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ABSTRACT
In this paper, we present an extension of the NVMain mem-
ory simulator. The objective is to facilitate computer ar-
chitects to model complex memory designs for future com-
puting systems in an accurate simulation framework. The
simulator supports commodity memory models for DRAM
as well as emerging non-volatile memories technologies such
STT-RAM, ReRAM, PCRAM and hybrid models. The cur-
rent publicly available version of NVMain, NVMain 2.0,
offers support for main memory (using DRAM and NVM
technologies) and a die-stacked DRAM cache. We extend
the cache model of the simulator by introducing an SRAM
cache model and its supporting modules. With this addition,
designers can model hybrid multi-level cache hierarchies by
using the die-stacked DRAM cache and SRAM caches. We
provide a reference implementation of an optimized cache or-
ganization scheme for die-stacked DRAM cache along with
a tag-cache unit that, together, reduces cache miss latency.
To enable integration of the new features in the existing
memory hierarchy, we make necessary changes to the mem-
ory controller. We provide functional verification of the new
modules and put forward our approach for timing and power
verification. We run random mixes of the SPEC2006 bench-
marks and observe±10% difference in simulation results.
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1. INTRODUCTION
CPU and memory system are the two most important

components in any computing system. From the perfor-
mance perspective, both components are strictly interlinked.
CPU frequency has rapidly increased in the past decade
while frequency of the memory system has not scaled up
at the same pace. The memory system has always been on
the down side due its high access time and relatively low
operating frequency, becoming a major bottleneck in mod-
ern days computing systems. The rise of multi-core sys-
tems has further worsened this problem and the available
per core capacity and per core bandwidth has diminished
further. Commodity memory technologies such as DRAM
are unable to fill this ever-increasing processor memory gap.

DRAM is highly criticized for being expensive in terms
of power as well. The major factor that dominates DRAM
power dissipation is its periodic refreshes, background and
leakage power. The newly emerged non-volatile memory
(NVM) technologies such as spin-torque-transfer random-
access memory (STT-RAM), phase-change random-access
memory (PCRAM), and resistive random-access memory
(ReRAM) are believed to alleviate these limitations. They
have been advocated as potential DRAM replacements at
various levels (main memory, die-stacked cache). While
these technologies could supplement or supersede conven-
tional memory technologies at various levels in the memory
hierarchy, they have their own limitations. Simply replace-
ment of DRAM with NVM technologies is not a viable op-
tion because the latter suffers from high write energy and
write endurance issues.

This opens up new research directions and calls for ex-
ploration of appropriate memory technologies at each mem-
ory level. An ideal memory system would use the best of
many memory technologies and fulfill the diverse demands
of modern days applications. To design such system, it is vi-
tal for computer architects to use simulation tools and study
the suitability of each technology. NVMain [24] is one such
simulator that provides support for both DRAM and NVM
technologies. It models energy and cycle accurate operations
of main memory system. In its extended version NVMain
2.0 [25], die-stacked DRAM cache was introduced with the
Alloy [26] model.

In this paper, we present extensions for the publicly avail-
able version of NVMain (NVMain 2.0) simulator. We pro-
vide a reference implementation of a new SRAM cache which
could be used at various cache levels. For die-stacked cache,
we provide implementation of various latency optimizations.
To demonstrate this extension, we model a recently proposed



high associativity cache organization called LAMOST [9]. A
supporting module called tag-cache (an SRAM based small
memory unit that stores the tag information of recently ac-
cessed sets as explained in [14, 9, 20]) is employed on top
of LAMOST to mitigate high DRAM cache tag lookup la-
tency. We modify the memory controller and other NVMain
modules to make provision for the new extensions.

While some of these architectural features such as tag-
cache support specific cache organizations [17, 9], others
such as SRAM cache model can be used to model any level
in the memory hierarchy. All the new modules are made
configurable and can be enabled or disabled easily. Config-
uration parameters of each individual module are passed in
a config file and can be varied as per design requirements.
We believe these new features make NVMain more power-
ful and increase its application scope. Considering the de-
sign objectives, designers have more freedom to (a) model
customized memory systems (b) choose memory technology
for each level from a wider list of available options (DRAM,
NVM, SRAM) (c) select the number of cache/memory levels
(d) choose appropriate cache organization (Alloy, LAMOST,
LAMOST with tag-cache) for die-stacked memory.

