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ABSTRACT
Recent research has proposed die-stacked Last Level Cache (LLC) to
overcome the Memory Wall. Lately, Spin-Transfer-Torque Random
AccessMemory (STT-RAM) caches have been recommended as they
provide improved energy e�ciency compared to DRAM caches.
However, the recently proposed STT-RAM cache architecture un-
necessarily dissipates energy by fetching unneeded cache lines into
the row bu�er. In this paper, we propose a Selective Read Policy for
STT-RAM. �is policy only fetches those cache lines into the row
bu�er that are likely to be reused. �is reduces the number of cache
line reads and thereby reduces the energy consumption. Further,
we propose two key performance optimizations namely Row Bu�er
Tags Bypass Policy and LLC Data Cache. Both optimizations reduce
the LLC access latency and therefore improve the overall perfor-
mance. For evaluation, we implement our proposed architecture in
the Zesto simulator and run di�erent combinations of SPEC2006
benchmarks on an 8-core system. We show that our synergetic
policies reduce the average LLC dynamic energy consumption by
72.6% and improve the system performance by 1.3% compared to
the recently proposed STT-RAM LLC. Compared to the state-of-the-
art DRAM LLC, our architecture reduces the LLC dynamic energy
consumption by 90.6% and improves system performance by 1.4%.
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1 INTRODUCTION AND MOTIVATION
Conventional o�-chip memories do not ful�l the bandwidth and la-
tency requirements of complex applications running on multi-core
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Figure 1: Distribution of number of unique lines reused be-
foreRB evictionusing 2KBRB size for SPEC2006 application
mixes (see Table 2)

systems [6]. �e limited number of I/O pins provided by the pack-
aging induces a gap between processor and memory performance.
�is widening gap is known as the Memory Wall [41] and severely
limits the performance of applications with large memory and band-
width requirements. A potential solution to mitigate the memory
wall problem is to employ die-stacked technologies [1, 22, 24, 38].
�ese technologies integrate processor and memory dies employing
a low latency and high bandwidth interconnect. To abate the num-
ber of high latency accesses to bandwidth-limited o�-chip memory,
recent research proposed to implement the die-stacked memory as
a large capacity Last-Level-Cache (LLC) [7–13, 16, 27].

Previously, on-chip DRAMmemory has been adopted as LLC for
performance improvement due to its capacity advantage compared
to an area equivalent SRAM cache [9–11, 16, 27]. However, the
DRAM LLC dissipates a signi�cant portion of chip power budget
due to its high refresh and dynamic energy consumption. �erefore,
recent research has advocated the use of non-volatile Spin-Transfer-
Torque Random Access Memory (STT-RAM) as LLC [13]. By ex-
ploiting the non-volatility characteristics of STT-RAM, the energy
consumption of the LLC can be reduced signi�cantly compared to
DRAM.

Typically, a high capacity STT-RAM holds multiple banks and
each bank is provided with a Row Bu�er (RB) [13, 23]. �e total
energy consumption in existing STT-RAM LLC is dominated by
reading data from an STT-RAM bank into the RB [13]. To reduce
the energy consumption of STT-RAM LLC, we exploit the fact that
most of the cache lines are unnecessarily fetched into the RB as
they are not likely to be reused in the near future. Figure 1 shows
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that the probability for the RB content to be accessed before RB
eviction is less than 40%. �erefore, we fetch only those cache lines
into the RB that are likely to be reused. �is reduces the number of
RB fetches signi�cantly and, therefore, also reduces the dynamic
energy consumption of an STT-RAM LLC. However, identifying
the likelihood for a cache line to be reused induces a high tag access
latencywhen using existing tag read policy [9, 13, 27]. �erefore, we
also propose a novel RB Tags Bypass Policy that provides fast access
to LLC tags. More precisely, we make the following contributions:

(1) We classify lines of an STT-RAM row into highly-reused
and lowly-reused lines.

(2) We propose a Selective Read Policy that only fetches highly-
reused lines of an STT-RAM row into the RB. By avoiding
the need to fetch lowly-reused lines, we reduce the energy
consumption signi�cantly.

(3) While the Selective Read Policy saves energy it also induces
a latency penalty. To improve the performance, we propose
a RB Tags Bypass Policy.

(4) To further improve the performance, we also propose a
small LLC Data Cache (LDC) that stores lines which are
likely to be accessed later. Lines that hit in the LDC are
accessed with much lower latency.

2 BACKGROUND
�is section presents details of the organization for the recently
proposed LLC. Further, this section describes the basic operating
principles of STT-RAM and qualitatively compares STT-RAM to
DRAM.

2.1 State-of-the-art LLC Organization
Figure 2a illustrates the organization of the previously proposed
LLC [9, 10, 13]. �e LLC is split into multiple memory banks each
equipped with a row bu�er (RB). Each bank is organized as a series
of rows that are split into columns. In this paper, we assume an
LLC size of 256 MB, a row size of 2048 bytes and a column size of
64 bytes.

�e LLC is implemented as a set-associative cache. Recent re-
search proposed various set mapping policies [9, 10, 13, 27, 31]. For
this paper, we use the most recently proposed policy LAMOST that
was used for DRAM [9, 10] LLCs and STT-RAM LLC [13]. In the
LAMOST policy, the tags and lines of an LLC are stored in the same
row. Each 2KB LLC row comprises 4 sets with 7-way associativity.
Each set contains 7 cache lines and a tag column. �e cache lines
have a size of 64 bytes. Each tag has a size of 31 bits and in each tag
column 7 × 31 = 217 bits are used for the 7 tag entries. �is leaves
295 bits of each tag column unused.

