8mW -Parallel and pipelined architecture
-Frequency and power reductions
-3.02 speedup/bigram language model
-3.25 speedup/trigram language model
-Area: 3.86mm2

[Buitrago et al.
2013]

N/A HMM 90nm 23.08 faster/ SW
impl

(9714s⇒414s)

N/A 53.82mW -Implementation of certain software
routines as equivalent hardware
models

-8% increase in logic blocks

the performance and the architecture realization impact on the algorithmic demands.
We note that the performance is given in terms of execution time, frequency, number of
Look Up Tables (LUT), and the number of stored models for speaker recognition works,
while it is given in terms of speedup, frequency, and power for speech recognition works.

Several research works treated the speaker recognition implementation on FPGAs
as shown in Table IV. It is worth mentioning that the computation complexity of the
speaker recognition process depends on several parameters influencing memory access
demands. These parameters are the number of speakers in the database, the number
of frame vectors, as well as their dimensionality. Besides, and depending on the type
of recognition, whether it is identification or verification, the memory access demands
vary widely.

For example, J. F. Wang et al. [2011] presented a hardware/software co-design for fast
trainable recognition systems and optimized the training phase of the speaker recogni-
tion process. They opted for a hybrid solution while the training part was implemented
on the hardware. SVM training parameters and speech features should be transferred
from the software to the hardware. A HW/SW (Hardware/Software) communication
block is used. In order to minimize the communication time cost and the bandwidth
requirements between the software and the hardware, they used a packed data tech-
nology that minimizes transmission number. Furthermore a 50 RAMB16 is used.
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In Ramos-Lara et al. [2013] and Ramos-Lara et al. [2009], the authors considered
the speaker verification issue. They proposed a system implemented on an FPGA that
carries out feature vector extraction. Contrary to the previous work, these authors
implemented the whole process on the FPGA. Thus the feature vector extraction node
is carried out in 285μs, while matching between this feature vector and the model stored
in external SRAM (Synchronous Random Access Memory) is executed in 4.362μs (15
among 40 of the total used resources for 18-Kbit RAM (Random Access Memory)).
Furthermore, EhKan et al. [2011] proposed a hardware system that is capable of
processing 90 times more audio streams in real time than could be done in a standard
computer. The feature vector as well as the model trained from the speech utterances
are stored in an external memory (RAM) connected directly to the FPGA.

Last but not least, Li et al. [2012] as well as Sarkar and Saha [2010] used an FPGA
for performing acceleration. Li et al. [2012] focused on accelerating the whole process by
reducing the time consumption, while Sarkar and Saha [2010] focused on reducing the
redundant frames in the feature extraction part and thus gaining a better performance
of the system. Sarkar et al. implemented the whole process on dedicated hardware. The
models of each speaker are stored in an external database (131 speakers).

In Bapat et al. [2013], Bourke and Rutenbar [2008], Buitrago et al. [2013], Chen
et al. [2011], Cheng et al. [2009], and Lakshmi and Rao [2013], the authors worked
on the field of speech recognition, as shown in Table V. In Buitrago et al. [2013], Chen
et al. [2011], and Lakshmi and Rao [2013], they tried to solve the issue of computation
bottleneck and the energy problem by opting for a hardware/software co-design ap-
proach as a solution to accelerate the pattern classification phase or a speech recognizer
engine such as Sphinx. For Bapat et al. [2013], they used a pure hardware solution
and designed a co-processor in order to accelerate the speech recognition process.

Previous research on custom hardware also described also the speech recognition pro-
cess using field programmable gate arrays such as in Lin and Rutenbar [2009], and in
Vargas et al. [2001] they tried to achieve a high speed by reducing the researching time
in the database and the processing time, respectively. He et al. [2013] were interested
in reducing the frequency and thus the power consumption for the speech recognition.
The architecture of the hardware solution for this article used parallelization as well
as pipelining by implementing an ASIC.

