
Robust Mapping of Process Networks to Many-Core Systems
using Bio-Inspired Design Centering

Gerald Hempel, Andrés Goens,
Jeronimo Castrillon

Chair for Compiler Construction
TU Dresden,

Center for Advancing Electronics Dresden (cfaed)
{�rstname.lastname}@tu-dresden.de

Jose�ne Asmus, Ivo F. Sbalzarini
Chair of Scienti�c Computing for System Biology
Max Planck Institute of Molecular Cell Biology

and Genetics
{asmus,ivos}@mpi-cbg.de

ABSTRACT
Embedded systems are o�en designed as complex architectures
with numerous processing elements. E�ectively programming such
systems requires parallel programming models, e.g. task-based or
data�ow-based models. With these types of models, the mapping of
the abstract application model to the existing hardware architecture
plays a decisive role and is usually optimized to achieve an ideal
resource footprint or a near-minimal execution time. However,
when mapping several independent programs to the same platform,
resource con�icts can arise. �is can be circumvented by remapping
some of the tasks of an application, which in turn a�ect its timing
behavior, possibly leading to constraint violations. In this work
we present a novel method to compute mappings that are robust
against local task remapping. �e underlying method is based on
the bio-inspired design centering algorithm of Lp -Adaptation. We
evaluate this with several benchmarks on di�erent platforms and
show that mappings obtained with our algorithm are indeed robust.
In all experiments, our robust mappings tolerated signi�cantly
more run-time perturbations without violating constraints than
mappings devised with optimization heuristics.

KEYWORDS
data�ow programming, design centering, KPN, SDF, MAPS, Lp-
Adaptation
ACM Reference format:
Gerald Hempel, Andrés Goens,
Jeronimo Castrillon and Jose�ne Asmus, Ivo F. Sbalzarini. 2017. Robust
Mapping of Process Networks to Many-Core Systems using Bio-Inspired
Design Centering. In Proceedings of SCOPES, , 2017 (SCOPES’17), 10 pages.
DOI: h�p://dx.doi.org/10.1145/3078659.3078667

1 INTRODUCTION
Multi- and manycore architectures have permeated the majority
of today’s embedded systems. Examples include ARM big.LITTLE
systems [17], the �alcomm Snapdragon family of processors [31],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SCOPES’17,
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5039-6/17/06. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3078659.3078667

LM

RISC

LM

RISC

LM

DSP

LM

DSP

LM

DSP

LM

DSP

ARM

SM

AHB Bus

LM: Local memory
SM: Shared memory

qnt

src snk

qnt

qntdct

qnt

dct
vle

dct

dct init

MJPEG
application

Figure 1: �e mapping problem.

Texas Instruments Keystone [3] or the He-P2012 platform [8]. �e
quick spread of parallel architectures took tool providers by surprise
and so�ware development became a major concern.

Several programming models have been proposed in academia
to solve the parallel programming problem. Popular examples in
the embedded domain are data�ow-based or task-based program-
ming models, particularly well-suited for streaming and multimedia
applications. �ese models have in common that applications are
represented as a graph of interacting entities (i.e., graph nodes) that
communicate over statically de�ned channels (i.e., graph edges)1.
In data�ow graphs or process networks, the entities cannot commu-
nicate over shared memory, which makes these models appropriate
for distributed memory architectures. Many languages and mod-
els exist to represent such graphs, e.g., Cal [13], YAPI [11], C for
process networks [38] or the Distributed Object Layer (DOL) [45].

With applications represented as graphs, programmers face the
mapping problem, i.e., which hardware resources should be used to
run computation and to implement communication (see Figure 1).
�emapping problem has been thoroughly studied in the embedded
domain, e.g., for performance and so� real-time [4, 6, 14, 21, 24, 29],
for energy e�ciency [25] or for reliability [10] (see also overviews
in [26, 41]). Most of the approaches seek to �nd a near-optimal
static mapping for a single application and compile-time, mostly
for ensuring time predictability. Authors have also looked into
1In task-based programming models edges represent dependencies.

SCOPES’17, 2017,
G. Hempel et al., Gerald Hempel, Andrés Goens,

Jeronimo Castrillon, and Josefine Asmus, Ivo F. Sbalzarini

the problem of dealing with multiple applications competing for
resources. Scenarios have been used to characterize the way appli-
cation may interact [34]. Spatial isolation in which applications are
given shapes of the hardware has also been proposed to provide
time-predictability in the presence of multiple applications [48].

Most of previous work has focused on computing a �xed map-
ping, which is enforced by a runtime manager or by strict spatial
isolation. �e underlying assumption is that nothing unpredictable
may modify the mapping decisions at runtime. �is can be achieved
in bare metal implementations, but is less probable in higher-end
embedded systems that run a full �edged mainstream operating
system and run unpredictable workloads. In this paper, we look at
how to compute mappings that not only meet real-time constraints
but are robust to slight variations at runtime, e.g., by re-mapping
decisions from the operating system. To �nd a robust mapping, one
must not only �nd a near-optimal solution using an optimization
process, but also has to characterize the “volume” of feasible solu-
tions around that one solution. Intuitively speaking, the larger the
volume, the more robust the solution is. To determine robust map-
pings we apply design centering, a technique known for the design
of feasible circuits given parameter variations in individual com-
ponents [16]. In particular, we use a recent bio-inspired algorithm
that is well-suited for non-convex feasibility spaces. Additionally,
it returns a quality measure based on the estimated volume along
with the design center [2, 27].

Asmain contribution, this paper analyzes for the �rst time design
centering algorithms for the mapping problem. In particular, we
study the applicability of design centering approaches to compute
mappings that are robust to local re-mapping decisions. We intro-
duce algorithmic modi�cations to make design centring applicable
to the characteristics of the design space of mapping problems. We
analyze benchmark applications from the streaming andmultimedia
domains on two di�erent multicores with di�erent characteristics,
using a state-of-the-art mapping �ow for applications represented
as Kahn Process Networks (KPNs). We report promising results that
demonstrate the higher robustness of the mapping computed with
design centering. More speci�cally, we show that robust mappings
for most applications tolerate 70% to 98% of the variations, as op-
posed to an average of ≈ 50% for mappings computed with standard
heuristics. We believe these results open more possibilities to adapt
the problem to compute mappings that are robust to other types of
variations, most notably, input-dependent execution characteristics.
Even though we used KPNs as programming model, the approach
is applicable to other similar programming models as well.

�e rest of this papers is organized as follows. Section 2 provides
background on design centering algorithms and introduces the
programming �ow used in this paper, whereas Section 3 provides
the speci�c of the Lp adaptation algorithm we used. �en, Section 4
describes how we applied design centering to the mapping problem.
�e method is evaluated in Section 5 and related approaches are
treated in Section 6. Finally, we draw conclusions and discuss future
work in Section 7.

