
Analyzing State-of-the-Art Role-based Programming Languages
Lars Schütze

Chair for Compiler Construction
TU Dresden, Germany

lars.schuetze@tu-dresden.de

Jeronimo Castrillon
Chair for Compiler Construction

TU Dresden, Germany
jeronimo.castrillon@tu-dresden.de

ABSTRACT
With ubiquitous computing, autonomous cars, and cyber-physical
systems (CPS), adaptive software becomes more and more impor-
tant as computing is increasingly context-dependent. Role-based
programming has been proposed to enable adaptive software de-
sign without the problem of scattering the context-dependent code.
Adaptation is achieved by having objects play roles during runtime.
With every role, the object’s behavior is modi�ed to adapt to the
given context. In recent years, many role-based programming lan-
guages have been developed. While they greatly di�er in the set
of supported features, they all incur in large runtime overheads,
resulting in inferior performance. The increased variability and
expressiveness of the programming languages have a direct impact
on the run-time and memory consumption. In this paper we pro-
vide a detailed analysis of state-of-the-art role-based programming
languages, with emphasis on performance bottlenecks. We also
provide insight on how to overcome these problems.

CCS CONCEPTS
• Software and its engineering → Software performance; Ob-
ject oriented architectures;

KEYWORDS
Benchmarking, Role-based Programming, Optimization
ACM Reference format:
Lars Schütze and Jeronimo Castrillon. 2017. Analyzing State-of-the-Art
Role-based Programming Languages. In Proceedings of Programming ’17,
Brussels, Belgium, April 03-06, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3079368.3079386

1 INTRODUCTION
The object-oriented paradigm is good at capturing the structure
of a domain but fails at describing the dynamics, i.e., the collabo-
ration between objects at run-time. Roles are an enhancement of
object-orientation that can describe this kind of dynamic behav-
ior. Dynamic behavior is extracted from classes to roles that can
be bound and unbound to objects at run-time. Roles can add or
overwrite the behavior of objects, e�ectively allowing objects to
adapt. In recent years, role-based programming languages have

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
Programming ’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4836-2/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3079368.3079386

been developed closing the gap between modeling and program-
ming. These languages are a promising alternative to model the
adaptive behavior required for future applications, e.g., in the area
of autonomous driving or cyber-physical systems in general.

Role-based programming languages are young and thus have
little support from tools and runtimes. In contrast, object-oriented
languages have mature compilers and runtimes (e.g., Java Virtual
Machine (JVM)). These infrastructures have been engineered for
many years so that good designs, i.e., with logic implemented across
multiple objects, do not su�er considerable performance penalties.
There is no such support yet for the additional functionality brought
in by roles though. Today, role-based languages are implemented
using metaprogramming capabilities (e.g., Java re�ection) or are
pre-compiled to another language. These implementations use lots
of time and space to realize the �exibility o�ered by the role concept.
As a result, using the role concept to separately de�ne the structure
of classes as well as object collaboration results in bad performance.

Due to the lack of established benchmarks for role-based pro-
gramming, authors have not assessed the performance of their indi-
vidual implementations. Additionally, there is a wealth of features
that have been identi�ed across multiple role-based approaches [7].
This further complicates the selection of an appropriate language
based on its performance and memory overhead. Such a selection
is already di�cult for more standard programming languages [9].

This paper assesses state-of-the-art role-based programming
languages with a role-speci�c benchmark to allow cross language
comparison and to identify where performance problems arise.
The results show problems of the di�erent approaches and we
suggest how to optimize for performance. The main contributions
of this work are (1) an analysis of current state-of-the-art role-based
programming languages and (2) suggestions on how to increase
the performance of these languages.

The remainder of this paper is organized as follows. Section 2
introduces the role concept, the role model of the benchmark, and
state-of-the-art role-based programming languages. Thereafter, the
benchmark is characterized and the results are discussed in Sec-
tion 3. Section 4 discusses related work. At last, conclusions are
drawn in Section 5.

2 BACKGROUND
This section introduces the role concept, the role model of the
benchmark, and an excerpt of programming languages that allow
to write role-based programs.

