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Abstract—Application requirements for embedded systems are
growing rapidly, as is the complexity of systems designed to
execute them. A common abstraction used to tame this growing
complexity is that of a mapping, which assigns parts of an
application to different hardware resources. Modern flows need
to explore an intractably large design space of mappings, and be
able to quickly find near-optimal mappings for different objec-
tives, sometimes at runtime. With systems featuring thousands
of cores in the near horizon, we need methods to make this
exploration step truly scalable. In this paper we argue that the
mathematical representation of a mapping is central to achieve
this. We present different representations and how these could be
applied to different contexts and objectives, like complex design-
space exploration meta-heuristics or efficient runtime systems.

I. INTRODUCTION

Traditionally, embedded systems have had a very specific
development cycle. A set of requirements is transformed into
an integrated circuit with hardware and software tailored to
that specific application, to fulfill these precise requirements.
However, with shorter time-to-market cycles, increasing re-
quirements and the ubiquity of cheap and powerful devices,
this landscape is changing rapidly. Modern embedded systems
are not static anymore. The behavior and application require-
ments change at a rapid pace, forcing systems to be able to
adapt to new and more complex workloads that were not envi-
sioned at design-time. Like its software counterpart, embedded
hardware is increasing in complexity, too. Heterogeneous multi
processor systems on chip (MPSoCs), with technologies like
Network on Chip (NoC) and distributed memory are becoming
standard. It is thus a very significant problem to program these
modern and complex systems.

A body of approaches which aims at tackling this problem
uses a selection of ideas collectively called software synthe-
sis[2], [5], which aim to lower an abstract representation of
an application to execute on a specific target. In analogy to
high-level synthesis, at the center of the software synthe-
sis approach is a design-space exploration step that looks
for an optimized implementation of a high-level application
specification into platform-specific primitives. This includes
a central abstraction, called mapping, where logical tasks
are assigned to system resources in a way that optimizes
for performance and/or energy consumption. An important
difference is, however, that in software synthesis, the mapping
decision can be partially or completely deferred to runtime,
making speed in the exploration even more critical. With the

growing complexity of both system architectures and appli-
cations, it becomes increasingly crucial that this design-space
exploration is scalable. The number of mappings for a modest
27-task application to an architecture with 1024 cores, like the
one described in [20] is over 1081, more than the estimated
number of atoms in the observable universe. Architectures with
thousands of cores are already being designed and produced
today [20], [6], and the trend suggests these numbers will only
continue to grow.

We argue that simply using domain-knowledge to reduce
the design-space, while extremely useful, is not sufficient. In
order to tame the dauntingly large design-spaces, smart meta-
heuristics must leverage the inherent structure of the problem
to navigate them. Of central importance for any meta-heuristic
exploring the design-space of mappings is its representation,
which traditional approaches only address marginally.

In this paper we address the representation of mappings in
software synthesis explicitly. We show common design-space
reduction techniques, like using the problem’s symmetries,
and explain how the representation of mappings can be used
to reflect this. We also argue for the need of endowing
mapping spaces with a metric for a large variety of exploratory
heuristics which rely on topological features of the problem
space, and show how to combine these approaches. Finally,
we present numerous ways the different representation of
mappings can be applied to state-of-the-art software syn-
thesis techniques. These applications include find mappings
quickly at runtime, explore large design spaces intelligently
at compile-time or even find specially useful properties of
mappings which emerge from a particular representation.

II. BACKGROUND: MAPPINGS TO MULTICORE
ARCHITECTURES

The process of software synthesis is an umbrella term for a
series of approaches which leverage structural information of
an application and its target architecture to generate code in
a way that focuses on a given objective metric (or multiple
objectives). Common of these approaches is the usage of
an abstraction called mappings. Intuitively, a mapping is an
assignment of hardware resources to the different parts of
the application, both in terms of computation as well as data
communication.

