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Abstract
Numerical simulations continue to enable fast and enormous
progress in science and engineering. Writing efficient numer-
ical codes is a difficult challenge that encompasses a variety
of tasks from designing the right algorithms to exploiting the
full potential of a platform’s architecture. Domain-specific
languages (DSLs) can ease these tasks by offering the right
abstractions for expressing numerical problems. With the aid
of domain knowledge, efficient code can then be generated
automatically from abstract expressions. In this work, we
present the CFDlang DSL for expressing tensor operations
that constitute the performance-critical code sections in a
class of real numerical applications from fluid dynamics. We
demonstrate that CFDlang can be used to generate code au-
tomatically that performs as well, if not better, than carefully
hand-optimized code.

Keywords language (DSL) design, code generation and op-
timization, tensor expressions, numerical methods, compu-
tational fluid dynamics (CFD)
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1 Introduction
For many decades, numerous engineering and scientific dis-
ciplines have benefited from large-scale simulations of com-
plex problems that are intractable without numerical meth-
ods. Due to large data sizes, run-times of several weeks or
months are not unusual for numerical applications, even
when executed on massive clusters of powerful modern com-
puters. Therefore, developers and maintainers of numerical
applications afford vast amounts of time and energy to code
optimization: increasing the speed of an application by only
a small fraction leads to large absolute savings in terms of
run-time and energy consumption.
The process of optimizing numerical applications can be

divided into two steps. (1) An expert in numerical methods
selects algorithms and data structures that are best suited to
the problem at hand. Some implementation aspects may al-
ready be fixed by the domain expert, with a view towards the
platform that is targeted for executing the final application.
(2) During implementation, appropriate tools, e.g. libraries
and compilers, are picked that are optimized for the target
platform. An optimization expert who is familiar with the
target platformmay assist in this step. Numerical codes often
have long life-times of several decades, and step (2) must
be repeated every time an application is migrated to a new
platform. Domain-specific languages (DSLs) can decouple
the two steps, and thus act as an interface between the expert
in numerical methods and the optimization expert.
In this paper we present CFDlang, a DSL designed for

expressing and optimizing performance-critical operations
in fluid dynamics simulations. The applications of fluid dy-
namics are manifold, ranging from weather and climate
simulation to the engineering of vehicles and aircraft. The
CFDlang DSL specifically aims to assist in the development
and optimization of numerical applications that rely on so-
called high-order methods (Section 2), which are attractive
since they can efficiently reduce numerical errors [10]. High-
order methods introduce data structures that are higher-
dimensional: instead of vectors and matrices, the use cases
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for CFDlang operate on tensors of generally more than two
dimensions. The fundamental operation between tensors
is contraction, which is the natural generalization of ma-
trix multiplication. In CFDlang, tensor contraction can be
expressed at a high level of abstraction, using a notation
that does not unnecessarily clutter tensor expressions with
loops and indices (Section 3). This significantly simplifies
implementation and thus also assists numerical experts in
carrying out step (1) by allowing them to focus more on the
relevant algorithms. CFDlang generates efficient code for
tensor contraction (also Section 3), thereby addressing step
(2). Our evaluation shows that the generated code performs
at least as well, and often better, than code that has been
painstakingly optimized manually (Section 4).

In summary, the key features of CFDlang are as follows:

(i) The ability to express operations between tensors in an
index-free fashion, at a high level of abstraction.

(ii) The capability to generate highly efficient codes, on or
above par with hand-optimized solutions.

(iii) Localized and “drop-in” replacement for performance-
critical code sections in existing numerical applications
that are written in Fortran or C/C++.

The last point makes CFDlang particularly attractive to main-
tainers of large and complex existing applications. Rather
than re-writing big parts of an application in a new DSL,
developers can concentrate on those code sections that they
know to be the key performance bottlenecks, which often
consist of only a few loop nests. This differentiates CFDlang
from other solutions that require that an entire numerical
problem be re-formulated in a new DSL [4, 13, 24].

In recent years, themanipulation of high-dimensional data,
often with tensorial structure, has featured prominently in
application domains such as machine learning, image pro-
cessing, and large-scale stochastic automata networks [22].
The goals of existing frameworks and DSLs [3, 6] designed
for the machine learning domain are similar to those of CFD-
lang. While the design of the CFDlang DSL is driven by its
key use cases, we believe that CFDlang may be more widely
applicable to codes that manipulate high-dimensional data
with tensorial structure.