2.1 Role Concept
As mentioned in Section 1, the role concept is an enhancement of
the object-oriented design. Objects can start or stop playing a role
at run-time. Playing a role changes the behavior of that object. The

Programming ’17, April 03-06, 2017, Brussels, Belgium L. Schütze and J. Castrillon

Bank

Customer
id

SavingsAccount

withFee()

CheckingsAccount

limited()

Person
name

Account

decrease()
increase()

Transaction
amount

execute()

Source

withDraw()

Target

deposit()

Figure 1: A simple role model of a bank. Accounts can play
di�erent roles across the compartments.

interface of an object is de�ned by all the roles the object currently
plays. Thus, two objects of the same class can exhibit di�erent
behavior at run-time.

A role model is a model of roles, their relations, and constraints.
Roles are grouped in rei�ed contexts, calledCompartment. As classes
in object-orientation encapsulate di�erent behaviors it is not visi-
ble what behavior causes which relationship to other classes. With
the role concept, these collaborations among objects are explicitly
modelled by relationships between roles. Thus, the behavior of an
object is determined by the active context and the roles it plays.
Changing the context e�ectively leads to object adaptation since it
changes the roles the object plays.

Figure 1 shows a simple role model of a bank. There are Person
objects which play the role of a Customer in a Bank. Accounts
can be of di�erent type in the bank, namely SavingsAccount and
CheckingsAccount. Besides, there is a Transaction compartment,
where an account can either play the role of a Source or a Target,
but not both at the same transaction. For example, when playing the
role of the source of the transaction, it is just allowed to withdraw
money from the account.

2.2 Role-based Programming Languages
During recent years, role-based programming languages have been
developed that realize the role concept using di�erent approaches.
In the following, di�erent implementations will be introduced that
are later measured and compared.

2.2.1 Role Object Pa�ern. Dirk Bäumer et al. have introduced
the Role Object Pattern (ROP) because of the need for a �exible
design pattern that allowed for unanticipated changes without the
need to recompile the whole application [2]. It allows to model
di�erent views of an object designed as role objects which are dy-
namically added and removed from the object (i.e., the core object).
This results in a segmentation of the logical entity into multiple

physical entities, where the identity of each entity is di�erent. Thus,
as many design patterns, ROP su�ers from object schizophrenia [5],
as common object-oriented programming languages do not support
delegation, but a weaker form called forwarding. Using role-based
programming languages can help to solve the object schizophrenia
problem, as compilers can enforce rules [4]. Being a simple pattern,
the segmentation of entities has to be done for every single entity
that should be able to play roles. Additionaly, the pattern does not
take the active context into account to activate or deactivate roles.

2.2.2 Object Teams/Java. Stephan Herrmann recognized that
collaborations are a crosscutting concern as multiple classes are
involved [3]. Object Teams (OT)1 is an approach to allow to de�ne
crosscutting concerns for an existing application (i.e., a posteriori
adaption) extending the idea of aspect-orientation and software
composition. Objects are rei�ed into compound objects called Team
containing all participating roles. A role has to be played by a certain
type using the playedBy keyword. In OT these players are called
the base class. A role can add methods, de�ne methods that either
forward to the base class (callout binding), or like aspects are called
before, after, or replace a method of the base class (callin binding).
Whenever there is such a callin binding the base method is called
bound. Therefore, the OT compiler generates Java code and for each
of the callins the compiler adds an attribute to the .class �le of
the respective Team class. At load time (or whenever a binding to
a base method becomes known at run-time), the weaver rede�nes
the base class: the body of the bound methods of the base class are
moved and replaced with the initial wrapper (the entry point to the
OT runtime) and the chaining wrapper that is used to dynamically
call all bindings registered on a base method. Furthermore, a bound
method id is stored in the base class. There is the TeamManager
to dynamically decide which teams are active as activating and
deactivating teams are registering themselves.

2.2.3 LyRT. Variability can be achieved on di�erent levels. LyRT2

allows to de�ne variability on the granularity of single objects
(called dynamic binding mechanism) by providing a Java API [13].
However, to allow role-playing the participating classes have to im-
plement the IPlayer, IRole and ICompartment interfaces, respec-
tively. The runtime provides a registry to handle all state in a central
lookup table. At this registry, new cores (i.e., player objects) can
be requested. The registry stores relations between compartments,
players, and roles. Furthermore, it stores the level of the relation
(e.g., when roles play roles the level will increase by one) and the
sequence of the relation (i.e., multiple roles bound at the same level).
If there are multiple roles implementing the same method, the one
with the highest level and sequence will be chosen. At a given point
in time only one compartment can be active. Every binding of roles
to a core will be stored w.r.t. the active compartment. Variability
is achieved by generating sub-classes at run-time. Into these sub-
classes the dispatch logic is implemented using proxy instances.
These can be exchanged without touching the core objects allowing
for unanticipated adaption without restarting the application.