Furthermore, Wang et al. [2002] aimed at decreasing the memory requirements of
the system while reducing the computational complexity of the MFCC algorithm. In
fact, after rescheduling the original MFCC algorithm, the number of needed compu-
tation operations in terms of addition/substraction and multiplication were reduced.
Conversely, Yoshizawa et al. [2006] proved that the node with the higher priority for
acceleration was the output probability calculation. In fact, the number of operations
needed for such a kernel is about 335 million operations compared to 4 million for the
Viterbi algorithm. Thus, Yoshizawa et al. [2006] achieved processing time, including
data transfer, of 45.5ms, which is approximately 56.9μs/word in a 800-word vocabulary
recognizer. The HMM training and the data transfer from external to internal memory
took approximately 12.8s.

Cheng et al. [2009] tried to achieve real-time requirements of such systems by re-
ducing the memory bandwidth while maintaining the accuracy. In this work, the HMM
parameters for the acoustic modeling phase are stored in two memory modules, SRAM
and SDRAM (Synchronous Dynamic Random Access Memory), in the dedicated hard-
ware. Thus, memory access demands are reduced thanks to the possibility of retrieving
data quickly from the internal memory of the accelerator. However, the internal mem-
ory size should be 10 to 100s of KB, which may induce drawbacks. For that system, a
transfer of 160 bytes/clock cycle of data to the hardware accelerator is needed.

Even though Graphics Processing Units (GPUs) do not appear in Figure 6, they were
widely used as an acceleration platform. This is due to their high arithmetic power and
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Fig. 7. (a) Time efficient, power efficient, and area efficient classification of performance-based solutions.
(b) Technology node scaled classification of performance-based solutions. Legend: R1: Jia-Ching Wang et al.
[2014], R2: Nedevschi et al. [2005], R3: Pihl et al. [1996], R4: Bapat et al. [2013], R5: Buitrago et al. [2013],
R6: Chen et al. [2011], R7: Cheng et al. [2009], R8: Wang et al. [2011], R9: Ramos-Lara et al. [2013], R10:
Ramos-Lara et al. [2009], R11: EhKan et al. [2011], R12: He et al. [2013], R13: Li et al. [2012], R14: Yoshizawa
et al. [2006], R15: Han et al. [2003], R16: Bourke and Rutenbar [2008], R17: Lakshmi and Rao [2013], R18:
Lin and Rutenbar [2009], R19: Vargas et al. [2001], R20: Sarkar and Saha [2010], R21: Ehkan et al. [2015],
R22: Wang et al. [2002], R23: Vu et al. [2010]. Red references refer to speaker recognition applications. Green
references refer to speech recognition applications.

great memory bandwidth. Indeed, several research works treated GPU-based speaker,
as well as speech, recognition acceleration. For instance, Liu [2009] focused on paral-
lelizing algorithms for HMM training and classification, where they reached an 800×
and 300× speedup for the forward algorithm and the Baum-Welch algorithm, respec-
tively. Vaněk et al. [2011] focused on the use of very large acoustic models with real-time
speech recognition. Other GPU accelerations of the speaker recognition process were
presented in Azhari [2011] and Machlica et al. [2011]. Furthermore, in Fuqiu et al.
[2012], a hybrid CPU (Central Processing Unit)-GPU platform is used to reach 63.8×
speedup, whereas parallel computation techniques are used by Gaafar et al. [2014] to
improve computational speed and recognition rate. Both works target speech as well
as speaker recognition applications.

Due to their highly parallel structure, GPUs are effective for a wide range of image
processing tasks and scientific computing applications. However, they are considered a
multicore solution, whereas others (FPGA, ASIC) are still considered unicore. As we fo-
cus in this article on speaker recognition embedded applications, GPU-based implemen-
tations are discarded and will not be included in trend or future insights discussions.

5.2.2. General Trend Analysis. For all the previously mentioned works, different systems
used hardware optimization for speech and speaker recognition applications. We notice
that application-specific solutions for speaker recognition started appearing only in
2009. In addition, there was only one work among four dealing with ASIC. The key
thrust in performance improvement was to minimize the execution time. Consequently,
these works showed that these platforms are well suitable for real-time recognition.
They even implemented the highest computationally demanding algorithms, such as
GMM.

