
Compiling for Concise Code and E�cient I/O
Sebastian Ertel

Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
sebastian.ertel@tu-dresden.de

Andrés Goens
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
andres.goens@tu-dresden.de

Justus Adam
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
justus.adam@tu-dresden.de

Jeronimo Castrillon
Chair for Compiler Construction
Technische Universität Dresden

Dresden, Germany
jeronimo.castrillon@tu-dresden.de

Abstract
Large infrastructures of Internet companies, such as Face-
book and Twitter, are composed of several layers of micro-
services. While this modularity provides scalability to the
system, the I/O associated with each service request strongly
impacts its performance. In this context, writing concise pro-
grams which execute I/O e�ciently is especially challenging.
In this paper, we introduce Ÿauhau, a novel compile-time
solution. Ÿauhau reduces the number of I/O calls through
rewrites on a simple expression language. To execute I/O
concurrently, it lowers the expression language to a data�ow
representation. Our approach can be used alongside an ex-
isting programming language, permitting the use of legacy
code. We describe an implementation in the JVM and use
it to evaluate our approach. Experiments show that Ÿauhau
can signi�cantly improve I/O, both in terms of the number
of I/O calls and concurrent execution. Ÿauhau outperforms
state-of-the-art approaches with similar goals.

CCS Concepts • Software and its engineering→ Func-
tional languages; Data �ow languages; Concurrent program-
ming structures;

Keywords I/O, data�ow, concurrency

ACM Reference Format:
Sebastian Ertel, Andrés Goens, Justus Adam, and Jeronimo Castril-
lon. 2018. Compiling for Concise Code and E�cient I/O. In Pro-
ceedings of 27th International Conference on Compiler Construction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5644-2/18/02. . . $15.00
h�ps://doi.org/10.1145/3178372.3179505

(CC’18). ACM, New York, NY, USA, 12 pages. h�ps://doi.org/10.
1145/3178372.3179505

1 Introduction
In today’s Internet applications, I/O is a dominating factor
for performance, an aspect that has received little attention
in compiler research. The server-side infrastructures of in-
ternet companies such as Facebook [1], Twitter [11], and
Amazon [10] serve millions of complex web pages. They run
hundreds of small programs, called microservices, that com-
municate with each other via the network. Figure 1 shows the
interactions of the microservices at Amazon. In these infras-
tructures, reducing network I/O to satisfy sub-millisecond
latencies is of paramount importance [7].
Microservice code bases are massive and are deployed

across clusters of machines. These systems run 24/7 and
need to be highly �exible and highly available. They must ac-
commodate for live (code) updates and tolerate machine and
network failures without noticeable downtime. A service-
oriented architecture [24] primarily addresses updates while
the extension to microservices deals with failures [8]. The
idea is to expose functions as a service that runs as a stand-
alone server application and responds to HTTP requests. It is
this loose coupling of services via the network that enables
both �exibility and reliability for the executing software. But
this comes at the cost of code conciseness and I/O e�ciency.
Code that calls another service over the network instead of
invoking a normal function loses conciseness. The boiler-
plate code for the I/O call obfuscates the functionality of the
program and makes it harder to maintain. The additional
latency to receive the response adds to the latency of the
calling service.

1.1 Code Conciseness versus I/O E�ciency
Programmers commonly use frameworks, like Thrift [3], to
hide the boilerplate network code behind normal function
calls. This improves code conciseness but not I/O e�ciency.
There are essentially two ways to improve I/O latency: by
reducing the number of I/O calls and through concurrency.

104

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

[Source: I Love APIs 2015 by Chris Munns, licensed under CC BY
4.0, available at: h�p://bit.ly/2zboHTK]

Figure 1. Microservices at Amazon.

To reduce the number of I/O calls in a program, one can
remove redundant calls and batch multiple calls to the same
service into a single one. Redundant calls occur naturally
in concise code because such a code style fosters a modular
structure in which I/O calls can happen inside di�erent func-
tions. The programmer should not have to, e.g., introduce a
global cache to reuse results of previous I/O calls. This would
add the optimization aspect directly into the algorithm of
the application/service, making the code harder to main-
tain and extend, especially in combination with concurrency.
Batching, on the other hand, does not necessarily reduce
the amount of data transferred but does decrease resource
contention. A batched request utilizes only a single HTTP
connection, a single socket on the server machine and a
single connection to the database. If all services batch I/O
then this can substantially decrease contention in the whole
infrastructure. Network performance dramatically bene�ts
when multiple requests are batched into a single one [22].

As a simple example, consider a web blog that displays
information on two panes. The main pane shows the most
recent posts and the left pane presents meta information such
as the headings of the most frequently viewed ones and a list
of topics each tagged with the number of associated posts.
The blog service is then responsible of generating the HTML
code. To this end, it fetches post contents and associated
meta data via I/O from other (database) services at various
places in the code. We implemented the database service for
our blog using Thrift and introduced a single call to retrieve
the contents for a list of posts. Figure 2 compares the latency
of this batch call with a sequential retrieval of the blog posts.
The batched call bene�ts from various optimizations such
that retrieving 19 (4 kB) blog posts becomes almost 18⇥ faster.
Note that batched retrievals with a larger latency cannot be
seen in the plot because of the scale.
A concurrent program can be executed in parallel to de-

crease latency. When the concurrent program contains I/O
calls, these can be performed in parallel even if the computa-
tion is executed sequentially. A concurrent execution of the

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

500

1000

1500

2000

2500

0 5 10 15 20
blog posts

la
te

nc
y

[m
s]

● batched
sequential

Figure 2. Latency reduction via batching in a simple mi-
croservice for a blog.

program can fully unblock computation from I/O, but is at
odds with a reduction of I/O calls. To reduce I/O calls, they
need to be collected �rst which removes the concurrency
between the calls. Not all I/O calls can be grouped into a
single one, for example if they interface with di�erent ser-
vices. Such calls would now execute sequentially. In order to
bene�t from concurrency, a batching optimization must pre-
serve the concurrent program structure, not only between
the resulting I/O calls but also between said calls and the
rest of the computation.
To introduce concurrency, the developer would have to

split up the program into di�erent parts and place them
onto threads or event handlers. Threads use locks which
can introduce deadlocks [18] and event-based programming
su�ers from stack ripping [2]. There is a long debate in the
systems community which of the two approaches provides
the best performance [23, 30]. Programming with futures on
the other hand, needs the concept of a monad which most
developers in imperative languages such as Java or even
functional languages such as Clojure struggle with [12]. All
of these programming models for concurrency introduce
new abstractions and clutter the code dramatically. Once
more, they lift optimization aspects into the application code,
resulting in unconcise code.
We argue that a compiler-based approach is needed to

help provide e�cient I/O from concise code. State-of-the-art
approaches such as Haxl [20] and Muse [17] do not fully
succeed to provide both code conciseness and I/O e�ciency.
They require the programmer to adopt a certain program-
ming style to perform e�cient I/O. This is due to the fact
that both are runtime frameworks and require some form
of concurrent programming solely to batch I/O calls. Both
frameworks fall short on exposing the concurrency of the
application to the system they execute on.