2 Background and problem definition
The flow of fluids is governed by the Navier-Stokes equa-
tions (NSE), which are coupled partial differential equations
in space and time [15]. No method is known for finding
analytical solutions of the NSE, and computational fluid dy-
namics (CFD) is the discipline of studying the NSE with
numerical methods. Calculating numerical solutions is ex-
tremely expensive. For example, the simulation of the flow
in Figure 1 requires many thousands of CPU hours.
Numerical solution methods decompose the computa-

tional domain Ω into ne small finite volume elements Ωe

Figure 1. Turbulent flow in a plane channel, main flow di-
rection from left to right. Gray surfaces enclose vortex cores,
i.e. centers of large-scale turbulence. Colors on the bounding
box encode the speed of the flow; red is fast, blue is slow.
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Figure 2. Function u (x ) = sin(3πx ) approximated with a
linear method (p = 1) using ne = 8 elements, and a high-
order method (p = 4) using ne = 2 elements.

of widths he . The numerical error ε decreases with he . Tra-
ditional methods typically approximate the solution on Ωe
with linear functions, i.e. polynomials of order p = 1, leading
to the error bound ∥ε ∥ ≲ maxe h2e . Current research in CFD
focuses on so-called high-order methods, e.g. the spectral-
element method (SEM) or discontinuous Galerkin methods,
which can decrease the numerical error at lower costs than
more traditional methods. In high-order methods, the solu-
tion of a problem is approximated with polynomials of order
p > 1, resulting in the error bound ∥ε ∥ ≲ maxe h

q
e , where

either q = p or q = p + 1 [10, 12].
For a 1-dimensional problem, the total number of degrees

of freedom in a numerical method is in O (nep) and deter-
mines the computational cost of the method. Figure 2 illus-
trates how a high-order method based on polynomials of
order p = 4 achieves a lower approximation error than a lin-
ear method, with p = 1, while using the same total number
of degrees of freedom.

Many of the operators that occur in CFD are linear and lo-
cal, so that they can be evaluated on an element-by-element
basis [8]. In three dimensions, the numerical solution in-
side an element Ωe is determined by the coefficients vi jk,e ,



CFDlang RWDSL2018, February 24, 2018, Vienna, Austria

where the indices i, j,k = 0, . . . ,p correspond to the spatial
dimensions, and p is the order of the polynomials used to
approximate the exact solution. Thus, for a fixed element
index e , the coefficients vi jk,e are stored in a 3-dimensional
array, also referred to as a 3-dimensional tensor. The resulting
number of degrees of freedom per element is (p + 1)3, and,
hence, the total number of degrees of freedom is ne (p + 1)3.
Operators relevant to computing numerical solutions of-

ten exhibit a structure that reflects the three spatial dimen-
sions, i.e.

vi jk,e =

p∑
i′=0

p∑
j′=0

p∑
k ′=0

Akk ′Bj j′Cii′ui′j′k ′,e , (1)

where the matrices A, B, and C each specify the action of
the combined operator in one of the spatial dimensions. A
direct implementation of Equation (1) consists of six nested
loops, requiring 2 · p6 arithmetic operations per element; and
an implementation based on a single matrix multiplication
carried out by an optimized DGEMM routine also has com-
plexity O (p6). However, using an instance of loop-invariant
code motion, as pointed out for example in [21], Equation (1)
can be rearranged to

vi jk,e =

p∑
k ′=0

Akk ′

p∑
j′=0

Bj j′
p∑

i′=0
Cii′ui′j′k ′,e , (2)

which can be evaluated with only 6 · p4 operations. A more
general treatment of the complexities of formulae like the
ones in Equations (1) and (2) appears in [30]. Note that each
summation over a pair of indices in Equations (1) and (2) is
called a tensor contraction. Contractions generalize matrix
multiplication to tensors of multiple dimensions, such as the
3-dimensional tensor ui′j′k ′,e .

One of the key features of the CFDlang DSL is that it can
automatically perform transformations that reduce the com-
plexity of operators, analogous to going from Equation (1)
to (2). To this end, the DSL expresses Equation (1) as

v = A # B # C # u . [[1 8] [3 7] [5 6]] , (3)
whereA # B #C # u denotes the concatenation of the tensors
A, B, C , and u, as it appears under the summations in Equa-
tion (1). The concatenation implicitly carries nine indices
which are numbered from 0 to 8. The index pairs [1 8], [3 7],
and [5 6] that appear after the period (.) in the assignment (3)
are to be contracted, i.e. summed over. In generating code
for the assignment (3), CFDlang is free to choose the most
efficient evaluation order. Note that the syntax of CFDlang
is motivated by the compact tensor product notation [18]
that is commonly used in the CFD domain. In tensor product
notation, the assignment (3) is written as

ve = (A ⊗ B ⊗ C) ue . (4)
Two operators that are heavily utilized in CFD applica-

tions and that therefore constitute the key use cases for CFD-
lang are the interpolation operator and the inverse Helmholtz

⟨program⟩ ::= ⟨decl⟩* ⟨elem⟩? ⟨stmt⟩*

⟨decl⟩ ::= var ⟨io⟩? ⟨id⟩ : [⟨ilist⟩]