2 BACKGROUND
As mentioned above, in this paper we apply design centering to the
mapping problem (cf. Figure 1). Before explaining the proposed

Mapper
KPN

Application

Architecture
Description

User
Constraints

.xml

parsing, analysis,
tracing

trace-based
heuristics

Simulator

mapping
simulatation

 results

.xml

Mapping
Configuration

Back-End
.xml

.cpn

Figure 2: Overview of the mapping �ow.

approach, this section provides details about the mapping problem,
as well as the concrete tool �ow used and a brief introduction to
design centering approaches.

2.1 KPN mapping �ow
Out of many mapping frameworks, we use the parallel �ow of the
MAPS framework [5], now commercially available in the SLX Tool
Suite from Silexica [39]. �is state-of-the-art, to which we will refer
as mapper in the following, includes a fast internal simulator for a
variety of multicore platforms. Having a fast simulator is key for
applying design centering as will be discussed in Section 4. Addi-
tionally, the mapper supports an expressive parallel programming
model, based on KPNs, that allows to represent more applications
compared to static data�ow models, like Synchronous Data Flow.
An overview of the programming �ow is shown in Figure 2. �e
major components are discussed in the following.

�e mapper receives a KPN application wri�en in the language
“C for process Networks” [38]. In a KPN graph, nodes are compu-
tational processes that exchange data only through FIFO channels
(the edges of the graph) using atomic data items called tokens. Pro-
cesses may have an arbitrary control �ow, holding internal state,
and accessing input and output channels in a data-dependent fash-
ion (i.e., not statically analyzable at compile time). Extra inputs
to the mapper are an abstract model of the target platform and
user-de�ned constraints. �e la�er includes real-time and resource
constraints, among others. �e model of the target platform con-
tains a speci�cation of the processing elements, the interconnect
and the memory architecture (including latencies and communica-
tion bandwidths).

�e mapper uses execution traces from pro�ling runs to capture
the runtime behavior of the processes. Based on the traces, several
heuristics are available to compute a mapping [6]. �e mapping
includes an assignment of processes to processors, a scheduling
policy for processes running on the same processor, a mapping of
logical communication channels to physical resources, and sizes for
all bu�ers. Broadly speaking, heuristics would iterate to improve
the mapping and to try and meet the user constraints. To evaluate
the quality of a mapping and whether the mapping is feasible, the
mapper uses an internal discrete event simulator. �e simulator
fetches cost models from the architecture description and replays
the traces according to the suggested mapping, taking runtime
overheads into account. It returns a Gan� chart of the execution,

Robust Mapping of Process Networks to Many-Core Systems using Bio-Inspired Design Centering SCOPES’17, 2017,

optimum

design center in
feasible region

x1

x2

feasible region

Figure 3: Illustration of design centering.

bu�er utilization statistics, and an estimated energy consumption,
among others.

Once a feasible mapping has been found, the mapper exports it
in a so-called mapping con�guration. �is descriptor is then passed
to the back-end, which generates code accordingly.

2.2 Design Centering
Design centering is a long-standing and central problem in systems
engineering. It is concerned with determining design parameters
of a system that guarantee operation within given speci�cations
and are robust against parameter variations. While design optimiza-
tion aims to determine the design that best ful�lls (one aspect of)
the speci�cations, design centering wants to �nd the design that
meets the speci�cations most robustly. Traditionally, this problem
has been considered in electronic circuit engineering [16], where a
typical task is to determine the nominal values of electronic com-
ponents (e.g., resistances, capacitances, etc.) such that the circuit
ful�lls some speci�cations and is robust against manufacturing tol-
erances in the components. An illustration for a two-dimensional
design space, i.e., with two parameters, is shown in Figure 3. �e
�gure also contains the contour of a �ctive cost function and two
regions with sets of feasible solutions (marked with dashed lines).
While optimization is concerned with �nding the optimum (red
cross in the �gure), design centering would opt for the solution
that allows more variation in the parameters without leaving the
feasible set (the black cross in the �gure).

�ere are usually many designs that ful�ll the speci�cations.
Each design is described by a number n of design parameters and
can hence be interpreted as a vector in Rn . �e region (subspace) of
the parameter space that contains the designs for which the system
meets the speci�cations is called the feasible regionA ⊂ Rn (see dis-
joint regions in Figure 3). Depending on available side-information
about design speci�cations, di�erent operational de�nitions of the
design center m ∈ A exist, including the nominal design center, the
worst-case design center, and the process design center [37]. Here, we
follow the statistical de�nition of the design center [23] and seek
among all parameter vectors x ∈ A the design center m ∈ A that
represents the mean of a probability distribution p (x) of maximal
volume covering the feasible region A with a given target hi�ing

probability P . For convex feasible regions, using the uniform prob-
ability distribution over A and P = 1, the design center coincides
with the geometric center of the feasible region (corresponding to
the crosses in Figure 3).

One distinguishes between geometrical and statistical approaches
to design centering. Geometrical approaches use simple bodies to
approximate the feasible region, which is usually assumed to be con-
vex [12, 35, 36]. Statistical approaches explore the feasible region
by Monte-Carlo sampling. Since exhaustive sampling is not feasible
in high dimensions, the key ingredient of statistical methods is a
smart sampling proposal to �nd, and concentrate on, informative
regions [42–44]. Most of the existing methods assume a convex
feasible region, e.g., [36, 43], or di�erentiability of the speci�cations,
e.g., [46]. Others require an explicit probabilistic model of the varia-
tions in the design parameters [35]. For the mapping problem dealt
with in this paper, we cannot assume di�erentiability or convexity.
�erefore, we use a recently proposed statistical method called
Lp -Adaptation [2]. �is method supports non-convex disconnected
regions (like in Figure 3), and can handle arbitrary speci�cation
constraints as long as they can be decided for a given candidate
design. In addition, the method also retrieves the radius and an es-
timated volume, providing an idea of how robust the design center
is. �e concrete algorithm is described in the next section.

3 ADAPTATION ALGORITHM
Lp -Adaptation [2] is an algorithm inspired by how robustness has
evolved in biological networks, such as cell signaling networks,
blood vasculature networks, and food chains [22]. It samples can-
didate designs from Lp -balls as proposal distributions, which are
dynamically adapted based on the sampling history. Intuitively
speaking, an Lp -ball is an n-dimensional ellipsoid according to a
particular norm, the Lp norm. �e dynamic a�ne adaptation of the
Lp -balls is based on the concept of Gaussian Adaptation (GaA) [23],
which continuously adapts the mean and the covariance matrix
(describing correlations and scaling between the parameters) of a
Gaussian proposal based on previous sampling success.