1.2 Contribution
In this paper, we present a compiler-based solution that sat-
is�es both requirements: concise code and e�cient I/O. Our
approach, depicted in Figure 3, builds on top of two interme-
diate representations: an expression language and a data�ow
representation [6]. The expression language is based on the

105

Compiling for Concise Code and E�icient I/O CC’18, February 24–25, 2018, Vienna, Austria

I/O
reduction

I/O optimized
program

I/O
concurrency

Expression
IR

(ƛ-calcus-based)

Dataflow
IR

(concurrent)

lower

unoptimized
program

Expression
IR

Dataflow
IR

Ÿauhau

Figure 3. Overview of Ÿauhau.

lambda calculus which we extend with a special combina-
tor to execute I/O calls. The data�ow representation of an
expression is a directed graph where nodes represent opera-
tions of the calculus and edges represent the data transfer
between them. The compiler translates a program, i.e., an ex-
pression, into a data�ow graph. To reduce the number of I/O
calls, we de�ne a set of transformations in the expression lan-
guage which are provably semantic-preserving. This batch-
ing transformation introduces dependencies which block
computation from making progress while I/O is performed.
To remove these dependencies, we de�ne transformations
on the data�ow graph. To validate our approach in practice,
we implemented it as a compiler and runtime system for
a domain-speci�c language called Ÿauhau, that can be em-
bedded into Clojure and supports arbitrary JVM code. For
our simple blog example, our transformations improve la-
tency by a factor of 4⇥. To evaluate Ÿauhau in the context
of more complex microservices, we use a tool that builds
programs along the characteristics of real service implemen-
tations. For the generated services in our experiments our
transformations are superior to Haxl and Muse in terms of
latency.

The rest of the paper is structured as follows. Section 2 in-
troduces the expression IR and the transformations to reduce
the number of I/O calls. In Section 3, we de�ne the data�ow
IR and the transformations to support a fully concurrent
execution. We review related work in Section 4. Section 5
brie�y describes our Ÿauhau implementation and evaluates
it before we conclude in Section 6.

2 Reducing I/O on an Expression IR
We now present our expression IR. It is based on the call-
by-need lambda calculus [4, 5], which prevents duplicated
calculations. We want this for two reasons. First, our expres-
sions can contain side-e�ects and duplicating them would
alter the semantics of the program. Second, our intention is
to minimize the computation, i.e. the I/O calls in the program
expression. Figure 4 de�nes our IR as an expression language.
In addition to the terms of the call-by-need lambda calculus
for variables, abstraction, application and lexical scoping, we
de�ne combinators for conditionals, foreign function appli-
cation and I/O calls. The combinator fff applies a function
f that is not de�ned in the calculus to an arbitrary number
of values. This addition allows to integrate code written in
other languages, such as Java. It allows to integrate legacy

Terms:
t ::= x variable
| λx .t abstraction
| t t application
| let x = t in t lexical scope (variable binding)
| if(t t t) conditionals
| fff (x1 . . . xn) apply foreign function f

to x1 . . . xn with n ≥ 0
| io(x) apply I/O call to x

Values:
v ::= o 2 Vff value in host language
| λx .t abstraction
| [v1 . . .vn] list of n values

Prede�ned Functions:
map(λx .t [v1 . . .vn]) ⌘ [(λx .t) v1 . . . (λx .t) vn]
nth(n [v1 . . .vn . . .vp]) ⌘ vn

Figure 4. Language de�nition of the expression IR.

code and makes our approach practical. For this reason, our
values may either be a value in Vff, the value domain of
the integrated language, an abstraction or a list of values.
Instead of recursion, we de�ne the well-known higher-order
function map to express an independent computation on the
items in a list. In Section 2.2, we argue that map is su�cient
to perform I/O optimizations. The nth function retrieves
individual items from a list. We facilitate I/O calls in the lan-
guage with the io combinator that takes a request as input
and returns a response as its result. Both values, the request
and the response, are de�ned inVff. As such, io can be seen
as a foreign function call and the following semantic equiva-
lence holds: io ⌘ ffio . A request is a tuple that contains the
(HTTP) reference to the service to be interfaced with and
the data to be transferred. A response is a single value. To
denote the I/O call to fetch all identi�ers of the existing posts,
we write iopostIds. As an example, here is the expression for
our blog service:

let xmainPane =
ffrender (5. produce HTML
map(λx .io(ffreqPostContent (x)) 4. fetch post contents

fflast-n (10 3. �lter last 10 posts
map(λx .io(ffreqPostInfo (x)) 2. fetch meta data
io(ffreqPostIds ()))))) in 1. fetch ids of all posts

let xtopics =
ffrender (4. produce HTML
fftag (3. tag topics
map(λx .io(ffreqPostInfo (x)) 2. fetch meta data
io(ffreqPostIds ())))) in 1. fetch ids of all posts

let xpopularPosts = tpopularPosts in (omitted for brevity)
let xle�Pane = ffrender (ffcompose (xtopics xpopularPosts)) in
ffrender (ffcompose (xmainPane xle�Pane))

106

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

Two requests query the same service if their references are
equal. Since we de�ne this equality over the values instead
of the types, our transformations need to produce code
that �nds out at runtime which I/O calls can and cannot
be batched. In the remainder of this section, if not stated
otherwise we transform (⇣) expressions only by applying
the standard axioms from the call-by-need lambda calcu-
lus [4]. That is, all transformations preserve the semantics of
the expression. We �rst introduce the transformations that
can reduce the number of I/O calls whose evaluation is not
in�uenced by control �ow. Afterwards, we show how even
I/O calls in expressions passed to conditionals and map can
participate in these transformations.

2.1 I/O Reduction
Intuitively, we can only reduce the number of I/O calls (to
the same remote service) inside a group of I/O calls that are
data independent of each other. This means that there exist
no direct nor transitive data dependencies between the calls
in this group.

This limits the applicability of our approach. However, we
believe it is enough to cover a great number of use-cases. In
futureworkwe plan to investigate how to batch I/O calls with
dependencies, e�ectively sending part of the computation
to a di�erent service, and not only a simple I/O request.

In order to �nd such a group of independent calls, we �rst
transform the expression into a form that makes all data
dependencies explicit.

De�nition 2.1. An expression is in explicit data dependency
(EDD) form, if and only if it does not contain applications
and each result of a combinator or a (prede�ned) function is
bound to a variable.