In this paper, we assume 44-bit physical addresses. �e address
is split into multiple parts as depicted in Figure 2b. �e 18 most
signi�cant bits identify the LLC-tag. �e next 12 bits select a row
within a bank and the following 6 bits select a memory bank within
the LLC. 2 bits are used to identify the set within a row and the
remaining 6 least signi�cant bits identify a byte within a cache
line. Figure 3 shows how main memory blocks are mapped to a
particular bank, row, and set using the LAMOST policy. All the
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Figure 2: Typical LLC and address organization using the
LAMOST policy [9, 10, 13] for an 8-core system with 256 MB
LLC size, 64 banks, 2 kB row bu�er size and 44-bit physical
addresses
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Figure 3: Bank/row/set mapping for LAMOST policy [9, 10,
13]. SB stands for super-block

blocks that are mapped to the same row are referred to as a super-
block (SB). With the LAMOST policy, each super-block consists of
4 consecutive 64 byte memory blocks.
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For each bank, the RB holds a copy of the row that was retrieved
last. �e RB allows for exploiting bank-level parallelism while keep-
ing a shared command, address, and data bus. A controller or access
scheduler is employed do avoid any con�icts on the shared buses.
In order to access a cache line, the controller issues a command
that fetches the corresponding row from the bank to the bank’s
row bu�er. Successive requests to cache lines that are contained
within the same row are serviced directly without fetching the row
again. �is is referred to as a row bu�er hit. An access to a line that
is contained in a di�erent row, requires to fetch this row into the
RB. �is is referred to as a row bu�er miss. �e access latency and
energy of an RB hit is much lower compared to that of an RB miss.
�erefore, an application with high row bu�er locality (many row
bu�er hits) has be�er performance and lower energy consumption
than a similar application with low row bu�er locality.

While we assume a speci�c se�ing with �xed row, column, LLC,
and physical address size, the concepts presented in this paper can
be applied to other se�ings as well.

2.2 Basic Operating Principles of DRAM and
STT-RAM

In DRAM, data is stored as a charge in a bit-cell. During a DRAM cell
read operation, the charge stored in the capacitor is shared with the
bitline. �e sense ampli�er that is connected to each bitline detects
the voltage change which is then translated to either logical ‘0’ or
logical ‘1’. �e sense ampli�er consists of cross-coupled transistors
that amplify the small di�erential signal that appears on the bitline
following the charge transfer from the bit-cell. In DRAM, all the
sense ampli�ers that are connected to the bitlines are referred to
as the row bu�er. Due to this physical connection, the RB and the
bit-cells in the DRAM bank are tightly coupled.

An STT-RAM bit-cell uses a Magnetic Tunnel Junction (MTJ)
device to store the information. �e MTJ is made of two indepen-
dent ferromagnetic layers, the reference layer and the free layer
(see Figure 4a). �e magnetic orientation of the reference layer is
�xed. However, the magnetic orientation of the free layer can be
freely rotated. It can be parallel or anti-parallel to the reference
layer. Depending on the magnetic orientation of the free layer,
the resistance of the MTJ cell changes. In the parallel state, the
resistance is low and the cell stores a logical ‘0’. In the anti-parallel
state, the resistance is high and the cell stores a logical ‘1’. To read
the value from a bit-cell, a voltage is applied between the source
line and the bitline (see Figure 4b). �is causes a low current to �ow
through the MTJ. �e sense ampli�er uses this current to detect the
resistance state of the MTJ cell and decides for logical ‘0’ or logical
‘1’, which then can be stored in the row bu�er.

2.3 STT-RAM RB Bypass and Partial Write
Optimizations

In DRAM, the RB (i.e. sense ampli�ers) and the bit-cells are tightly
coupled due to charge sharing. �erefore, any read/write operation
in DRAM requires the data to be fetched into the RB. A prominent
characteristic of STT-RAM is the decoupled organization [13, 23,
29] of its sense ampli�ers and the RB (Figure 5). �is is a major
advantage over DRAM for the following three reasons.
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Figure 4: An STT-RAM bit-cell (a) and the Magnetic Tunnel
Junction device (b) that stores a single bit of information.
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(1) It is possible to bypass the RB in STT-RAM. �e read or
write operation can be performed directly on the STT-RAM
bank bit cells without the need to fetch the data into the RB.
�is RB bypassing has been leveraged recently [13, 23] to
improve performance and energy e�ciency by increasing
the row bu�er locality.

(2) Read or write operations can be performed directly on the
RB without requiring the sense ampli�ers. An STT-RAM
bank column access does not necessarily requires the RB.

(3) �e STT-RAM bank and the RB can operate independently
on di�erent rows which improves access parallelism.

Traditionally, on an RB miss, the newly requested row is always
fetched in the row bu�er. However, if the row that is currently
stored in the RB is likely to experience RB hits, it should not be
replaced by a row that is likely to experience an RB miss. �erefore,
the traditional policy does not work well due to the following rea-
sons. First, eviction of useful rows (i.e. that are likely to experience
RB hits) reduces the RB hit rate and therefore reduces the overall
performance. Second, a low RB hit rate leads to a large number of
RB fetches which signi�cantly increases the energy consumption.

