
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Performance and Energy-Efficient Design of
STT-RAM Last-Level Cache

Fazal Hameed , Asif Ali Khan, and Jeronimo Castrillon

Abstract— Recent research has proposed having a die-stacked
last-level cache (LLC) to overcome the memory wall. Lately,
spin-transfer-torque random access memory (STT-RAM) caches
have received attention, since they provide improved energy
efficiency compared with DRAM caches. However, recently
proposed STT-RAM cache architectures unnecessarily dissipate
energy by fetching unneeded cache lines (CLs) into the row
buffer (RB). In this paper, we propose a selective read policy
for the STT-RAM which fetches those CLs into the RB that are
likely to be reused. In addition, we propose a tags-update policy
that reduces the number of STT-RAM writebacks. This reduces
the number of reads/writes and thereby decreases the energy
consumption. To reduce the latency penalty of our selective
read policy, we propose the following performance optimizations:
1) an RB tags-bypass policy that reduces STT-RAM access
latency; 2) an LLC data cache that stores the CLs that are likely
to be used in the near future; 3) an address organization scheme
that simultaneously reduces LLC access latency and miss rate;
and 4) a tags-to-column mapping policy that improves access
parallelism. For evaluation, we implement our proposed archi-
tecture in the Zesto simulator and run different combinations
of SPEC2006 benchmarks on an eight-core system. We compare
our approach with a recently proposed STT-RAM LLC with
subarray parallelism support and show that our synergistic
policies reduce the average LLC dynamic energy consumption by
75% and improve the system performance by 6.5%. Compared
with the state-of-the-art DRAM LLC with subarray parallelism,
our architecture reduces the LLC dynamic energy consumption
by 82% and improves system performance by 6.8%.

Index Terms— Architecture, cache, embedded systems,
memory, memory hierarchy.

I. INTRODUCTION

CONVENTIONAL off-chip memories do not fulfil the
bandwidth and latency requirements of complex appli-

cations running on multicore systems [1]. The limited num-
ber of I/O pins provided by the packaging induces a gap
between processor and memory performance. This widening
gap is known as the memory wall [2] and severely lim-
its the performance of applications with large memory and

Manuscript received August 14, 2017; revised December 8, 2017; accepted
January 20, 2018. This work was supported in part by the German Research
Council through the Cluster of Excellence Center for Advancing Electronics
Dresden. (Corresponding author: Fazal Hameed.)

F. Hameed is with the Chair for Compiler Consruction, Technische
Universität Dresden, 01069 Dresden, Germany and also with the Institute
of Space Technology, Islamabad 44000, Pakistan (e-mail: fazal.hameed@
tu-dresden.de).

A. A. Khan and J. Castrillon are with the Chair for Compiler
Consruction, Technische Universität Dresden, 01069 Dresden, Germany
(e-mail: asif_ali.khan@tu-dresden.de; jeronimo.castrillon@tu-dresden.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2804938

Fig. 1. Distribution of number of unique lines reused before RB eviction
using 2-KB RB size for SPEC2006 application mixes (see Table II).

bandwidth requirements. A potential solution to mitigate the
memory wall problem is to employ die-stacked technolo-
gies [3]–[5]. These technologies integrate processor and mem-
ory dies by employing a low-latency and high-bandwidth
interconnect. To reduce the number of high-latency accesses to
bandwidth-limited off-chip memory, recent research proposed
to implement the die-stacked memory as a large-capacity
last-level cache (LLC) [6]–[13].

Previously, on-chip DRAM memory has been adopted as an
LLC for performance improvement due to its capacity advan-
tage compared with an area equivalent SRAM cache [6]–[10].
However, the DRAM LLC dissipates a significant portion of
chip power budget due to its high refresh rate and associated
dynamic energy consumption. Therefore, recent research has
advocated the use of nonvolatile spin-transfer-torque random
access memory (STT-RAM) as LLC [11], [14]. By exploiting
the nonvolatility characteristics of STT-RAM, the energy con-
sumption of the LLC can be reduced significantly compared
with DRAM.

Typically, a high-capacity STT-RAM holds multiple banks,
and each bank is provided with a row buffer (RB) [11], [15].
The total energy consumption in the existing STT-RAM LLC
is exacerbated by reading data from an STT-RAM bank
into the RB [11]. To reduce the energy consumption of the
STT-RAM LLC, we exploit the fact that most of the cache
lines (CLs) are unnecessarily fetched into the RB as they are
not likely to be reused in the near future. Fig. 1 shows that
the probability for the RB content to be accessed before RB
eviction is less than 40%. Therefore, we fetch only those CLs
into the RB that are likely to be reused. This significantly
reduces the number of RB fetches and, thereby, reduces the
dynamic energy consumption of an STT-RAM LLC. However,
identifying the likelihood for a CL to be reused induces a
high tag access latency when using the existing tag read
policy [9]–[11] and tag organization. Therefore, we propose

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2763-8755


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

a novel RB tags-bypass policy and a novel tag organization
that provides fast access to LLC tags. To reduce LLC latency
via access parallelism, we modify the mapping of tags to the
columns of an STT-RAM array. More precisely, we make the
following contributions.

1) We classify lines of the STT-RAM row into highly
reused and lowly reused lines.

2) We propose a selective read policy that only fetches
highly reused lines of an STT-RAM row into the RB.
This significantly reduces the energy consumption.

3) While the selective read policy saves energy, it also
induces a latency penalty. To counteract this effect,
we propose an RB tags-bypass policy.

4) We propose a small LLC data cache (LDC) that stores
the lines which are likely to be accessed in near future.
Lines that hit in the LDC are accessed with a much
lower latency.

5) We propose a tag organization that reduces the number
of STT-RAM column accesses and the LLC miss rate
which provides simultaneous performance and energy
benefits.

6) A novel tags-update policy is proposed which saves
energy by reducing the number of tag writebacks.

7) We propose a tag-to-column mapping policy that
improves access parallelism by allowing simultaneous
accesses to different subarrays. Unlike contemporary
approaches, we exploit subarray parallelism to its full
potential by uniformly distributing requests to different
subarrays.

The rest of this paper is organized as follows. Section II
presents an overview of the LLC organizations and the
working principle of STT-RAM and DRAM. Section III
describes the proposed architecture. Experimental setup, eval-
uation results, and comparison with state-of-the-art proposals
are detailed in Section IV. Section V presents the related work
followed by conclusion in Section VI.

II. BACKGROUND

This section describes the organization of the recently pro-
posed LLCs, the basic operating principles of the STT-RAM,
and its qualitative comparison with the DRAM.

A. State-of-the-Art LLC Organization

Fig. 2(a) illustrates the organization of the previously pro-
posed LLC [7], [10], [11]. The LLC is split into multiple
memory banks each equipped with an RB. Each bank is
organized as a series of rows that are split into columns.
In this paper, we assume an LLC size of 256 MB, a row
size of 2048 bytes (2 KB), and a column size of 64 bytes.

The LLC is implemented as a set-associative cache.
Recent research has proposed various set mapping poli-
cies [7], [9]–[11], [16]. This section explains LAMOST,
which is the most recently proposed policy, and has been used
for the DRAM [7], [10] LLCs and the STT-RAM LLC [11].
In LAMOST, the tags and the lines of an LLC are stored in
the same row. Each 2-KB LLC row comprises four sets with
seven-way associativity. A set contains seven CLs and a tag
column. Each tag column and the CL have a size of 64 bytes.

Fig. 2. Typical LLC and address organization using the LAMOST
policy [7], [10], [11] for an eight-core system with 256-MB LLC size,
64 banks, 2-KB RB size, and 44-bit physical addresses. (a) LLC LAMOST
organization. (b) Address organization.

Fig. 3. Bank/row/set mapping for LAMOST policy [7], [10], [11]. SB stands
for super block.

A tag column stores seven 31-bit wide tag entries, thus using
only 7×31 = 217 bits. This leaves 295 bits of each tag column
unused.

We assume 44-bit physical address which is split into
multiple parts as depicted in Fig. 2(b). The 18 most significant
bits identify the LLC tag. The next 12 bits select a row within
a bank. The following 6 bits select a memory bank within
the LLC. The next 2 bits are used to identify the set within a
row, and the remaining six least significant bits identify a byte
within a CL. Fig. 3 shows the mapping of main memory blocks
to a particular bank, row, and set using the LAMOST policy.
All the memory blocks that are mapped to the same row are
referred to as a superblock (SB). As evident from Fig. 3, each
SB consists of four consecutive 64-byte memory blocks.