Thus, the data dependencies in the expression are explic-
itly de�ned by the bound variables x1 . . . xn

let x1 = t1| {z }
binding

in let x2 = t2 in . . . let xn = tn in xn

Each expression t is a term with a combinator (io, ff, if)
or a prede�ned function, e.g., map, nth. For example, the
construction of the main pane of the web blog in EDD form
is as follows:
let x1 = ffreqPostIds () in
let x2 = io(x1) in
let f = λxpostId.let y1 = ffreqPostInfo (xpostId) in

let y2 = io(y1) in y2 in
let x3 = map(f x2) in
let x4 = fflast-n (10 x3) in
let д = λxpostInfo.let z1 = ffreqPostContent (xpostInfo) in

let z2 = io(z1) in z2 in
let x5 = map(д x4) in
let x6 = ffrender (x5) in x6

(1)

In order to �nd independent groups of I/O calls in the EDD
expression, we use a well-known technique called let-�oating
that is also used in the Haskell compiler [25]. Let-�oating
allows to move bindings either inwards or outwards for as
long as the requirements for variable access are preserved,
i.e., no new free variables are created. As such, let-�oating is
completely semantic preserving. In our case, we �oat each
I/O binding as much inward as possible, i.e., we delay the
evaluation of I/O calls until no further progress can be made
without performing I/O.

let x1 = ffreqPostIds () in 1. mainPane
let x2 = ffreqPostIds () in 1. topics

I/O group
⇢

let x3 = io(x1) in 2. mainPane
let x4 = io(x2) in 2. topics

e

For the sake of brevity, we use e to denote the rest of the
blog computation. At this point, we perform the �nal step
and replace the group of I/O calls with a single call to the
function bio which performs the batching and executes the
I/O. As such the following semantic equivalence holds:

bio(i1 . . . in) ⌘ [io(i1) . . . io(in)] (2)

The function is de�ned using two new (foreign) functions,
batch and unbatch:

bio(x1 . . . xn) ::= let y1...m = batch(x1 . . . xn) in

let z1...m = map(λx .io(x) y1...m) in

let y1...n = unbatch(z1...m) in y1...n

We say that variabley1...m stores the list of values that would
otherwise be bound to variables y1, . . . ,ym . Since we do not
know at compile-time which calls can be batched, batch
takes n I/O requests and returnsm batched I/O requests with
n ≥ m. Each batched I/O request interfaces with a di�er-
ent service. A batched request contains a list of references
to the original requests it satis�es, i.e., the positions in the
argument list of bio. We assume that this information is pre-
served across the I/O call such that unbatch can re-associate
the response to the position in the result list. That is, it pre-
serves the direct mapping between the inputs of batch and
the outputs of unbatch to preserve the equivalence de�ned
in Equation 2. Finally, this list needs to be destructured again
to re-establish the bindings:

let y1 = io(x1) in . . . let yn = io(xn) in e
⇣let y1...n = bio(x1 . . . xn) in

let y1 = nth(1 y1...n) in . . . let yn nth(n y1...n) in e

Note that the order of I/O calls inside an I/O group is normally
non-deterministic. This includes calls with and without side-
e�ects to the same service. But I/O calls that are located
in di�erent functions may nevertheless assume an implicit
order, i.e., on the side-e�ects occurring to the service. This
fosters a modular program design by allowing to add new
functionality without making these dependencies explicit. In

107

Compiling for Concise Code and E�icient I/O CC’18, February 24–25, 2018, Vienna, Austria

order to preserve the consistency of the program, we require
that the service receiving the batch de�nes the execution
order of the contained requests. For example, a service may
de�ne to always execute all side-e�ect-free requests before
side-e�ecting ones.

2.2 I/O Lifting
The lambda calculus does not directly incorporate control
�ow. For that reason, most programming languages de�ne
at least two additional forms: conditionals and recursion.
Instead of relying on the more general concept of recursion,
we base our I/O lifting on the higher-order map function. The
reasoning behind this decision is as follows: We cannot opti-
mize I/O across recursive calls that strictly depend on each
other. From the perspective of the I/O call that is located in a
recursive function, we have to make the distinction whether
the recursion is strictly sequential or not. The higher-order
function scan1 is a synonym for a strictly sequential recur-
sion while map does not de�ne an order on the computation
of the results. For the rest of this paper, we assume that the
abstraction passed to scan is strictly sequential and de�ne
scan ⌘ ffscan.
The if combinator and map function are special because

they control the evaluation of the expression(s) passed to
them as arguments. The if combinator may evaluate only
one of the two expressions passed to it. The map function
applies the expression to each value in the list. Although we
transform the argument expressions into EDD form, I/O calls
located inside of them cannot directly participate in the rest
of the I/O-reducing transformations. To enable this, we need
to extract, i.e, lift, I/O calls out of these argument expressions
while still preserving the evaluation semantics. To this end
we use the following two simple and semantic-preserving
rewrites:

if(c io(x) io(x)) ⌘ io(x) (3)
map(λx .io(x) [v1 . . .vn]) ⌘ [io(v1) . . . io(vn)] (4)

In general, instead of the expressions io(x) and λx .io(x) on
the left-hand side of these rules we could �nd arbitrary ex-
pressions. The challenge is to �nd a chain of transformations
that creates a form where the expression passed to an if or
a map is only an I/O call, as in rules 2 and 3.

We proceed in two steps. At �rst, we explain how to trans-
form an expression into a form with three individual parts,
where one of them contains solely an I/O call. Afterwards,
we use this new form to extract I/O calls out of an if and a
map using the rewrite rules de�ned above.
We start with an arbitrary expression in EDD form and

use a concept called lambda lifting [15]. Figure 5 visualizes
the transformations. Figure 5a shows an EDD expression in
a form where the right-hand side of the jth binding applies

1scan is a version of fold/reduce that emits not only the result of the last
recursion step but the results of all recursion steps.

an I/O call to the variable x j−1 bound in the j − 1th binding.
Without loss of generality we assume that tj = io(x j−1) be-
cause we can �nd this form via let-�oating. In Figures 5b,
5c and 5d, we apply the lambda lifting transformations in
order to devise an expression with three individual func-
tions: the computation of the request (f), the I/O call (д), and
the continuation of the computation (h). To lambda lift the
expression tj that executes the I/O call in Figure 5b, we

1 create an abstraction for tj that de�nes all its free vari-
ables, in that case x j−1, as arguments and bind this
abstraction to д,

io(x j−1) ! д = λx j−1.io(x j−1)

2 apply д in place of tj and

tj ! д x j−1

3 reconstruct the lexical scope for the rest of the compu-
tation ej+1...n .2

let x j = д x j−1 in ej+1...n

In Figure 5c, we lift the computation of the request e1...j−1
and in Figure 5d the continuation of the computation on the
result of the I/O call ej+1...n . To cover the general case, we
assume that ej+1...xn does not only contain applications to
the I/O result x j but also to all other variables x1, . . . ,x j−1
in its scope. To provide them in the lexical scope for the
application to h, the lambda lifting of e1...x−1 returns them
from f and rebinds them after the application. The analysis
to reduce this set of free variables to the ones actually used
in ej+1...n is straightforward and therefore left out. With this
process, we e�ectively created an expression that captures
the three parts as individual functions.
In the �nal step, we apply this approach to expressions

passed to if and map such that we can extract the application
ofд, i.e., the I/O call. We abstract over the speci�c combinator
or function with a combinator c that takes a single expression
as its argument.We focus solely on the applications and leave
out the abstractions and the reconstruction of the lexical
scope x1 . . . xn from x1...j−1. For c , we de�ne the following
semantic equivalence:

c (let x1...j−1 = f x0 in
let x j = д x j−1 in
let xn = h x1 . . . x j
in xn)

⌘
let x1...j−1 = c(f x0) in
let x j = c(д x j−1) in
let xn = c(h x1 . . . x j)
in xn

That is, passing a single expression to c is semantically equiv-
alent to evaluating c on each individual part of it. This holds
under the premise that the individual applications of c pre-
serve the operational semantics of the single application.
When c is a conditional if(tcond ttrue tfalse), this requires that

2We use the notation e1. . .n to refer to the part of the expression de�ned in
Figure 5a that binds the results of the terms t1 . . . tn to variables x1 . . . xn .