The aforementioned works are scaled in Figure 7 according to time, energy, area,
and technology node. In both charts, red citations refer to speaker recognition appli-
cations, while green ones refer to speech recognition. Figure 7(a) extracts information
to mention the intersection between the performance related to area, energy, and time
efficiency. For instance, fast and low-power solutions are captured in the intersection
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between the “Time” and “Power” circles, whereas low-power and low-area solutions
are captured in the intersection between “Power” and “Area” circles. Any solution that
optimizes all three metrics is in the intersection of the three circles. We note that
only 5 works among 23 targeted optimizing simultaneously the the metrics of power,
area, and time response. No much attention was paid to power and area, as the main
focus was on the real-time aspect. Along with the area minimization, the implemen-
tation technology node differs from one work to another. Indeed, Figure 7(b) extracts
information to mention the technology node used in each reference work.

5.2.3. Possible Future Directions. Despite the fact that ASIC solutions can offer better
performance, the number of FPGA based ones are gaining more and more prominence.
Indeed, the need for reconfigurability as an efficient solution for minimizing production
and evolution costs is obvious.

Even though FPGA implementations are suitable platforms for reducing power and
area, the focus was rather on real-time constraints. Now that embedded systems re-
quirements are increasing in terms of power demands and miniaturization, more work
should seriously target these metrics along with execution time demands. Indeed, the
gap between power storage evolution and applications requirements can be narrowed
with more focus on power consumption while using reconfigurable platforms.

5.3. Flexibility-Based Solutions

5.3.1. State of the Art. In the second cluster, we can find DSPs and GPPs. These solutions
are known to be flexible, as they are programmable, but they are less efficient. On one
hand, GPPs intend to cover the greatest number of potential application domains; their
architectures have evolved over the years. Hence, they offer, in their current versions,
so-called multimedia features for the treatment of data, which means that part of
the architecture is dedicated to regular data processing of a large volume, such as
sound, images, and video. On the other hand, a digital signal processor presents better
performance compared to GPPs, even if they have much in common. DSP is a special
type of microprocessor that incorporates a set of special functions. These functions are
designed to make particularly efficient digital signal processing operations.

For example, it is possible to adjust a digital processing function in real time ac-
cording to some criteria of signal changes. This could be an adaptive filter for the
signal processing, hence providing the possibility of adaptive algorithms implementa-
tion. However, a programming delay may occur if there is a resource conflict or in the
case of a rupture sequence. In addition, DSPs present an expensive solution with a
high size and a lot of power dissipation.

Several works have been done based on DSP and one of them combined DSP with
GPP, aiming at gaining flexibility as well as accuracy. For example, Lizondo et al. [2012]
opted for a low-cost solution that was implemented on a dsPIC (the comercial name
of Digital Signal Controller from Microchip) microcontroller chip and with the use of
Matlab as a software tool. In the latter, they augmented the system accuracy, since
the false acceptance rate and the false rejection rate became 8% and 12%, respectively,
while optimizing the algorithm to enhance speed and memory usage. In order to gain in
the memory usage of the feature extraction process, the authors opted for hard-coded
subroutines in the program memory such as Hamming windows, filter-bank, and DCT
kernels. In addition, Manikandan et al. [2011], Suryawanshi and Ganorkar [2014], and
Hegde [2009] focused on accuracy of the system as well as efficiency. Manikandan et al.
[2011] tried to minimize the memory requirements of the feature extraction kernel of
the process by using the cochlear filters, which are considered robust in noisy environ-
ments. Thus the memory used is 511KB and 284KB for the MFCC and cochlear fea-
tures, respectively. But these optimizations are at the expense of the computation cost.
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Table VI. Speech/Speaker Recognition Acceleration Based on DSP

Ref.
Speech/Speaker

Recognition Algo. F. E. Algo. P. M. Accuracy Extra features

[Kao and
Rajasekaran
2000]

Speech N/A HMM Embedded speech recognition
system

-Flexibility (changing vocabulary)
-Low cost

[Hegde 2009] Speaker
Ident./Verif.

MFCC Discrete
Cosine

Transform

Efficiency as well as accuracy are
achieved.