2. RELATED WORK
Simulation has become a powerful tool in computer archi-

tecture community that empowers designers to model their
desired systems and predict the design objectives before-
hand. Architectural simulation is mainly used for design
space exploration and performance evaluation considering
all design goals and performance parameters. As such, ev-
ery leading processor manufacturing industry has developed
its own simulation tool(s) to model new processor models
and assess their feasibility. For instance, Mambo [4] by IBM
is designed to model their past and future power designs.
Its architectural support ranges from cell to embedded sys-
tem to supercomputer (BlueGene, POWER7). Similarly,
SimNow [2] by AMD and HAsim [23] by Intel are used to
evaluate their future systems respectively. Some high speed
architectural simulators have been developed to reduce the
simulation time. Sniper [5], Graphite [21], SlackSimslack-
sim, P-Mambo [30] and COTSon [1] are to name a few.
Open source system simulators such as Gem5 [3] exist that
not only target micro-architecture of the processor but en-
compasses the whole system architecture. In a recent work
[19], Gem5 has been coupled with SystemC that opens up
a whole new set of options for system level design space
exploration.

Unfortunately, some of these micro-architecture and system-
level simulators do not model the memory system in detail.
They consider a simplistic memory model without consid-
ering the complex organization of modern memory systems.
More often, a fixed latency is associated with a memory ac-
cess. In more advanced CPU simulators, bank conflicts are
considered and every time it occurs, a fixed wait latency is
added to the overall access time. This model significantly
underestimates the actual characteristic of the memory sys-
tem. This necessitates design of specialized memory simula-
tors that consider all possible design features, model actual
bus latencies, and report correct timing and energy param-
eters.

Of late, many such memory simulators have been pub-
lished. DRAMSim [29], the first publicly available memory
simulator, was designed to offer support for multiple types of
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Figure 1: Overview of the NVMain Architec-
ture [24]

memory technologies (SDRAM, DDR) and allow exploration
of memory system concepts. Presently, its extended version
DRAMSim2 [27] is openly available and is broadly used. It
is a C++ based cycle-accurate model that provides most
of the memory system design features. Design goals of the
simulator were to keep it small and portable. However, this
simplicity in controller architecture has barred it to be com-
parable with more recent and performance optimized con-
trollers. Other memory simulators such as Ramulator [16],
DRAMSys [15], NVMain and integrated simulators such as
[28] have been proposed with different design goals. For
instance, Ramulator offers support for an extended list of
DRAM standards. DRAMSys provides a holistic framework
that takes into consideration new DRAM based memory so-
lutions such as JDEC DDR4, WIDE I/O, and HMC. It cap-
tures new aspects such as temperature and retention fail-
ures. In contrast to all these simulators, NVMain focuses
on emerging NVM technologies while keeping the DRAM
support intact. A brief comparison of these memory simula-
tors with reference to design options is presented in Table 1.

3. SIMULATOR ARCHITECTURE
NVMain is a flexible memory simulator that supports

DRAM and NVM technologies. For DRAM, it follows the
same approach as other DRAM specific simulators in order
to capture important features. For NVM devices, beside
modeling timing and power parameters, it models NVM spe-
cific features as well; such as endurance, high write energy,
and multi-level cells (MLC) capability. Major modules of
the NVMain simulator include timing, power and endurance
models. NVMain 2.0, the currently available version, ex-
tends support for sub-array level parallelism and MLC op-
erations. Object hooks are introduced to strengthen the sim-
ulator hierarchy and allow requests inspection at a particular
level.

3.1 NVMain Overview
NVMain is an object based model where every module is

created as a separate object that can easily be integrated
to or detached from the simulator. An overview of the base
architecture of NVMain is shown in Figure 1.