For each LLC bank, the RB holds a copy of the row that
was retrieved last. In order to access a CL, the controller
issues a command to fetch the corresponding row in the bank
to its RB. Successive requests to the CLs of the same row
are serviced faster without fetching the row again. This is
referred to as an RB hit. An access to a line in a different row
requires to fetch the corresponding row into the RB. This is
referred to as an RB miss. The access latency and energy of
an RB hit is much lower compared with that of an RB miss.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 3

Fig. 4. STT-RAM peripheral circuit that supports both memory access via
an RB and direct access to the STT-RAM array via a bypass [11], [15].

Therefore, an application with high RB locality (many RB hits)
has a better performance and a lower energy consumption than
a similar application with low RB locality.

B. Basic Operating Principles of DRAM and STT-RAM

In DRAM, data are stored as a charge in a bit cell. During a
DRAM cell read operation, the charge stored in the capacitor is
shared with the bitline. The sense amplifier that is connected to
each bitline detects the voltage change which is then translated
to either logical “0” or logical “1.” In the DRAM, all the sense
amplifiers that are connected to the bitlines are referred to as
the RB. Due to this physical connection, the RB and the bit
cells in the DRAM bank are tightly coupled.

An STT-RAM bit-cell uses a magnetic tunnel junc-
tion (MTJ) device to store the information. The MTJ is made
of two independent ferromagnetic layers, the reference layer,
and the free layer. The magnetic orientation of the reference
layer is fixed. However, the magnetic orientation of the free
layer can be freely rotated. It can be parallel or antiparallel to
the reference layer. Depending on the magnetic orientation
of the free layer, the resistance of the MTJ cell changes.
In the parallel state, the resistance is low and the cell stores a
logical “0.” In the antiparallel state, the resistance is high and
the cell stores a logical “1.”

C. STT-RAM RB Bypass and Partial Write Optimizations

In the DRAM, the RB (i.e., sense amplifiers) and the
bit-cells are tightly coupled due to charge sharing. Therefore,
any read/write operation in the DRAM requires the data to
be fetched into the RB. A prominent characteristic of the
STT-RAM is the decoupled organization [11], [15], [17] of its
sense amplifiers and the RB (Fig. 4). This is a major advantage
over the DRAM for the following three reasons.

1) It is possible to bypass the RB in the STT-RAM.
The read or write operation can be performed directly
on the STT-RAM bank bit cells without the need to
fetch the data into the RB. This RB bypassing has
been leveraged recently [11], [15] to improve energy
efficiency.

2) Read or write operations can be performed directly
on the RB without requiring the sense amplifiers.
An STT-RAM bank column access does not necessarily
require the RB.

3) The STT-RAM bank and the RB can operate indepen-
dently on different rows which improves parallelism.

Traditionally, on an RB miss, the newly requested row is
always fetched in the RB. However, if the row that is currently

stored in the RB is likely to experience RB hits, it should
not be replaced by a row that is likely to experience an RB
miss. Therefore, the traditional policy does not work well
due to the following reasons. First, eviction of useful rows
(i.e., that are likely to experience RB hits) reduces the RB hit
rate and therefore reduces the overall performance. Second,
a low RB hit rate leads to a large number of RB fetches which
significantly increases the energy consumption.

Considering the cache access types (read, write, and write-
back), the writeback access is particularly worse in terms
of performance. An access after a writeback has a chance
of less than 5% to hit in the RB [11]. Therefore, recent
work [11], [15] has proposed to bypass the RB for the
writeback access and to perform the cache writeback oper-
ation directly on an STT-RAM column. This improves both
performance and energy efficiency by increasing the RB hit
rate.

To further reduce the energy consumption, the partial write
approach proposed in [15] writes only dirty columns from the
RB back to the STT-RAM array after an RB eviction.

D. Small Row/RB Sizes

An STT-RAM bank is typically realized as a combi-
nation of multiple subarrays each of which can operate
independently [17] by making trivial changes in the access
scheduler [18]. Conceptually, the large STT-RAM row and
the RB can be divided into multiple small subrows and
sub-RBs, respectively, as shown in Fig. 13. This so-called
small RB organization allows to perform only subrow
(e.g., activate) and sub-RB level operations (e.g., read and
write). The advantages of employing small RB organization
(e.g., 512-bytes row/RB size) compared with the large RB
organization (e.g., 2048-bytes row/RB size) are reduced
energy consumption and improved subarray parallelism [18].
However, employing the small RB organization using the
existing LLC designs [7], [9]–[12] leads to performance
inefficiencies due to reduced subarray parallelism. To exploit
the full potential of subarray parallelism using small RB
organization, we redesigned LLC organization that uniformly
distributes requests to different subarrays of the same bank.

III. PROPOSED STT-RAM LLC ARCHITECTURE

Based on the state-of-the-art discussed in Section II,
this section discusses our novel STT-RAM-based LLC
architecture.

A. Overview

Fig. 5 depicts an overview of the STT-RAM-based
LLC architecture and highlights our contributions. Similar
to [11], [15], the proposed architecture uses RB bypass and
partial write optimizations (recall Section II-C) to improve
performance and energy consumption. A disadvantage of the
existing LLC RB policy [7], [9]–[11], [16] is that it always
fetches an entire row into the RB. We introduce selective read
policy that reads only highly reused STT-RAM columns into
the RB and thereby reduces energy consumption. However,
with the selective read policy, the existing tag read policy



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 5. STT-RAM-based LLC architecture for an N -core system highlighting
our contributions.

incurs high access latencies. To address this problem, we pro-
pose a novel RB tags-bypass policy and an LDC that cut
down the access latency and improve the LLC performance.
Furthermore, we present a novel address organization and
a tags-to-column mapping policy that improves the RB hit
rate and subarray parallelism. To reduce energy consumption,
we propose efficient tag organization and tags update policy
that simultaneously reduce the number of tag columns reads
and writes.

B. Selective Read Policy

The basic tenet of our proposed selective read policy is
to reduce STT-RAM energy costs by eliminating unnecessary
STT-RAM array column reads. When we fetch only those CLs
that are likely to be reused, we avoid unnecessarily fetching of
data from the STT-RAM array and thereby reduce the energy
consumption.

In order to quantify how often LLC lines in the RB
are reused, we conducted a simple experiment. For this,
we used a state-of-the-art STT-RAM LLC with 2-KB RB
size, the LAMOST set mapping policy, and the STT-RAM
optimizations discussed in Section II-C. We executed a series
of SPEC2006 [19], [20] application mixes as listed in Table II
and counted the number of lines that are reused in the RB
before eviction. Fig. 1 displays the results of this experiment
and shows that the majority of RB fetches are unnecessary,
as none of the lines in the RB is accessed again in over 60%
of the cases. The percentage of times that more than four lines
in the RB are reused before eviction is less than 2%.

The RB has a low utilization due to the bank/row/set
mapping [Fig. 2(b)] of the LAMOST policy as shown in Fig. 3.
Since the SBs that are mapped to the sets of the same LLC
row are spacial distant, it is unlikely that subsequent accesses
hit the RB.

For selective read policy, we classify the LLC lines as highly
reused and lowly reused lines. We mark one line for each of the
four sets within an LLC row as highly reused. We distinguish
two cases for selection. If a memory block of the currently
requested SB is present in the set, then the corresponding
line is highly reused. This considers the fact that subsequent
accesses are likely to be within the same SB. If a set does
not contain a memory block of the currently requested SB,
the least recently used (LRU) dirty line of this set is marked

as highly reused line. This is based on the fact that this line
is likely to be replaced on a subsequent access. Then, the line
will need to be written back to the main memory if it is dirty.
Therefore, it is likely to be reused.

We illustrate the selective read policy using a simple
example as illustrated in Fig. 6. We assume an SB Sb that
contains four adjacent memory blocks named b0, b1, b2,
and b3. The memory blocks are mapped to the sets Set0,
Set1, Set2, and Set3, respectively. Furthermore, we assume
that memory block b2 is currently requested. On an RB
miss, the corresponding row needs to be fetched into the RB.
Traditionally, the complete row would be fetched. However,
using the selective read policy, we fetch only highly reused
lines.