We will now formally define mappings as a mathematical
structure. For this, we endow applications with a graph-like
structure, as is commonly done in literature. Formally, an
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Figure 1. An Architecture and its Corresponding Architecture Graph.

application graph K = (R,C) is a graph representing the
architecture, where vertices R represent computational tasks,
and the edges C represent either explicit data communication
(channels) or logical dependencies between the computational
vertices. This can be, e.g. a task graph (like the ones in [3]),
or a dataflow graph in a particular dataflow model of compu-
tation, e.g. Synchronous Data Flow [15] or a process network
following the Kahn-MacQueen execution semantics [14].

Similarly, for a given hardware architecture, we define a
topology graph T = (P,E) as follows: For every processing
element (PE) in the architecture, we have a node p ∈ P .
For every communication resource (e.g. shared cache, NoC
router, etc.) that allows direct communication between two
PEs p, q we add a node (p, q). If the memory subsystem
is heterogeneous, in the sense that different direct commu-
nication methods will have different communication times,
then we add weights to the edges (p, q) that correspond
to these heterogeneous communication times. This topology
graph is useful for reasoning at an intuitive level. However,
for formalization, we derive another graph from it, which we
call the architecture graph. For a topology graph T = (P,E),
the corresponding architecture graph A is a multigraph with
vertex set P . A path c = p1, . . . , pk in the topology graph
represents a way of communicating between the PEs p1 and
pk. We do not want to model communication going in circles,
and thus assume that the communication path c visits every
vertex at most once. Thus, for every such communication
path c, which visits every vertex at most once, we have
an edge in the architecture graph A describing the costs
of communicating via this path. Similarly, the architecture
graph is usually trimmed to include only communication paths
that are not strictly worse (not only considering latency, but
also memory utilization, etc.) than another paths between two
points. An example of a heterogeneous system, exynos [12]
and its corresponding architecture graph A are depicted in
Figure 1.

Having formally defined applications and architectures, we
can define a mapping. A mapping m is a morphism of graphs
K → A from the graph of the application to the architecture
graph of the target architecture. This means that the com-
munication channel or dependencies from the application are
also mapped to communication resources in the architecture.
Similarly, let f : {Mappings} → Rn be an objective function,
that gives some desirable objective(s) for a given mapping.
In this context, the components of f(·) could represent, for
example, the execution time for a particular input stimulus, the
worst-case execution time, or the average energy consumption.
The mapping problem can thus be expressed in simple mathe-
matical terms: it is to find Pareto-optimal points f(m),m ∈M
over the set M of all valid mappings (e.g. excluding those
which allocate more data to a memory than is available, or
violate system constraints like the number of applications that
can be scheduled in a PE). The most common case is for
n = 1, where this reduces to maximizing or minimizing
an objective, like performance or energy consumption. This
problem has been studied extensively in different forms and
with different objectives, a survey can be found in [24].

III. REPRESENTATIONS

As discussed in Section II, the mapping problem is subject
of a large body of research, aiming for different objectives, like
performance, throughput, energy efficiency or resource utiliza-
tion. Most strategies and heuristics explore the exponentially-
growing design space of mappings. However, most give little
attention to the way mappings are represented for this explo-
ration.

Problems that are NP-hard, with intractably large spaces of
possible solutions, can still be solvable (or approximable) in
practice for the instances that are interesting to the applica-
tions. Both in academia and industry, problems like SAT, ILP
or the traveling salesman are solved or approximated routinely
to address very real problems, like hardware verification or
planning airplane routes. Central to solving these problems
in practice are heuristics that leverage very concrete structure
in the design space, like the conflict-driven clause learning
(CDCL) methods in SAT [23], which builds upon search trees
and implication graphs. In a very direct way, these heuristics
are only possible because of the representations used that allow
to navigate the space in an intelligent way. In particular, stating
the problem in terms of these abstract representation allows to
build on top of them. It is debatable if heuristics like CDCL
would have been possible without thinking of the problem in
terms of these representation.