Considering the cache access types (read, write, and writeback),
the writeback access is particularly bad. An access a�er a write-
back has a chance of less than 5% to hit the RB [13]. �erefore,
recent work [13, 23] has proposed to bypass the RB for the write-
back access and to perform the cache writeback operation directly
on an STT-RAM column. �is optimization improves both perfor-
mance and energy e�ciency by increasing RB hit rate and avoiding
unnecessary RB evictions.

To further reduce the energy consumption, the partial write
optimization proposed in [23] only writes dirty columns from the
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RB back to the STT-RAM array a�er an RB eviction. Both, the RB
bypass and the partial write optimization are very easy to imple-
ment in STT-RAM due to its decoupled organization of the sense
ampli�ers and the RB as depicted in Figure 5.

3 PROPOSED STT-RAM LLC ARCHITECTURE
Based on the state-of-the-art discussed in the previous section, this
section discusses our novel STT-RAM based LLC architecture.

3.1 Overview
Figure 6 depicts an overview of the STT-RAM based LLC archi-
tecture and highlights our contributions. Similar to [13, 23], the
proposed architecture uses RB bypass and partial write optimiza-
tions (recall Section 2.3) which improves performance and energy
consumption compared to the traditional policy. Our LLC uses the
same organization as the one proposed in [9, 10, 13] and shown in
Figure 2.

A disadvantage of existing LLC RB policy [9, 10, 13, 27, 31] is
that it always fetches an entire row into the RB while the majority
of columns within the row are not accessed again. To reduce the
energy consumption, we mark LLC lines as lowly reused and highly
reused lines. Based on this distinction, we propose a Selective Read
Policy that only fetches the useful STT-RAM columns into the RB.
However, when we apply the Selective Read Policy, the existing tag
read policy incurs high access latencies. To reduce this latency, we
propose a novel RB Tags Bypass Policy. To further reduce the access
latency and improve the LLC performance, we also propose the
usage of a novel LLC Data Cache (LDC).

3.2 Selective Read Policy
�e basic tenet of our proposed Selective Read Policy is to reduce
STT-RAM energy costs by eliminating unnecessary STT-RAM array
column reads. When we only fetch those cache lines that are likely
to be reused, we avoid unnecessarily fetching data from the STT-
RAM array and thereby reduce the energy consumption.

In order to quantify how o�en LLC lines in the RB are reused,
we perform a simple experiment. For this, we use a state-of-the-art
STT-RAM LLC with 2kB RB size, the LAMOST set mapping policy,
and the STT-RAM optimizations discussed in Section 2.3. We run a
series of SPEC2006 [2, 15] application mixes as listed in Table 2 and
count the number of lines that are reused in the RB before eviction.
Figure 1 displays the results of this experiment.

Figure 1 clearly shows that the majority of RB fetches are un-
necessary, as none of the lines in the RB are accessed again in over
60% of the cases. �e number of times that more then 4 lines in
the RB are reused before eviction is less than 2%. �is observation
provides the motivation to fetch only those lines into the RB that
are likely to be reused.

�e RB has a low utilization due to the bank/row/set mapping
(Figure 2b) of the LAMOST policy as shown in Figure 3. Since the
super blocks that are mapped to the sets of the same LLC row are
spacial distant, it is unlikely that subsequent accesses hit the RB.
However, adjusting the mapping policy in favour of a higher RB hit
rate would decrease the LLC hit rate. �is trade-o� in �nding an
ideal mapping policy is beyond the scope of this paper. We focus
on improving the energy e�ciency for the existing state-of-the-art
LAMOST policy.

In order to only fetch lines into the RB that are likely to be
reused, we classify the LLC lines as highly-reused and lowly-reused
lines. We mark one line for each of the 4 sets within an LLC row
as highly-reused. When selecting the highly-reused line of a set,
we distinguish two cases. If a block of the currently requested
super-block is present in the set, then the corresponding line is
highly-reused. �is considers the fact, that subsequent accesses are
likely to be within the same super-block. If a set does not contain
a block of the currently requested super-block, the least recently
used (LRU) line of this set is the highly-reused line. �is considers
the fact, that this line is likely to be replaced on a subsequent access.
�en, the line will need to be wri�en back to the main memory if
it is dirty. �erefore, it is likely to be reused.

We illustrate the Selective Read Policy using a simple example
as illustrated in Figure 7. We assume a super block Sb that con-
tains four adjacent memory blocks named b0, b1, b2, and b3. �e
blocks are mapped to the sets Set0, Set1, Set2, and Set3, respectively.
Further, we assume that block b2 is currently requested. On an
RB miss, the corresponding row needs to be fetched into the RB.
Traditionally, the complete row would be fetched. However, using
the Selective Read Policy we only fetch the 4 highly-reused lines.

In the example in Figure 7, the highly-reused lines are marked
by arrows. �e lines L0 of Set0 and L4 of Set2 are highly-reused
lines since they hold the blocks b0 and b2 of the currently accessed
super-block Sb . �e other blocks of Sb (b1 and b3) are not currently
present in the sets Set1 and Set3. �erefore, the LRU lines in these
sets are marked as highly reused. In order to decide which line is
highly-reused, the 4 tag columns need to be fetched �rst. �en, the
4 highly-reused lines are fetched into the RB. Our proposal requires
a total of 8 column reads on an RB miss compared to 32 column
reads in a traditional LLC architecture.