2.2.4 SCROLL. Recent implemention of roles into object-oriented
programming languages required a speci�c runtime environment.

1http://www.eclipse.org/objectteams/
2https://github.com/nguonly/role4j

Analyzing State-of-the-Art Role-based Programming Languages Programming ’17, April 03-06, 2017, Brussels, Belgium

SCROLL (SCala ROLes Language)3 is a domain-speci�c language
(DSL) written in Scala that allows role-based programming without
a speci�c runtime [8]. Conceptually, SCROLL uses a single under-
lying model (SUM) and provides Views on that model. Roles are
embedded in rei�ed contexts, called Compartments. Activating a
compartment activates all its related roles. Thus, a compartment
mimics the behavior of a view. To each compartment the role-
playing state of its roles is stored in a directed acyclic graph (DAG).
Furthermore, the result of a role-playing object is a compound type,
that is an intersection of the role types that object is playing (i.e.,
Scala with statement). The implementation pattern requires tech-
nical aspects of Scala, such as the dynamic marker trait. When a
function is not available on the role-playing object the compiler
rewrites the function call. These dynamic dispatches are in�uenced
by the state of the object-player DAG. It is con�gurable how the
dispatch is searching the DAG by providing a dispatch query. It
describes the start type and the searched type. To reduce ambiguity
the types in between can be stated, as well as omitted types. The in-
volved compartments need to be merged so their underlying DAGs
are merged.

3 EVALUATION
The goal of this paper is to analyze the core problems of state-of-
the-art role-based programming languages. To this end, we use a
synthetic benchmark that makes extensive use of the role concept.
Based on this benchmark, we perform a cross-language comparison
and highlight problems w.r.t. performance, scalability and memory
management for role features. Most role-based programming lan-
guages have been implemented as a Java library (SCROLL, LyRT),
or use Java as a host language (Object Teams). Therefore, this work
restricts the analysis to state-of-the-art role-based programming
languages running on the JVM.

bank.activate();

for (Account from : bank.getCheckingAccounts())

for (Account to : bank.getSavingAccounts()) {

Transaction transaction = new Transaction();

transaction.activate();

transaction.execute(from, to, 1.0f);

transaction.deactivate();

}

bank.deactivate();

Listing 1: Themeasured part of theBankbenchmarkwritten
in Object Teams/Java.

3.1 Benchmark Characterization
The benchmark4 consists of an implementation of the bank exam-
ple shown in the role model in Figure 1. There is no single uni�ed
implementation of the role concept, instead, existing role-based
programming languages o�er di�erent features. For this reason, the
benchmark implementation varies slightly from language to lan-
guage. For example, Role Object Pattern does not support contexts,
but plain roles. In LyRT, two compartments cannot be active at the

3https://github.com/max-leuthaeuser/SCROLL
4Available at https://github.com/lschuetze/benchmark-lassy-2017

same point in time. We tried however to keep implementations as
similar as possible to ensure a fair comparison.

Listing 1 shows the implementation of the benchmark in Object
Teams. Constructing the bank, its customers and their accounts
are not measured. As such, the benchmark measures the combined
execution time of creating a new transaction compartment, its
activation, the binding of roles to this transaction and at last the
deactivation. The benchmark is fully deterministic, which means
that on every execution the same code paths are taken.

The Role Object Pattern is the most lightweight approach to
realize roles in object-oriented programming. Hence, it serves as
a baseline to compare the other approaches. Object Teams have
been measured in both variants; using callin and callout to realize
the source and target roles of the transaction. Both can express the
same semantics of the benchmark but with di�erent performance
characteristics.