We argue that we can learn from these neighboring domains
for the mapping problem. If mapping spaces are to be explored
efficiently for practical instances in future architectures, nei-
ther design-space reductions nor simple mapping heuristics
that just guess a mapping that should be good, without explor-
ing the space, are going to be sufficient. Furthermore, generic
meta-heuristics will not scale with the exponentially-growing
design space, if not very carefully refined for the problem. In
any case, for a sophisticated algorithm to explore the design
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Figure 2. An Example of Two Mappings Equivalent by Symmetries.

space of mappings, be it at compile-time or at runtime, a
particular focus on the representations of the mappings is
imperative. The difficulty arising from this insight is not if
this is true, but rather, what representations might indeed be
most useful. In this section, we propose some candidates for
the representation of mappings we believe might be useful and
explain the reasoning behind them.

A. Simple Vector Representation

The simplest representation of mappings, which is used
by most heuristics and meta-heuristic-based approaches, is
the naive vector representation of a mapping. Consider an
application K = (R,C) mapped to an architecture with
architecture graph A, via the mapping m. Then, for every
task/process r ∈ R, m(r) ∈ P defines a PE in A that will
execute r. Similarly, a communication channel c = (r, r′) ∈ C
is mapped to a hardware communication path m(c) in A.
The simple vector representation of m is thus the |R|+ |C|-
tuple (m(r1), . . . ,m(r|R|),m(c1), . . . ,m(c|C|)), where R =
{r1, . . . , r|R|} and C = {c1, . . . , c|C|}. Sometimes, communi-
cation will be ignored and the representation vector for m is
taken to be (m(r1), . . . ,m(r|R|)).

B. Symmetries

The mapping problem exhibits much symmetry. This sym-
metry can be leveraged explicitly by algorithms, using e.g.
the simple vector representation and methods from group the-
ory [9], [11]. However, by using a symmetry-aware represen-
tation directly, algorithms can explore a fundamentally smaller
design-space, often improving the quality of the results [21]. In
this section we will first introduce the concepts of symmetries
in mappings and show how a representation can leverage them
directly.

Mathematically, symmetries are usually described as trans-
formations that can be applied to an object, leaving it un-
changed. A common approach of this is to use group theory
for describing these transformations. In the mapping problem,
symmetries of the architecture (and application) induce also
symmetries on a mapping [11]. Consider the two mappings
depicted on the left-hand side of Figure 2. Intuitively, we
would expect them to have the same execution behavior if

nothing else is running on the platform. The processes use
the same types of processors, and communication patterns
between processes are also identical. This can be formalized
as an isomorphism ϕ of (sub-)graphs [10], as shown on
the right-hand side of Figure 2. All such isomorphisms of
subgraphs have the structure of an inverse semigroup and can
be leveraged algorithmically [11].

These symmetries define an equivalence class on the set of
mappings. Two mappings are equivalent if there is a symmetry
that takes one mapping to the other, like the two mappings
on Figure 2. Using the argumentation above, it is easy to
see that the behavior of two equivalent mappings should be
identical for any a priori consideration. Indeed, any system-
level simulator will report the same results for equivalent
mappings. This equivalence of mappings can be leveraged
both at compile-time [11] and at design-time [10], as will be
explained in Section IV.

There are multiple ways to have a representation that uses
symmetries. A simple way is using the naive vector representa-
tion and using a canonical representative for every equivalence
class. A canonical representative is a unique element of the
equivalence class, such that two classes are identical if and
only if their canonical representatives are. Such representatives
can be computed by using e.g. a lexicographical ordering
on the naive vector representation. Algorithm 1 describes an
algorithm to efficiently find a canonical representative of a
mapping (via lexicographical ordering). In it, the set of group
elements S = {g1, . . . , gs} is called a generating set if any
element g ∈ G can be written as a product of elements of S,
i.e. g = s1 · . . . · sn, where si ∈ S for all i = 1 . . . n. We
say that S generates G and write 〈S〉 = G. We define the
generating set S to be strictly order-preserving, if for any two
mappings m, m′ = gm, if m′ < m, then there exists a word
s1·. . .·sn in S such that g = s1·. . .·sn and si(si+1·. . . sn)m <
(si+1 · . . . sn)m for all i = 1 · n. For example, the group of
all permutations on n points, Sn, can be generated by the
transpositions T := {(ij) | i 6= j ∈ {1, . . . , n} which swap
exactly two points. This set is strictly order preserving for the
action on mappings (see [11] for more details on this).

