
Work-in-Progress: Multi-Grained Performance Estimation for
MPSoC Compilers

Miguel Angel Aguilar1, Abhishek Aggarwal1, Awaid Shaheen1, Rainer Leupers1, Gerd Ascheid1,
Jeronimo Castrillon2 and Liam Fitzpatrick3

{aguilar, aggarwal, shaheen, leupers, ascheid}@ice.rwth-aachen.de, RWTH Aachen University, Germany1
jeronimo.castrillon@tu-dresden.de, TU Dresden, Germany2

�tzpatrick@silexica.com, Silexica GmbH, Germany3

ABSTRACT
Parallelizing compilers are a promising solution to tackle key chal-
lenges ofMPSoC programming. One fundamental aspect for a prof-
itable parallelization is to estimate the performance of the applica-
tions on the target platforms. There is a wide range of state-of-the-
art performance estimation techniques, such as, simulation-based,
measurement-based, among others. They provide performance es-
timates typically only at function or basic block granularity. How-
ever, MPSoC compilers require performance information at other
granularities, such as statement, loop or even arbitrary code blocks.
In this paper, we propose a framework to adapt performance infor-
mation sources to any granularity required by an MPSoC compiler.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Software and its engineering→ Compilers;

1 INTRODUCTION
The selection of a granularity is a major issue in parallelizing com-
pilers, as it has a direct impact on the form and degree of paral-
lelism that can be exploited. MPSoC compilers work at a wide va-
riety of granularities: statement, basic block, loops, function and
arbitrary code blocks, as shown in Figure 1. To achieve a pro�table
parallelization, compilers require performance information at all
these granularities. This enables the identi�cation of hotspots and
the evaluation of potential performance improvements provided
by the parallel patterns discovered in the application [1, 3].

There is a multitude of performance estimation techniques [3],
such as, simulation-based, emulation-based, measurement-based,
among others. However, these techniques typically provide the
estimates only at the function and basic block granularities. For
example, gprof [5] provides information at the function granular-
ity only, while the performance estimation framework for embed-
ded platforms proposed in [4], provides information at both func-
tion and basic block granularity. This is not su�cient for the re-
quirements of modern compilers for embedded multicore systems.
Therefore, in this paper we propose a framework to adapt the
source performance information to any required granularity.

2 PROPOSED APPROACH
Figure 2 shows the proposed tool-�ow. The �rst step is to take the
performance information provided by any performance estimation
technique and adapt it to a generic format. Themain challenge here

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
CASES ’17 Companion, October 15–20, 2017, Seoul, Republic of Korea

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-5184-3/17/10. . . $15.00
https://doi.org/10.1145/3125501.3125521

is to deal with multiple input performance information formats. In
order to handle this variability and to keep the estimate generator
generic, we extract from each input performance estimator only
speci�c information and convert it into a generic interface. This
task is performed by the pre-processing step of the tool-�ow. The
information extracted during the pre-processing step is the follow-
ing: i) basic block self costs, and/or ii) function self costs. This cost
information can be given either in terms of cycles or time. In addi-
tion, meta data is extracted to be able to correlate the performance
information with the source code (e.g., source �le names and line
numbers), as well as the core type to which this information be-
longs to. Here the self costs refer to the costs of a code region ex-
cluding the costs of calling other functions within the region itself.

After extracting the relevant performance information during
the pre-processing step, this information is stored in a generic in-
terface for the rest of the tool-�ow, as Figure 2 shows. Each of the
input granularities have in common that they can be represented
in terms of a sequence of source code line numbers. Therefore, we
use line number intervals to generically describe the granularities.
For example, in Figure 1 the function foo has a line number inter-
val of 1-11. Similarly, basic blocks can be described by intervals.

Finally, the estimate generator module adapts on demand the
cost information available in the generic interface, to the cost in-
formation at the granularities requested by an MPSoC compiler.
These requests are described in terms of line intervals and core
types. A valid interval goes from one single line to an interval of
lines that does not go beyond any function in the application. To
complement the information from the generic interface, the esti-
mate generator also performs a source code pro�ling run to ex-
tract execution count information both at function and basic block
granularities, which is also needed during the adaptation process.

The estimate generator handles three scenarios for the re-
quested intervals. In the �rst scenario, the interval exactly matches
information available in the generic interface, therefore, the esti-
mate generator simply forward the information from the generic
interface to the MPSoC compiler, as follows:

Costr (La ,Lb) = Costдi (Lx ,Ly) (1)

where, [La, Lb] = [Lx ,Ly]. In the second scenario the requested
interval is bigger than any interval available in the generic inter-
face. Then, the requested cost information can be computed as the
addition of all the non-overlapping intervals in the generic inter-
face that are contained within the requested interval (e.g., function
cost computed based on its basic block costs):

Costr (La ,Lb) =

n∑

k=1

Costдi (Ik) (2)

where Ik ⊂ [La,Lb]. Finally, in the third and most interest-
ing scenario the requested interval does not match any interval in
the generic interface, but there is an interval that includes the re-
quested interval (e.g., statement cost computed based on its basic
block cost). Therefore, the costs are estimated based on the small-
est possible interval that contains the requested interval. This es-
timation relies on a weighted distribution approach, in which the

CASES ’17 Companion, October 15–20, 2017, Seoul, Republic of Korea Aguilar et al.