The experiments have been performed on a 4-core 2.2 GHz In-
tel Core i7 with 16GB RAM running Mac OS 10.11.6. As virtual
machine we use Oracle Java HotSpot 1.8.0_111 with arguments
JVM_ARGS="-server -d64 -Xms1024m -Xmx4048m". To account for
the just-in-time (JIT) compilation of the JVM, the garbage collec-
tor and the underlying operating system, the benchmark has been
repeated several times. More precisely, 20 times for the slower
implementations and 100 times for the faster ones.

We are interested in the overall execution time of the executed
transactions. To �nd bottlenecks in the current implementations,
we measure with di�erent problem sizes to analyze scalability
problems. For problem size N there are N · N transactions, us-
ing N persons having 2 · N accounts (a CheckingsAccount and a
SavingsAccount). To gather information about hot methods and
memory consumption every benchmark has been repeated once
with activated pro�ling. Applications running for a longer period of
time with a higher footprint on memory will result in more pressure
on the garbage collector. This could make the garbage collector
a dominant factor for the execution time. For a given role-based
language, the memory footprint provides an indication of how well
the runtime manages resources.

3.2 Results
Figure 2 shows the relative execution time normalized to the ex-
ecution time of the Role Object Pattern (ROP). The accumulated
amount of data written to memory is shown in Figure 3.

While the implementation using ROP just needs 511 ms for
executing the 2.25 million transactions, the implementation using
Object Teams callin and the callout approaches is 59.9 and 42.7
times slower, respectively. On average, the callin version is 73.1%
slower than the callout. Implementations using SCROLL and LyRT
can only manage up to 2,500 and 10,000 transactions, respectively.
Thus, SCROLL took 12min to execute 2,500 transactions which is
610,169.5 times slower. LyRT was 12,031.4 times slower for 2,500
transactions and 84,146.3 times slower for 10,000 transactions.

The plain amount of memory used to represent all types of
accounts, the transactions and the bank itself, sums up to 250 MB
for 2.25 million transactions for ROP and OT. For this case, ROP
wrote a total amount of 365 MB data to the heap, while OT callin
generated a total of 8.9 GB, three times as much as OT callout with

Programming ’17, April 03-06, 2017, Brussels, Belgium L. Schütze and J. Castrillon

2500 10000 250000 1000000 2250000

101

103

105

1 1 1 1 1

59.3 51.4 61.1 40.3 59.932.2 25.6 30.6 28.5 42.7

12,031

84,146

6.1 · 105

Ru
nt

im
e

Fa
ct

or
,n

or
m

al
iz

ed
to

RO
P

(lo
w

er
is

be
tte

r)

ROP
OT callin
OT callout
LyRT
SCROLL

Figure 2: The relative runtime factor normalized to Role Object Pattern (ROP) in a logarithmic scale. A comparison of Object
Teams (OT) using the callin and the callout approach, LyRT and SCROLL against ROP.

2500 10000 250000 1000000 2250000
100

101

102

103

104

46 46 71
174

365

50 60
96

3,930
8,900

50 50

190

1,250
2,8203,860

16,43021,730

A
cc

um
ul

at
ed

M
em

or
y

Fo
ot

pr
in

t
in

M
B

(lo
w

er
is

be
tte

r)

ROP
OT callin
OT callout
LyRT
SCROLL

Figure 3: The accumulated amount of data written to memory during the benchmark in a logarithmic scale. A comparison of
ROP, Object Teams (OT) using the callin and the callout approach, LyRT and SCROLL.

2.8 GB. SCROLL and LyRT generated 21.7 GB and 3.8 GB for 2,500
transactions, respectively. For 10,000 transactions LyRT wrote 16.4
GB of data to memory.

For Object Teams, about 58% of heap pressure accounts to callin
management (5.2 GB). When an object begins to play a role in a team,
the resulting role object is stored in a WeakHashMap. Elements in
that collection can be garbage collected when free memory depletes.
In the overall benchmark 17% of heap pressure (1.5 GB) is dedicated
to the initialization of that cache structure.

In SCROLL, searching the data structures accounts for 78% of GC
pressure (16.9 GB). Furthermore, using compound objects results in
high usage of boxing and unboxing where 64% of execution time is
spent when searching the role-play graph.

Using runtime subclassing in LyRT results in code being gener-
ated and stored at run-time which is responsible for 26% of the GC
pressure.