—

[Manikandan
et al. 2011]

Speech MFCC SVM -93.33% for MFCC features
-89.67% for C. Filter banks.

-Designated to handheld devices
-Cochlear Filter Banks algorithm

added to F.E.
[Lizondo et al.
2012]

Speaker/ Verif. MFCC N/A -False acceptance rate: 8%
-False rejection rate: 12%

-Low cost
-Increase performance

[Suryawanshi
and Ganorkar
2014]

Speech MFCC DWT -More than 90%
-Precision between 70 and 80%

—

Furthermore, Suryawanshi and Ganorkar [2014] improved the overall performance
of the system by means of highly accurate and precise results. Kao and Rajasekaran
[2000] tried to merge the use of GPP with DSP to achieve flexibility by the use of a un-
limited vocabulary and the possibility of suiting several recognition contexts. For that,
and based on the computational requirements of the whole process, they proposed to di-
vide it into a computation-intensive part, with low memory requirements implemented
on a DSP, and a low computation grammar part, with large memory requirements
implemented on a GPP. Thus the models are treated on the GPP and transmitted to
the DSP while maintaining a minimum of interaction between both platforms.

More details are presented in Table VI, where the recognition type, the algorithm
used for features extraction (Algo. F. E.), the algorithm used for pattern matching (Algo.
P. M.), the accuracy, and extra features are given.

5.3.2. General Trend Analysis. For the aforementioned research works, several systems
aimed to implement on DSP/GPP platforms flexible speech or speaker recognition
applications. Most of them used the dedicated hardware solution to solve the problem
of the most computationally intensive part in the process. Thus, during the back-
end search stage of recognition, the output probability calculation was the node of
the process that has higher priority for acceleration. We can notice that two works,
among five, target speaker recognition. Indeed, domain-specific processors such as
digital signal processors are suitable for speech signal analysis. Therefore, the main
contribution was on accuracy rather than on execution time. Indeed, it was possible
to adjust the characteristics of the target application, such as increasing the database
size (higher number of speakers), changing the language, and so on.

However, DSP-based designs provide a limited speed for data processing due to the
use of special memory architectures that are able to fetch multiple data and/or instruc-
tions at the same time. Consequently, they are susceptible to arithmetic saturation.

5.3.3. Possible Future Directions. Several factors, such as time and health condition,
make a person’s voice change. Thus, utterances in training and testing can differ
considerably. Highly variant input utterances create challenges for speaker recognition
systems to attain efficiency. Indeed, flexibility as well as accuracy are necessary for
such systems, and these technologies are still an active area of research. Due to the in-
creasing need for speaker recognition applications, several flexible solutions need to be
improved in order to increase their granularity and become more robust and accurate.

Despite the fact that DSP-based solutions provide better performance (in terms
of execution time and memory demands) than GPP, they do not fulfill real-time
requirements. In addition, energy consumption and area issues are only partially
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revolved by these hardware architectures. Without loss of flexibility, these platforms
need to be more aware of embedded domain constraints.

5.4. Heterogeneous Systems for Speaker Recognition

A hardware solution is considered efficient for low-power devices compared to general-
purpose processor-based solutions. Some works tried to combine both advantages
of the dedicated hardware as well as GPP by making a hybrid solution combining
these two platforms. Consequently, a pattern matching kernel is more suitable to be
mapped to a hardware platform, whereas less computationally heavy kernels would
be mapped to GPP. This makes a hybrid solution combining both advantages.

Wang et al. [2011] implemented the speaker recognition process on a hybrid solution
combining an FPGA and an ARM (Advanced RISC Machines) processor. Although
they reached approximately 90% of the identification rate, they aimed to accelerate
the training part of the process on the FPGA, although it is not considered the most
computationally intensive part.