108

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

let x1 = t1 in
let x2 = t2 in

...
let x j−1 = tj−1 in
let x j = io(x j−1) in
let x j+1 = tj+1 in

...
let xn = tn in xn

let д =
λx

0
j−1.(io(x

0
j−1)) in

let x1 = t1 in
let x2 = t2 in

...
let x j−1 = tj−1 in
let x j = д x j−1 in
let x j+1 = tj+1 in

...
let xn = tn in xn

let f = λx

0
0.(

let x1 = t1 in
let x2 = t2 in

...
let x j−1 = tj−1 in
[x1 . . . x j−1]) in

let д = λx

0
j−1.(io(x

0
j−1)) in

let x1...j−1 = f x0 in
let x1 = nth(1,x1...j−1) in

...
let x j−1 = nth(j − 1,x1...j−1) in
let x j = д x j−1 in
let x j+1 = tj+1 in

...
let xn = tn in xn

let f = λx

0
0.(

let x1 = t1 in
let x2 = t2 in

...
let x j−1 = tj−1 in
[x1 . . . x j−1]) in

let д = λx

0
j−1.(io(x

0
i−1)) in

let h = λx

0
1 . . . x

0
j .(

let x j+1 = tj+1 in
...

let xn = tn in xn) in
let x1...j−1 = f x0 in
let x1 = nth(1,x1...j−1) in

...
let x j−1 = nth(j − 1,x1...j−1) in
let x j =д x j−1 in
h x1 . . . x j

(a) Isolated IO form (b) Lifting I/O (c) Lifting Request Computation (d) Lifting Continuation

Figure 5.We extract an I/O call out of an expression (Fig. 5a) using lambda lifting. In this process, we split the expression into
three parts: the I/O call д (Fig. 5b), the computation of the request f (Fig. 5c), and the continuation of the computation with
the response h (Fig. 5d). To extract one of the parts, we create an abstraction, apply it individually and recreate (destructure)
the original lexical scope.

the individual if applications use the same condition result
bound to xcond:
let x1...j−1 = if(xcond (ftrue x0) (ffalse x0)) in
let x j = if(xcond (дtrue x j−1) (дfalse x j−1)) in
let xn = if(xcond λ.(htrue x1 . . . x j) λ.(hfalse x1 . . . x j))
in xn

The very same concept applies to the map function. Since
map returns a list instead of a single value, the variable x[j]m
denotes the list ofm results where each would have been
bound to variable x j .

let x[1...j−1]m = map(λx0.f [v1 . . .vm]) in
let x[j]m = map(λx j−1.g x j−1 x[j−1]) in
let x[n]m = map(λx1 . . . x j .h x1 . . . x j x[1...j]m)
in x[n]m

For both, if and map, the application of д reduces via beta
reduction to a single I/O call. That is, it matches the left-hand
side of equations 2 and 3 such that we can lift the I/O call
out of the expressions. Our I/O lifting works for a single c at
a time but we can apply it again to the resulting expression
to handle deeply nested combinations of if and map. In case
of conditionals, we assumed that ttrue and tfalse both have an
I/O call. If either expression does not perform an I/O call,
we simply add one to it that executes an empty request, i.e.,
does not perform real I/O, and �lter it out in bio. This allows
optimizing the true I/O call on the other branch. Note the
importance of the map function: since the same expression is

applied to allm values in the list, it has the potential to reduce
m I/O calls to one. Further note that our concept of lifting
expressions is not restricted to I/O calls. It is more general
and can lift other foreign function calls or even expressions
for as long as there exists a semantic equivalence in the spirit
of Equations 2 and 3.

3 A Data�ow IR for Implicit Concurrency
Our expression IR has no explicit constructs for concurrency
such as threads, tasks or futures. This is on purpose: Our in-
tention is to hide concurrency issues from the developer and
let the compiler perform the optimization. The expression
IR builds upon the lambda calculus, which is well-suited for
concurrency. The very essence of the Church-Rosser prop-
erty, also referred to as the diamond property, is that there
may exist multiple reductions that all lead to the same re-
sult [4]. During reduction, a step may occur where more
than a single redex (reducible expression) exists. This can
only be the case when these redexes are (data) independent
of each other. To capture this essential property, we lower
our expression IR to a data�ow IR.

3.1 From Implicit to Explicit Concurrency
Data�ow is an inherently concurrent representation of a
program as a directed graph where nodes are computations
and edges represent data transfer between them. As such, we

109

Compiling for Concise Code and E�icient I/O CC’18, February 24–25, 2018, Vienna, Austria

Data�ow Elements:
d ::= 1-1 node
| edge
| port
| 1-N node

| N-1 node

Data�ow Functions (/Nodes):
| ctrl data to control signal

| not negation

| sel selection

| ds det. split

| dm det. merge

Prede�ned Value Functions:
| len-[] length of list

| []~> list to stream

| ~>[] stream to list

Combinators:
ff 7! ff foreign function call

io 7! io I/O call
Terms:

x 7! variable
t 7! term

let x = t in t 7! x lexical scope

fff (x) 7! ffx apply �-call f to x

io(x) 7! iox apply I/O call to x
Control Flow:

if(t t t) 7! sel
ctrl

ctrlnot

Prede�ned Functions:

map(λx .t [v1 . . .vn]) 7!

…

[]~> ~>[]
[v1…vn]

len-[]

ds

…

dm…

Figure 6. De�nition of the data�ow IR and the translation from the expression IR to the data�ow IR.

present our data�ow IR in an abstract fashion, as an execu-
tion model for exposing concurrency. For a concrete concur-
rent or even parallel implementation, a compiler back-end
can map this graph either to threads and queues [19] or to
processors and interconnects, for example on an FPGA [29].
For this paper, we implemented the threads-and-queues ver-
sion. The details are beyond the scope of this paper.