3.3 Discussion
The Role Object Pattern is the fastest of all the approaches in all
measurements. Even for small problems it was least 25 times faster
and up to 610,000 times faster than the slowest approach. What
we can clearly see from Figure 2 is that current approaches do not
scale well. Figure 4 shows for each implementation where the most
time has been spent during the benchmark and what contributed

the most data to the heap. Some of the language runtimes spent
a lot of time in special methods, others are generating too much
data that needs to be processed by the garbage collector resulting
in performance degradation.

As shown in Section 2, LyRT stores all relations between com-
partment, player, and role in a central lookup table. When a new
relation is added, its level and sequence has to be calculated. This
accounts for 89% of the execution time of the benchmark. That is,
because there is an O(R2) search over that structure, where R is
the number of relations (e.g., customers, accounts, and transaction
roles). Currently, the lookup table is an ArrayDeque5 that is ex-
plored multiple times. There is a need for a dedicated structure that
allows faster search and more compact storage of the data.

Second, generating a new subclass for every player object and
role object accounts for 26% of the overall GC pressure during the
benchmark. For each of the generated classes a variable responsible
to manage dispatch logic is captured. To reduce the pressure the
amount of generated subclasses has to be reduced. A generated
subclass per player type or role type can be stored in a type cache.
Instead of capturing, a new modi�ed constructor can be provided
that provides a dedicated parameter.

In SCROLL there is a directed acyclic graph (DAG) for every
compartment where players and their roles are stored. SCROLL
5An ArrayDeque is a performant collection from the Java Collections Framework.

Analyzing State-of-the-Art Role-based Programming Languages Programming ’17, April 03-06, 2017, Brussels, Belgium

OT Callin
Time Heap

OT Callout
Time Heap

Cache
Management
Callin
Management
Role Activation
/Decativation
Team Activation
/Deactivation

Bank

Rest

26%

22% 18%

16%

14%

4%

58% 22%

17%

3%

47%

16%
13%

17%

7%

55%

9%

36%

SCROLLTime Heap

Boxed Type
Comparison

Data Structures

Search (Inter-
mediate Objects)
Role Type
Comparison

Rest

64% 16%

12%
8%

78%

19%

3%

LyRTTime Heap

Lookup

Thirdparty
Framework

Bank

Call Site
Management

Generated Code

89%

10%

1%

55%
19%

26%

Figure 4: Shows where each implementation of the bench-
mark spent most time (left), and what contributed the most
data to the heap (right).

allows the user to de�ne custom dispatch queries (e.g., searched
types), which in�uence the method dispatch for that compartment.
This �exibility for the method dispatch accounts for 64% of the
execution time being spent in checking the equality of objects in
the DAG. In the benchmark the dispatch accounts for 78% of all
data written to the heap (16.9 GB) due to intermediate objects that
are repeatedly generated.

Looking at Object Teams, we can see that using the callin ap-
proach is always slower than using callout. This is expected since
both have di�erent semantics (advice vs. forwarding) with di�erent
performance characteristics. To realize callins the runtime assem-
bles string IDs out of smaller parts (e.g., a base method ID consisting
of the class name, parameter names, and their types). Recalculat-
ing the values results in 58% GC pressure during the benchmark.

Caching these results could improve the performance as the multi-
tude of intermediate strings do not have to be created. Furthermore,
a proper use of the String pool provided by the JVM could further
reduce the amount of data used by these IDs. Using caches to store
the result of a dispatch could also lead to a reduction in space and
time for the callin approach. Invalidation has then to happen when
a Team is being activated or deactivated and the call site is subject
to change.

Using software caches is not always a solution to increase perfor-
mance. Each binding of a base instance to a role instance is cached
in the Team instance. When the same base object enters the team
again played roles will be reused from the cache. Constructing and
initializing this cache structure accounts for a total amount of 1.5
GB of data during the benchmark. This is 6 times as much as the
data to be stored (i.e., player objects, role objects). Furthermore, as
the overhead is neglectible for the callin approach, it is responsible
for 47% of the whole execution time using the callout approach.
A proposed solution is the introduction of annotations for roles
and teams which tell the compiler and runtime not to use caches.
This is useful for stateless roles and allows the application of the
�yweight or prototype pattern.

More powerful realizations of the role-concept incur in a large
overhead compared to the role-object pattern. As discussed above,
the overhead stems from the way features are realized in the run-
times themselves. There are two problems related to the algorithms
and data structures. First, most of the execution time is spent on
searching the data structures. Second, searching the data structures
results in many copies and high pressure on the garbage collector.
Both degrade the performance of an application.