⟨io⟩ ::= input | output

⟨elem⟩ ::= elem [⟨idlist⟩] ⟨int⟩

⟨stmt⟩ ::= ⟨id⟩ = ⟨expr⟩

⟨expr⟩ ::= ⟨term⟩ | ⟨term⟩ (+|-) ⟨expr⟩

⟨term⟩ ::= ⟨factor⟩ | ⟨factor⟩ (*|/) ⟨expr⟩ | ⟨factor⟩ . [⟨plist⟩]

⟨factor⟩ ::= ⟨atom⟩ | ⟨atom⟩ # ⟨factor⟩

⟨atom⟩ ::= ⟨id⟩ | ( ⟨expr⟩ )

⟨ilist⟩ ::= ϵ | ⟨int⟩ ⟨ilist⟩

⟨int⟩ ::= [0-9][0-9]*

⟨plist⟩ ::= ⟨pair⟩ | ⟨pair⟩ ⟨plist⟩

⟨pair⟩ ::= [⟨int⟩ ⟨int⟩]

⟨idlist⟩ ::= ⟨id⟩ | ⟨id⟩ ⟨idlist⟩

⟨id⟩ ::= [a-zA-Z][a-zA-Z0-9]*
Figure 3. The CFDlang grammar.

operator. The interpolation operator is defined by

ve = (A ⊗ A ⊗ A) ue , (5)

the CFDlang notation of which is the same as statement (3)
with A = B = C . The inverse Helmholtz operator is

ve = (S ⊗ S ⊗ S)D−1e (ST ⊗ ST ⊗ ST ) ue , (6)

where De is a diagonal matrix, and can be expressed in CFD-
lang as a sequence of three assignments,

t = (S # S # S # u . [[1 6] [3 7] [5 8]]) (7a)
r = D_inv ∗ t (7b)
v = (S # S # S # r . [[0 6] [2 7] [4 8]]) . (7c)

The interpolation and inverse Helmholtz operators can easily
consume up to 90% of the run-time of a CFD application.
Although rearranging the evaluation order of tensor op-

erations can reduce run-time complexity, some difficulties
remain. Namely, CFDlang cannot directly benefit from op-
timized DGEMM implementations since this would require
costly transpositions of tenors [7, 26]. Moreover, DGEMM
implementations are optimized for multiplication of large
matrices, while the tensors that occur in our use cases typi-
cally have dimensions determined by p ∈ {1, . . . , 12}.

3 DSL design and implementation
In this sectionwe introduce the CFDlang DSL. After introduc-
ing the DSL itself, we explain how executable code generated
from the DSL is integrated into a numerical application. We
then discuss the high-level code generator of CFDlang.
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3.1 The CFD language (CFDlang)
The DSL is intended to replace performance-critical tensor
operations in larger numerical applications. Therefore, its
design ensures that the relevant tensor operations can be
expressed efficiently, in a few lines of DSL code. This is
achieved by (a) an index-free notation of tensors and (b) a
compact notation for products and contractions.

Figure 3 specifies the grammar of CFDlang. Non-terminals
appear in angle brackets and terminal symbols are in bold
face. A CFDlang program consists of a list of declarations
(decl) followed by a list of statements (stmt). In between
those lists, there may be an optional element directive. State-
ments are assignments of expressions (expr) to identifiers
(id). No control flow constructs are required to express the
relevant tensor operations, which simplifies notation consid-
erably and gives the code generator the freedom to organize
control flow in adequate and efficient ways. Since CFDlang
programs are intended to be short and typically operate on
only a few tensors, variables do not need to be introduced
at different scopes. Hence, all declared variables are visible
globally within a CFDlang program.

3.1.1 Declarations
Declarations start with the keyword var, followed by an op-
tional I/O qualifier and the identifier to be declared. An I/O
qualifier indicates that the declared variable is used by the
ambient numerical application for communicating data into
and out of the CFDlang program. Hence, no memory needs
to be allocated for this variable inside the CFDlang program;
instead, the memory already allocated by the ambient ap-
plication is used. CFDlang assumes that different input and
output variables do not alias. This assumption, also made by
Fortran, helps in generating more efficient code.
Variables declared without an I/O qualifier are local to

the CFDlang program. Generally, memory must be allocated
for such variables, but they may also be optimized away or
coalesced with other variables.
Declarations end with the type of the declared tensor. A

tensor is a multi-dimensional array, and hence its type is a
list of dimensions, which appears inside brackets, after the
colon. An empty list inside the brackets declares a scalar.

Since CFDlang is designed for numerical applications, the
elements of a tensor are assumed to be double-precision
floating-point numbers. However, this standard setting can
be changed, even to integer data types, when invoking the
code generator. A straightforward extension of the given
grammar would allow that names be introduced for types
that are frequently used in declarations.