Vargas et al. [2001] achieved the real-time requirements for speech recognition by the
limiting the state numbers in the HMM algorithm. A Viterbi node was implemented on
the dedicated FPGA, and other operations, such as a signal analysis step, were left to a
Motorola 56002. In addition Lee et al. [2007] proposeda high-performance co-processor
with dedicated hardware for a distance calculation algorithm, which was considered the
most computation-intensive operation. This part was implemented on a ASIC-based
approach using a 0.18μm technology node, while other operations were left to the ARM7
processor. Li et al. [2009] tried to achieve the best tradeoff between GPP and dedicated
hardware solutions. Hence, they considered a dedicated hardware co-processor for the
output probability calculation, which is considered the most computation-intensive
part. In addition, they used a microcontroller unit for other non-computation-intensive
operations such as MFCC feature extraction, Viterbi decoding, and system control
tasks. The co-processor was implemented using FPGA, and the communication between
the MCU (Micro Controller Unit) and the dedicated hardware was assured by the SRAM
(Static Random Access Memory) interface to facilitate control of the microcontroller.

For the aforementioned works, the authors tried to combine the advantages of using
both GPP and a dedicated hardware design. Such a hybrid solution aims at achieving
low power consumption while maintaining flexibility and performance of the system.

5.5. Performance-Flexibility Tradeoff

As mentioned in Section 4, ASIPs as well as reconfigurable processors represent a
hardware solution to meet the efficiency-flexibility tradeoff [Chattopadhyay et al. 2008].

In fact, ASIPs [Henkel 2003] are customized to particular applications, thereby com-
bining performance and energy efficiency of dedicated hardware solutions with flexibil-
ity. These processors are smaller and simpler than their general-purpose counterparts,
able to run at higher clock frequencies, and are more energy efficient. The most pow-
erful approach for designing ASIPs is based on the specification of the architecture by
means of an Architecture Description Language (ADL), specifically aimed at defining
programmable architectures at a higher level of abstraction compared to hardware de-
scription languages, like VHDL (VHSIC Very High Speed Integrated Circuit Hardware
Description Language) and Verilog.

Reconfigurable processors are perhaps better to address this tradeoff. With advances
in their design and use, they are attracting more attention from embedded hardware de-
signers. In particular, we find reconfigurable ASIPs (rASIPs) [Jzwiak et al. 2010]. This
class of architecture combines the programmability of ASIPs with the post-fabrication
hardware flexibility of re-configurable structures.
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Fig. 8. Speech/speaker recognition process with different implementation works. Legend: R1: Jia-Ching
Wang et al. [2014], R2: Nedevschi et al. [2005], R3: Pihl et al. [1996], R4: Bapat et al. [2013], R5: Buitrago
et al. [2013], R6: Chen et al. [2011], R7: Cheng et al. [2009], R8: Wang et al. [2011], R9: Ramos-Lara et al.
[2013], R10: Ramos-Lara et al. [2009], R11: EhKan et al. [2011], R12: He et al. [2013], R13: Li et al. [2012],
R14: Yoshizawa et al. [2006], R15: Han et al. [2003], R16: Bourke and Rutenbar [2008], R17: Lakshmi and Rao
[2013], R18: Lin and Rutenbar [2009], R19: Vargas et al. [2001], R20: Sarkar and Saha [2010], R21: Ehkan
et al. [2015], R22: Wang et al. [2002], R23: Vu et al. [2010], R24: Lizondo et al. [2012], R25: Manikandan et al.
[2011], R26: Suryawanshi and Ganorkar [2014], R27: Hegde [2009], R28: Kao and Rajasekaran [2000]. Red
references: works on speaker recognition. Green references: works on speech recognition. Yellow references:
works on accelerating extraction phase. Orange references: works on accelerating training phase.

6. DISCUSSION AND FUTURE INSIGHTS

Based on the classification and comparison of the considered works in this survey, there
are several conclusions to be drawn. Indeed, many research works concerning the field
of speaker recognition and speech recognition were presented. For all the previously
cited implementations, many hardware solutions, either ASIC or FPGA based, were
used for a possible optimization of computational needs as well as memory access
demands targeting speech/speaker recognition applications.

In Figure 8, we gathered information to recapitulate which implementation at-
tempted the acceleration of which algorithmic block and exactly which part of the
speech/speaker recognition process. In this graph, references with red refer to works
based on speaker recognition and that may target both the extraction part as well
as the classification part of the process. Green refers to works focusing on the speech
recognition process. In addition, yellow refers to implementations that attempt to
accelerate only the extraction phase. Finally, orange refers to works accelerating the
training phase that can be used not only for speech recognition but also for speaker
recognition applications.