If a subsequent request misses the RB, the RB is evicted and the
whole process is repeated. However, if a subsequent request hits
the RB, we need to check if the requested line is present in the RB.
Since we only fetch the highly-reused lines of each row, not all lines
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Figure 7: Example illustrating the Selective Read Policy using LAMOST organization and 2KB row size

are present in the RB. If the line is present in the RB, we can directly
serve the request. Otherwise, we likely encountered the rare case
in Figure 1 where more than 4 lines of a row are reused. �erefore,
we now fetch the complete row from the STT-RAM array to the
RB.

�e implementation of the Selective Read Policy induces an addi-
tional hardware overhead. In order to keep track of which lines are
currently present in the RB, we need to store a present bit for each
line in the row. �is requires 28 bits per STT-RAM bank. �is is a
total overhead of 224 bytes for our LLC organization with 64 banks.

3.3 Latency Breakdown
In this section, we analyze the latencies that occur in an STT-RAM
based LLC architecture. We assume the LLC architecture depicted
in Figure 6 along with a Tag-Cache. We further assume a request to
blockb2 as in Figure 7. �e latency breakdown for various scenarios
in state-of-the-art LLC architectures is explained in the following:

RB miss and Tag-Cache miss in LAMOST. Figure 8a shows the
latency breakdown of a RB and Tag-Cache miss without employing
the Selective Read Policy. �is latency includes 18 cycles for row
activation (ACT), 18 cycles for column access latency (CAS) to
access the tag column (i.e. T2), two cycles to transfer the relevant
tag column on the bus (i.e. RD T2), one cycle for the tag check,
another 18 cycles to access the requested cache line, and two cycles
to read the cache line (i.e. RD CL). �is is a total of 59 cycles.
A�er that, the controller issues successive read request to prefetch
the remaining tag columns (i.e. RD T0, T1, and T3) into the Tag-
Cache. �e additional latency required to read the non-requested
tag columns (i.e. T0, T1, and T3) is 6 cycles. �is extra latency
overhead is repayed by future hits in the Tag-Cache leveraging the
temporal locality of application. �erefore, the RB/Tag-Cache miss
latency is 59 cycles.

RB miss and Tag-Cache hit. A Tag-Cache hit does not require
an extra CAS command to access the tag column T2, which is
required to identify the location of the requested line. �erefore,
read requests that hit in the Tag-Cache (Figure 8b) have a much
lower latency (i.e. 40 cycles) compared to the Tag-Cache miss.

ACT:	Row	activation	latency	(18)

CAS:	Column	Access	latency	(18)	

Tag	Check	latency	(1) Bus	latency	for	one	block	(2)	

CAS	(T2) CAS	(LINE)ACT	(ROW)

RB	miss	Latency	59	cycles

Row	ready	in	the	RB RD	T2 RD	CL

CAS	(T0)

CAS	(T1)

CAS	(T3)

RD	T0

RD	T1

RD	T3

Tag-Cache	latency		(2)

(a)

CL:	Cache	line

(RB hit: Tag-Cache hit)

ACT	(ROW) CAS	(LINE)

RD	CLRow	ready	in	the	RB

40	cycles

(c) CAS	(LINE)

RD	CL

22	cycles

(b) (RB miss: Tag-Cache hit)

RB	hit	Latency	41	cycles

Figure 8: �e latency incurred in LAMOST policy for various
scenarios (a) RB miss and Tag-Cache miss (b) RB miss and
Tag-Cache hit (c) RB hit and Tag-Cache hit

RB hit and Tag-Cache hit. Read requests that hit both in the RB
and the Tag-Cache do not require an extra ACT command to fetch
the requested row in the RB. �erefore, these requests are serviced
much faster (i.e. 22 cycles) as illustrated in Figure 8c.

3.4 RB Tags Bypass Policy
�e LLC tag read policy in [10, 11, 13, 16] always fetches the tags
(and the lines) in the RB before inserting them in the Tag-Cache.
However, this policy worsens the RB and Tag-Cache miss latency
for the Selective Read Policy which is shown in Figure 9a. �e
Selective Read Policy requires two row activations. One for fetching
the 4 tag columns and one subsequent activation for fetching the
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Figure 9: �e RB miss and Tag-Cache miss latency with Se-
lective Read Policy using (a) existing tag read policy (b) con-
troller optimizations exploiting RB bypassing for the tags

Table 1: Latencies for read requests in various scenarios in
our proposed LLC architecture excluding controller latency

RB Hit Tag-Cache Cache Line Figure
Hit Latency

No No 66 cycles 9b
No Yes 40 cycles 8b
Yes No 41 cycles 8a
Yes Yes 22 cycles 8c

highly-reused lines. Furthermore, additional 26 cycles (18 cycles for
CAS and 8 cycles for the bus transfer) will be required to read all
the tags from the RB into the Tag-Cache. �erefore, the RB miss
and Tag-Cache miss latency is 84 cycles for the Selective Read Policy
in combination with the existing tag reading policy.