The Dataflow IR We de�ne our data�ow IR on the left-
hand side of Figure 6. The basic data�ow elements are nodes,
edges and ports. A data�ow node receives data via its input
ports to perform a computation and emits the results via its
output ports. Such a computation can correspond to foreign
function or I/O calls, as well as to one of the special data�ow
or prede�ned value functions. Data travels through the graph
via the edges where an edge originates at an output port and
terminates at an input port.
An input port can only be connected to a single edge

while an output port can have multiple outgoing edges. An
output port replicates each emitted value and sends it via
its outgoing edges to other nodes. Typical data�ow nodes
dequeue one value either from one or all their input ports,
perform a computation and emit a result. That is, they have a
1−1 correspondence from the input to the output, very much
like a function. But data�ow nodes are free to de�ne their
own correspondence. For example, a node that retrieves a
value from one or all its input ports but emitsN values before
retrieving the next input value has correspondence 1−N .

The opposite N −1 node retrieves N values from one or all
its input ports and only then emits a single result value. This
correspondence is depicted by the color of the node in our
�gures. In order to support this concept, a node is allowed
to have state, i.e., its computation may have side-e�ects. We
de�ne a list of 1−1 data�ow nodes that allow control �ow
and enhance concurrency. The ctrl node takes a boolean
and turns it into a control signal that states whether the next
node shall be executed or not. If the control signal is false
then the node is not allowed to perform its computation and
must discard the data from its input ports. The not node
implements the negation of a boolean. The sel (select) node
receives a choice on its bottom input port that identi�es
the input port from which to forward the next data item.
The ds (deterministic split) node may have any number of
output ports and forwards arriving packets in a round-robin
fashion. The dm (deterministic merge) node may have any
number of input ports and performs the inverse operation.
Additionally, we de�ne three nodes to operate on lists. The
len−[] computes the size of a list. The []{ is a 1−N node
that receives a list and emits its values one at a time. In order
to perform the inverse N −1 operation, the{[] node �rst
receives the number N on its input port on the top before it
can construct the result list.

Lowering Expressions to Dataflow From an expression
in EDD formwe can easily derive the corresponding data�ow
graph, as shown on the right-hand side of Figure 6. Each

110

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

…

io

io
batch… unbatch

…

[]~> ~>[]
len-[]

ds

…

dm…

Figure 7. The data�ow graph for concurrent I/O.

term on the right-hand side of a binding form translates to
a node. In EDD form this can only be an application of a
combinator, a conditional or a call to one of the pre-de�ned
functions. The de�nition of data�ow nodes perfectlymatches
the semantics of our ff and io combinators because both
may have side-e�ects. Since both require only a single ar-
gument, the corresponding nodes de�ne one input port and
one output port with a 1−1 correspondence. Each variable
translates into an arc. More speci�cally, each application to
a variable creates a new edge at the same output port. An
unlabeled ellipse denotes an abstract term which translates
to a subgraph of the �nal data�ow graph. In order to trans-
late control �ow into data�ow, we turn the result of the �rst
term into a control signal and send it to the subgraph from
the second term. The subgraph for the third term receives
the negated result as a signal. Therefore, the subgraph for
the second term computes a result only if the subgraph of
the �rst term emitted a true value. Otherwise, the subgraph
for the third term performs the computation. The transla-
tion of the map function �rst streams the input list and then
dispatches the values to the replicas of the subgraph derived
from t . The subgraph results are again merged and then
turned back into a list that is of the same length as the input
list. Computation among the replicas of the subgraph of t
can happen concurrently. To achieve maximum concurrency,
the number of subgraphs needs to be equal to the size of
the input list. This is impossible to achieve at compile-time
because the size of the list is runtime information. So we
need to make a choice for the number of replicas at compile-
time and route the length of the input list to the node that
constructs the output list. For both terms, the conditionals
and the map function, we assume that the terms passed as
arguments do not contain any free variables. The approaches
to do so can be found elsewhere [29]. In this paper, however,
we focus on concurrency transformations.

3.2 Concurrent I/O
We introduce concurrency for the bio function in two steps.
First, we translate it into a data�ow graph with concurrent
I/O calls. Then we de�ne a translation that also unblocks the
rest of the program.

The translation exploits the fact that a data�ow node can
have multiple output ports while a function/combinator in
our expression IR can only return a single value. Most pro-
gramming languages support syntactic sugar to support mul-
tiple return values. The concept is referred to as destructuring
and allows binding the values of a list directly to variables

ffreqPostIds io
x1

ffreqPostInfo
y1

x2 …

[]~> ~>[]

len-[]

ds

…

dm…

io

ffreqPostInfo y1 io

y2

y2

xpostId

xpostId

ffreqPostContent
z1

…

[]~> ~>[]

len-[]

ds

…

dm…

io

ffreqPostContent z1 io

z2

z2

xpostInfo

xpostInfo

fflast-n x3
ff10

x4

ffrender

x5

x6

f

f

g

g

Figure 8. The data�ow graph for EDD expression 1 from
Section 2.1 that computes the main pane.

y1 . . .yn such that

let y1...n = bio(x1 . . . xn) in
let y1 = nth(1 y1...n) in . . . let yn = nth(n y1...n) in e

::= let y1 . . .yn = bio(x1 . . . xn) in e

In languages such as Haskell and Clojure, destructuring
desugars into calls to nth just as in our expression IR. But
the destructuring version captures very well the concept
of multiple output ports for the bio node in the data�ow
graph, one for each value in the list. This makes the resulting
data�ow graph more concise.

Since the de�nition of bio uses map we can directly trans-
late it into data�ow as shown in Figure 7. The resulting graph
expresses the concurrency of the I/O calls but the{[] node
requires each I/O call to �nish before it emits a result. That
is, the computation that depends on I/O calls that �nished
early is blocked waiting for slower I/O calls that it does not
depend upon.

In order to get rid of this dependency, we remove the{[]
node and change the unbatch node to receive individual I/O
responses instead of the full list. Since the unbatch does not
require all I/O responses to perform this operation, it can
forward results as soon as it receives them.

As an example, Figure 8 shows the data�ow graph of the
EDD expression (1) that computes the main pane.

4 Related Work
As of this writing, two solutions exist in the public domain
for optimizing I/O in micro-service-based systems. Face-
book’s Haxl [20], is an embedded domain-speci�c-language
(EDSL) written in Haskell. Haxl uses the concept of applica-
tive functors to introduce concurrency in programs and to
batch I/O requests at runtime. Another existing framework
is the closed-source and unpublished system Stitch, which is
Twitter’s solution written in Scala and in�uenced by Haxl.
Inspired by Stitch and Haxl, the second framework in the

111

Compiling for Concise Code and E�icient I/O CC’18, February 24–25, 2018, Vienna, Austria

public domain is Muse [16, 17], written in Clojure. Muse im-
plements a so-called free monad [27] to construct an abstract
syntax tree (AST) of the program and interpret it at run-time.
To enable the AST construction, a developer using Muse has
to switch to a style of programming using functors and mon-
ads. While these are fundamental concepts in Haskell, this
is not the case for Clojure. Hence, the compiler can not help
the developer to ensure these concepts are used correctly,
making Muse programs hard to write.