Every object in the NVMain simulator such as the mem-
ory controller, the interconnect, the rank or the bank is re-
sponsible to model and capture its timing parameters. The



Table 1: Comparison of the Memory Simulators
Simulator DRAM die-stacked cache NVM Alloy [26] LAMOST [9] tag-cache SRAM

DRAMSim2 3 7 7 7 7 7 3

NVMain2.0 3 3 3 3 7 7 7

Ramulator 3 7 7 7 7 7 3

DRAMSys 3 7 7 7 7 7 3

NVMainExt (proposed) 3 3 3 3 3 3 3

timing parameters for DRAM devices are taken from their
manufacturer data-sheets while for SRAM and NVM tech-
nologies, these parameters are obtained from CACTI [22]
and NVSIM [8] tools respectively. The corresponding mem-
ory parameters such as tRCD, tRP , tBURST are provided in
a memory configuration file to the simulator. The simula-
tor takes another configuration file that describes the overall
memory system hierarchy and general configuration param-
eters such for number of ranks, banks, rows, columns, ad-
dress mapping scheme, decoders, row buffer policies, queue
models and queue sizes.

NVMain offers both single bank and inter-bank timing
models. The single bank timing model tracks most com-
monly found parameters such as tRCD, tRP and tCAS etc.
The inter-bank timing model restricts the power consump-
tion and current drawn by a single bank or different banks
within a fix time period by introducing parameters like tFAW

(four activation window) and tRRD (row to row activation
delay). All timing parameters are considered before issuing a
memory command to a particular module. Error message is
generated in case a module violates the timings constraints.

In its power model, NVMain computes per device energy
consumption where each device consists of multiple banks.
The total energy consumption is calculated as the sum result
of energy consumptions of all devices. For DRAM devices,
the typical IDDx parameters are used to measure power con-
sumption of read and write operations. For NVM technolo-
gies, to calculate the actual power consumption, NVMain
takes per bit write energy from NVSIM. The endurance
model keeps track of the total number of bits written and
their values. Energy of the unchanged bits is subtracted
from the total write energy consumption.

While the simulator provides a solid base for exploring
the optimal memory system, the design features it offers
are limited. The missing features include: a wide array of
memory technologies, configurable number of memory levels,
flexible cache controllers optimized for various performance
parameters, tag-cache, predictors and multiple row buffer
mapping schemes. The object-oriented structure of NVMain
encourages development of new extensions and allow their
easy integration.

3.2 NVMain Extensions
We provide reference implementations of new architec-

tural features for NVMain that could be used to propose
future memory systems. The new extensions strengthen the
relatively simple cache model of the current NVMain simula-
tor and opens up new design directions. Figure 2 highlights
these features and demonstrates how they fit in the overall
memory system design.

As highlighted in Figure 2, the die-stacked last level cache
(LLC) can be modeled as DRAM or NVM technologies. For
cache organization, designers have the choice to select appro-
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Figure 2: Extended NVMain Architecture (The
green color highlights the extensions)

priate scheme depending on the application requirements.
Alloy cache [26] gives the best performance for applications
having reduced miss-rate. Conversely, LAMOST [9] and
LH [17] cache organizations perfom better than Alloy cache
for applications having higher miss rates.

The proposed SRAM module can be used to model any
cache level in the memory hierarchy. Typically, CPU simu-
lators model only lower cache levels (level 1, 2 and 3). Ex-
isting NVMain simulator can be used to model die-stacked
DRAM cache, typically used as LLC. Our extended version
provides support to model multi-level cache hierarchy where
lower cache levels can be realized with SRAM technology
while higher cache level can be implemented using DRAM
or NVM technology.

3.2.1 SRAM Cache Model
SRAM is a fast memory technology. It has small access

time compared to DRAM and NVM technologies but is more
expensive. It is used at lower cache levels (close to the
processor) to bridge the processor and (slow)memory speed
gap. NVMain simulator in its present form does not support
SRAM. As a result, it can not model the lower cache levels.
We introduce a reference model of SRAM cache which can
be used as Level 1(L1), Level 2(L2) or Level 3(L3) cache.

To model the actual complex memory system, designers
should define all cache levels in the memory hierarchy. Un-
fortunately, existing memory simulators offer only higher
cache level(s). With this SRAM model, NVMain is capa-
ble to model the entire memory system by its own. Ev-
ery parameter of the SRAM model is configurable and can
be changed as per design goals. We adopt existing cache
bank model of the simulator with varied parameters to im-
plement SRAM specific functionalities. For every new re-
quest, the address translator of the SRAM module retrans-
lates the physical address of the request and sets the SRAM
related memory partitions. The SRAM cache is checked for



a hit/miss and based on the type of request, it is serviced
accordingly (detailed discussion on the flow of commands
to serve a read or write request is beyond the scope of this
paper). A sub-request (e.g. cache line eviction, cache fill),
if any, generated by this module is solely owned by it and
has to be deleted after its completion. Further, this module
forwards request to the next level in the memory hierarchy
based on the system configuration. The next level, if exists,
is added as a child to the SRAM module and can be accessed
via an object hook. Appropriate requests and responses are
generated between parent and child modules where parent
corresponds to the current level and child corresponds to the
next level in the memory hierarchy.