3.1.2 The element directive
A CFDlang program specifies the operations that are to be
performed per element Ωe . Typically, the same program
must be executed for every element. The element directive,

which starts with the keyword elem, indicates that this is
indeed the desired behavior. The directive specifies a list of
variables, in brackets, that are instantiated for each element,
followed by the total number of elements. CFDlang assumes
that the operations performed for different elements are fully
independent of each other.

3.1.3 Tensor expressions
The usual arithmetic operations (+, −, ∗, /) operate entry-
wise on tensors. Multiplication and division are also allowed
between a scalar and a tensor of arbitrary dimension.
The key to expressing tensor operations efficiently lies

in the interplay between the the hash operator (in the last
alternative for factor) and the period operator (in the last
alternative for term). The hash operator concatenates tensors
(cf. Section 2), thus forming a bigger tensor from its operands.
The tensor resulting from the hash operator has as many
dimensions as both operands combined. The period operator
applies contractions to its left argument, the indices of which
are numbered implicitly from left to right, starting at zero.
The second argument to the period operator is a list of pairs,
designating the index pairs to be contracted over. The last
line of the CFDlang program in Figure 4 demonstrates how
one expresses the contractions in the interpolation operator,
as defined in Equation (5), for p + 1 = 7 and ne = 216.

va r i npu t A : [7 7 ]
var i npu t u : [ 7 7 7 ]
var ou tpu t v : [ 7 7 7 ]

elem [ u v ] 216

v = A # A # A # u . [ [ 1 6 ] [3 7 ] [5 8 ] ]

Figure 4. DSL code for the interpolation operator.

3.2 Integration with the ambient application
CFDlang programs can be compiled into executable code and
linked against the ambient numerical application when the
application is built. Alternatively, programs can be built dy-
namically at application run-time. This approach is usually
preferred since the dimensions of tensors are not necessarily
known until application run-time, and compilers can gener-
ate better code once these dimensions have been fixed.
In a typical use case, therefore, the ambient numerical

application first assembles the CFDlang program code as a
string, essentially by filling in constants for the tensor dimen-
sions. This string is then passed to the CFDlang run-time
library in a build call, cf. Figure 5, which causes the library
to invoke the high-level code generator to turn the CFD-
lang program into efficient C code. The generated C code is
then compiled into executable machine code by running the
host system’s C compiler. In the CFD domain, the Intel com-
piler suite is the de-facto standard for applications written
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Figure 5. Dynamic code generation for DSL programs.

1 var i npu t x : [ 3 4 5 ]
2 var i npu t y : [ 3 4 5 ]
3 var ou tpu t z : [ 3 4 5 ]
4
5 z = x ∗ y

Figure 6. Entry-wise multiplication of tensors.

in Fortran or C/C++ and targeted at platforms based on Intel
hardware. The CFDlang run-time library stores the machine
code produced by the system compiler and returns a handle
to the ambient application. To execute the compiled CFDlang
program, the handle is used in an execute call to the run-time
library. In this call, arrays must be supplied as additional
arguments, corresponding to the variables declared with I/O
qualifiers in the CFDlang program; see again Figure 5 and
compare with the variable declarations in Figure 4.

Generating executable code for CFDlang programs at ap-
plication run-time incurs a time penalty of typically a few
seconds. Since it is not unusual that applications consume
several thousand CPU hours, a penalty of a few seconds is
easily amortized if the generated code reduces the run-time
of the performance-critical tensor operations by even just a
few percent. That this is indeed the case will be verified in
the evaluation of CFDlang in Section 4.

Depending on whether the ambient application is written
in Fortran or C/C++, the CFDlang code generator can switch
between column-major and row-major array layout.

3.3 Code generation
A straightforward strategy for lowering CFDlang programs
to C code would be as follows. For every assignment x= expr
in the CFDlang program, create a perfect loop nest that it-
erates over all dimensions of the tensor x. In the body of
the loop nest, assign one entry of expr to the corresponding
entry of the variable x. The CFDlang program in Figure 6 and
the corresponding C code in Figure 7 illustrate this. The func-
tion cfd_kernel implements the entire CFDlang program,
and the declarations in the program in Figure 6 are used
to construct the signature of cfd_kernel. The restrict
keyword in the function parameters in Figure 7 implements
CFDlang’s convention that different variables do not alias.
The outlined code generation strategy can be improved

to generate C code that, in turn, compiles to more efficient

void cfd_kernel(
double x[restrict 3][4][5],
double y[restrict 3][4][5],
double z[restrict 3][4][5])

{
for (int i0 = 0; i0 < 3; i0++) {
for (int i1 = 0; i1 < 4; i1++) {
for (int i2 = 0; i2 < 5; i2++) {
z[i0][i1][i2] = x[i0][i1][i2]

* y[i0][i1][i2];
} } } }

Figure 7. Generated C code for the program in Figure 6.