In the given example, the highly reused lines are marked
by arrows. The lines L0 of Set0 and L4 of Set2 are highly
reused lines, since they hold the memory blocks b0 and b2 of
the currently accessed SB Sb .

The other memory blocks of Sb (b1 and b3) are not currently
present in the sets Set1 and Set3. Therefore, the dirty LRU
line in Set1 is marked as highly reused, whereas the clean
LRU line in Set3 is not marked as highly reused. In order to
decide which line is highly reused, the four tag columns need
to be fetched first. Then, the highly reused lines are fetched
into the RB. In the proposed architecture, a total of seven
columns, four tag columns, and three highly reused lines (for
this particular example) are read into the RB unlike 32 column
reads in existing LLC architectures.

If a subsequent request misses the RB, the currently resident
row is evicted from the RB and the whole process is repeated
for the new request. However, if a subsequent request hits the
RB, a check is needed if the requested line is present in the
RB. If the line is present in the RB, the request is directly
served. Otherwise, the rare case in Fig. 1 is encountered
where more than four lines of a row are reused. Subsequently,
the entire row from the STT-RAM array is fetched into
the RB.

C. Latency Breakdown

In this section, we analyze the latencies that occur in the
STT-RAM-based LLC architecture. We assume the LLC archi-
tecture depicted in Fig. 5 along with a tag cache. We further
assume a request to memory block b2 as in Fig. 6. The
latency breakdown for various scenarios in state-of-the-art
LLC architectures is explained as follows.

1) Tag-Cache Miss and RB Miss in LAMOST: Fig. 7(a)
shows the latency breakdown of a tag-cache and RB miss with-
out employing the selective read policy. This latency includes
18 cycles for row activation (ACT), 18 cycles for column
access latency (CAS) to access the tag column (i.e., T2),
two cycles to transfer the relevant tag column on the bus
(i.e., RD T2), one cycle for the tag check, another 18 cycles
to access the requested CL, and two cycles to read the
CL (i.e., RD CL). This is a total of 59 cycles. After that,
the controller issues successive read request to prefetch the
remaining tag columns (i.e., RD T0, T1, and T3) into the tag
cache. The additional latency required to read the nonrequested
tag columns (i.e., T0, T1, and T3) is six cycles. This extra
latency overhead is repayed by future hits in the tag cache,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 5

Fig. 6. Example illustrating the selective read policy using LAMOST organization and 2-KB row size.

Fig. 7. Latency incurred in LAMOST policy for various scenarios.
(a) Tag-cache miss and RB miss. (b) Tag-cache hit and RB miss. (c) Tag-cache
hit and RB hit.

leveraging the temporal locality of the application. Therefore,
the RB/tag-cache miss latency is 59 cycles.

2) Tag-Cache Hit and RB Miss: A tag-cache hit does not
require an extra CAS command to access the tag column T2,
which is vital to identify the location of the requested line.
Therefore, read requests that hit in the tag cache [Fig. 7(b)]
has a much smaller latency (i.e., 40 cycles) compared with the
tag-cache miss requests.

3) Tag-Cache Hit and RB Hit: Read requests that hit in
both the tag cache and the RB do not require an extra row
activation and are serviced much faster (i.e., 22 cycles) as
illustrated in Fig. 7(c).

D. RB Tags-Bypass Policy

The LLC tag read policy in [6]–[8] and [11] always fetches
the tags (and the lines) in the RB before inserting them in
the tag cache. However, this policy worsens the RB miss
and tag-cache miss latency for the selective read policy as
shown in Fig. 8(a). The selective read policy requires two row
activations. One for fetching the four tag columns into the RB,
and one subsequent activation for fetching the highly reused
lines. Between these row activations, additional cycles CAS
and bus latencies will be required to read the tag columns
from the RB into the tag cache.

In addition, the implementation of the selective read policy
requires modification to row activation by adding an extra
enable bit to each sense amplifier. This extra bit is required
to disable the sense amplifiers for a certain set of columns.
Therefore, the selective read policy requires an extra one cycle
latency. As a result, the RB miss and tag-cache miss scenario

Fig. 8. Tag-cache miss and RB miss latencies with selective read policy
using (a) existing tag read policy, (b) controller optimizations exploiting RB
bypassing for the tags, and (c) proposed tag organization.

latency is 86 cycles for the selective read policy while using
contemporary tag read policy.

The additional latency overhead for an RB and tag-
cache miss using the selective read policy is 27 cycles
(86 − 59 = 27) when compared with the LAMOST policy.
In order to reduce this latency overhead, we propose to bypass
the RB for accessing the tags by exploiting the decoupled
structure of the sense amplifiers and the RB in the STT-RAM.
Instead of fetching the tags into the RB, we store them directly
in the tag cache. Fig. 8(b) shows the sequence of commands
to read the tags and the CL for this scenario.

The CAS latency (i.e., 18 cycles) comprises three major
components. The first latency component is required to load
the data from the sense amplifier into the RB. The second
latency component is required to read the data from the RB
into the read latch. The third latency component is required
to move the data out of the bank through the H-tree (i.e., two
cycles). The RB tags-bypass policy avoids the first two latency
components (i.e., 16 cycles) via bypassing the RB and the
column select (see Fig. 4). However, it cannot avoid the
third latency component. By avoiding the two latency com-
ponents of CAS, the latency is reduced by 16 cycles to a
total of 70 cycles. Apart from reducing the access latency,
the RB tags-bypass policy also reduces energy consumption
by avoiding duplicate storage of tags.

To further improve the performance, we update the tags
in the tag cache without immediately writing them back to
the STT-RAM. Since an STT-RAM write is more expen-
sive than a write to the tag cache, this approach poten-
tially saves energy and reduces latency. On the contrary,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 9. LDC organization.

TABLE I

LATENCIES FOR READ REQUESTS IN VARIOUS SCENARIOS

EXCLUDING CONTROLLER LATENCY

contemporary LLC architectures originally used for DRAM
architectures [7], [9], [10], [12] always update the tags in
both the tag cache and the bank array. In our implementation,
the tags are only written back to the STT-RAM array when
they are evicted from the tag cache.

E. LLC Data-Cache Organization

The access latency of reading a line from the STT-RAM
array varies from 22 to 70 cycles depending on the scenario
(see Table I). To further reduce the latency, we extend our
LLC architecture by a small on-chip SRAM structure called
LDC that holds the LLC CLs that are likely to be accessed
in the future. Fig. 5 shows the addition of the LDC to the
existing LLC architecture.

Fig. 9 illustrates the organization of the LDC. It holds
64 sets with eight-way associativity and has a total size
of 34.5 KB. The LLC access that hit the LDC are serviced in
only two cycles, due to the small structure. This accelerates
LDC hits significantly compared with the 22 to 70 cycles for
STT-RAM accesses.

On an LDC access, the LDC set-index field of a main
memory address selects a set in the LDC. All tag fields in
this set are then compared with the tag fields of the memory
address to identify an LDC hit. The SB-Tag field of the
memory address corresponds to the SB and the Tag-2 field
identifies the memory block within an SB.

Fig. 10 shows the control flow of the LDC controller in our
proposed LLC architecture. On each LLC request, the LDC is
accessed first in order to identify an LDC hit. If the access hits
the LDC, the request is serviced directly, and an STT-RAM
access is avoided. Otherwise, the request needs to be serviced
regularly by the LLC. New lines are only inserted into the LDC
on LLC read hits. In all other cases, the LDC is left unchanged.
On an LLC read hit, the currently requested memory block is

Fig. 10. LDC lookup and insertion policy.

Fig. 11. RB/tag-cache miss latency with LDC using the proposed LDC
insertion policy in Fig. 10 for the illustrating example in Fig. 6.

not written to the LDC, but all adjacent memory blocks of the
corresponding SB are loaded to the LDC. The proposed LDC
insertion policy exploits the temporal and spatial locality of
applications as adjacent memory blocks of an SB are likely be
accessed in the near future. Note that all the memory blocks
of the SB are mapped to the same LDC set.