�e additional latency overhead for an RB and Tag-Cache miss
using the Selective Read Policy is 25 cycles (84 - 59 = 25) when
compared to the LAMOST policy. In order to reduce this latency
overhead, we propose to bypass the RB for accessing the tags by
exploiting the decoupled organization of the sense ampli�ers and
the RB in STT-RAM. Instead of fetching the tags into the RB, we
store them directly in the Tag-Cache. Figure 9b shows the sequence
of commands to read the tags and the cache line for this scenario.
By avoiding the CAS command for fetching the tags from the RB,
the latency is reduced by 18 cycles to a total of 66 cycles. Apart
from reducing the access latency, the RB Tags Bypass Policy also
reduces energy consumption, as the write energy for storing the
tags in the RB and the read energy for reading the tags from the
RB to the Tag-Cache are avoided.

To further improve performance, we update tags that are present
directly in the Tag-Cahe and do not immediately write them back
to the STT-RAM. Since an STT-RAM write is more expensive than
a write to the Tag-Cache, this approach potentially saves energy
and reduces latency. In contrast to our approach, existing LLC
architectures originally used for DRAM architectures [9, 10, 26, 27]
always update the tags both in the Tag-Cache and the memory
bank. In our implementation, the tags are only wri�en back to the
STT-RAM array a�er they are evicted from the Tag-Cache.

Line	offsetTag-2LDC	Set-IndexSB-Tag

Main Memory Address (44 bits)
6 bits2 bits6 bits30 bits

LDC
Associativity (8)

Sets in LD
C

(64)    

SB-Tag-
Compare

SB-Miss

Data Blocks (8)

LDC hit

Data

… …

LRUTagDirtyValid

1 bit 1 bit 32 bits 3 bits

Tag-2SB-Tag

Tag-2
Compare

SB-Hit

LDC miss

SB: Super-block

Figure 10: LLC Data Cache Organization (LDC)

3.5 LLC Data-Cache Organization
�e access latency of reading a line from the STT-RAM array varies
from 22 to 66 cycles depending on the scenario (see Table 1). To
further reduce the latency, we extend our LLC architecture by a
small on-chip SRAM structure called LLC Data-Cache (LDC) that
holds the LLC cache lines that are likely to be accessed in the
future. Figure 6 shows the addition of the LDC to the existing LLC
architecture.

Figure 10 illustrates the organization of the LDC. It holds 64 sets
with 8-way associativity and has a total size of 34.5 kB. LLC access
that hit the LDC are serviced in only 2 cycles, due to the small
structure. �is accelerates LDC hits signi�cantly compared to the
22 to 66 cycles for STT-RAM accesses.

On an LDC access, the LDC set-index �eld of a main memory
address selects a set in the LDC. All tag �elds in this set are then
compared to the tag �elds of the memory address to identify an
LDC hit. �e SB-Tag �eld of the memory address corresponds to
the super-block and the Tag-2 �eld identi�es the block within a
super-block.

Figure 11 shows the control �ow of the LDC controller in our
proposed LLC architecture. On each LLC request, the LDC is ac-
cessed �rst in order to identify an LDC hit. If the access hits the
LDC, the request is serviced directly and an STT-RAM access is
avoided. Otherwise, the request needs to be serviced regularly by
the LLC. New lines are only inserted into the LDC on LLC read
hits. In all other cases, the LDC is le� unchanged. On an LLC read
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Figure 11: LDC lookup and insertion policy

hit, not the currently requested block is wri�en to the LDC, but all
adjacent blocks of the corresponding super-block are loaded to the
LDC. �e proposed LDC insertion policy exploits the temporal and
spatial locality of applications as adjacent blocks of a super-block
are likely be accessed in the near future. Note that all the blocks of
the super-block (SB) are mapped to the same LDC set.

To elaborate our LDC insertion policy, we use the example from
Figure 7. We assume that b2 is currently requested and that b0 does
not reside in the LDC. Since the request to b2 hits the LLC, the block
is transported to the lower level caches (i.e. L3, L2, and L1) and
�nally to the requesting core. Since b2 will be stored in the L1 cache,
further requests to b2 are unlikely to arrive at the LLC. �erefore,
b2 is not inserted into the LDC. However, adjacent blocks of the
same super-block are very likely to be accessed in the near feature.
�erefore, all adjacent blocks are that are present in the LLC are
loaded to the LDC. In the example, b0 is loaded to the LDC a�er the
read request to b2.

Figure 12 shows the latency breakdown of an RB and Tag-Cache
miss for the above example using the proposed LDC insertion policy
in Figure 11. First, the LLC controller loads the tag columns from
an STT-RAM array into the Tag-Cache and identi�es the highly-
reused lines (see Figure 7) of the row. �en, the highly-reused lines
are loaded into the RB. Subsequently, read requests are sent to
read the blocks b2 and b0 from the RB. b2 is forwarded to the L3
cache and b0 is stored in the LDC. Requesting b0 in addition to
b2 only incurs an overhead of 2 cycles as illustrated in Figure 12.
�is latency overhead depends upon the number of adjacent blocks
that are currently present in the LLC. It ranges from 0 to 6 cycles
for 0 to 3 present blocks, respectively. �e latency overhead for
reading additional blocks to �ll LDC is compensated by future hits
in the LDC, exploiting the fact that these blocks will most likely be
accessed later (confer to Figure 17 for evaluation).