1 void cfd_kernel(
2 double A[restrict 7][7],
3 double u[restrict 216][7][7][7],
4 double v[restrict 216][7][7][7])
5 {
6 /* element loop: */
7 for(int e = 0; e < 216; e++) {
8 for(int i0 = 0; i0 < 7; i0++) {
9 for(int j0 = 0; j0 < 7; j0++) {
10 for(int k0 = 0; k0 < 7; k0++) {
11 v[e][i0][j0][k0] = 0.0;
12 for(int i1 = 0; i1 < 7; i1++) {
13 for(int j1 = 0; j1 < 7; j1++) {
14 for(int k1 = 0; k1 < 7; k1++) {
15 v[e][i0][j0][k0] += A[i0][i1]
16 * A[j0][j1]
17 * A[k0][k1]
18 * u[e][i1][j1][k1];
19 } } } } } }
20 } /* end of element loop */
21 }

Figure 8. Naive C code for the interpolation operator.

executable machine code. The following sections describe a
number of improvements.

3.3.1 Algorithmic transformations
High-order methods in fluid dynamics crucially rely on the
tensor contraction operation. For example, the last line of the
program in Figure 4 uses multiple contractions to express the
interpolation operator. A naive translation of this CFDlang
program produces the C code in Figure 8. The C code also
illustrates how an element loop is generated from the element
directive in the program in Figure 4. In this case, the element
loop iterates over 216 elements.
The implementation of the cfd_kernel function in Fig-

ure 8 corresponds to the evaluation order in Equation (1).
Thus, the run-time complexity per element is O (p6), with
p + 1 = 7. As explained in the discussion in Section 2, the
complexity can be reduced significantly by transforming
multiple contractions into a sequence of single contractions.
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The multiple contractions in the last line line of Figure 4
can be represented as an un-directed contraction graph as
follows. For each tensor that occurs in the contraction ex-
pression, place a node in the contraction graph. The node
has as many outgoing legs as the tensor has indices. If a ten-
sor appears in an expression multiple times, place separate
nodes in the graph, one for each occurrence of the tensor.
Outgoing legs from nodes are joined to form edges if the
legs correspond to index pairs that are contracted. Outgoing
legs that correspond to indices that are not contracted are
left dangling. Figure 9 shows the contraction graph resulting
from the last line of Figure 4. C code is generated from the
contraction graph by emitting a contraction for one edge at a
time. For the interpolation operator, this leads to the sequence
of contractions shown in Figure 10. Since this corresponds
to the evaluation order in Equation (2), the complexity of the
program in Figure 10 is now O (p4).

By transforming multiple contractions into a sequence of
single contractions, as described, the CFDlang code generator
turns the interpolation operator from Figure 4 into the C code
that appears between lines 10 and 43 in Figure 11.

The order in which edges of contraction graphs are treated
determines the order in which contractions appear in the
generated C code, and this order affects the total number of
executed arithmetic instructions. In general, the problem of
finding the order that minimizes the number of instructions
is NP-complete [16]. In the use cases from CFD, the order
of contractions does not affect the total number of executed
operations. This is because the loop bounds are the same in
all loops (other than the element loop), cf. Figures 8 and 11,
which in turn is a consequence of choosing the same basis
polynomials of order p for all spatial directions.
Transforming multiple contractions into a sequence of

single contractions also introduces temporary variables that
store intermediate results (e.g. t6, t7 in Figures 10 and 11).
Allocating large amounts of memory for storing intermediate
results may adversely affect the performance of the memory
system, possibly even exhausting local disk space [4]. For
general tensor contractions, this has to be taken into account
when making predictions about the performance of the gen-
erated code. However, in the CFD use cases, p ∈ {1, . . . , 12}
and hence the memory required by temporary variables is
typically small enough to fit into the lowest-level cache. In
fact, all tensors, including temporary ones, that are required

u

A

A A

Figure 9. Contraction graph for the interpolation operator.

t 6 = A # u . [ [ 1 4 ] ]
t 7 = A # t 6 . [ [ 1 4 ] ]
v = A # t 7 . [ [ 1 4 ] ]

Figure 10. Sequence of single contractions.

for evaluating expressions in one element Ωe typically fit
into the lowest-level cache.

3.3.2 Parallelization
The CFDlang code generator takes advantage of thread-level
parallelism and SIMD parallelism.
Instances of a CFDlang program that are executed for

different elements Ωe are fully independent of each other,
cf. Section 3.1.2. Therefore, program instances for different
elements can be executed in parallel threads, without any
need for synchronization. Thread-parallel code can be gen-
erated easily by adding an OpenMP pragma to the element
loop, resulting in line 7 in Figure 11. It is assumed that the
ambient application is enabled for the use of threads.