To elaborate our LDC insertion policy, we use the example
from Fig. 6. We assume that b2 is currently requested and
that b0 does not reside in the LDC. Since the request to b2
hits the LLC, the memory block is transported to the lower
level caches (i.e., L3, L2, and L1) and finally to the requesting
core. Since b2 will be stored in the L1 cache, further requests
to b2 are unlikely to arrive at the LLC. Therefore, b2 is not
inserted into the LDC. However, adjacent memory blocks of
the same SB are very likely to be accessed in the near feature.
Therefore, all adjacent memory blocks that are present in the
LLC are loaded to the LDC. In the example, b0 is loaded to
the LDC after the read request to b2.

Fig. 11 shows the latency breakdown of an RB and
tag-cache miss for the above-mentioned example using the
proposed LDC insertion policy in Fig. 10. First, the LLC
controller loads the tag columns from an STT-RAM array into
the tag cache and identifies the highly reused lines (see Fig. 6)
of the row. Then, the highly reused lines are loaded into
the RB. Subsequently, read requests are sent to read the
memory blocks b2 and b0 from the RB. b2 is forwarded to
the L3 cache and b0 is stored in the LDC. Requesting b0
in addition to b2 only incurs an overhead of two cycles as
illustrated in Fig. 11. This latency overhead depends upon the
number of adjacent memory blocks that are currently present
in the LLC. It ranges from 0 to 6 cycles for zero to three
present memory blocks, respectively. The latency overhead for
reading additional memory blocks to fill LDC is compensated
by future hits in the LDC, exploiting the fact that these
memory blocks will most likely be accessed later (confer to
Fig. 19 for evaluation).

F. Tag Organization

The LLC row in our tag organization is partitioned into two
tag columns and 30 CLs as depicted in Fig. 12(b). We employ



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 7

Fig. 12. (a) Logical organization of a cache set with 30-way asso-
ciative cache. (b) Physical organization of a cache set. (c) Tag orga-
nization. (d) Address organization. (e) Memory block to RB mapping.
LH-Cache [9], [12] is shown in left column and our proposal shown is shown
in right column.

the “pseduo-LRU” [21] cache replacement policy which has
reduced storage overhead compared with the traditional LRU
policy. The overhead of the pseudo-LRU policy is 31 bits per
CL (1 valid bit, 1 dirty bit, 1 used bit, 8 coherence bits for an
8-core system, and 20 tag bits) as shown in Fig. 12(a). The
valid bit indicates whether a CL contains a valid or invalid
memory block. The dirty bit of CL indicates whether the main
memory block has been modified by the processor or remained
unchanged, since it was fetched from main memory. To choose
a victim CL in a cache set, the pseudo-LRU policy uses a
small counter namely “clock pointer” [referred to as CP in
Fig. 12(b)]. The CP tracks the current clock position. Inserting
a new CL requires to update its tag field and to clear its
used bit. After that the CP points to the next CL. The dirty and
the used bit are set on CL writeback and CL hit, respectively.
On CL eviction, the CL pointed to by the CP is examined.
If the used bit of the CL is cleared, it is evicted. Otherwise,
the pseudo-LRU policy clears the used bit and gives a second
chance to the CL by advancing the CP. It repeats the same
check until it finds a CL with a cleared used bit.

In our tag organization, a read request needs an access to
two tag columns (in contrast to four tag column accesses
in LAMOST) before accessing the useful CLs in selective
read policy. Thus, our tag organization saves four cycles
for the RB/tag-cache miss latency [Fig. 8(c)] compared
with LAMOST [Fig. 8(b)]. In addition, it saves STT-RAM
energy consumption compared with LAMOST via reading
and updating (upon tag-cache eviction) less number of tag
columns. It also reduces LLC miss rate via providing 30-way
associativity compared with seven-way associative LAMOST.
Our proposal is similar to the state-of-the-art proposed by
Loh and Hill [9] namely LH-Cache [12] in a sense that each

Fig. 13. Tags-to-column mapping. (a) Proposed. (b) LH-Cache [9], [12].
(c) LAMOST [10].

LLC row consists of two tag columns and 30 CLs. However,
for performance benefits, it differs from LH-Cache in a num-
ber of ways as explained in Sections III-G–III-I and shown
in Figs. 12(c)–(e), 13(a) and (b), and 14.

G. Address Organization

The left column of Fig. 12(d) illustrates the address orga-
nization of LH-Cache. In their approach, spatially closed
memory blocks are mapped to different RBs. For instance,
memory blocks B L K0, B L K1, B L K2, and B L K3 are mapped
to RB0, RB1, RB2, and RB3, respectively, as shown in the
left column of Fig. 12(e). In LH-Cache, the likelihood of
temporally close requests accessing the same RB, is very low
which is why it has a low RB hit rate. To improve the RB hit
rate, we modify the address organization which is shown in the
right column of Fig. 12(d). In our approach, four consecutive
memory blocks are mapped to the same RB. For instance,
memory blocks B L K0, B L K1, B L K2, and B L K3 are mapped
to RB0 as depicted in the right column of Fig. 12(e). The
proposed mapping leverages the spatial locality of applications
in which the adjacent memory blocks of the current request
will most probably be referenced in the near future. As a
result, our approach improves the performance and energy
consumption via a high RB and tag-cache hit rates as evaluated
in Section IV.

H. Tags-Update Policy

LH-Cache and our proposed tag organization differ in the
way tag entries are physically arranged in the tag columns as
illustrated in Fig. 12(c). Each tag entry E j of a particular CL
L j in the “pseduo-LRU” policy requires 20-bits tag field and
11 bits for the replacement flags (valid bit, dirty bit, used bits,
and coherence bits) to identify hit/miss. These replacement
flags (R j ) are modified after a cache hit (set used bit), cache
writeback (set dirty bit), and updating coherence bits while
the tag field (i.e., T ag j ) remains unchanged. Both the tag
field and the replacement flags are modified when a new CL
is inserted into the LLC. The replacement flags in our tag
organization are stored in the tag column T0 as illustrated in
the right column of Fig. 12(c). In addition, T0 also stores the
tag fields of eight CLs (i.e., T ag0–T ag7). The second tag
column T1 stores the tag fields of the remaining 22 cache
lines (i.e., T ag8–T ag29). In our approach, only T0 needs to



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 14. Service timeline of two writeback requests in (a) LH-Cache and (b) our proposal.

be modified on a cache hit, cache writeback, and on updating
coherence information. T2 needs to be updated only after a
new CL insertion into any of the locations L8–L29. On the
contrary, LH-Cache stores the replacement flags and the tag
fields of L0–L15 in the tag column T0 and that of L16–L29 in
the tag column T1 [see the left column of Fig. 12(c)].

We illustrate our tags-update policy in comparison with
LH-Cache using a simple example. We assume LLC hit
requests to three CLs L3, L17, and L20 of a particular row
Rowi /Seti . The first LLC hit request to L3 will bring the tag
columns (T0 and T1) of Rowi into the tag cache. Subsequent
LLC hit requests to L17 and L20 will access the tags from
the tag cache as it is a tag-cache hit for Rowi . When the tag
columns of Rowi are evicted from the tag cache, the replace-
ment flags (i.e., R3, R17, and R20) need to be updated in
the LLC. However, the corresponding tag fields (i.e., T ag3,
T ag17, and T ag20) remain unchanged, because all lines result
in the LLC hit. Considering the same example for LH-Cache,
both T0 (i.e., R3 is modified) and T1 (i.e., R17 and R20 are
modified) need to be written back to the LLC after eviction
from the tag cache. Conversely, only T0 needs to be updated
in the LLC in our approach, because all the replacement flags
lie in T0. Thus, our proposal would require to update a single
tag column instead of updating two tag columns compared
with LH-Cache for majority of cases. Since, the percentage of
new CL insertions in the LLC is very low (less than 15% on
average), the proposed policy reduces energy and bandwidth
consumption by reducing the number of writebacks.