4 RELATEDWORK
In this section, benchmarks from similar disciplines and other role-
based programming languages are introduced.

JAWIRO (JAva WIth ROles) is a framework that enhances Java
with roles [12]. Nowadays, the framework is not available anymore.
The framework has been compared to other design patterns and has
been measured using micro-benchmarks. The benchmarks measure
how fast operations on roles behave in case of an increasing number
of role instances in the stored hierarchy.

EpsilonJ is a role-based programming language that enhances
Java with roles [10]. EpsilonJ programs are translated to standard
Java. The e�ectiveness of the generated code is compared against
hand-written Java code. The measurements include compilation
and execution time. They conclude that compilation time is not a
signi�cant factor, but execution time was two times slower than
hand-written Java.

ContextJS is a context-oriented extension to JavaScript [6]. They
discuss di�erent optimization techniques to improve context-oriented
programming (COP) with JavaScript. To discuss these techniques
they employ micro-benchmarks to measure the execution time of
layer activations and dispatches to methods. They conclude that
most time is spent in dispatching.

A common approach to speed up dispatching is using caches and
to invalidate those caches when the cached result of the dispatch
is not valid anymore. This can happen when for example a new
layermposition changes the implementation of an already cached

Programming ’17, April 03-06, 2017, Brussels, Belgium L. Schütze and J. Castrillon

call site. In ContextPyPy [11] another approach is chosen. Instead
of using a cache the capabilities of the meta-tracing JIT compiler
is used. That is, the steps the interpreter takes are recorced. This
instruction sequence is called a trace. Language implementers can
use hints to allow �ne tuning of the JIT compiler. As such, the
JIT compiler can reuse recorded traces when layer compositions
are stable enough. Therefore, a guarded switch is inserted into the
code. As long as the composition stays the same, the lookup can be
optimized accordingly. For the evaluation the execution time under
di�erent workloads has been compared across context-oriented
programming languages.

In JCOP, a Java implementation of a context-oriented program-
ming language, the dispatch has been implemented using the new
invokedynamic bytecode instruction [1]. The language implementer
provides a bootstrap method that is being called the �rst time
when the JVM wants to execute the invokedynamic bytecode. In
this method, the dispatch is implemented. The result is a method
handle that points to an actual method. On further invocations
the method handle is invoked and there is no need to dispatch
again. Their implementation replaced the traditional composition
lookup with an invokedynamic instruction. When a composition is
changed (i.e., a layer is added or removed) the method handle of the
call site is updated. They measured a proof of concept implemen-
tation of JCOP with invokedynamic compared to the unmodi�ed
JCOP. They report a speedup of 160 times when there is no layer
activated, as well as a speedup of 48 to 38 times for 1 - 5 layers
activated. For language implementers invokedynamic seems to be
a promising start as there is lots of speedup to gain when

In summary, none of the presented approaches measured mem-
ory usage beside execution time. There have been di�erent ap-
proaches to improve the performance, e.g., the usage of caches to
reduce the amount of recalculation or a similiar approach using a
tracing JIT compiler to trace and replay stable parts of the program,
i.e. layer compositions.

5 CONCLUSIONS
The role concept is a good candidate to model adaptive, context-
aware systems. It allows modeling the static structure of a domain
separately to the dynamic behavior of objects at run-time. This over-
comes the limits introduced by the class-centric models of object-
orientation. In recent years, many frameworks and languages have
been proposed that map the concept to programming languages.

For use in production, performance is a critical aspect. However,
the proposed approaches concentrated on implementing the many
features the role concept has to o�er. Thus, these frameworks and
programming languages incur in large runtime overhead. To help
to improve the situation we present an analysis of state-of-the-art
role-based programming languages.

Our evaluation observed that state-of-the-art role-based pro-
gramming languages do not just take a considerable amount of
time in dispatch logic, but also generate lots of data during run-
time.

Benchmarking programming languages often comes down to
calculating execution times. With the higher complexity introduced
by the role concept, it is considerably important to also look at the
amount of data written to memory by the runtimes. With managed
runtimes pressuring the memory results in more garbage collection
runs which also degrades the performance of the application.