Combining the adaptation concept of GaA with the use of Lp -
balls [37] as non-Gaussian proposals, Lp -Adaptation provides both
e�cient design centering and robust volume approximation. Lp -
adaptation draws samples uniformly from an Lp -ball and iteratively
adapts the mean and covariance matrix of an a�ne mapping ap-
plied to the balls. Importantly, the target hi�ing probability P , i.e.,
the probability of hi�ing the feasible region A with a sample is con-
trolled as described below. �e design center is then approximated
by the mean of the �nal Lp -ball B, and the volume estimate is of the
form vol(A) ≈ P · vol(B), where vol(B) is the volume of the current
n-dimensional Lp -ball B. For improved sampling and adaptation ef-
�ciency, Lp -Adaptation uses an adaptive multi-sample strategy [18]
that is considered state-of-the-art in bio-inspired optimization [19].

Lp -Adaptation can be interpreted as a synthetic evolutionary
process that tries tomaximize the robustness, rather than the �tness,
of the underlying system. Robustness is measured in terms of the
volume vol(B) of an n-dimensional Lp -ball B, of which a certain
fraction P (i.e., the target hi�ing probability) overlaps with the
feasible region A. �is ball is called an Lp -ball since it is part of the
Banach space Lnp = (Rn , ‖·‖p). �is basically means that we endow

SCOPES’17, 2017,
G. Hempel et al., Gerald Hempel, Andrés Goens,

Jeronimo Castrillon, and Josefine Asmus, Ivo F. Sbalzarini

the vector space Rn with a norm di�erent from the Euclidean one,
namely ‖ (x1, . . . ,xn)‖p= p√|x1 |p + . . . + |xn |p for any p ≥ 1.

Let us denote by Lnp = {B (m,C) | m ∈ Lnp , C ∈ Sn×n+ } the
set of all balls B = B (m,C) ⊆ Lnp for a �xed n,p, where m ∈ Lnp
denotes the center of the ball, and C ∈ Sn×n+ is a symmetric
positive-de�nite (covariance) matrix de�ning the linear map for
scaling and rotation of the Lp -ball B, i.e.

B (m,C) = {C x +m | x ∈ Rn , ‖ x ‖p ≤ 1}.
Lp -adaptation then seeks to maximize the following criterion:

max
B=B (m,C)∈Lnp

vol(B (m,C)) (1)

s.t. m ∈ A.
vol(A ∩ B (m,C))
vol(B (m,C)) ≥ P

�e hypervolume of an Lp -ball is completely determined by
the volume of the unit Lp -ball (with zero mean and n-dimensional
identity matrix C = 1) and the determinant of the matrix C. �us,
the robustness criterion can be rewri�en as a non-convex log-det
maximization problem:

max
B=B (m,C)∈Lnp

log det(C) (2)

s.t. m ∈ A.
vol(A ∩ B (m,C))
vol(B (m,C)) ≥ P

�is objective function provides a natural non-convex extension
of the maximum inscribed ellipsoid method [37]. For instance, if A
is a convex polyhedron with known parameterization and P = 1,
then Problem 2 is a convex problem that can be e�ciently solved
using interior point methods. However, in the general case, no
e�cient algorithms are known to solve Problem 2. Lp -adaptation
approximately solves this problem by using a synthetic evolution-
ary process consisting of the four steps Initialization, Sampling,
Evaluation, and Adaptation, which are repeated in iterations
until a stopping criterion is ful�lled.

It is, however, important to properly control the target hi�ing
probability P of Lp -Adaptation to the task at hand. �e hi�ing
probability must be neither too low, nor too high. Low hi�ing
probabilities lead to low sampling e�ciencies. High hi�ing proba-
bilities lead to slower adaptation to the feasible region, which may
prevent exploring remote parts of the feasible region. For a Gauss-
ian proposal and a convex feasible region, a hi�ing probability of
exp(−1) is information-theoretically optimal [23]. When sampling
uniformly from Lp -balls over non-convex regions, no such result
is available. We hence manually adapt the hi�ing probability de-
pending on the task at hand, starting from exp(−1) as an initial
value.

4 DESIGN CENTERING AND MAPPING
In this section we explain howwe adapted the design centering (DC)
algorithm to create robust mappings of KPN applications to many-
core systems.

4.1 Integration into KPN Tool-Flow
In order to use the DC algorithm to create and evaluate mappings
we have to integrate the DC algorithm into the KPN tool �ow as

Mapper Simulator

Oracle

DC
Algorithm

Mapping Simulation
Results

Architecture
Description

Application

generates execution
time

Architecture
Description

.xml

.xml

.xml

I II

IIIIV

.cpn

Figure 4: Integration of DC-Algorithm into SLX Tool Suite.

shown in Figure 4. For the integration, it is required to import
mappings generated by the DC algorithm into the mapping �ow.
Similarly, the results of the discrete-event simulator of the mapping
�ow (recall Figure 2) must be interpreted by the oracle. �at is, the
function in the DC algorithm that decides, for a given point x in
the design space, if the point x is feasible, i.e., if x ∈ A.

As �rst step (I), an initial mapping for a CPN application onto the
target architecture is generated by the mapper. �is is necessary
since the starting point of the DC algorithm has to be member of
the feasible set A. �e initial mapping is then simulated (II) us-
ing a representative dataset as input. From the simulation results,
it is possible to check for a variety of constraints. In this paper
we restrict ourselves to checking for the total execution time, but
the current constraint could be easily replaced by a more complex
evaluation, e.g. the maximum execution time for di�erent input
data sets. A�erwards, the resulting execution time is fed to the
oracle function (III) which triggers the DC algorithm to generate
a new parameter set. In order to simulate the determined param-
eters, they must be interpreted as mapping and adapted to the
given architecture (IV). �is adaptation is carried out by the oracle
function. �e extracted parameter description includes the assign-
ment of the cores to the respective processes only. �is transfer of
mapping-graphs to a parameter vector abstracts from the actual
graphical structure and communication relations between cores.
�us, the DC algorithm has no knowledge about the underlying
hardware architecture or communication structures. �e newly
generated mapping is simulated again to produce the next results
(III) for the oracle function. �e DC algorithm requires approxi-
mately 10,000-30,000 samples to obtain a valid DC. �is does not
mean every sample is a simulation, since many samples can refer
to the same mapping. We implemented a cache that holds results
of already simulated mappings for later use. �is is important since
the simulation time dominates the overall execution time of the
algorithm.

4.2 Architectures
To apply the DC algorithm to the mapping problem, we need to
leverage information about the target architectures themselves. In
this paper, we use two architectures that provide su�cient process-
ing elements for our evaluation. For our approach we used archi-
tectures with uniform processing elements, which simpli�es the

Robust Mapping of Process Networks to Many-Core Systems using Bio-Inspired Design Centering SCOPES’17, 2017,

LM: Local memory
SM: Shared memory
CM: Cluster memory

CM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

Cluster 2

CM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

Cluster 3

CM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

Cluster 0

CM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

Cluster 1

SM

System Bus

Figure 5: ARM SoC architecture

generation of mappings from the generated parameter set (cf. Sec-
tion 4.1). It should be noted that there is no reason, in principle,
why the tool �ow should not work on heterogeneous architectures.
It could be extended to target more heterogeneous architectures
with moderate engineering e�ort.