The multiple loop nests that occur in the C code generated
from CFDlang programs provide opportunities for vector-
ization with SIMD instructions. By placing SIMD pragmas
in front of loops, the CFDlang code generator assists the
system C compiler in vectorizing the generated code.1 In the
placement of pragmas, CFDlang can follow two strategies.
The first strategy places a pragma in front of the inner-

most loop in each 3-level loop nest. This is indicated by the
comments in lines 14, 26, and 37 in Figure 11. Vectorizing the
loops immediately after these comments should be straight-
forward. Hence, one would expect good performance from
this strategy. However, if the loop bounds in lines 15, 27, and
38 are not multiples of the processor’s SIMD width, the com-
piler will introduce additional instructions immediately after
these loops to handle any remaining indices between the
last multiple of the SIMD width and the loop bound. Since
these additional instructions are nested inside two loops (and
the element loop), they are executed many times. Therefore,
one would expect this strategy to yield best performance
only if the loop bounds are multiples of the SIMD width.
By contrast, placing pragmas one level deeper, in front of
the contraction loops in lines 17, 29 and 40, would result in
under-utilization of the processor’s SIMD unit.

The second strategy places a pragma in front of the outer-
most loop in each 3-level loop nest, as in lines 11, 23, and 34
in Figure 11. This will cause the compiler to unroll nested
loops and vectorize the remaining outermost loop. Unrolling
replicates instructions in the loop body, potentially giving
the compiler more and better opportunities for vectorization.
However, loop unrolling can also have negative effects such
as increasing register pressure.
1 In this work, we rely on compiler-specific SIMD pragmas since the Intel
compiler suite is the de-facto standard for our use cases. To be more vendor-
independent, one could use OpenMP SIMD pragmas instead.
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3.3.3 Parameter specialization
Compilers generally produce more efficient machine code
for programs whose control flow is statically known. In the
context of CFD applications, this means that the dimensions
of tensors, which translate into loop bounds, must be known
at compile-time. Therefore, the requirement that all tensor
dimensions must be specified as explicit constants has been
built into CFDlang.

4 Evaluation
In this section we compare the performance of CFDlang-
generated code with manually optimized code. The eval-
uation platform is a 24-core Intel Xeon E5-2680 v3 CPU
(Haswell), running at 2.50Ghz. The 24 cores are split evenly
between two NUMA nodes, each of which has access to 32GB
of main memory. The size of the L1 data cache is 32KB per
core, and a single core can reach a maximum performance
of 40 GFLOPs. This figure takes into account that (i) there
are two execution units per core, (ii) the SIMD width is 4,
and (iii) a fused multiply-add instruction executes two op-
erations in one cycle, which is relevant in our context since
tensor contraction is a sequence of multiplications and addi-
tions. Executable code is generated with the Intel compiler
suite (either icc or ifort as appropriate). Specifically, the Intel
Compiler and MKL version 2017.2.174 is used.

4.1 Code variants
The baseline for the performance measurements is a code
variant where all loop bounds have been specialized to con-
stant values at compile-time. Although implemented in For-
tran, the spezialized variant is equivalent to the code in Fig-
ure 11 without the pragmas.

For comparison we also evaluate a code variant that relies
on the DGEMM routine from the Intel MKL library. DGEMM
implements a flexible version of matrix multiplication, is
considered fast, and is therefore commonly used in numerical
applications. However, using DGEMM for the contraction
of higher-dimensional tensors incurs a performance penalty
due to data transposition, as explained at the end of Section 2.
To obtain hand-optimized implementations of the inter-

polation and inverse Helmholtz operators, a domain expert
has spent several man months profiling and improving the
respective Fortran codes. Data sizes are small enough so that
all tensors that are processed in a single element fit into the
L1 cache. For example, the per-element memory required for
any of the 3-dimensional tensors in Figures 4, 10, and 11 is
73 · sizeof(double) = 2744 bytes. Therefore, the latency of
memory accesses does not make a dominant contribution to
the total latency of the interpolation and inverse Helmholtz
operators. Hence, the number of executed instructions is a
good proxy for the total latency. Manual optimization that
aims at reducing the number of instructions crucially relies
on loop unrolling. By increasing the number of instructions