If we recall Figure 6, and add all the considered references according to the clusters
mentioned earlier in the survey, then we can plot a flexibility performance chart as
illustrated in Figure 9. This figure depicts the previously mentioned works and on which
platform (DSP, GPU, ASIC, FPGA, ASIP) they are based. We note that references with
red refer to speaker recognition applications, while green refers to speech recognition
applications. Many conclusions can be drawn from these charts.
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Fig. 9. Selected works scaled for appearance date, flexibility, and efficiency. Legend: R1: Jia-Ching Wang
et al. [2014], R2: Nedevschi et al. [2005], R3: Pihl et al. [1996], R4: Bapat et al. [2013], R5: Buitrago et al.
[2013], R6: Chen et al. [2011], R7: Cheng et al. [2009], R8: Wang et al. [2011], R9: Ramos-Lara et al. [2013],
R10: Ramos-Lara et al. [2009], R11: EhKan et al. [2011], R12: He et al. [2013], R13: Li et al. [2012], R14:
Yoshizawa et al. [2006], R15: Han et al. [2003], R16: Bourke and Rutenbar [2008], R17: Lakshmi and Rao
[2013], R18: Lin and Rutenbar [2009], R19: Vargas et al. [2001], R20: Sarkar and Saha [2010], R21: Ehkan
et al. [2015], R22: Wang et al. [2002], R23: Vu et al. [2010], R24: Lizondo et al. [2012], R25: Manikandan
et al. [2011], R26: Suryawanshi and Ganorkar [2014], R27: Hegde [2009], R28: Kao and Rajasekaran [2000].
Red references: works on speaker recognition. Green references: works on speech recognition.

First, it is important to notice that the number of performance-based solutions is
much bigger than flexibility-based ones (23 against 5). This first result confirms that
speaker/speech recognition systems are compute-intensive applications, particularly
when real-time and embedded domain constrains are added. However, with the ad-
vances in DSPs performance, works using these platforms appeared in 2009, thus
benefiting from flexibility to look for more accuracy in the results. The use of DSPs can
also be used due to the fast memory access, inherent to these platforms architecture.

Second, we notice that works on accelerating speaker recognition appeared in 2009,
compared to speech recognition, which appeared in 1996. As for the importance of
speaker recognition, it is noteworthy that speaker identity is the only biometric that
may be easily tested remotely through the existing infrastructure, namely the tele-
phone network. With the growing number of mobile telephones, speaker recognition
will become more popular in the future. In terms of deployment, speaker recognition
is in its early stages. Thus, accelerating the process and meeting real-time constrains
will definitely become a must in the near future.

Last but not least, there is a dearth of applications that address useful tradeoffs. On
one side, GPP and DSP allow energy efficiency as well as a reduced area. On the other
side ASICs are well used for a specific task that improves the performance and not the
flexibility. FPGA offers also a certain degree of performance as well as flexibility due
to their reconfigurable aspect.

The used hardware platforms can be designed or used in a way that can signifi-
cantly improve the overall system performance by reducing memory access demands. In
Table VII, we gathered information related to techniques used in order to reduce the
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Table VII. Techniques for Memory Access Improvements. Legend: R1: Jia-Ching Wang et al. [2014], R2:
Nedevschi et al. [2005], R3: Pihl et al. [1996], R4: Bapat et al. [2013], R5: Buitrago et al. [2013], R6: Chen et al.
[2011], R7: Cheng et al. [2009], R8: Wang et al. [2011], R9: Ramos-Lara et al. [2013], R10: Ramos-Lara et al.

[2009], R11: EhKan et al. [2011], R12: He et al. [2013], R13: Li et al. [2012], R14: Yoshizawa et al. [2006], R15:
Han et al. [2003], R16: Bourke and Rutenbar [2008], R17: Lakshmi and Rao [2013], R18: Lin and Rutenbar
[2009], R19: Vargas et al. [2001], R20: Sarkar and Saha [2010], R21: Ehkan et al. [2015], R22: Wang et al.