(1) A generic ARM SoC with a heterogeneous memory struc-
ture is used (cf. Figure 5). �e chosen architecture contains
16 Cortex A9 cores with a clock frequency of 1GHz and a
hierarchical bus system. Each core has a direct connection
to a local L1 cache. In addition, 4 cores are grouped into
one cluster sharing one L2 cache. In case that data has to
be exchanged over boundaries of a cluster, a global main
memory must be used. �e latency of the required com-
munication structures as well as the respective memory
structures increase with decreasing locality. �us, pro-
cesses that are scheduled on the same core, provide the
lowest communication latencies. �e highest communica-
tion latency, on the other hand, comes from cores using
the shared memory. However, mapping two processes to
one core requires additional context switches each time the
process is activated, which introduces additional latencies.

(2) A homogeneous network on chip architecture as shown
in Figure 6 consisting of 16 cortex A9 cores. In contrast to
the previous architectures, there are no global memories
available. �e individual cores have local memories and
are connected to a network on chip similar to the Epiphany
III architecture from Adapteva [1]. �e used simulation
provides a system-level view of the NoC behavior without
detailed simulation of routing contentions.

LM: Local Memory

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

LM

ARM

Figure 6: NoC Architecture

4.3 Mappings for Design Centering
In order to apply the Lp -Adaptation method, we need to encode
mappings as vectors in the normed space Lnp for some suitable
n,p. To do this, we �rst have to understand precisely what a map-
ping is from a mathematical standpoint. Once we have done this,
and have a (mathematical) setM of mappings, we can �nd a func-
tion encode : M → Lnp for some suitable n,p. In order for this
function encode to have a valuable meaning, it should also cap-
ture an intuitive notion of distance between two mappings as the
p norm in Lnp . In other words, we have to �nd a mathematical
description of mappings not only as a setM , but rather, as a met-
ric space (M,d), with a distance function d . We would then re-
quire some sort of compatibility: If d (m1,m2) is small, we want
‖encode(m1) − encode(m2)‖ to be small, in some sense. Ideally, we
would like encode to be an isometry (or an isometric embedding),
i.e., d (m1,m2) = ‖encode(m1) − encode(m2)‖ and bijective (injec-
tive). However, the discrete structure of mappings is ill-suited to
�nd such a representation, and we should not expect to �nd a func-
tion encode that is an isometry for any intuitive description of the
mapping set M . On the other hand, we would ideally like encode
to be a bijective function (parametrization) of the setM , since we
can then �nd exactly one point in the design space Lnp for every
mapping. SinceM is �nite and Lnp uncountable, a bijective function
will not exist. An injective function is imperative though, since
otherwise we cannot uniquely determine a mapping from a point
in the design-space Lnp .

4.3.1 Encoding Mappings. Consider the example depicted in
Figure 7A. In order to help the visualization, we coarsened the KPN
of a two-channel audio �lter to consist of only two processes with
two channels: the source (src) and the sink (snk). �e source process
reads the �lter �le, splits both channels and performs an inverse
Fast Fourier Transform (FFT) on each. �en, the sink channel �lters
each channel in the frequency domain and applies an FFT to convert
back to the time domain. �e �gure shows three di�erent mappings,
each coded with a di�erent color, onto Architecture 1 (Figure 5).
Consider concretely the orange mapping, which maps the source
to ARM14 and the sink to ARM15. Both FIFO channels are mapped
to the shared L2 of Cluster 3, even though it is not explicitly shown

SCOPES’17, 2017,
G. Hempel et al., Gerald Hempel, Andrés Goens,

Jeronimo Castrillon, and Josefine Asmus, Ivo F. Sbalzarini

200 ms

40 ms

0 15
0

15

Core ID
(src)

C
or

e
ID

(s

nk
)

Cluster 0

ARM 0

ARM 2

ARM 1

ARM 3

Cluster 1

ARM 4

ARM 6

ARM 5

ARM 7

Cluster 2

ARM 8

ARM 10

ARM 9

ARM 11

Cluster 3

ARM 12

ARM 14

ARM 13

ARM 15

src snk

srcsrc snksnk

A B

Figure 7: An example of a design space of mappings

in the �gure. Such a KPN mapping is thus an assignment of KPN
processes (and channels) to system resources. In this paper, we
concentrate on process-to-core mappings. Mathematically, such
an assignment is best described as a function. If we thus let K be
the set of KPN processes, and R the set of system resources, then a
KPN mapping is just a functionm : K → R. �e orange mapping
from Figure 7 A is, thus, the function

m : {src, snk} → {ARM0, . . . ,ARM15},
src 7→ ARM14, snk 7→ ARM15 (3)

Since the sets K and R are �nite, we can describe the set RK
of such functions as the set of |K |-tuples over R, R |K | = Rn , if
we set n := |K |. For this, we can �x an enumeration of K , K =
{k1, . . . ,k |K | }. We can thus encode the mappingm as:

encode(m) = (m(k1),m(k2), . . . ,m(k |K |)) ∈ R |K |

For the orange mapping in Figure 7A, the mapping of Equation 3,
this would mean encoding it as the tuplem =̂ (ARM14,ARM15).

By �xating an enumeration of R in the same manner, this yields
an embedding onto R |K | as sets, i.e., encode is an injective function.
�e example above reduces tom =̂ (14, 15) For the metric we �rst
de�ne ametric on the architecture,darch. �ismetric depends on the
architecture itself, but is chosen such that darch (PEi , PEi) = 0 for
all i , i.e. for all PEs. Furthermore, we chose the distance according
to the latencies, such that darch (PEi , PEj) < darch (PEi , PEk), if the
latency between PEi and PEj is always smaller than that between
PEi and PEj . For example, in the architecture depicted in Figure 7,
we have

darch (ARMi ,ARMj) =

0 if i = j
1 for all i, j if i, j in the same cluster
2 otherwise

Having de�ned this metric darch, we de�ne the metric on map-
pings as:

d (m1,m2) = d ((m1 (k1), . . . ,m1 (k |K |)), (m2 (k1), . . . ,m2 (k |K |)))

=

|K |∑

i=1
|darch (m1 (ki),m2 (ki)) |

(4)

For example, the distance between the orangemappingm1 =̂ (14, 15)
and the dark-blue mappingm2 =̂ (7, 7) in Figure 7 is:

d (m1,m2) = |darch (14, 6) | + |darch (7, 7) | = 2 + 2 = 4
On the other hand, the distance between the dark-blue and the
light-blue mapping is 2 + 1 = 3

4.3.2 Norm . We selected the p = 1 norm for applying DC
to mappings. For a �nite-dimensional real space, the Ln1 norm is
simply:

‖ (x1, . . . ,xn)‖1 =
n∑

i=1
|xi |

On a discrete space, this norm is commonly referred to as the
“Manha�an” norm, and it corresponds to the metric on M from
Equation 4. We believe out of the Lp norms, this one best captures
the distance between processing elements.