1 void cfd_kernel(
2 double A[restrict 7][7],
3 double u[restrict 216][7][7][7],
4 double v[restrict 216][7][7][7])
5 {
6 /* element loop: */
7 #pragma omp for
8 for (int e = 0; e < 216; e++) {
9 double t6[7][7][7];
10 /* 1st contraction: */
11 #pragma simd
12 for (int i0 = 0; i0 < 7; i0++) {
13 for (int i1 = 0; i1 < 7; i1++) {
14 /* #pragma simd */
15 for (int i2 = 0; i2 < 7; i2++) {
16 double t8 = 0.0;
17 for (int i3 = 0; i3 < 7; i3++)
18 t8 += A[i0][i3] * u[e][i1][i2][i3];
19 t6[i0][i1][i2] = t8;
20 } } } /* end of 1st contraction */
21 double t7[7][7][7];
22 /* 2nd contraction: */
23 #pragma simd
24 for (int i4 = 0; i4 < 7; i4++) {
25 for (int i5 = 0; i5 < 7; i5++) {
26 /* #pragma simd */
27 for (int i6 = 0; i6 < 7; i6++) {
28 double t9 = 0.0;
29 for (int i7 = 0; i7 < 7; i7++)
30 t9 += A[i4][i7] * t6[i5][i6][i7];
31 t7[i4][i5][i6] = t9;
32 } } } /* end of 2nd contraction */
33 /* 3rd contraction: */
34 #pragma simd
35 for (int i8 = 0; i8 < 7; i8++) {
36 for (int i9 = 0; i9 < 7; i9++) {
37 /* #pragma simd */
38 for (int i10 = 0; i10 < 7; i10++) {
39 double t10 = 0.0;
40 for (int i11 = 0; i11 < 7; i11++)
41 t10 += A[i8][i11] * t7[i9][i10][i11];
42 v[e][i8][i9][i10] = t10;
43 } } } /* end of third contraction */
44 } /* end of element loop */
45 }

Figure 11. Generated C code for the interpolation operator.

in loop bodies, loop unrolling can positively affect the total
number of executed instructions in two ways. First, it im-
proves the ratio of body instructions to instructions that are
merely required tomanage the loop (e.g. branch instructions).
Second, it may present the compiler with additional oppor-
tunities for vectorizing loops that it would otherwise miss.
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Vectorization can reduce the number of instructions since a
single SIMD instruction processes multiple data items.
Manual optimization is a long and tedious process the

results of which are very sensitive to the dimensions of the
processed data. For our operators, this means that different
code variants will lead to best performance for different poly-
nomial orders. In the following, for each polynomial order p
we only report the performance of the hand-optimized code
variant that performed the best for this p.

4.2 Performance results
Figures 12 and 13 show the performance of different code
variants for varying polynomial order p. The horizontal axes
denote p + 1 (rather than p) since for polynomial order p,
tensor dimensions take the valuep+1. In Figures 12a and 13a,
performance is measured by the number of updates to en-
tries of the tensor ve in Equations (5) and (6) respectively.
Updating each entry requires a fixed number of tensor con-
tractions, each of which has complexity O (p). Hence, the
graphs in Figures 12a and 13a roughly evolve as 1/p.
CFDlang-generated code with the innermost placement

of SIMD pragmas, i.e. CFDlang(inner), generally performs
about as well as the hand-optimized code. However, for the
inverse Helmholtz operator and p+1 ≥ 6, the performance of
CFDlang(inner) stays behind the hand-optimized code by an
almost constant offset. The CFDlang-generated code with the
outermost placement of SIMD pragmas, i.e. CFDlang(outer),
generally outperforms all other code variants. One notable
exception is when p + 1 = 4, i.e. the SIMD width, in which
case CFDlang(inner) performs the best of all variants by a
wide margin. Note also that for the interpolation operator,
CFDlang(inner) indeed performs best when p+1 is a multiple
of the SIMD width, as anticipated in in Section 3.3.2.
In summary, Figures 12 and 13 show that code gener-

ated from the CFDlang DSL can perform at least as well as
carefully hand-tuned code, resulting from a time consuming
optimization process. It is clear from the different behaviors
of the CFDlang(outer) and CFDlang(inner) code variants that
neither currently exploits the full potential of vectorization.
A detailed analysis of vectorization opportunities in use cases
from the CFD domain is beyond the scope of this work, but
this should be looked into in the future.
Finally, note that Figures 12 and 13 correspond to code

execution in a single thread on one core. As explained in
Section 3.3.2, evaluation of different elements in separate
OpenMP threads is straightforward. Performance should
scale well with the number of OpenMP threads provided
that (i) there are more elements than threads, and that (ii)
at any point in time no more than one thread is executing
per core. When multiple threads execute on the same core,
they share the core’s cache and hence cache size will at some
point become a limiting factor. A study of the behavior of
multiple threads and caches is left for future work.