I. Tags-to-Column Mapping Policy

We rethink the design of the STT-RAM LLC to make it
viable for a small RB organization discussed in Section II-D.
For illustration, we assume that an STT-RAM bank is divided
into four subarrays. Similarly, the large 2 KB STT-RAM row
and RB are assumed to be partitioned into four small subrows
and four sub-RBs, respectively, as shown in Fig. 13. Each
subrow is stored in a different subarray. The primary advantage
of a small RB organization is that multiple requests to different
subarrays can be served in parallel. This is referred to as

subarray parallelism [18]. If two accesses belong to different
subrows of the same subarray, they must be accessed sequen-
tially as each access will use the same subarray interface. This
suppresses the subarray parallelism. To exploit the potential of
subarray parallelism, it is pivotal to distribute requests to sub-
arrays in an efficient manner. In the proposed tags-to-column
mapping policy, the tag columns of adjacent cache sets/rows
are stored in different subarrays as shown in Fig. 13(a). For
instance, the tags of Set0/Row0, Set1/Row1, Set2/Row2, and
Set3/Row3 are stored in Subarray0, Subarray1, Subarray2,
and Subarray3, respectively. This way, it exploits the potential
parallelism offered by independent subarrays within a bank.
Furthermore, it does not incur any additional hardware cost as
the least significant 2 bits of the row-id are used to identify
the location of the tag columns. In our approach, simultaneous
requests to access the tag columns from different subarrays can
be accessed in parallel.

1) Comparison With LH-Cache: In contrast to our
approach, LH-Cache always stores the tag columns in
Subarray0 as depicted in Fig. 13(b) which suppresses
subarray parallelism. For performance comparison with the
LH-Cache, let us consider an example of two LLC write-
back accesses namely W B1 and W B2 as shown in Fig. 14.
W B1 performs a writeback to line L16 of Row0, while
W B2 performs writeback to line L24 of Row1. Note that
both W B1 and W B2 bypass the RB and the tag cache as
writebacks have limited spatial locality (refer to Section II-C).
Fig. 14(a) shows the timeline of W B1 and W B2 being served
by LH-Cache. This example highlights the problem of reduced
subarray parallelism in LH-Cache. In LH-Cache, accesses
to the tag columns of W B1 and W B2 are serialized. This
significantly increases the overall service time of W B1 and
W B2. Fig. 14(b) depicts the timeline of W B1 and W B2 being
served by our approach. Since, the tag columns of W B1 and
W B2 belong to different subarrays, accesses to W B1 and
W B2 can be overlapped which significantly reduces the overall
service time. Our approach uniformly distributes tag requests
to different subarrays which allows overlapping a large number
of requests compared with LH-Cache.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 9

2) Comparison With LAMOST: Following a tag cache and
an RB miss, an LLC read request requires to fetch the tag
columns in the tag cache (recall Section III-D). An access to
the tag columns in our approach requires a single subarray
access, because the tag columns of a particular row reside in
one subarray as shown in Fig. 13(a). In contrast, the LAMOST
requires four subarray accesses for the tags access, because
the four tag columns of a particular row resides in different
subarrays as depicted in Fig. 13(c). Therefore, two concurrent
tag column accesses in LAMOST cannot be overlapped even
if they belong to different subrows of different subarrays
of a particular bank. As a result, LAMOST significantly
restrains subarray parallelism within a bank compared with
our approach.

J. Overheads

The latency and energy values along with the over-
heads of various policies employing the 256 MB STT-RAM
LLC are extracted using NVSIM [22], which are shown
in Tables III and IV, respectively.

1) Selective Read Policy: The implementation of the selec-
tive read policy induces an additional hardware overhead.
In order to keep track of which lines are currently present
in the RB, we need to store a presence bit for each line in
the row. This requires 28 bits per STT-RAM bank and a total
of 224 bytes for our LLC organization with 64 banks. Besides
the pure storage overhead, the selective read policy also
requires two multiplexers (one for the read bypass and other
for the write bypass as shown in Fig. 4). The total area over-
head of the selective read policy is 0.28 mm2. This includes the
area required for the storage overhead and the multiplexers and
the logic to enable/disable the sense amplifiers. The selective
read policy marginally increases the access latency by one
cycle (tE XT in Table III) which is negligible compared with
the higher access latency STT-RAM LLC. This is due to
the fact that the additional multiplexers and demultiplexers
required for our proposal require a little overhead compared
with the larger STT-RAM bank (bank size is 4 MB for 64-bank
STT-RAM LLC).

2) RB Tags-Bypass Policy: We take into an extra two-cycle
latency for the RB tags-bypass policy which is required to
transfer the tag columns from the bank array to the tag cache.

3) LLC Data Cache: The LDC requires an additional area
overhead of 0.43 mm2. The latency overhead is described
in Section III-E (Fig. 11) and the energy overheads are
enumerated in Table IV.

Overall, our proposal using 256-MB STT-RAM LLC
requires an additional area overhead of 0.71 mm2, which is
an overhead of 0.2% compared with the area of the default
STT-RAM configuration according to NVSIM (351 mm2).
Overall, the impact of our entire proposal (including selective
read policy and the LDC) on area, energy, and latency is
negligible.

IV. EVALUATION

This section gives a brief overview of the simulator
infrastructure that we used for evaluation and describes a set
of benchmarks. It also presents qualitative and quantitative
comparisons to state-of-the-art approaches.

TABLE II

SPEC2006 APPLICATION MIXES USED AS BENCHMARKS FOR
EVALUATION. VALUES IN PARENTHESIS DENOTE

THE NUMBER OF INSTANCES USED FOR

THAT PARTICULAR APPLICATION

TABLE III

CONFIGURATION DETAILS AS USED IN THE EXPERIMENTS

ALONG WITH OVERHEADS

A. Experimental Setup

We evaluated our STT-RAM LLC architecture using the
Zesto X86 simulator [23]. Zesto provides detailed cycle accu-
rate models of the core mircoarchitecture and of the cache
hierarchy. For our benchmarks, we modeled an eight-core
system where each core runs a single application from the
SPEC2006 benchmark suite [19], [20]. We simulated a total
of six application mixes as shown in Table II.

The parameters of the system configuration used for sim-
ulation are listed in Table III. We extensively modified the
DDR memory model of Zesto to reflect the distinct character-
istics of the STT-RAM similar to the work in [11] and [15].
Most importantly, we modeled the nonvolatility and high
write latency of the STT-RAM. The modified STT-RAM
LLC model considers bus contention, queuing delays, as well
as bank and RB conflicts. We extracted the energy values of
various microarchitectural structures using NVSIM [22] and
Cacti [24], [25] and configured Zesto accordingly. Table IV
shows the energy values for various operations along with
overheads. These values show the energy consumed by row
and column decoders, sense amplifiers, multiplexers, write
drivers, and read latches.

For evaluation, we compared the following LLC variants.
1) DRAM-Base: DRAM LLC without any

optimizations [7], [10].
2) STT-Base: STT-RAM LLC without any optimizations.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE IV

DYNAMIC ENERGY CONSUMPTION OF VARIOUS OPERATIONS

Fig. 15. Measured harmonic mean instruction per cycle (HM-IPC) for the
six application mixes and different configurations.

3) STT-WP: STT-RAM LLC including the state-of-the-art
writeback RB bypass [11] and partial write optimiza-
tions [15] described in Section II-C.

4) STT-WP-SR-naive: State-of-the-art STT-RAM LLC
extended by our selective read policy as described
in Section III-B using existing tag read policy
in [7] and [8].

5) STT-WP-SR-TagBP: State-of-the-art STT-RAM LLC
extended by our selective read policy using the RB Tags-
Bypass Policy from Section III-D.

6) STT-WP-SR-TagBP-LDC: STT-WP-SR-TagBP extended
by the LDC from Section III-E.

For all configurations, we make the following assumptions.
1) We use the LAMOST LLC set mapping policy [7], [10]

(see Fig. 2)
2) We assume an LLC with four channels, 256-bits bus

width per channel, two cycles bus latency, and 2-KB
RB size.

3) We assume that writes to the STT-RAM array takes
20 cycles more compared with a DRAM array. This
implies that tW R (write recovery time) is 18 cycles for
the DRAM and 38 cycles for the STT-RAM.

4) We employ the Simpoint tool [26] to choose the region
of interest for each benchmark.

5) We use first ready first come first serve access schedul-
ing [27] for the LLC.