4.4 �e oracle
As explained above, the DC algorithm works using an oracle. It has
a very simple speci�cation: given a mappingm ∈ M , say if the en-
coded mapping encode(m) is in the feasible set A (encode(m) ∈ A ⊆
{1, . . . , |R |} |K | ⊆ Rn). Whether a mapping is feasible depends on
the user constraints (see Figure 2), e.g., number of resources, maxi-
mum energy consumption, or overall performance. As mentioned
before, we only consider a single time bound t0:

We say a mappingm is feasible ⇔
the time t from the simulation is below t0

�us, de�ning an oracle is simple: given a mappingm, it will run
the simulator (c.f. II in Figure 4) and return feasible if the simulated
time is ≤ t0. Note that the DC algorithm works on Rn , whereas
our encoding is a function in {1, 2, . . . , |R |}n , a �nite and discrete
set. To deal with this, we round all coordinates of an x ∈ Rn to
the nearest integer and let the oracle return infeasible if it falls
outside the de�ned set. With this method, however, we neglect
some information about A we already posses, namely, that it is a
subset of {1, 2, . . . , |R |}n . In future work we plan to address this by
formulating a discrete (�nite) version of the DC algorithm.

Consider again the example from Figure 7. For this very simple
application, since the design-space is two-dimensional, we can

Robust Mapping of Process Networks to Many-Core Systems using Bio-Inspired Design Centering SCOPES’17, 2017,

actually visualize it. If we let the application execute on every one
of the 162 = 256 mappings in this example, we get the heatmap
depicted in B, where the color corresponds to the execution time.
We see where the three mappings from A correspond to through the
do�ed lines. If we set the oracle function to use the time t0 = 80ms,
then the feasible space A will be the orange squares, whereas for
t0 = 160ms, it will encompass everything except the dark-blue
diagonal.

5 EVALUATION
In this section we evaluate our approach, using three embedded
applications on the architectures described in Section 4.2. �e goal
of the evaluation is twofold. First we want to generate a mapping
with the DC approach from an initial mapping. �is mapping was
optimized with the conventional mapping tool �ow of the SLX Tool
Suite. Second we want to verify the robustness of the mapping ob-
tained with the DC algorithm in comparison to the initial mapping
and a set of randomly generated mappings. To this, we introduce
perturbations to the mapping and check to what extend application
constraints are still met. �e perturbations correspond to local
remapping decisions, emulating what operating system would do
if it cannot deploy the statically computed mapping.

5.1 Applications
For testing, we use three applications from the signal processing
and multimedia domains. �e �rst one is an audio �lter in the
frequency domain. �is �lter processes a stereo audio signal from
an input �le of 16 bit samples at 48 kHz. It is functionally the
same as the one presented in Figure 7, but split in 8 processes
to expose more parallelism. �e second application is a multiple
input, multiple output orthogonal frequency division multiplexing
(MIMO-OFDN) algorithm, similar to those used for 4G wireless
communication. �e code of the benchmark operates on randomly
generated packets. �e last application is a Sobel �lter from the
image processing domain.

5.2 Search Strategy
During the design-centering exploration, as part of the algorithm,
we vary the radius of the Lp -ball. We achieve this by changing
the hi�ing probability p during the iterations of the algorithm.
Constrained to a small hi�ing probability, the DC algorithm tends
to enlarge the sample region and vice versa. For the experiments we
specify the following list of target hi�ing probabilities at di�erent
iterations (S) of the DC algorithm:

p =

0.05 for 0 < S ≤ 15000
0.5 for 15001 < S ≤ 18750
0.75 for 18751 < S ≤ 22500
0.8 for 22501 < S ≤ 26250
0.95 for 26251 < S ≤ 30000

�e adaptation of the radius and the sampled hi�ing probability
is illustrated in Figure 8, which shows a run of the DC algorithm for
the MIMO-OFDN application. For the �rst half of the samples the
hi�ing probability is �xed to p = 0.05, which forces the algorithm
to increase the search radius in order to reach the target hi�ing
probabilityp. A�er the �rst 15,000 samples, p decreases steadily and

0.5 1 1.5 2 2.5 3

·104

2

4

6

8

10

Iterations

Ra
di
us

r
of

th
eL

1-
ba
ll

r

0

0.2

0.4

0.6

0.8

1

H
i�
in
g
pr
ob
ab
ili
ty

p

p

Figure 8: Radius and hitting probability of the L1-ball during
a DC algorithm run

forces a smaller radius of the Lp -ball. Finally, a value of p = 0.95
with the last samples is reached. �is strategy ensures that the
calculated design center is located within a large feasibility region
and does not get stuck on a local maximum.

Besides the dynamic adaptation of the search radius, the shape of
the Lp -ball is also decisive for an exact hypervolume approximation.
As mentioned before, we use the Manha�an metric as distance
metric for the hypervolume. �is is a good �t since we work on a
2-dimensional grid of PEs. �eminimum radius (rmin) of the L1-ball
was set to one and the maximum to the half of the parameter space
rmax = |K | |{PEi }|/2, with |K | being the dimension of the mapping
vector (number of tasks) and |{PEi }| the number of PEs.

5.3 Results
In order to assess the robustness of the resulting mappings, we
designed a perturbation method for testing it. �e idea is to test
whether a mapping still works within the given constraints a�er
the static mapping is slightly changed. �e modi�cation of a single
mappingm is performed by randomly perturbing the parameter
vector encode(m). For this, three random cores are chosen from
the mapping and replaced by a di�erent core of the given architec-
ture. Our perturbation analysis consists in obtaining 100 modi�ed
versions of the original mapping encode(m) and testing how many
of those still meet the constraints. Note that the modi�cations
of the vector are carried out without further consideration of the
architecture. �is means that a di�erent core was selected with-
out consideration of cluster boundaries or other communication
infrastructures. In doing so, it was taken into account that some
small changes of the mapping may result in a large impact on the
run-time while others have very li�le e�ect. However, we believe
those extrema are leveled out by the large number of perturbations.
�us, the robustness of di�erent mappings is still comparable with
this method.