Both Haxl and Muse signi�cantly improve the I/O of sys-
tems with language-level abstractions. However, in contrast
to Ÿauhau, these abstractions still have to be used explicitly.
Furthermore, Haxl and Muse are limited in terms of con-
currency. They both don’t allow a concurrent execution of
computation and I/O by unblocking computation when some
I/O calls have returned.

On the side of data�ow, there exists a myriad of systems in-
cluding prominent examples such as StreamIt [28], Flume [9]
or StreamFlex [26]. Programs written for these engines do
not perform extensive I/O. They usually comprise two I/O
calls, one for retrieving the input data and another one for
emitting the results. Compiler research hence focuses pri-
marily on optimizing the data�ow graph to improve parallel
execution [14]. In contrast, our focus relies on enabling ef-
�cient I/O for programs that contain a substantial amount
of I/O calls spread across the data�ow graph. Our approach
is intertwined with the expression IR, which contains addi-
tional semantic information. Thus, leveraging this additional
information allows us to apply provably semantic-preserving
transformations in the presence of nested control �ow struc-
tures. To the best of our knowledge, this is unique to Ÿauhau.

5 Evaluation
To evaluate Ÿauhau in terms of I/O e�ciency and compare it
against Muse and Haxl, we implemented Ÿauhau by de�ning
a macro in Clojure. The Ÿauhau macro takes code as its input
that adheres to the basic forms of the Clojure language which
is also expression-based. Figure 9 gives a brief overview
of the language constructs. For example, the function that
builds the main pane of the blog would be written as follows:
(fn mainPane []
(render (map #(io (reqPostContent % src1))

(last-n 10
(map #(io (reqPostInfo % src2))

(io (reqPostIds src3)))))))

In order to abstract over the types of the requests, we
pre�x (foreign) functions with req that create a certain type
of request. For example, reqPostInfo takes the identi�er of
a post as an argument and the reference to a source (src2)
to generate the corresponding request.
As a �rst evaluation, we implemented the blog example

using Clojure, and ported it to Ÿauhau3. Table 1 shows the
averages and estimated standard deviations over 20 runs of
3https://tud-ccc.github.io/yauhau-doc/

Terms:
x 7! x

(fun [x] t) ⌘ #(t) 7! λx .t
(t t) 7! t t

(let [x t] t) 7! let x = t in t
(if t t t) 7! if(t t t)

(f x1 ... xn) 7! fff (x1 . . . xn)
(io x) 7! io(x)

Figure 9.Mapping the terms of the Clojure-based Ÿauhau
language to our expression IR.

Table 1. Execution times of the Blog Example

Version seq base batch full

Time [ms] 275 ± 25 292 ± 19 79 ± 21 66.5 ± 5.2

this example in four variants: the baseline sequential Clo-
jure version (seq), a Ÿauhau version without applying any
transformation (base), only with the batching transformation
(batch), and with both, batching and concurrency (full). We
see that the overhead introduced through Ÿauhau is within
the standard deviation of the experiment, while the transfor-
mations signi�cantly improved I/O e�ciency. These results
a�rm the bene�ts of batching shown in Figure 2.

Although the simple blog example already shows the ben-
e�ts from batching, we expect Ÿauhau’s rewrites to shine
in real-world applications where dozens of microservices
interact in complex ways. Writing such microservice-based
systems and obtaining real-world data is a di�cult undertak-
ing on its own, into which large companies invest person-
decades. Thus, the individual services are usually intellectual
property and not on the public domain. This is a general prob-
lem that extends beyond this work and hinders research in
this area.

5.1 Microservice-like Benchmarks
Due to missing public domain benchmarks, we use a frame-
work for generating synthetic microservices [13]. It gener-
ates programs that aim to resemble the typical structure of
service-based applications. To build such benchmark pro-
grams, the tool generates source code out of random graphs.
In this way, it can serialize the graph into comparable code
in di�erent languages.
The random graphs are based on the concept of Level

Graphs, which are directed acyclic graphs where every node
is annotated with an integer level. These graphs are useful
to capture the structure of computation at a high level of
abstraction. We use l (v) to denote the level of the node v . A
level graph can only contain an edge (v,w) if l (v) > l (w).
Levels aim to capture the essence of data locality in a pro-
gram. The basic concept behind the random level graph gen-
eration, thus, lies in having non-uniform, independent proba-
bilities of obtaining an edge in the graph. In our benchmarks,

112

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

x1 x2

x3

x4 x5 x7x6

subfunction

req->io

compute
level 1

level 0

level 3

level 2

Figure 10. An example of a Level Graph.

0

5

10

15

20

25

0 5 10 15 20
graph levels

I/O

 c
al

ls
 (a

vg
.)

haxl muse seq yauhau

Figure 11. Results: Baseline.

a random level graph has an edge (v,w) with probability
2l (�)−l (w) < 1.
To generate code, nodes are annotated with a label for

the type of code they will represent. These labels are also
assigned independently at random. We use four di�erent
annotation types: compute(ffcompute), req->io (to simulate
io(ffreq* (. . .))), subfunction and map. The �rst two generate
code that simulates external function calls, involving com-
putation or I/O and foreign function calls. Subfunction/map
nodes generate a call to/a map over a local function, for
which a new (small) random graph is generated in turn.

In order to generate code from a code-annotated Level
Graph, we only need to traverse the nodes and generate
functions with dependencies in accordance to the graph. If
there are subfunctions labeled as such in the graph, we need
to do this recursively for all corresponding subgraphs as well.
The example of Figure 10 can be converted into the following
Clojure code, omitting the code generated for subfun-3.
(let [x4 (req->io �source� 100) x5 (compute 100)

x6 (req->io �source� 100) x7 (compute 100)]
(let [x3 (subfun-3 x4 x5 x7)]

(let [x1 (compute 100 x4)
x2 (req->io �source� 100 x3)]

(req->io �source� 100 x1 x2 x6))))

Generating Haskell code for Haxl is in fact very similar.

5.2 Experimental Setup
We designed three experiments to measure di�erent aspects
of Ÿauhau and compare it to state-of-the-art frameworks.
The size of the generated code and the included number of
I/O calls is on par with numbers from Facebook published
in [20]. We performed every measurement 20 times with
di�erent (�xed) random seeds and report the averages.

Table 2. Experimental Setup Level Graphs

exp. indep. var. dep. var. # lvl. pr. subf.

baseline # lvl. # I/O calls 1-20 0
conc. I/O # lvl. latency 1-20 0
modular pr. subf. # I/O calls 20 0-0.4

The �rst experiment, baseline, shows a general compar-
ison of the batching properties of Ÿauhau, Haxl and Muse,
comparing to an unoptimized sequential execution (seq). For
this, as the independent variable (indep. var.) we change the
number of levels in a graph (# lvl.), between 1 and 20, and
for each number of levels we look at average number of I/O
calls (# I/O calls) as the dependent variable (dep. var.).