(a) Statement (b) Basic Block (c) Language Construct (d) Function (e) Arbitrary

Figure 1: Granularity examples

Figure 2: Estimate Generator Tool-�ow Overview

weights are taken from a platform model (similar to [2]), as Fig-
ure 2 shows. In the platform model there is a cost table with la-
tencies of each instruction for each core type in the target MPSoC.
The weight for a given interval is computed as follows:

w (Lx ,Ly) =

n∑

k=1

Latency (Sk) ·Count (Sk) (3)

where Sk is the instruction, Latency (Sk) is the latency of the
Sk and Count (Sk) is the execution count of Sk obtained from the
pro�ling run. Then, the cost of the requested interval is as follows:

Costr (La,Lb) =
wr (La, Lb)

wдi (Lx ,Ly)
·Costдi (Lx ,Ly) (4)

where [La,Lb] ⊂ [Lx , Ly], wr (La, Lb) is the weight of the re-
quested interval, andwдi (Lx , Ly) is the weight andCostдi (Lx ,Ly)
is the cost from the interval in the generic interface. The estima-
tions presented in the described scenarios provide all the �exibility
required by embedded parallelizing compilers to extract multiple
patterns (e.g., task, pipeline and data level parallelism [1, 3]), espe-
cially when they work simultaneously at multiple granularities.

3 EXPERIMENTAL EVALUATION
The focus of the evaluation is on the accuracy of the proposed
framework. For the input performance estimation, we used the
framework presented in [4], which provides estimations both at
basic block and function granularities. The platform used was the
Multi-core DSP Keystone C6678 from Texas Instruments [6], for
which a model was built using its documentation. As case stud-
ies we used the ADPCM and Trellis applications from the UTDSP
benchmark suite [7], which were evaluated using the optimization
level -O2 by the input performance estimation framework.

First we evaluated the second scenario according to Equation 2.
Here, we took the input performance information at the basic block
granularity and let the tool-�ow estimate the function self costs.
Then, we compared the estimations generated by our framework
with the input reference estimations at the function granularity.
As it can be observed from the results in Figure 3, there is no esti-
mation error in both applications, which is an expected outcome
since the estimation is simply the addition of the costs of all basic
blocks within each function.

F1 F2 F3

0

10

20

8.2

19.2

697.4

8.2

19.2

697.4

C
y
cl
es

(1
03
) Reference

Estimate

(a) ADPCM

F1 F2 F3 F4 F5

0

2

4

1.66 1.88 2.07
2.35

3.7

1.66 1.88 2.07
2.35

3.7

C
y
cl
es

(1
07
) Reference

Estimate

(b) Trellis

Figure 3: Estimation Results of Function Granularity

BB1 BB2 BB3 BB4 BB5

0

5

10

1.99 2

4.17

10.7 10.7

2.01 1.96

3.66

9.48 9.52

C
y
cl
es

(1
04
) Reference

Estimate

(a) ADPCM

BB1 BB2 BB3 BB4 BB5

0

5

10

15

3.84 4.16
6.4

9.6

16.3

3.15 3.62
5.33

9.96

15

C
y
cl
es

(1
06
) Reference

Estimate

(b) Trellis

Figure 4: Estimation Results of Basic Block Granularity

Then we evaluated the third scenario according to weighted dis-
tribution approach described in Equation 4. Here we took the in-
put performance information at the function granularity and esti-
mated the basic block self costs. Figure 3 shows the results consid-
ering the most computational intensive basic blocks. We can ob-
serve that the error in the estimation for the ADPCM benchmark is
between 1.13% and 11.12%, while for the Trellis benchmark the
error is between 3.97% and 17.91%. The estimation errors in this
scenario can be attributed to: i) inaccuracies in the latency values
in the platform model, ii) awareness of the optimization level used
while generating the input performance estimates.

4 CONCLUSIONS
In this paper, we presented a tool-�ow that adapts performance in-
formation from state-of-the-art techniques, to the granularities re-
quired by modern parallelizing compilers for multicore embedded
systems. The results show an estimation error under 18% for the
evaluated benchmarks. In the future, we plan to further evaluate
the accuracy of the proposed approach, and to assess the impact of
our approach on the quality of the parallelization decisions.

REFERENCES
[1] Miguel Angel Aguilar et al. 2016. Towards Parallelism Extraction for Heteroge-

neous Multicore Android Devices. IJPP (2016), 1–33.
[2] Multicore Association. 2013. Software-Hardware Interface for Multi-Many-Core

(SHIM) V1.00. [Online] http://www.multicore-association.org. (2013).
[3] Jeronimo Castrillon and Rainer Leupers. 2014. Tool Flows to Close the Software

Productivity Gap. Springer.
[4] Juan Fernando Eusse et al. 2014. Pre-architectural Performance Estimation for

ASIP Design Based on Abstract Processor Models. In SAMOS 2014. Greece.
[5] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. 2004. Gprof: A

Call Graph Execution Pro�ler. SIGPLAN Not. 39, 4 (April 2004), 49–57.
[6] Texas Instruments. 2016. Keystone Multicore Devices. [Online] Available

http://processors.wiki.ti.com/index.php/Multicore. (2016).
[7] Corinna Lee. 1998. UTDSP Benchmark. [Online]

http://www.eecg.toronto.edu/c̃orinna/DSP/infrastructure/UTDSP.html. (1998).