To evaluate how robust the mapping computed with our ap-
proach really is, we also perform the perturbation analysis on other
199 feasible mappings obtainedwith themapping �ow. Figures 9–11
show the results of the perturbation analysis for the three applica-
tions on both target architectures. In the �gures, the mappings (on
the x-axis) are sorted according to robustness, i.e., what percent-
age of the 100 variations still meet the constraints. �e mapping
obtained with the DC approach and the �rst mapping computed

SCOPES’17, 2017,
G. Hempel et al., Gerald Hempel, Andrés Goens,

Jeronimo Castrillon, and Josefine Asmus, Ivo F. Sbalzarini

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100
DC

Init

M
ap
pi
ng

sp
as
se
d
in

%

ARM SoC Architecture

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

DC Init

Mapping ID

M
ap
pi
ng

sp
as
se
d
in

%

NoC Architecture

Figure 9: Perturbation charts for MIMO-OFDN benchmark
on di�erent architectures

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100
DC

Init

M
ap
pi
ng

sp
as
se
d
in

%

ARM SoC Architecture

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

DC Init

Mapping ID

M
ap
pi
ng

sp
as
se
d
in

%

NoC Architecture

Figure 10: Perturbation charts for the Audio-Filter bench-
mark on di�erent architectures

during the exploration (step I in Figure 4) are marked as ”DC” and
”Init” respectively. We see that in all instances, the mapping se-
lected by the DC algorithm is in the �rst two deciles, and is, indeed,
a very robust mapping. In particular, the results of the perturba-
tion analysis for all three applications (Figure 9–11) imply that the

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

DC

Init

M
ap
pi
ng

sp
as
se
d
in

%

ARM SoC Architecture

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

DC

Init

Mapping ID
M
ap
pi
ng

sp
as
se
d
in

%

NoC Architecture

Figure 11: Perturbation charts for the Sobel �lter bench-
mark on di�erent architectures

found design centers provide a clear improvement of robustness
in comparison to the optimized initial mapping. Nonetheless, the
evaluated design centers are of di�erent quality, while the center
of the MIMO-OFDM benchmark seems to be very robust against
hardware perturbations (98%), the remaining benchmarks provide
centers from 87% to 61%. �us, it is quite possible that the algorithm
will determine a local center, which could be surpassed in its quality
by some random mapping. An investigation of this e�ect revealed
that the deviations are triggered by di�erent starting values, which
is a usual behavior for a heuristic-based algorithm.

�e perturbation analysis described above is quite time consum-
ing. We also analyze whether it is possible to determine the quality
of the design center without carrying the detailed analysis. To this
end, we investigate the relation between the estimated hypervol-
ume (“radius”) of the feasible region with the quality (robustness).
By construction, we expect said radius of the L1-balls of di�erent
design centers to correlate with the robustness of the mappings. We
compared di�erent design centers from the MIMO-OFDM bench-
mark on the ARM SoC with the described perturbation analysis
(using identical random seeds for each center). �e results of this,
alongside a linear regression, are shown in Figure 12. Due to the
small number of evaluated design centers (10), it is not clear how
representative these values really are. However, the obtained results
provide promising indications that there is a correlation between
the size of the ascertained hypervolume and the quality of the re-
sults. A regression analysis also suggests a very high correlation
(correlation coe�cient of 0.984).

5.4 Limitations
�e current version of the algorithm provides new samples as �oat
types that have to be rounded to integer values. �is procedure

Robust Mapping of Process Networks to Many-Core Systems using Bio-Inspired Design Centering SCOPES’17, 2017,

2 4 6 8

60

80

100

Radius of L1-ball

M
ap
pi
ng

sp
as
se
d
in

%

Figure 12: Correlation between radius of the L1-ball and ro-
bustness of the DC

results in multiple duplicate measurements as slightly di�erent
samples can be merged to identical mappings. In order to avoid
repetitive simulations of mappings, an internal cache was imple-
mented in the oracle function. �is problem can only be solved by
using an internal discretization of the DC algorithm. �is adaption
for discrete problems is part of the ongoing development of the
design DC algorithm.

6 RELATED WORK
�is section introduces previous works that are related to the prob-
lem of adaptive dynamicmapping for changed hardware or so�ware
constraints. Typically, dynamic mapping of process networks or
tasks graphs is necessary for multiple tasks running on multicores
on an embedded operating system.

�is problem is sometimes solved by holding multiple static
schedules calculated at compile time of the application, e.g. [20,
28, 49]. As this requires comprehensive knowledge of all possible
system states, these approaches su�er from a bad scalability. �us,
several a�empts were made to provide light-weight run-time map-
pings for process networks. Most of this approaches use a twofold
strategy; computing parts of the mapping at compile time and make
the �nal adaptations to the mapping at runtime. Examples for such
hybrid approaches can be found in [9, 33, 47].

In order to provide these compile time optimized mappings for
di�erent usage scenarios a comprehensive design space exploration
is required. �is issue has been extensively studied in recent years,
e.g. [32] tries to �nd Pareto fronts within the design space of a
data-�ow application, or [40] describes an exploration methodology
for multi-objective constraints. In general, it is di�cult to compare
these mapping approaches [15].

However, most of the hybrid approaches for dynamic mapping
either run into scalability problems as they provide only static parts
or require considerable computing resources at runtime. Our idea
was to decrease the computational e�ort at runtime to nearly zero
by providing a mapping that can be modi�ed within certain bound-
aries without a�ecting the given constraints of the application.
�erefore, we used a design centering approach as it is commonly
used in integrated-circuit design [7] and material sciences [30]. Our
approach requires also a design space exploration at compile-time
but uses the gathered information to provide a robust design. To

the best of our knowledge, we are the �rst using design centering
for the development of robust mapping in the context of data�ow
applications.

7 CONCLUSIONS AND PERSPECTIVE
We described an application of a bio-inspired design centering
algorithm to compute robust mappings formulticores. In contrast to
conventional optimization methods, the applied algorithm does not
try to �nd one distinct optimal point, but rather a whole region that
ful�lls a certain condition. For this purpose, the design centering
algorithm explores the design space in order to �nd a point which
is in the center of a determined hypervolume of points that meet
the given constraints. In this work, the algorithm was used to �nd
mappings that provided a certain degree of robustness against slight
remapping changes during runtime. We believe design centering
can be used to generate mappings that are robust to other kinds of
perturbations, and that this is an interesting area of research.

To evaluate our approach we used a state-of-the-art tool �ow
for mapping KPN applications to multicore architectures. We per-
formed a perturbation analysis for three applications onto two
fundamentally di�erent architectures. Compared to convention-
ally optimized mappings, the generated mappings turned out to
be ≈29% more robust against changes of hardware resources.

In future work, we will specialize the design centering algorithm
to be directly applied to discrete problems. Furthermore, we are
planning to apply the algorithm to other problems from the �eld
of process network optimizations, e.g., mapping robustness with
respect to changes in the internal control �ow of the processes.

8 ACKNOWLEDGMENTS
�is work was supported by the German Research Foundation
(DFG) as part of the Cluster of Excellence “Center for Advancing
Electronics Dresden” (cfaed).