The second experiment, concurrent I/O, is similar to the
baseline comparison, with a crucial di�erence in the struc-
ture of the graphs. We add an independent io operation
that directly connects to the root of our level graphs. This is
meant to simulate an I/O call that has a signi�cant latency
(of 1000 ms), several times slower (at least 3) than the other
I/O calls in the program. In a production system, the cause
can be the retrieval of a large data volume, a request that
gets blocked at an overloaded data source or communication
that su�ers network delays. To measure the e�ects of this
latency-intensive fetch, instead of the total number of I/O
calls, we report the total latency for each execution.

Finally, the third experiment, modular, aims to measure
the e�ect of having function calls in the execution. We �x
the number of levels (20). Then, we generate the same graph
by using the same seed, while increasing the probability
for a node to become a function call when being annotated
for code generation (pr. subf.). This isolates the e�ect of
subfunction calls on batching e�ciency. We do this for 10
di�erent random seeds and report the averages.
Table 2 summarizes these experiments. Our experiments

ran on a machine with an Intel i7-3770K quad-core CPU,
running Ubuntu 16.04, GHC 8.0.1, Java 1.8 and Clojure 1.8.

5.3 Results
Figure 11 shows the baseline comparison, see Table 2. The
plot shows that batching in Ÿauhau is superior to Haxl and
Muse because our rewrites manage to batch across levels
in the code. In this set of experiments, Ÿauhau achieves an
average performance improvement of 21% over the other
frameworks for programs with more than a single level. To
maximize batching, Muse and Haxl require the developer to
optimally reorder the code, ensuring the io calls that can
be batched in one round are in the same applicative-functor
block. This essentially contradicts the very goal of Haxl and
Muse, namely, relieving the developer from having to worry
about e�ciency and instead focus on functionality.
With Version 8, the Haskell compiler GHC introduced a

feature called applicative-do [21], which allows developers

113

Compiling for Concise Code and E�icient I/O CC’18, February 24–25, 2018, Vienna, Austria

0

1000

2000

3000

4000

5000

0 5 10 15 20
graph levels

Se
rv

ic
e

la
te

nc
y

[m
s]

haxl (fork) yauhau yauhau (conc I/O)

Figure 12. Results: Concurrent I/O.

to write applicative functions in do-notation. This should,
in principle, provide an ideal execution order for usage of
applicative functor code. We tested di�erent variants of code
for Haxl. As expected, applicative-do code produced the
exact same results as code written with explicit applicative
functors, and better than the variants using a monadic-do.
For this reason, we report the results only as “haxl”, ignoring
the worse results obtained from monadic-do code.
Figure 12 compares Haxl to Ÿauhau with and without

support for concurrent I/O, showing how it can be indeed
very bene�cial. To make the comparison fair, we add asyn-
chronous I/O support to Haxl using the async package. It
internally uses forkIO to fork threads and execute the re-
quests in a round concurrently, e�ectively putting the fork
back into Haxl. After retrieving all responses, the program
continues its execution. On the other hand, the non-strict
unbatch data�ow node from Ÿauhau’s concurrent I/O exe-
cutes the slow io operation in parallel to the computation in
the rest of the graph. In particular at level 7, the plot starts
to depict the full 1000 ms latency of the slow service as the
di�erence between of Ÿauhau and Ÿauhau (conc I/O). This is
the case when there are enough I/O rounds to displace the
slow data source as the latency bottleneck.

Finally, the results of the modular experiment can be seen
in Figure 13. It clearly shows that subfunctions have an e�ect
on e�ciency in the other frameworks, but none in Ÿauhau.
The plot shows that the more modular the program, the less
e�cient the other frameworks become in terms of batching
I/O requests. This is unfortunate because introducing a more
modular structure into the program is one way to simplify
complex applicative expressions. This is not only true for
the explicitly applicative program versions but also for the
implicit applicative do-desugaring in GHC 8. Since Ÿauhau
�attens the graph, including the graphs for subfunctions, it
avoids these problems through the data�ow execution model.
Thus, it is also e�cient with programs written in a modular
fashion using subfunctions. Note that we did not investigate
the scalability of this �attening for very large programs.
With the moderate size of microservices we do not expect
this to be a problem. In case it is, devising a partial �attening
structure favoring I/O calls would be straightforward.

●
●

●

●

●

●

●

●

20

40

60

80

0.1 0.2 0.3 0.4
prob. of function/algorithm calls

I/O

 c
al

ls
 (a

vg
.)

● haxl muse yauhau

Figure 13. Results: Modular.

6 Conclusion and Future Work
Todays internet infrastructures use a microservice-based de-
sign to gain maximum �exibility at the cost of heavy I/O
communication. In this paper, we argued that a compiler can
provide the necessary I/O optimizations while still allowing
the developer to write concise code. To support this claim,
we presented our compiler framework Ÿauhau that uses two
intermediate representations. The �rst is an expression IR
that allows to de�ne semantic preserving transformations to
reduce the number of I/O calls. The second is a data�ow IR
which is concurrent by design and allows to unblock com-
putation from I/O. We implemented Ÿauhau on the JVM in
Clojure and show that it can speedup the latency of even
simple services, e.g., for constructing a web blog, by almost
4x. To compare against state-of-the-art approaches, we used
a microservice benchmarking tool to generate more complex
code. For the microservices that we generated in the bench-
mark Ÿauhau performs 21% less I/O than runtime approaches
such as Haxl and Muse.

Ÿauhau prioritizes batching over concurrency. This might
be the best default solution, but it is not clear it is always ideal.
In future work we plan to address this trade-o�. Furthermore,
our technique for batching I/O is only sound for independent
calls to the same data source. We plan to investigate the
possibility of batching multiple calls to the same data source,
i.e., e�ectively sending part of the computation to a di�erent
service, and not only a simple I/O request.

Acknowledgments
The authors thank the anonymous reviewers and the shep-
herd Yun Liang for their help to improve the paper. This work
was supported in part by the German Research Foundation
(DFG) within the Collaborative Research Center HAEC and
the Center for Advancing Electronics Dresden (cfaed).

References
[1] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar,

Bhuwan Chopra, Ciprian Gerea, Daniel Merl, JoshMetzler, David Reiss,
Subbu Subramanian, Janet L. Wiener, and Okay Zed. 2013. Scuba: Div-
ing into Data at Facebook. Proc. VLDB Endow. 6, 11 (2013), 1057–1067.
h�ps://doi.org/10.14778/2536222.2536231

114

CC’18, February 24–25, 2018, Vienna, Austria S. Ertel, A. Goens, J. Adam, and J. Castrillon

[2] Atul Adya, JonHowell, Marvin Theimer,William J. Bolosky, and John R.
Douceur. 2002. Cooperative Task Management Without Manual Stack
Management. In Proceedings of the General Track of the Annual Con-
ference on USENIX Annual Technical Conference (ATEC ’02). USENIX
Association, Berkeley, CA, USA, 289–302. h�p://dl.acm.org/citation.
cfm?id=647057.713851

[3] Aditya Agarwal, Mark Slee, and Marc Kwiatkowski. 2007. Thrift:
Scalable Cross-Language Services Implementation. Technical Report.
Facebook. h�p://thri�.apache.org/static/files/thri�-20070401.pdf