3.6 Summary
In order to reduce the number of cache lines that are read unneces-
sarily to the RB, we introduced the Selective Read Policy. Using this
policy, only one line of each of the 4 sets within a row is fetched into

ACT:	Row	activation	latency	(18)

CAS:	Column	Access	latency	(18)	Bus	latency	for	one	block	(2)	

ACT	(T0,T1,T2,T3)

Tag-blocks	in	Tag-Cache

Tag	Check	latency	partial	read	(2)

ACT	(Parital) CAS	(b2)

RD	b0

66	cycles

Useful	lines	in	the	RB

CAS	(b0)

RD	b2

2	cycles

Figure 12: �e RB/Tag-Cache miss latency with LDC using
the proposed LDC insertion policy in Figure 11 for the illus-
trating example in Figure 7

the row bu�er. �ese 4 lines are likely to be reused on a subsequent
access.

For each line in a bank we store a presence bit to keep track of
the lines currently residing in that bank. If an access hits the RB
but the corresponding line is not present in the RB, the whole row
is fetched to the RB. (i.e. less than 2% of the time for all application
mixes).

In order to identify the highly-reused line of a set, �rst the tag
columns of the row need to be analyzed. To reduce the latency for
tag column reads and to further reduce the energy consumption,
we do not load the tag columns into the RB but load them directly
to the Tag-Cache. �is is referred to as RB Tags Bypass Policy. In
addition, we update present tags directly in the Tag-Cache and
write them back to the STT-RAM array only a�er eviction from the
Tag-Cache.

As shown in Table 1, the service times for LLC requests lies in
a range from 22 to 66 cycles. To further exploit the temporal and
spacial locality of typical applications, we introduced an additional
LLC Data Cache (LDC) that holds lines that are likely to be used in
future requests. A hit in the LDC, reduces the service time for the
request to only 2 cycles. Similar to the work in [13], our STT-RAM
architecture bypasses the RB and Tag-Cache for writebacks. Further,
we do not insert lines into the LDC for writes and writebacks.

4 EVALUATION
�is section gives a brief overview of the simulator infrastructure
that we used for evaluation and describes a set of benchmarks. It
also presents qualitative and quantitative comparisons to state-of-
the-art approaches.

4.1 Experimental Setup
We evaluate our STT-RAM LLC architecture using the Zesto X86
simulator [28]. Zesto provides detailed cycle accurate models of
the core mirco-architecture and of the cache hierarchy. For our
benchmarks, we model an 8-core system where each core runs a
single application from the SPEC2006 benchmark suite [2, 15]. We
simulate a total of 6 application mixes as shown in Table 2.

�e parameters of the system con�guration used for simulation
are listed in Table 3. We extensively modi�ed the DDR memory
model of Zesto to re�ect the distinct characteristics of STT-RAM
similar to the work in [13, 23]. Most importantly, we model the
non-volatility and high write latency of STT-RAM. �e modi�ed



MEMSYS’17, October 2–5, 2017, Washington DC, USA Fazal Hameed, Christian Menard, and Jeronimo Castrillon

Table 2: SPEC2006 application mixes used as benchmarks
for evaluation. Values in parenthesis denote the number of
instances used for that particular application.

Mix 01 astar.t, bzip, leslie3d.r, libquantum, omnetpp, milc,
soplex.r, leslie3d.t

Mix 02 astar.t(2), leslie3d.r(2), libquantum(2), mcf, astar.b
Mix 03 bzip(2), leslie3d.t(2), milc, omnetpp, soplex.r, astar.b
Mix 04 astar.t, leslie3d.r, milc, omnetpp(2), soplex.r(2), leslie3d.t
Mix 05 bzip, leslie3d.r(2), astar.t, mcf, milc(2), libquantum
Mix 06 soplex.r, astar.b, omnetpp(2), libquantum, leslie3d.t(2),

bzip

Table 3: Con�guration details as used in the experiments

Core 3.2 GHz, out-of-order, 4-issue
Private L1 32 kB, 8-way associativity, 2 cycles latency
Private L2 512 kB, 8-way associativity, 5 cycles latency
Shared L3 8 MB, 8-way associativity, 20 cycles latency
Shared LLC
(DRAM or
STT-RAM)

4 channels, 2 kB RB, 256 MB, 64 banks, 256-bit
channel width, 2 cycle bus latency, tRCD -tRP -tCAS
= 18-18-18 (cycles)

tWR 18 and 38 cycles for DRAM and STT-RAM
Tag-Cache 27 kB, 2 cycle latency [10, 11, 16]
Miss Predictor Map-I [31], 256 entries
Main Memory
(DRAM)

2 channels, 16 kB row bu�er, 64-bit channel width,
800 MHz bus frequency, tRAS-tRCD-tRP-tCAS-
tWR = 144-36-36-36-36 (cycles)

STT-RAM LLC model considers bus contention, queuing delays,
as well as bank and row bu�er con�icts. We extracted the energy
values of various micro-architectural structures using NVSIM [5]
and Cacti [30, 37] and con�gured Zesto accordingly. Table 4 shows
the energy values for various operations. �ese values, include
the energy consumed by, e.g., row and column decoders, sense
ampli�ers, multiplexers, write drivers, and read latches.