B. Performance and Energy Measurements
Fig. 15 shows the simulation results for all described

configurations normalized to DRAM-Base configuration.
As depicted, our STT-WP-SR-TagBP-LDC configuration
improves the average performance by 1.2%, 5.4%, and 1.1%
compared with DRAM-Base, STT-Base, and STT-WP config-
urations, respectively.

The energy benefits of the STT-WP-SR-TagBP-LDC con-
figuration can be observed in Fig. 16. As shown, the average

Fig. 16. Average LLC dynamic energy consumption for various configura-
tions normalized to DRAM-base configuration [7], [10]. Refer to Section IV-D
for subarray parallelism results.

Fig. 17. LLC RB hit rate for various configurations.

energy consumption is reduced by 89.7% compared with
DRAM-Base and 90.5% compared with STT-Base. While the
writeback RB bypass policy proposed in [11] already saves
a large amount of energy, our selective read policy further
reduces this energy consumption by 69.4% by eliminating
unnecessary STT-RAM reads.

In the following, we compare the various configurations in
more detail.

1) Comparing DRAM-Base and STT-Base: Simply replac-
ing the DRAM arrays by STT-RAM arrays does not provide
any benefits in performance or energy consumption. On the
contrary, we observe an average performance degradation of
4.3% and a 6.1% increased energy consumption for STT-RAM
compared with the DRAM. This is mostly due to the high
latency and energy consumption of write operations in the
STT-RAM. However, due to the decoupled organization of the
STT-RAM, our optimizations can reduce the number of write
operations in an STT-RAM LLC and significantly decrease the
energy consumption. This is illustrated in the following.

2) Comparing STT-Base and STT-WP: Applying the write-
back RB bypass policy [11] significantly improves the per-
formance and energy consumption of an STT-RAM LLC.
In STT-Base configuration, a writeback always overwrites
the RB, which might cause eviction of highly reused rows.
The writeback row, however, is unlikely to be reused on a
subsequent access. Bypassing the RB for writeback operations
increases the RB hit rate from 32.2% to 39.5% as illustrated
in Fig. 17. This improves the performance by 4.8% on average
for our application mixes.

In addition to the writeback RB bypass policy, the STT-WP
configuration also applies the partial write optimization [15].
As a consequence of both optimizations, the LLC dynamic
energy consumption is reduced by 69.2% compared with the
STT-Base configuration.

3) Impact of the Selective Read Policy: Although the
STT-WP configuration is more energy-efficient than the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 11

Fig. 18. Average LLC dynamic energy consumption of various configu-
rations. Values are normalized to the STT-WP configuration for reference.
Overheads include the energy consumed by the tag cache and the LDC.

Fig. 19. LDC hit rate for a read request that hits in LLC.

STT-Base configuration, it still incurs an unnecessarily high
energy consumption by reading unneeded lines from the
STT-RAM array to the RB. Applying our selective read policy
(see Section III-B) further reduces the energy consumption
by 69.4% compared with the STT-WP configuration. Fig. 18
illustrates the energy improvement of configurations that use
the selective read policy. However, the selective read policy
degrades the performance by an average of 3.7% compared
with the STT-WP configuration (see Fig. 15) due to an
increased tag-cache/RB miss latency [see Fig. 8(a)].

4) Impact of the RB Tags-Bypass Policy: Since the selective
read policy suffers from an increased tag-cache/RB miss
latency, it has a limited performance. To overcome this limita-
tion, we proposed the RB tags-bypass policy (Section III-D),
which bypasses the RB for the tag access. As shown in Fig. 8,
this optimization reduces the latency from 86 to 70 cycles.
Furthermore, the RB tags-bypass policy reduces the energy
consumption, as it avoids duplicate storage of tags. As a result,
the STT-WP-SR-TagBP configuration improves the average
performance by 2.8% and reduces the LLC dynamic energy
consumption of 14.5% compared with the STT-WP-SR-naive
configuration.

5) Impact of the LDC: The STT-WP-SR-TagBP
configuration improves performance compared with the
STT-WP-SR-naive configuration. However, it still degrades
the performance by 0.9% on average compared with the
state-of-the-art STT-WP configuration. To further improve
the performance, we proposed a small structure called LDC
(see Section III-E). The inclusion of LDC improves the
performance by 1.1% and 2.1% compared with the STT-WP
and STT-WR-SR-TagBP configurations. The proposed LDC
accelerates access latency to some CLs as an STT-RAM
read can be avoided when the line is present in the LDC.
As illustrated in Fig 19, the LDC hit rate for a read request is
47.7% on average for all application mixes. On the downside,
the STT-WP-SR-TagBP-LDC configuration increases LLC
dynamic energy consumption by 4.4% compared with the
STT-WP-SR-TagBP configuration due to reading extra
columns from the STT-RAM array.

Fig. 20. Harmonic mean instruction per cycle for different evaluated
configurations.

C. Impact of Address Organization and Tags-Update Policy

This section provides detailed qualitative and quantitative
comparisons of our address mapping and tags-update pol-
icy when applied to STT-WP-SR-TagBP-LDC configuration.
We select this case, since it achieves the best performance
results compared with other configurations (Fig. 15). We eval-
uate the following new LLC configurations.

1) LAMOST: State-of-the-art address mapping namely
LAMOST [10] in Section II-A (Figs. 2 and 3) applied
to STT-WP-SR-TagBP-LDC configuration.

2) LH: STT-WP-SR-TagBP configuration extended with
LH-Cache [9], [12] address mapping [see left column of
Fig. 12(d) and (e)]. This configuration does not support
LDC, because filling the LDC would require an access
to a different row which is not a viable option in
LH-Cache.

3) AMap: The STT-WP-SR-TagBP-LDC configuration
extended with our tag organization and address mapping
as discussed in Sections III-F and III-G, respectively
[see right column of Fig. 12(d) and (e)].

4) AMap-TagUpdate: The AMap configuration extended
with our tag update policy in Section III-H.

As shown in Fig. 20, our AMap-TagUpdate configuration
improves the HM-IPC throughput by 1.4% and 16.6% com-
pared with LAMOST and LH configurations, respectively.
By modifying the way the tags and replacement flags are
stored in the tag columns (see Section III-H), the AMap-
TagUpdate configuration reduces the number of tag column
updates by 23% compared with the AMap configuration. As a
result, the AMap-TagUpdate configuration improves the per-
formance by 0.3% via reducing the LLC bandwidth. The per-
formance of the STT-RAM LLC strongly relies on the RB hit
rate (higher is better), the tag-cache hit rate (higher is better),
the LLC miss rate (lower is better; depends upon associativity),
the tag-cache/RB miss latency (lower is better), and the LDC
hit rate (higher is better). Table V provides a quantitative com-
parison of these parameters for the evaluated configurations.
The performance enhancement using our synergistic policies
is obtained via improvement of all important parameters as
presented in Table V.

The LH and the variants of AMap configurations
(i.e., AMap and AMap-TagUpdate) have the benefits of high
associativity [i.e., 30 way; Fig. 12(a)] compared with the
LAMOST configuration [i.e., seven way; Fig. 2(a)] which
reduces an average LLC miss rate. In addition, these configu-
rations have a low tag-cache/RB miss latency (i.e., 66 cycles)
compared with the LAMOST configuration (i.e., 70 cycles).
However, the benefits of LH configuration comes at the cost of
a significantly low RB and tag-cache hit rates (see Table V)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V

COMPARISONS OF DIFFERENT CONFIGURATIONS. THE RED COLOR INDICATES A BAD VALUE FOR A PARAMETER

Fig. 21. Performance results showing the impact of subarray parallelism.

due to reduced spatial and temporal locality. The proposed
AMap configurations benefit from the high associativity and
low tag-cache/RB miss latency benefits of LH configuration
while covering its shortcomings by changing the address
mapping policy (see Section III-G). Both AMap and LAMOST
configurations map four consecutive memory blocks to the
same LLC row which result in almost similar RB, tag-cache,
and LDC hit rates as illustrated in Table V. In comparison with
the LAMOST configuration, the AMap-TagUpdate configura-
tion reduces the STT-RAM energy consumption by 17.1% via
reading and writing less number of tag columns as depicted
in Fig. 18.

D. Impact of Subarray Parallelism and Tags-to-Column
Mapping Policy

This section evaluates the performance improvement of
subarray parallelism (Section II-D) on an LLC organization
with four subarrays per bank. For evaluation, we consider the
following configurations.