[4] ZenaM. Ariola andMatthias Felleisen. 1997. The Call-by-need Lambda
Calculus. J. Funct. Program. 7, 3 (May 1997), 265–301. h�ps://doi.org/
10.1017/S0956796897002724

[5] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and
Philip Wadler. 1995. A Call-by-need Lambda Calculus. In Proceedings
of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’95). ACM, New York, NY, USA, 233–246.
h�ps://doi.org/10.1145/199448.199507

[6] Arvind and David E. Culler. 1986. Annual review of computer sci-
ence vol. 1, 1986. Annual Reviews Inc., Palo Alto, CA, USA, Chap-
ter Data�ow architectures. h�p://dl.acm.org/citation.cfm?id=17814.
17824

[7] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the Killer Microseconds. Commun. ACM 60,
4 (March 2017), 48–54. h�ps://doi.org/10.1145/3015146

[8] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and
Armando Fox. 2004. Microreboot — A Technique for Cheap Recovery.
In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6 (OSDI’04). USENIX Association,
Berkeley, CA, USA, 3–3. h�p://dl.acm.org/citation.cfm?id=1251254.
1251257

[9] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams,
Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010.
FlumeJava: Easy, E�cient Data-parallel Pipelines. In Proceedings of
the 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’10). ACM, New York, NY, USA, 363–375.
h�ps://doi.org/10.1145/1806596.1806638

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
Highly Available Key-value Store. In Proceedings of Twenty-�rst ACM
SIGOPS Symposium on Operating Systems Principles (SOSP ’07). ACM,
New York, NY, USA, 205–220. h�ps://doi.org/10.1145/1294261.1294281

[11] Jake Donham. 2014. Introducing Stitch. Technical Report. h�ps:
//www.youtube.com/watch?v=VVpmMfT8aYw [Online; accessed 4-
May-2017].

[12] Marius Eriksen. 2013. Your Server As a Function. In Proceedings of the
Seventh Workshop on Programming Languages and Operating Systems
(PLOS ’13). ACM, New York, NY, USA, Article 5, 7 pages. h�ps://doi.
org/10.1145/2525528.2525538

[13] Andrés Goens, Sebastian Ertel, Justus Adam, and Jeronimo Castrillon.
2018. Level Graphs: Generating Benchmarks for Concurrency Opti-
mizations in Compilers. In Proceedings of the 11th International Work-
shop on Programmability and Architectures for HeterogeneousMulticores,
co-located with 13th International Conference on High-Performance and
Embedded Architectures and Compilers (HiPEAC) (MULTIPROG 2018).

[14] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. 2014. A Catalog of Stream Processing Optimizations. ACM
Comput. Surv. 46, 4, Article 46 (March 2014), 34 pages. h�ps://doi.org/
10.1145/2528412

[15] Thomas Johnsson. 1985. Lambda Lifting: Transforming Programs to
Recursive Equations. In Proc. Of a Conference on Functional Program-
ming Languages and Computer Architecture. Springer-Verlag New York,
Inc., New York, NY, USA, 190–203. h�p://dl.acm.org/citation.cfm?id=
5280.5292

[16] Alexey Kachayev. 2015. Muse. Technical Report. h�ps://github.com/
kachayev/muse [Online; accessed 4-May-2017].

[17] Alexey Kachayev. 2015. Reinventing Haxl: E�cient, Concurrent and
Concise Data Access. Technical Report. h�ps://www.youtube.com/
watch?v=T-oekV8Pwv8 [Online; accessed 4-May-2017].

[18] Edward A. Lee. 2006. The Problem with Threads. Computer 39, 5 (May
2006), 33–42. h�ps://doi.org/10.1109/MC.2006.180

[19] Feng Li, Antoniu Pop, and Albert Cohen. 2012. Automatic Extraction of
Coarse-Grained Data-Flow Threads from Imperative Programs. IEEE
Micro 32, 4 (July 2012), 19–31. h�ps://doi.org/10.1109/MM.2012.49

[20] Simon Marlow, Louis Brandy, Jonathan Coens, and Jon Purdy. 2014.
There is No Fork: AnAbstraction for E�cient, Concurrent, and Concise
Data Access. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’14). ACM, New York,
NY, USA, 325–337. h�ps://doi.org/10.1145/2628136.2628144

[21] Simon Marlow, Simon Peyton Jones, Edward Kmett, and Andrey
Mokhov. 2016. Desugaring Haskell’s Do-notation into Applicative
Operations. In Proceedings of the 9th International Symposium on
Haskell (Haskell 2016). ACM, New York, NY, USA, 92–104. h�ps:
//doi.org/10.1145/2976002.2976007

[22] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric
Prud’hommeaux, Håkon Wium Lie, and Chris Lilley. 1997. Network
Performance E�ects of HTTP/1.1, CSS1, and PNG. In Proceedings of the
ACM SIGCOMM ’97 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM ’97). ACM,
New York, NY, USA, 155–166. h�ps://doi.org/10.1145/263105.263157

[23] J. K. Ousterhout. 1996. Why Threads Are A Bad Idea (for most pur-
poses). Presentation given at the 1996 Usenix Annual Technical Con-
ference. (Jan. 1996).

[24] Mike P. Papazoglou and Willem-Jan Heuvel. 2007. Service Oriented
Architectures: Approaches, Technologies and Research Issues. The
VLDB Journal 16, 3 (July 2007), 389–415. h�ps://doi.org/10.1007/
s00778-007-0044-3

[25] Simon Peyton Jones, Will Partain, and André Santos. 1996. Let-�oating:
Moving Bindings to Give Faster Programs. In Proceedings of the First
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’96). ACM, New York, NY, USA, 1–12. h�ps://doi.org/10.1145/
232627.232630

[26] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. 2007.
Stream�ex: High-throughput Stream Programming in Java. In Proceed-
ings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). ACM, New York,
NY, USA, 211–228. h�ps://doi.org/10.1145/1297027.1297043

[27] Wouter Swierstra. 2008. Data Types à La Carte. J. Funct. Program. 18,
4 (July 2008), 423–436. h�ps://doi.org/10.1017/S0956796808006758

[28] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.
StreamIt: A Language for Streaming Applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC ’02).
Springer-Verlag, London, UK, UK, 179–196. h�p://dl.acm.org/citation.
cfm?id=647478.727935

[29] Richard Townsend, Martha A. Kim, and Stephen A. Edwards. 2017.
From Functional Programs to Pipelined Data�ow Circuits. In Proceed-
ings of the 26th International Conference on Compiler Construction (CC
2017). ACM, New York, NY, USA, 76–86. h�ps://doi.org/10.1145/
3033019.3033027

[30] Rob von Behren, Jeremy Condit, and Eric Brewer. 2003. Why Events
Are a Bad Idea (for High-concurrency Servers). In Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Volume 9 (HOTOS’03).
USENIX Association, Berkeley, CA, USA, 4–4. h�p://dl.acm.org/
citation.cfm?id=1251054.1251058

115