�e authors thank Silexica (www.silexica.com) for making their
embedded multicore so�ware development tool available to us.

REFERENCES
[1] Adapteva. 2011. E16G301 EPIPHANY 16-CORE Microprocessor. Datasheet.

(October 2011). h�p://www.adapteva.com/docs/e16g301 datasheet.pdf
[2] Jose�ne Asmus, Christian L. Müller, and Ivo F. Sbalzarini. 2017. Lp-Adaptation:

Simultaneous Design Centering and Robustness Estimation of Electronic and
Biological Systems. (February 2017).

[3] E. Biscondi, T. Flanagan, F. Fruth, Z. Lin, and F. Moerman. 2012. Maximizing
Multicore E�ciency with Navigator Runtime. White Paper. (Feburary 2012).
www.ti.com/lit/wp/spry190/spry190.pdf

[4] S. Casale Brunet. 2015. Analysis and optimization of dynamic data�ow programs.
Ph.D. Dissertation. Ecole Polytechnique Federale de Lausanne (EPFL).

[5] J. Castrillon and R. Leupers. 2014. Programming Heterogeneous MPSoCs: Tool
Flows to Close the So�ware Productivity Gap. Springer. 258 pages. DOI:h�p:
//dx.doi.org/10.1007/978-3-319-00675-8

[6] J. Castrillon, R. Leupers, and G. Ascheid. 2013. MAPS: Mapping Concurrent
Data�ow Applications to Heterogeneous MPSoCs. IEEE Transactions on Indus-
trial Informatics 9, 1 (February 2013), 527–545. DOI:h�p://dx.doi.org/10.1109/
TII.2011.2173941

[7] S. Chen, X. Lin, A. Shafaei, Y. Wang, and M. Pedram. 2015. Analysis of deeply
scaled multi-gate devices with design centering across multiple voltage regimes.
In 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Uni�ed Conference
(S3S). 1–2.

[8] F. Conti, C. Pilkington, A. Marongiu, and L. Benini. 2014. He-P2012: Architec-
tural heterogeneity exploration on a scalable many-core platform. In 2014 IEEE
25th International Conference on Application-Speci�c Systems, Architectures and
Processors. 114–120. DOI:h�p://dx.doi.org/10.1109/ASAP.2014.6868645

SCOPES’17, 2017,
G. Hempel et al., Gerald Hempel, Andrés Goens,

Jeronimo Castrillon, and Josefine Asmus, Ivo F. Sbalzarini

[9] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal. 2013.
Schedule-Extended Synchronous Data�ow Graphs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32, 10 (October 2013),
1495–1508. DOI:h�p://dx.doi.org/10.1109/TCAD.2013.2265852

[10] A. Das, A.K. Singh, and A. Kumar. 2015. Execution Trace–Driven Energy-
Reliability Optimization for Multimedia MPSoCs. ACM Trans. Recon�gurable
Technol. Syst. 8, 3, Article 18 (May 2015), 19 pages. DOI:h�p://dx.doi.org/
10.1145/2665071

[11] Erwin A. de Kock, W.J.M. Smits, Pieter van der Wolf, J.-Y. Brunel, W.M. Kruijtzer,
Paul Lieverse, Kees A. Vissers, and Gerben Essink. 2000. YAPI: Application
modeling for signal processing systems. In Proceedings of the 37th Annual Design
Automation Conference. ACM, 402–405.

[12] Stephen W. Director and Gary D. Hachtel. 1977. �e simplicial approximation
approach to design centering. Circuits and Systems, IEEE Transactions on 24, 7
(1977), 363–372.

[13] Johan Eker and Jörn W. Janneck. 2003. CAL language report: Speci�cation of the
CAL actor language. Electronics Research Laboratory, College of Engineering,
University of California.

[14] C. Erbas, S. Cerav-Erbas, and A.D. Pimentel. 2006. Multiobjective Optimization
and Evolutionary Algorithms for the Application Mapping Problem in Multipro-
cessor System-on-Chip Design. IEEE Transactions on Evolutionary Computation
10, 3 (June 2006), 358 – 374. DOI:h�p://dx.doi.org/10.1109/TEVC.2005.860766

[15] A. Goens, R. Khasanov, J. Castrillon, S. Polstra, and A. Pimentel. 2016. Why
Comparing System-level MPSoC Mapping Approaches is Di�cult: a Case
Study. In Proceedings of the IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC-16). Ecole Centrale de Lyon, Lyon,
France.

[16] Helmuth E. Graeb. 2007. Analog Design Centering and Sizing. Springer.
[17] Peter Greenhalgh. 2011. Big. li�le processing with arm cortex-a15 & cortex-a7.

ARM White paper (2011), 1–8.
[18] N. Hansen. 2008. Adaptive encoding for optimization. (2008).
[19] N. Hansen and A. Ostermeier. 2001. Completely derandomized self-adaptation

in evolution strategies. Evol. Comput. 9, 2 (2001), 159–195.
[20] S.H. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha, and L. �iele. 2014. Static

mapping of mixed-critical applications for fault-tolerant MPSoCs. In 2014
51st ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. DOI:h�p:
//dx.doi.org/10.1145/2593069.2593221

[21] J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich,
and M. Meredith. 2009. SystemCoDesigner – an Automatic ESL Synthesis Ap-
proach by Design Space Exploration and Behavioral Synthesis for Streaming
Applications. ACM Trans. Des. Autom. Electron. Syst. 14, Article 1 (January 2009),
23 pages. Issue 1. DOI:h�p://dx.doi.org/10.1145/1455229.1455230

[22] Hiroaki Kitano. 2004. Biological robustness. Nature Rev. Genetics 5, 11 (2004),
826–837.

[23] G. Kjellström and L. Taxen. 1981. Stochastic Optimization in System Design.
IEEE Trans. Circ. and Syst. 28, 7 (July 1981), 702–715.

[24] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal. 2008. Multiprocessor
Systems Synthesis for Multiple Use-cases of Multiple Applications on FPGA.
ACM Trans. Des. Autom. Electron. Syst. 13, 3 (2008), 1 – 27. DOI:h�p://dx.doi.org/
10.1145/1367045.1367049

[25] C. A. M. Marcon, E. I. Moreno, N. L. V. Calazans, and F. G. Moraes. 2008. Com-
parison of network-on-chip mapping algorithms targeting low energy consump-
tion. IET Computers Digital Techniques 2, 6 (November 2008), 471–482. DOI:

h�p://dx.doi.org/10.1049/iet-cdt:20070111
[26] P. Marwedel, I. Bacivarov, C. Lee, J. Teich, L. �iele, Q. Xu, G. Kouveli, S. Ha, and

L. Huang. 2011. Mapping of Applications to MPSoCs. In Hardware/So�ware Code-
sign and System Synthesis (CODES+ISSS), 2011 Proceedings of the 9th International
Conference on. 109 –118.