Algorithm 1 Finding Canonical Representatives.
input: A mapping m, a strictly order-preserving generating

set S, with 〈S〉 = G.
output: A mapping mcanonical = gm with mcanonical < m′ for

all m′ ∈ Gm
1: F ← {m}
2: Fold ← ∅
3: while F 6= Fold do
4: Fold ← F
5: for all s ∈ S do
6: for all m′ ∈ F do
7: if sm < m then
8: F ← sm
9: F ← {minm′∈F m

′}
return minm′∈F m

′
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Figure 3. The Problem with Mapping Distance in the Simple Vector
Representation.

The canonical representatives define a subset of the set of
mappings, but are, in a sense, still the naive vector representa-
tion. A better way to leverage symmetries in the representation
uses embeddings and will be discussed in Section III-C.

C. Metric Spaces and Embeddings

A different problem with the simple vector representation
arises when considering algorithms that utilize concepts of
distance or locality, like many approaches in design-space
exploration, e.g. evolutionary algorithms or methods based
on geometric principles [26], [13]. To illustrate the problem,
consider the architecture depicted on Figure 3. It consists of
two Exynos chips connected via an off-chip interconnect (bus).
Each of the two chips has two clusters of PEs, in which PEs
share the L2 cache, and both clusters share an L3 cache.

Intuitively, the distance between two PEs corresponds to the
communication latency for accessing data used by both PEs.
Thus, the distance between two tasks mapped on the same
PE is minimal, on the same cluster is larger but smaller than
in a different cluster on the same chip, which is still smaller
than the distance to a PE in a different chip. Using the naive
vector representation, this distance is very distorted. Indeed,
between PE7 and PE8, the distance of 1 is just a third of the
distance between PE12 and PE15. However, the first pair is
in different chips, while the second pair shares an L2 cache.
Thus, an approach using the the naive vector representation
would consider this distorted distance.

To solve this problem, we propose to endow the space
of mappings with a metric-space structure. A metric space
(M, d) is a structure corresponding of a setM and a distance
function d, which captures the intuitive notion of distance
between objects. The set of PEs P can be readily made into a
metric space by defining d(p, p) = 0 for all p ∈ P , and d(p, q)
to be proportional to the (expected) latency between the PEs p
and q. In our example, we set the distance of two PEs sharing
an L2 cache to be 5, for those sharing an L3 cache, we set 20
and for those only able to communicate via off-chip memory,
we set d to be 100. In some cases, e.g. when burst transfers
are possible, or when contention in the interconnect is high,
this static cost model might be too simplistic. In future work
we plan to investigate how to best represent these scenarios.

A very useful tool when describing (finite) metric spaces is
the distance matrix. For a metric space (M, d), its distance
matrix G is defined as (G)mi,mj

= d(mi,mj),mi,mj ∈M,
and is an element of R|M|×|M|≥0 .

Having defined a structure as a metric spaceM = P on the
hardware architecture, it is simple to extend it to mappings,
i.e. M = M . Just as in the naive vector representation, we
consider M as tuples in M = M = P |R|, and extend this
to be a metric space by defining the distance function in a
fashion similar to the real Lp norms:

dp( (q1, . . . , q|R|), (q̃1, . . . , q̃|R|) ) :=
p

√√√√ |R|∑
i=1

d(qi, q̃i)p (1)

The case for p = 1 is usually called Manhattan distance,
or for p = 2 it is a generalization of the euclidean distance.
In our example we chose p = 1, since just as in the streets
of Manhattan, communication packages have to travel through
the different components in the communication network and
thus the cost are additive.