For evaluation, we compare the following LLC con�gurations:
DRAM-Base DRAM LLC without any optimizations [9, 10].
STT-Base STT-RAM LLC without any optimizations.
STT-WP STT-RAM LLC including the state-of-the-art write-

back RB bypass [13] and partial write optimizations [23]
described in Section 2.3.

STT-WP-SR-naive State-of-the-art STT-RAMLLC extended
by our Selective Read Policy as described in Section 3.2 using
existing tag read policy in [10, 11].

STT-WP-SR-TagOpt State-of-the-art STT-RAMLLC extended
by our Selective Read Policy using the RB Tags Bypass Policy
from Section 3.4.

STT-WP-SR-TagOpt-LDC STT-WP-SR-TagOpt extended by
the LLC Data Cache (LDC) from Section 3.5.

Table 4: Dynamic energy consumption of various compo-
nents detailed in Table 3

Operation Energy
DRAM Array Read/Write 14.13 [nJ/Column]
DRAM Precharge 4.63 [nJ/Column]
DRAM RB Access 11.88 [nJ/Column]
STT-RAM Array Read 10.87 [nJ/Column]
STT-RAM Array Write 28.49 [nJ/Column]
STT-RAM RB Access 10.07 [nJ/Column]
Tag-Cache Access (27.2 KB) 0.97 [nJ/Access]
LLC Data Cache (LDC) (34.5 KB) 1.12 [nJ/Access]
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Figure 13: Measured harmonic mean instruction per cycle
(HM-IPC) for the 6 application mixes and di�erent con�gu-
rations

For all con�gurations, we make the following assumptions:
(1) We use the LAMOST LLC set mapping policy [9, 10] (see

Figure 2)
(2) We employ a MAP-I predictor for predicting LLC cache

misses as in [31] and Tag-Cache as in [10, 11, 16].
(3) We assume an LLC with 4 channels, 256 bits bus width per

channel, 2 cycles bus latency, and 2kB RB size.
(4) We assume that writes to the STT-RAM array incur 20 cy-

cles extra latency compared to a DRAM array. We assume
tWR (write recovery time) to be 18 cycles for DRAM and
38 cycles for STT-RAM.

(5) We employ the Simpoint tool [14] to choose the region of
interest (ROI) for each benchmark in the application mix.

(6) We use FR-FCFS (First Ready First Come First Serve) access
scheduling [32] for the LLC.

4.2 Performance and Energy Measurements
Figure 13 shows the performance results for all evaluated con�g-
urations normalized to DRAM-Base con�guration. As depicted,
our STT-WP-SR-TagOpt-LDC con�guration improves the average
performance by 1.4%, 5.6%, and 1.3% compared to DRAM-Base,
STT-Base, and STT-WP con�gurations, respectively.

�e energy bene�ts of the STT-WP-SR-TagOpt-LDC con�gura-
tion can be observed in Figure 14. As shown, the average energy
consumption is reduced by 90.6% compared to DRAM-base and
91.2% compared to STT-Base. While the writeback RB bypass pol-
icy proposed in [13] already saves a large amount of energy, our
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Figure 14: Average LLC dynamic energy consumption for
various con�gurations normalized to DRAM-Base con�gu-
ration [9, 10]
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Figure 15: LLC RB hit rate for various con�gurations

Selective Read Policy further reduces this energy consumption by
72.2% by eliminating unnecessary STT-RAM reads.

In the following, we compare the various con�gurations in more
detail.

Comparing DRAM-Base and STT-Base. Simply replacing theDRAM
arrays by STT-RAM arrays does not provide any bene�ts in per-
formance or energy consumption. On the contrary, we observe
an average performance degradation of 4.3% and a 6.1% increased
energy consumption for STT-RAM compared to DRAM. �is is
mostly due to the high latency and energy consumption of write
operations in STT-RAM. However, due to the decoupled organi-
zation of STT-RAM, our optimizations can reduce the number of
write operations in an STT-RAM LLC and signi�cantly decrease
the energy consumption. �is is illustrated in the following.

Comparing STT-Base and STT-WP. Applying the writeback RB
bypass policy [13], signi�cantly improves the performance and
energy consumption of an STT-RAM LLC. In the STT-Base con�g-
uration, a writeback always overwrites the RB, which might cause
eviction of highly-reused rows. �e writeback row, however, is
unlikely to be reused on a subsequent access. Bypassing the RB for
writeback operations, increases the RB hit rate from 32.2% to 39.5%
as illustrated in Figure 15. �is improves the performance by 4.8%
on average for our application mixes.

In addition to the writeback RB bypass policy, the STT-WP con-
�guration also applies the partial write optimization [23]. As a
consequence of both optimizations, the LLC dynamic energy con-
sumption is reduced by 69.2% compared to the STT-Base con�gura-
tion.
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Figure 16: Average LLC dynamic energy consumption of var-
ious con�gurations. Values are normalized to the STT-WP
con�guration for reference. Overheads include the energy
consumed by the Tag-Cache and the LDC

Impact of the Selective Read Policy. Although the STT-WP con�g-
uration is more energy e�cient than the STT-Base con�guration, it
still incurs an unnecessarily high energy consumption by reading
unneeded lines from the STT-RAM array to the RB. Applying our
Selective Read Policy (see Section 3.2) further reduces the energy
consumption by 72.2% compared to the STT-WP con�guration. Fig-
ure 16 illustrates the energy improvement of con�gurations that
use the Selective Read Policy. However, the Selective Read Policy
degrade the performance by an average of 3.6% compared to the
STT-WP con�guration (see Figure 13) due to an increased RB and
Tag-Cache miss latency (see Figure 9a).