[27] C. L. Müller and I. F. Sbalzarini. 2011. Gaussian Adaptation for Robust Design
Centering. In Evolutionary and deterministic methods for design, optimization
and control, Proc. EuroGen, C. Poloni, D. �agliarella, J. Périaux, N. Gauger, and
K. Giannakoglou (Eds.). CIRA, ECCOMAS, ERCOFTAC, Capua, Italy, 736–742.

[28] Hristo Nikolov, Mark �ompson, Todor Stefanov, Andy Pimentel, Simon Pol-
stra, Raj Bose, Claudiu Zissulescu, and Ed Depre�ere. 2008. Daedalus: toward
composable multimedia MP-SoC design. In Proceedings of the 45th annual Design
Automation Conference. ACM, 574–579.

[29] A.D. Pimentel, C. Erbas, and S. Polstra. 2006. A systematic approach to exploring
embedded system architectures atmultiple abstraction levels. IEEE Trans. Comput.
55, 2 (February 2006), 99–112. DOI:h�p://dx.doi.org/10.1109/TC.2006.16

[30] J. R. Pugh and M. J. Cryan. 2015. Design centering of a GaN photonic crystal
nanobeam. In 2015 17th International Conference on Transparent Optical Networks
(ICTON). 1–3.

[31] �alcomm. 2011. Snapdragon S4 Processors: System on Chip
Solutions for a New Mobile Age. White Paper. (October 2011).
h�ps://developer.qualcomm.com/download/snapdragon-s4-processors-
system-on-chip-solutions-for-a-new-mobile-age.pdf

[32] Wei�an and A.D. Pimentel. 2016. A hierarchical run-time adaptive resource
allocation framework for large-scale MPSoC systems. Design Automation for
Embedded Systems 20, 4 (2016), 311–339. DOI:h�p://dx.doi.org/10.1007/s10617-
016-9179-z

[33] Wei�an and Andy D. Pimentel. 2016. A hierarchical run-time adaptive resource
allocation framework for large-scale MPSoC systems. Design Automation for
Embedded Systems (2016), 1–29. DOI:h�p://dx.doi.org/10.1007/s10617-016-
9179-z

[34] Wei�an and Andy D. Pimentel. 2016. Scenario-based run-time adaptive MPSoC
systems. Journal of Systems Architecture 62 (2016), 12–23.

[35] Sachin S. Sapatnekar, Pravin M. Vaidya, and Sung-Mo Kang. 1994. Convexity-
based algorithms for design centering. IEEE transactions on computer-aided design
of integrated circuits and systems 13, 12 (1994), 1536–1549.

[36] R. Schwencker, F. Schenkel, H. Graeb, and K. Antreich. 2000. �e Generalized
Boundary Curve &Mdash; a Common Method for Automatic Nominal Design
Centering of Analog Circuits. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe (DATE ’00). ACM, New York, NY, USA, 42–47. DOI:
h�p://dx.doi.org/10.1145/343647.343695

[37] Abbas Sei�, K. Ponnambalam, and Jiri Vlach. 1999. A uni�ed approach to
statistical design centering of integrated circuits with correlated parameters.
Circuits and Systems I: Fundamental �eory and Applications, IEEE Transactions
on 46, 1 (1999), 190–196.

[38] Weihua Sheng, Stefan Schürmans, Maximilian Odendahl, Mark Bertsch, Vitaliy
Volevach, Rainer Leupers, and Gerd Ascheid. 2014. A compiler infrastructure for
embedded heterogeneous MPSoCs. Parallel Comput. 40, 2 (2014), 51–68.

[39] Silexica. 2014. SLX Tool Suite. (2014). h�p://silexica.com/products (accessed
April 27, 2017).

[40] A.K. Singh, A. Kumar, and T. Srikanthan. 2013. Accelerating �roughput-aware
Runtime Mapping for Heterogeneous MPSoCs. ACM Trans. Des. Autom. Electron.
Syst. 18, 1, Article 9 (January 2013), 29 pages. DOI:h�p://dx.doi.org/10.1145/
2390191.2390200

[41] A.K. Singh, M. Sha�que, A. Kumar, and J. Henkel. 2013. Mapping on multi/many-
core systems: Survey of current and emerging trends. In Design Automation
Conference (DAC), 2013 50th ACM / EDAC / IEEE. 1–10.

[42] RS Soin and R Spence. 1980. Statistical exploration approach to design centring.
In IEE Proceedings G-Electronic Circuits and Systems, Vol. 127. IET, 260–269.

[43] Rainer Storn. 1999. System design by constraint adaptation and di�erential
evolution. IEEE Transactions on Evolutionary Computation 3, 1 (1999), 22–34.

[44] H. K. Tan and Y. Ibrahim. 1999. DESIGN CENTERING USING MOMEN-
TUM BASED CoG. Engineering Optimization 32, 1 (1999), 79–100. DOI:

h�p://dx.doi.org/10.1080/03052159908941292
[45] Lothar �iele, Iuliana Bacivarov, Wolfgang Haid, and Kai Huang. 2007. Map-

ping Applications to Tiled Multiprocessor Embedded Systems. In ACSD ’07:
Proceedings of the Seventh International Conference on Application of Concurrency
to System Design. IEEE Computer Society, Washington, DC, USA, 29–40. DOI:
h�p://dx.doi.org/10.1109/ACSD.2007.53

[46] Luı́s M. Vidigal and Stephen W. Director. 1982. A design centering algorithm
for nonconvex regions of acceptability. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 1, 1 (1982), 13–24.

[47] A. Weichslgartner, D. Gangadharan, S. Wildermann, M. Glaß, and J. Teich. 2014.
DAARM: Design-time application analysis and run-time mapping for predictable
execution in many-core systems. In Hardware/So�ware Codesign and System
Synthesis (CODES+ ISSS), 2014 International Conference on. IEEE, 1–10.

[48] A. Weichslgartner, S. Wildermann, J. Götzfried, F. Freiling, M. Glaß, and J. Teich.
2016. Design-Time/Run-Time Mapping of Security-Critical Applications in
Heterogeneous MPSoCs. In Proceedings of the 19th International Workshop on
So�ware and Compilers for Embedded Systems (SCOPES ’16). ACM, New York,
NY, USA, 153–162. DOI:h�p://dx.doi.org/10.1145/2906363.2906370

[49] D. Zhu, L. Chen, S. Yue, T. M. Pinkston, and M. Pedram. 2016. Providing Balanced
Mapping for Multiple Applications in Many-Core Chip Multiprocessors. IEEE
Trans. Comput. 65, 10 (October 2016), 3122–3135. DOI:h�p://dx.doi.org/10.1109/
TC.2016.2519884