[2002], R23: Vu et al. [2010], R24: Lizondo et al. [2012], R25: Manikandan et al. [2011], R26: Suryawanshi and
Ganorkar [2014], R27: Hegde [2009], R28: Kao and Rajasekaran [2000]
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memory bandwidth or memory access demands by speaker/speech recognition applica-
tions. The most common one employed is the pipeline, which is used essentially for the
feature extraction node. A fixed-point arithmetic format is used instead of a floating
point because of its capability to reduce the memory bandwidth. It also reduces the
system memory requirements because of the optimum required data width. In addi-
tion, the on-chip memory method, which consists of integrating several memory blocks
(Flash/SRAM) on the same chip, reduces the number of memory accesses. However,
this technique may not be well used because speaker/speech recognition systems re-
quire higher memory sizes. For the hard-coded technique, constant values are used,
thus avoiding memory access but at the expense of flexibility.

For the aforementioned works in the table, we can notice that four of five fixed-point-
based solutions mentioned several methods to reduce memory access requirements. The
most common methods for these four works are fixed-point arithmetic and pipelining.

Furthermore, for reconfigurable-based solutions (FPGA), 4 of 7 works that treated
speaker recognition and 8 of 12 works that treated speech recognition implemented
techniques for reducing memory demands. We can also mention that the most-used
ones are pipelining and fixed point, while the least-used ones are data packing
and double buffering. If we recall the dataflow graph of Figure 3.2.2 shown in
Section 3.2.2, then the pipelining technique is inherent to the graph structure,
especially for features extraction. Since pipelining can be implemented only in
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reconfigurable or fixed (ASIC-based) platforms, any implementation on such platforms
not using pipelining shows poor performance in terms of memory access.

Finally, for programmable solutions, such as using DSP as a hardware platform,
two of five works tried to reduce memory bandwidth using either cochlear filter or
hard-coded techniques. We note that these flexible solutions may offer only a small
improvement rate in terms of memory access. Thus, the overall system performance is
not that important.

All of these concluding remarks about the state of the art on hardware architec-
tures for speaker recognition applications lead to the projection of new research trends
that can be undertaken in the future. Indeed, reconfigurable processors can play an
important role in the fast-evolving research of speech/speaker recognition due to its
adaptability.

7. CONCLUSION

A speaker recognition system can be considered a promising biometric solution that
can be widely used in embedded systems. The constraints of the embedded domain,
together with the high computation amount due to speech processing, lead to the
necessity of using the appropriate underlying hardware architecture in order to meet
the requirements. These technologies vary in terms of flexibility and performance.

In this article, a survey of state-of-the-art research in hardware architectures for
speaker recognition applications is given. Due to the similarities of some process phases
between speaker and speech recognition, we also added the research done for speech
recognition applications. As a conclusion, one can notice that 64% (18 of 28) of the
surveyed works concern speech recognition. In addition, FPGA is the most popular
platform for acceleration (19 of 28). This is probably due to their reconfiguration ca-
pability and the achievable speedup, in addition to pipelining implementation capa-
bilities. Indeed, 10 works of 19 applied the pipelining technique. Furthermore, DSP is
used less (5 of 28) due to their high cost and high energy consumption. Last, ASICs are
the least used (only 4 of 28), as they are not flexible. Despite the achievable flexibility/
performance tradeoff, ASIP-/rASIP-based solutions are missing. This is probably due
to the fact that they belong to an upcoming trend, thus leading to future research that
can be undertaken.

Indeed, based on the previous work presented in this article, it is shown that a
successful implementation of speaker recognition system needs a platform solution
that must answer performance as well as memory access demand issues. Consequently,
a new proposed platform of an ASIP/rASIP/reconfigurable processor design could be
the answer for embedded speaker recognition systems. The reason is that the needed
accuracy level can be adjusted using a flexible, and thus programmable, technology.
At the same time, a customized pipelined architecture and instruction set would help
answer computation, memory, cost, and energy demands. With the major research
and commercial advances in the field of ASIP and reconfigurable processors design
automation, these solutions would become easy to design and use.
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