3.2.2 LAMOST Cache Organization
Presently, NVMain implements the Alloy cache organiza-

tion for its die-stacked cache and it is by-default selected.
Designers have no choice to change the cache organization.
Alloy cache is a direct-mapped model that suffers from high
miss rate and high off-chip memory latency. We implement
a new cache organization that overcomes the limitations of
the Alloy cache. For demonstration, we model LAMOST
with a supporting tag-cache that reduces the cache hit/miss
latency. In addition, we develop new row and set mapping
schemes and make necessary changes to the memory con-
troller. More details of the mapping schemes can be found
in [10].

3.2.3 Tag Cache
Tag cache, fundamentally, is not a level in the memory

system. Rather, it is a supporting unit for the die-stacked
cache. Tag-cache stores the tag information of the most re-
cently accessed cache sets. Future accesses to the same set(s)
in die-stacked cache result in reduced access latency. Cache
organizations such as ATCache [14] and LAMOST [9], when
used with tag-cache, positively benefit from it. Detailed ar-
chitectural benefits of tag-cache and various cache organiza-
tions can be found in [26, 14, 17, 10, 20]. For correctness,
the simulator makes sure the right system configuration and
generates an error otherwise.

4. EVALUATION
NVMain can be used in both trace based simulation as

well full system simulation mode. For full system simula-
tion, we connect NVMain to gem5 by applying the publicly
available patch and run SPEC benchmarks on it. Gem5
uses the memory system modeled by NVMain instead of us-
ing its default memory model. An abstract overview of the
full system configuration is presented in Figure 3. We use
Simpoint [12] in order to reduce the benchmarks execution
time. The idea is, to run a sub-set of instructions (for each
benchmark) that imitates the behavior of the whole bench-
mark. In trace based simulation, we generate traces from
Gem5 and provide trace file(s) as input to the NVMain sim-
ulator.

For functional verification of the new extensions, we use
random mixes of the SPEC2006 [13] benchmarks. For the
same system configuration, we run SPEC benchmarks in
sim-zesto simulator [18] and NVMain. For ten experimen-
tal runs, we observe performance parameter (miss-rate) of
L1, L2 and L3 caches and report the average measures in
Table 2.

Table 2: Functional Verification of the New Exten-
sions

Cache Level
sim-zesto

normalized
miss-rate

NVMain
normalized
miss-rate

Difference(%)

L1 (32 KB) 1.00 0.96 +4
L2 (256 KB) 1.00 1.09 −9
L3 (8 MB) 1.00 0.95 +5
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Figure 3: Full system simulation overview

Simulation results of the NVMain are in ±10% of the sim-
zesto results. The memory model in sim-zesto is simplistic
and can not accurately model LLC. Therefore, for the cache
organization scheme LAMOST, we compare our results with
the actual results presented in [9] and observe that they are
in the accuracy range of ±5%.

For speed comparison, we run both sim-zesto and NVMain
for 3B (3 × 109) instructions and observe that NVMain is
around 10 times faster than sim-zesto. The timing and en-
ergy models of NVMain have already been verified. How-
ever, in future, we plan to verify these models for new ex-
tensions as well using Verilog model (for timing) and the
publicly available DRAMPower2 [7] for (energy).

5. CONCLUSIONS
We have presented an extended version of the NVMain

simulator. Considering the fundamental design goals — flex-
ibility, simple user interface and scalability — of the simula-
tor, we have provided reference implementations of SRAM
cache, an optimized cache organization for die-stacked cache
and a tag-cache model. The newly added design features
widen the list of design options and enable customized de-
sign modelling. We have outlined the existing simulator ar-
chitecture in brief and the new extensions in detail. We have
run random mixes of the SPEC benchmarks in NVMain and
observed that simulation results of the new extensions are
in conformance with state-of-the-art. We will use this sim-
ulator to investigate memory systems with emerging mem-
ory technologies like [11] in the context of the Orchestration
project [6].
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