1) LAMOST-SA & LH-SA: The LAMOST and LH configu-
rations extended with subarray parallelism, respectively.

2) AMap-TagUpdate-SA: AMap-TagUpdate extended with
subarray parallelism.

3) AMap-TagUpdate-SA-TCM: AMap-TagUpdate-SA con-
figuration extended with our tags-to-column mapping
policy in Section III-H.

Fig. 21 demonstrates the performance benefits of subarray-
parallelism extended configurations over subarray-oblivious
configurations. We make three key observations. First,
the subarray-supported configurations outperform their
corresponding subarray-oblivious configurations. Second,
the LAMOST-SA and LH-SA configurations do not get
noticeable performance benefits (i.e., 2.3% and 4.8%,
respectively) compared with their corresponding subarray-
oblivious (i.e., LAMOST and LH) configurations. Third,
the performance impact of our tags-to-column mapping
policy is more significant compared with the LAMOST-SA
and LH-SA configurations. Our AMap-TagUpdate-SA-TCM
configuration outperforms the subarray-oblivious AMap-
TagUpdate configuration by 6.5%.

Based on these observations, we conclude that the incor-
poration of tags-to-column mappying policy in our subarray

Fig. 22. Performance results showing the impact of our synergistic policies.

supported proposal allows overlapping of different requests
and improves the overall performance. While in other con-
figurations, it is not as effective. In the LAMOST-SA con-
figuration, all four tag columns are located in four different
subarrays of a bank. This requires accessing all subarrays
for reading the tag columns, which suppresses subarray par-
allelism. Similarly, in the LH-SA configuration, Subarray0
is overutilized, because it stores the tag columns which are
accessed after a tag-cache miss before accessing the cache line
in other subarrays. Other subarrays (Subarray1, Subarray2,
and Subarray3) store the cache lines and are less frequently
accessed.

E. Putting It All Together

This section provides the performance and energy gains of
our synergistic policies relative to the configurations described
in Section IV-A. Our-SA configuration combines the perfor-
mance advantages of RB tags-bypass policy, LDC, address
organization, tags-update policy, tags-to-column mapping pol-
icy, and subarray parallelism. The net performance gain is
substantially higher than the performance gain of a single pol-
icy. On average, Our-SA configuration improves the HM-IPC
throughput by 8.9%, 13.6%, 8.7%, 6.8%, and 6.5% compared
with DRAM-Base, STT-Base, STT-WP, DRAM-Base-SA,
and STT-WP-SA configurations, respectively, as shown
in Fig. 22.

In addition to performance improvement, the proposed con-
figuration substantially reduces the dynamic energy consump-
tion. It reduces the energy consumption by 92%, 92.4%, 78%,
82%, and 75%relative to DRAM-Base, STT-Base, STT-WP,
DRAM-Base-SA, and STT-WP-SA configurations as depicted
in Fig. 16. This energy reduction is brought by the combi-
nation of selective read policy, address organization, and the
tags-update policy. The selective read policy is the leading
contributor in this energy reduction (the exact breakdown is
discussed in Sections IV-B–IV-D).

V. RELATED WORK

Existing LLC architectures (mostly DRAM-based) can
be categorized into block-based and page-based designs.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HAMEED et al.: PERFORMANCE AND ENERGY-EFFICIENT DESIGN OF STT-RAM LLC 13

Block-based LLCs [6]–[10], [16], [28]–[30] use a small line
size (i.e., 64 byte), whereas page-based LLCs [31]–[35] use a
large line size (i.e., 1 KB/2 KB). The advantage of page-based
designs is that they leverage the spatial locality of applications
by storing entire pages in the LLC. However, the large page
size has a high price. The excessive prefetching leads to a
high usage of memory bandwidth which makes it unsuitable
for multicore system running diverse applications. Another
drawback of the page-based LLC is that not all memory blocks
within the large page are accessed prior to page evictions,
which may exacerbate the performance. In contrast to page-
based LLCs, we employ a block-based LLC to mitigate the
excessive memory bandwidth utilization problem.

The large memory requirements of new applications have
forced the industry to increase the LLC size. For instance,
the IBM POWER7 processor [36], [37] uses a 32-MB DRAM
LLC. The DRAM-based LLC architectures [6]–[10], [16],
[28]–[35] consume a significant portion of chip power budget
due to high leakage and refresh energy which increases with
the LLC size. To mitigate the power scalability of the DRAM,
recently STT-RAM LLC architecture [11] has been proposed
as a promising alternative to the DRAM LLC.

Independent of the LLC architecture (i.e., block-
based or page-based; the DRAM-based or STT-RAM-based),
all of the above-mentioned studies always fetch the content
of an entire row into the RB after an RB miss. This leads
to an unnecessarily high energy consumption, since most of
the columns will not be used. Our proposal is unique in the
sense that it only fetches those lines into the RB which are
likely to be accessed later.

Many architectural techniques have been presented
for energy and performance tradeoffs in the STT-RAM
caches [38]–[40]. They relax the nonvolatility of the
STT-RAM by tuning the MTJ volume to improve its write
latency and energy requirements at the cost of additional
refresh overheads. However, these techniques are not suitable
for a larger STT-RAM due to high energy requirements for
refreshing MTJ cells periodically. In contrast, our proposal
exploits the nonvolatility characteristics of the STT-RAM.

Other circuit-level energy and latency reduction techniques
that exploit heterogeneity in the switching time of the
STT-RAM bit cell have been introduced in [41] and [42].
However, these circuit-level techniques are orthogonal to this
paper and can be combined with our proposal in order to
further improve performance and energy efficiency of the
STT-RAM LLC.

It is worth to mention that the concepts proposed in this
paper are generic and can be applied to other NVM memory
technologies, such as PCM and ReRAM subject to the condi-
tion that the latency of NVM-based LLC is significantly less
compared with the off-chip memory.

VI. CONCLUSION

This paper presents novel policies to improve the perfor-
mance and energy efficiency of STT-RAM LLC architectures.
We demonstrate that existing LLC architectures fetch large
amounts of data into the RB while the majority of the data
are not reused. Our selective read policy exploits this fact and
reduces the energy consumption by decreasing the number

of STT-RAM LLC reads. To mitigate the additional latency
incurred by the policy, we propose a new RB tags-bypass
policy and an LDC organization. For energy reduction, we pro-
pose a novel tags-update policy that updates less number of tag
columns compared with the existing approaches. Our tags-to-
column mapping policy exploits the inherent potential offered
by subarray parallelism by uniformly distributing requests to
different subarrays. Our results on SPEC 2006 benchmarks
show that our synergistic policies are effective in improving
the average performance (8.9% and 6.5%) and energy con-
sumption (82% and 75%) compared with the state state-of-
the-art approaches for the DRAM and the STT-RAM LLC.
With these optimizations, the STT-RAM becomes an effective
LLC alternative to the DRAM.

REFERENCES

[1] D. Gove, “CPU2006 working set size,” SIGARCH Comput. Archit. News,
vol. 35, no. 1, pp. 90–96, Mar. 2007.

[2] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Comput. Archit. News, vol. 23, no. 1,
pp. 20–24, Mar. 1995.

[3] C. Weis, M. Jung, and N. Wehn, “3D memories,” Handbook of 3D
Integration, vol. 4. Weinheim, Germany: Wiley-VCH, 2016.

[4] (2013). Hybrid Memory Cube Consortium: Hybrid Memory Cube Spec-
ification. http://www.jedec.org/standards-documents/docs/jesd235

[5] U. Kang et al., “8 Gb 3-D DDR3 DRAM using through-silicon-via
technology,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 111–119,
Jan. 2010.

[6] C.-C. Huang and V. Nagarajan, “ATCache: Reducing DRAM cache
latency via a small SRAM tag cache,” in Proc. 23rd Int. Conf. Parallel
Architect. Compilation Techn. (PACT), Aug. 2014, pp. 51–60.

[7] F. Hameed, L. Bauer, and J. Henkel, “Reducing latency in an
SRAM/DRAM cache hierarchy via a novel tag-cache architecture,” in
Proc. 51st Design Autom. Conf. (DAC), Jun. 2014, pp. 1–6.