5 Related work
CFDlang has been designed specifically for CFD applications
that employ high-order spectral element methods. Many
frameworks and languages exist that targeted different use
cases and that vary in their degree of generality. The NumPy
library [1], for example, offers completely general functions
for manipulating high-dimensional arrays. However, when
using library functions to implement individual tensor opera-
tions, one cannot utilize the algorithmic transformations em-
ployed byCDFlang. Similar statements hold for the Theano [6]
and TensorFlow [3] packages. The XLA compiler aims to
overcome this but is still experimental [2]. In [29] an in-
termediate language for tensor operations is proposed, to-
gether with meta-programming capabilities for specifying
code transformations.
The Tensor Contraction Engine (TCE) [4] generates ef-

ficient code for quantum-chemistry applications. Since the
tensors involved are large, TCE considers trade-offs between
code transformations and the amount of memory allocated
for intermediate results. Our CFD use cases rely on compa-
rably small data structures. Hence, the trade-offs considered
by TCE are not immediately relevant.
The Tensor Transposition Compiler (TTC) [27] focuses

on generating efficient tensor transpositions. Suitably trans-
posing tensors can turn a general contraction into a matrix
multiplication, for which one can rely on fast implementa-
tions of GEMM-like routines [26], as implemented for CFD
in [7, 19]. To some extent, TTC relies on blocking to generate
efficient transpositions. This, again, is more important when
data structures are larger than in our use cases.

The Tensor Algebra Compiler (TACO) [14] generates effi-
cient code for operations on tensors for which each dimen-
sion can have a different data layout, either dense or sparse.
This flexibility is not required in the present work since all
tensors in the studied CFD use cases are dense.
The variational forms compiler from [13] and the Fire-

drake framework [24] offer complete solutions for imple-
menting classes of CFD codes. This is different from our
work, which focuses on providing localized drop-in replace-
ments for the performance-critical loop nests in an applica-
tion. Thus, CFDlang seems closer in spirit to the COFFEE
compiler [17], used internally by the Firedrake framework.
In the OP2 framework one can write hardware-agnostic

kernels for CFD applications as well as entire applications
using domain decomposition [20]. Optimizations employed
by OP2 include loop fusion and fission, which we have not
yet explored for CFDlang. Thus far, the OP2 framework has
not been applied in the context of high-order methods.

In theMemoryAccess Pattern Specification (MAPS) frame-
work [5] kernels are annotated with memory access patterns.
Optimizations utilize these annotations to achieve better per-
formance than other frameworks. However, MAPS currently
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Figure 12. Interpolation operator, single thread performance, ne = 63 = 216 elements.
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Figure 13. Inverse Helmholtz operator, single thread performance, ne = 63 = 216 elements.

targets GPUs only, while the present work has focused on
improving performance for individual CPU cores.
The SPIRAL project, e.g. [23], has produced a number of

DSLs and code generation strategies. Among these, LGen
focuses on linear algebra computations and it exploits the
structure of matrices to generate efficient code [25].

6 Summary and outlook
We have presented CFDlang, a new DSL for expressing ten-
sor operations that appear in a class of applications from
computational fluid dynamics (CFD). From a CFDlang pro-
gram, executable code is generated that performs as well or
better than manually optimized code. This has been demon-
strated for two numerical operators that are the key building
blocks of real numerical simulations.

To reduce the run-time complexity of generated code, CFD-
lang transforms multiple tensor contractions into a sequence
of single contractions. While finding an optimal contraction
sequence is generally NP-complete [16], the situation is sim-
pler for the considered use cases and data sizes. To make

CFDlang more widely applicable, future work should study
heuristics for handling more general tensor contractions.
The second ingredient in obtaining efficient code from

CFDlang is vectorization. By using preprocessor pragmas,
the system C compiler has been guided towards two differ-
ent vectorization strategies. Although both strategies lead
to good performance, no one strategy alone can consistently
outperform hand-optimized codes. Relying on pragmas for
vectorization makes it difficult to understand why the final
machine code behaves as observed. This could be resolved
by enhancing CFDlang’s code generator with its own vector-
izer that unrolls loops as necessary and emits architecture-
specific SIMD intrinsics into the generated C code. Further
motivation for focusing on vectorization in the future can
be derived from initial experiments that suggest that consid-
erably better performance can be achieved for polynomial
orders p + 1 = 4, 8, 12, i.e. multiples of the SIMD width.
Because of the independence of volume elements in the

studied use cases, numerical operators can be evaluated for
different elements in parallel. The presented code generator
for CFDlang exploits this parallelism by emitting OpenMP
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pragmas to execute code for different elements in parallel
threads. A detailed study of the properties and limitations of
this thread-level parallelism is left to future work.
The development of CFDlang has been driven by its key

use cases from the CFD domain. Further use cases, potentially
also from different application domains, could be explored
in the future. Recent work suggests that certain problems
in machine learning [28] and quantum physics [9, 11] may
call for efficient evaluation of tensor contraction. It would be
interesting to see if the performance-critical code sections of
these problems can also be easily expressed with CFDlang.
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