Impact of the RB Tags Bypass Policy. Since the Selective Read Pol-
icy su�ers from an increased RB and Tag-Cache miss latency, it
has a limited performance. We proposed the RB Tags Bypass Policy
(Section 3.4), which bypasses the RB for tag access, to overcome
this limitation. As shown in Figure 9, this optimization reduces the
latency from 84 to 66 cycles. Furthermore, the RB Tags Bypass Policy
reduces the energy consumption, as it avoids duplicate storage of
tags. As a result, the STT-WP-SR-TagOpt con�guration improves
the average performance by 2.9% and reduces the LLC dynamic
energy consumption 14.7% compared to the STT-WP-SR-naive con-
�guration.

Impact of the LDC. �e STT-WP-SR-TagOpt con�guration im-
proves performance compared to the STT-WP-SR-naive con�gura-
tion. However, it still degrades the performance by 0.8% on average
compared to the state-of-the-art STT-WP con�guration. To further
improve the performance, we proposed a small structure called
LDC Data Cache (LDC) (see Section 3.5). �e inclusion of LDC
improves the performance by 1.3% and 2% compared to the STT-
WP and STT-WR-SR-TagOpt con�gurations. �e proposed LDC
accelerates access latency to cache lines as an STT-RAM read can
be avoided when the line is present in the LDC. As illustrated in
Figure 17, the LLC hit for a read request is 47.5% on average for all
application mixes. On the downside, the STT-WP-SR-TagOpt-LDC
con�guration increases LLC dynamic energy consumption by 4.3%
compared to the STT-WP-SR-TagOpt con�guration due to reading
extra columns from the STT-RAM array.
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Figure 17: LDC hit rate for a read request that hits in LLC

5 RELATEDWORK
Existing LLC architectures (mostly DRAM-based) can be cater-
gorized into block-based and page-based designs. Block-based
LLCs [9–11, 16, 25, 27, 31, 33, 34] use a small line size (i.e. 64
byte) while page-based LLCs [17–20, 40] use a large line size (i.e.
1KB/2KB). �e advantage of page-based designs is that they lever-
age the spatial locality of applications by storing entire pages in the
LLC. However, the large page size has a high price. �e excessive
prefetching leads to a high usage of memory bandwidth which
makes it unsuitable for multi-core system running diverse applica-
tions. Another drawback of page-based LLC is that not all blocks
within the large page are accessed prior to page evictions, which
may exacerbate the performance. In contrast to page-based LLCs,
we employ a block-based LLC to mitigate the excessive memory
bandwidth utilization problem.

�e large memory requirements of new applications have forced
the industry to increase the LLC size. For instance, IBM POWER7
processor [3, 39] employs a 32 MB DRAM LLC. �e DRAM based
LLC architectures [9–11, 16–20, 25, 27, 31, 33, 34, 40] consume a
signi�cant portion of chip power budget due to high leakage and
refresh energy which increases with the LLC size. To mitigate
the power scalability of DRAM, recently STT-RAM LLC architec-
ture [13] have been proposed as a promising alternative to DRAM
LLC.

Independent of the LLC architecture (i.e. block-based or page
based; DRAM based or STT-RAM based), all of the above mentioned
studies always fetch the content of an entire row into the row bu�er
a�er a row bu�er miss. �is leads to an unnecessarily high energy
consumption, since most of the columns will not be used. Our
proposal is unique in that it only fetches those lines into the row
bu�er which are likely to be accessed later.

Many architectural techniques have been presented for energy
and performance trade-o�s in STT-RAM caches [21, 35, 36]. �ey
relax the non-volatility of STT-RAM by tuning the MTJ volume to
improve its write latency and energy requirements at the cost of
additional refresh overheads. However, these techniques are not
suitable for larger STT-RAM due to high energy requirements for
refreshing MTJ cells periodically. In contrast, our proposal exploits
the non-volatility characteristics of STT-RAM.

Other circuit level energy and latency reduction techniques that
exploit heterogeneity in the switching time of the STT-RAM bit

cell have been introduced in [4, 42]. However, these circuit level
techniques are orthogonal to our work and can be combined with
our proposal in order to further improve performance and energy
e�ciency of STT-RAM LLC.

6 CONCLUSIONS
�is paper presents novel policies to improve the performance and
energy e�ciency in STT-RAM LLC architectures. We demonstrate
that existing LLC architectures unnecessarily fetch large amounts of
data into the row bu�er while the majority of the data is not reused.
Our Selective Read Policy exploits this fact to reduces the energy
consumption by decreasing the number of STT-RAM reads. While
this introduces a latency penalty, we decrease the access latency
by a new Row Bu�er Tags Bypass Policy optimization. Finally, the
LLC Data Cache (LDC) organization is proposed to improve the
performance by further reducing the access latency. Our results
on SPEC 2006 benchmarks show that our synergestic policies are
e�ective in improving the average performance (1.3% and 1.4%)
and energy consumption (90.6% and 72.6%) compared to the state
state-of-the-art proposal for DRAM and STT-RAM LLC. With these
optimizations STT-RAM becomes an e�ective Last-Level-Cache
alternative to DRAM.
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