[8] F. Hameed, L. Bauer, and J. Henkel, “Architecting on-chip DRAM
cache for simultaneous miss rate and latency reduction,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 4, pp. 651–664,
Apr. 2016.

[9] G. Loh and M. Hill, “Supporting very large DRAM caches with
compound-access scheduling and MissMap,” IEEE Micro, vol. 32, no. 3,
pp. 70–78, May/Jun. 2012.

[10] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously optimizing DRAM
cache hit latency and miss rate via novel set mapping policies,” in
Proc. Int. Conf. Compilation, Archit., Synth. Embedded Syst. (CASES),
Sep./Oct. 2013, pp. 1–10.

[11] F. Hameed and M. B. Tahoori, “Architecting STT last-level-cache for
performance and energy improvement,” in Proc. 17th Int. Symp. Quality
Electron. Design (ISQED), Mar. 2016, pp. 319–324.

[12] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked DRAM caches,” in Proc. 44th IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Dec. 2011, pp. 454–464.

[13] F. Hameed and J. Castrillon, “Rethinking on-chip DRAM cache for
simultaneous performance and energy optimization,” in Proc. 19th Conf.
Design, Autom. Test Eur. (DATE), Mar. 2017, pp. 362–367.

[14] F. Hameed, C. Menard, and J. Castrillon, “Efficient STT-RAM last-level-
cache architecture to replace DRAM cache,” in Proc. Int. Symp. Memory
Syst. (MemSys), Oct. 2017, pp. 141–151.

[15] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an energy-efficient main memory alternative,”
in Proc. Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2013,
pp. 256–267.

[16] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting DRAM caches: Outperforming impractical SRAM-tags with
a simple and practical design,” in Proc. 45th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2012, pp. 235–246.

[17] J. Meza, J. Li, and O. Mutlu, “A case for small row buffers in
non-volatile main memories,” in Proc. IEEE 30th Int. Conf. Comput.
Design (ICCD), Sep. 2012, pp. 484–485.

[18] Y. Kim, V. Seshadri, D. Lee, J. Liu, O. Mutlu, “A case for exploiting
subarray-level parallelism (SALP) in DRAM,” in Proc. 39th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2012, pp. 368–379.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[19] (2017). Standard Performance Evaluation Corporation. Accessed:
Mar. 10, 2017. [Online]. Available: http://www.spec.org

[20] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[21] J. Feehrer et al., “The oracle sparc T5 16-core processor scales to eight
sockets,” IEEE Micro, vol. 33, no. 2, pp. 48–57, Mar./Apr. 2013.

[22] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[23] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator
for highly detailed microarchitecture exploration,” in Proc. Int. Symp.
Perform. Anal. Syst. Softw. (ISPASS), Apr. 2009, pp. 53–64.

[24] S. Thoziyoor, J. Muralimanohart, R. Ahn, and N. Jouppi, “CACTI 5.1,”
HP Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2008-20,
Apr. 2008.

[25] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Dec. 2007, pp. 3–14.

[26] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program analysis,” J. Instruct. Level Parallelism,
vol. 7, pp. 1–28, Sep. 2005.

[27] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Mem-
ory access scheduling,” in Proc. IEEE Comput. Soc. 27th Annu. Int.
Symp. Comput. Archit., Vancouver, BC, Canada, Jun. 2000, pp. 128–138.

[28] G. H. Loh, “Extending the effectiveness of 3D-stacked DRAM caches
with an adaptive multi-queue policy,” in Proc. 42nd Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), 2009, pp. 174–183.

[29] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi,
“A mostly-clean DRAM cache for effective hit speculation and self-
balancing dispatch,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Microar-
chitecture (MICRO), Dec. 2012, pp. 247–257.

[30] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked
DRAM caches,” in Proc. 40th Int. Symp. Comput. Architect. (ISCA),
2013, pp. 416–427.

[31] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized
3D-stacked memory architecture by exploiting excessive, high-density
TSV bandwidth,” in Proc. 16th IEEE Symp. High-Perform. Comput.
Archit. (HPCA), Jan. 2010, pp. 1–12.

[32] X. Jiang et al., “CHOP: Adaptive filter-based DRAM caching for CMP
server platforms,” in Proc. 16th IEEE Symp. High-Perform. Comput.
Archit. (HPCA), Jan. 2010, pp. 1–12.

[33] X. Jiang et al., “CHOP: Integrating DRAM caches for CMP server
platforms,” IEEE Micro, vol. 31, no. 1, pp. 99–108, Jan./Feb. 2011.

[34] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches
for servers: Hit ratio, latency, or bandwidth? Have it all with foot-
print cache,” in Proc. 40th Int. Symp. Comput. Archit. (ISCA), 2013,
pp. 404–415.

[35] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache:
A scalable and effective die-stacked dram cache,” in Proc. 47th Annu.
IEEE/ACM Int. Symp. Microarchitect. (MICRO), Dec. 2014, pp. 25–37.

[36] D. Wendel, “The implementation of POWER7: A highly parallel and
scalable multi-core high-end server processor,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 102–103.

[37] R. X. Arroyo, R. J. Harrington, S. P. Hartman, and T. Nguyen, “IBM
POWER7 systems,” IBM J. Res. Develop., vol. 55, no. 3, pp. 2:1–2:13,
2011.

[38] A. Jog et al., “Cache revive: Architecting volatile STT-RAM caches
for enhanced performance in CMPs,” in Proc. 49th IEEE/ACM Design
Autom. Conf. (DAC), Jun. 2012, pp. 243–252.

[39] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan,
“Relaxing non-volatility for fast and energy-efficient STT-RAM caches,”
in Proc. IEEE 17th Int. Symp. High Perform. Comput. Archit. (HPCA),
Feb. 2011, pp. 50–61.

[40] Z. Sun et al., “Multi retention level STT-RAM cache designs with a
dynamic refresh scheme,” in Proc. 44th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Dec. 2011, pp. 329–338.

[41] R. Bishnoi, F. Oboril, M. Ebrahimi, and M. Tahoori, “Avoiding unnec-
essary write operations in STT-MRAM for low power implementation,”
in Proc. 15th Int. Symp. Quality Electron. Design (ISQED), Mar. 2014,
pp. 548–553.

[42] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy reduction for
STT-RAM using early write termination,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2009, pp. 264–268.

Fazal Hameed received the Ph.D. (Dr.-Ing.) degree
in computer science from the Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, in 2015.

He joined the Chair for Compiler Construction,
Technische Universität Dresden, Dresden, Germany,
as a Postdoctoral Researcher in 2016. He held a sim-
ilar position at the Chair of Dependable and Nano
Computing, KIT. He is also with the Institute of
Space Technology, Islamabad, Pakistan. He mainly
involved in the architecture group with a focus on
memories. He is currently involved in the develop-

ment of a simulation framework to evaluate the performance, energy, and
reliability of heterogenous multicore system architecture.

Dr. Hameed was a recipient of the CODES+ ISSS 2013 Best Paper
Nomination for his work on DRAM cache management in multicore systems.
He has served as an external reviewer for major conferences in embedded
systems and computer architecture.

Asif Ali Khan received the B.S. and M.S.
degrees in computer systems engineering from
the University of Engineering and Technology,
Peshawar, Pakistan, in 2012 and 2015, respectively.
He is working toward the Ph.D. degree at the
Chair for Compiler Construction, Computer Sci-
ence Department, Technische Universität Dresden,
Dresden, Germany.

His current research interests include computer
architecture, heterogeneous memories, and compiler
support for memory systems.

Jeronimo Castrillon received the bachelor’s degree
in electronics engineering from Pontificia Boli-
variana University, Medellín, Colombia, in 2004,
the M.S. degree from the Advanced Learning and
Research Institute, Lugano, Switzerland, in 2006,
and the Ph.D. (Dr.-Ing.) degree (honors) from
the RWTH Aachen University, Aachen, Germany,
in 2013.

He is currently a Professor with the Department of
Computer Science, Technische Universität Dresden,
where he is with the Center for Advancing Elec-

tronics Dresden. He is also the Head of the Chair for Compiler Construction,
with research focus on methodologies, languages, tools, and algorithms for
programming complex computing systems.

Dr. Castrillon is a member of the Executive Committee of the ACM Future
of Computing Academy since 2017.