In future work, we will focus on increasing the single benchmark
to a macro benchmark suite for role-based programming languages.
This will be very helpful for guiding further optimization, as dif-
ferent usage patterns can be evaluated. Micro benchmarks on the
other hand, will o�er good opportunities to optimize performance
of critical parts of the runtimes.

ACKNOWLEDGMENTS
This work is funded by the German Research Foundation (DFG)
within the Research Training Group “Role-based Software Infras-
tructures for continuous-context-sensitive Systems” (GRK 1907).

REFERENCES
[1] Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. 2010. Layered Method

Dispatch with INVOKEDYNAMIC: An Implementation Study. In Proceedings
of the 2Nd International Workshop on Context-Oriented Programming (COP ’10).
ACM, New York, NY, USA, Article 4, 6 pages. DOI:http://dx.doi.org/10.1145/
1930021.1930025

[2] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. 1998. The Role
Object Pattern. In Washington University Dept. of Computer Science.

[3] Stephan Herrmann. 2003. Object Teams: Improving Modularity for Crosscutting
Collaborations. Springer Berlin Heidelberg, Berlin, Heidelberg, 248–264.

[4] Stephan Herrmann. 2010. Demystifying Object Schizophrenia. In Proceedings of
the 4th Workshop on MechAnisms for SPEcialization, Generalization and inHerI-
tance (MASPEGHI ’10). ACM, New York, NY, USA, Article 2, 5 pages.

[5] Elizabeth A Kendall. 1999. Aspect-oriented programming for role models. In
ECOOP Workshops. 294–295.

[6] Robert Krahn, Jens Lincke, and Robert Hirschfeld. 2012. E�cient Layer Activation
in Context JS. In Creating, Connecting and Collaborating through Computing (C5),
2012. IEEE, 76–83.

[7] Thomas Kühn, Max Leuthäuser, Sebastian Götz, Christoph Seidl, and Uwe Aß-
mann. 2014. A Metamodel Family for Role-Based Modeling and Programming
Languages. Springer International Publishing, 141–160.

[8] Max Leuthäuser and Uwe Aßmann. 2015. Enabling View-based Programming
with SCROLL: Using Roles and Dynamic Dispatch for Etablishing View-based
Programming. In Proceedings of the 2015 Joint MORSE/VAO Workshop on Model-
Driven Robot Software Engineering and View-based Software-Engineering (MORSE/-
VAO ’15). ACM, New York, NY, USA, 25–33.

[9] Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. 2016. Cross-language
Compiler Benchmarking: Are We Fast Yet?. In Proceedings of the 12th Symposium
on Dynamic Languages (DLS 2016). ACM, New York, NY, USA, 120–131.

[10] Supasit Monpratarnchai and Tamai Tetsuo. 2008. The design and implementation
of a role model based language, EpsilonJ. In Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008.,
Vol. 1. IEEE, 37–40.

[11] Tobias Pape, Tim Felgentre�, and Robert Hirschfeld. 2016. Optimizing Side-
ways Composition: Fast Context-oriented Programming in ContextPyPy. In
Proceedings of the 8th International Workshop on Context-Oriented Program-
ming (COP’16). ACM, New York, NY, USA, 13–20. DOI:http://dx.doi.org/10.
1145/2951965.2951967

[12] Yunus Emre Selçuk and Nadia Erdoğan. 2004. JAWIRO: Enhancing Java with
Roles. Springer Berlin Heidelberg, Berlin, Heidelberg, 927–934.

[13] Nguonly Taing, Thomas Springer, Nicolás Cardozo, and Alexander Schill. 2016.
A Dynamic Instance Binding Mechanism Supporting Run-time Variability of
Role-based Software Systems. In Companion Proceedings of the 15th International
Conference on Modularity (MODULARITY Companion 2016). ACM, New York, NY,
USA, 137–142.

http://dx.doi.org/10.1145/1930021.1930025
http://dx.doi.org/10.1145/1930021.1930025
http://dx.doi.org/10.1145/2951965.2951967
http://dx.doi.org/10.1145/2951965.2951967

	Abstract
	1 Introduction
	2 Background
	2.1 Role Concept
	2.2 Role-based Programming Languages

	3 Evaluation
	3.1 Benchmark Characterization
	3.2 Results
	3.3 Discussion

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