In order to actually leverage this representation as a metric
space, we need an embedding into an euclidean vector space,
i.e., a representation of the points in the metric space as real
vectors, endowed with the euclidean distance. An isometry,
meaning the distances are the same in both representations,
would be ideal. However, this does not exist in general for
a finite metric space (see [18], Chapter 15). Instead, a low-
distortion embedding can be found. A distortion D of such an
embedding ι : (M, d) ↪→ (Rn, ‖ · ‖) means that the distance
of two vectors can be off by at most a factor of D, i.e.

1

D
d(p, q) ≤ ‖ι(p)− ι(q)‖ ≤ d(p, q). (2)

Such an embedding can be found using semidefinite program-
ming [18] (Section 15.5). Further techniques can be used to
reduce the dimension of the representation while keeping a
low distortion [1].

D. Distance-preserving Symmetries

In order to combine both approaches of representing map-
pings, metric space and symmetries, we define a metric on
the set of equivalence classes of mappings. Let [mi] = {m |
m is equivalent to mi}, i = 1, 2 be two equivalence classes
of mappings by considering symmetries. Then, we define the
distance

dsym([m1], [m2]) := min
m∈[m1],m̃∈[m2]

d(m, m̃).

It can be easily shown that if d is a metric, dsym is as well.
It follows that ({[m] | m ∈ M}, dsym) is also a metric space,
and thus, a low-distortion embedding for this representation
can be found using the same methods as above.

E. Scalable Embeddings

An embedding ι : (M, d) ↪→ (Rn‖ · ‖) of a finite
metric space M to the real vector space (Rn, ‖ · ‖p) can
be described by a real n × k matrix, where the columns of



the matrix represent the values of ι(mi), for i = 1..k, where
M = {m1, . . . ,mk}. While embedding a metric space with 16
elements in a 4-dimensional real space is very manageable, this
situation changes drastically if our metric space M has 1610

elements and we are encoding it as 1000-dimensional vectors.
In that case we need about 1015 real numbers to describe ι. It
is therefore simple to see why the methods presented do not
scale well with a growing mapping space.

To overcome this problem, we can consider the nature of
the space and why it grows so rapidly. The reason for this
is the exponentially-growing nature of spaces of tuples (or
vectors), as can be easily seen by considering the naive vector
representation. Instead of trying to find an embedding for the
space of tuples M = P |R|, however, we can consider the
metric space of the architectureM = P , and define the metric
space of mappings of k = |R| tasks as the spaceMk, using the
same definition for the metric as in Equation (1). In fact, the
following theorem ensures that going through this embedding
of the base-space we still have the desirable distortion.

Theorem III.1. Let ι : (M, d) ↪→ (Rn, ‖ · ‖p) be an
embedding with distortion D and define ιk : (Mk, dp) ↪→
(Rnk, ‖ · ‖p) as ιk((x1, . . . , xk)) = (ι(x1), . . . , ι(xk)). Then
ιk is an embedding with distortion of at most D.

Proof. It is clear why ιk is an embedding (well-defined and
injective), since ι is one. The distortion follows from the
homogeneity of the ‖ · ‖p-norm applied to Equation 2.

Using Theorem III.1 we can devise a very efficient decoding
and encoding scheme while ensuring a specific distortion D.
We calculate an embedding ι :M ↪→ Rn and store ι and the
inverse mapping ι−1 : ι(M) ⊂ Rn → M as look-up tables.
To decode ιd as defined in Theorem III.1, we just divide the
vector of Rnk into k vectors in Rn, approximate each to the
nearest vector in ι(M) and apply ι−1 component-wise. This
reduces the space complexity of the algorithm from O(|M|k)
to O(|M|), making it scalable.

Note that this approach is at odds with the symmetry
reduction, since this separates the components individually,
while the symmetries of the problem take into account the
relation of the different elements of the mapping. In future
work we will explore how to find scalable embeddings that
take symmetries into account.

IV. APPLICATIONS

As the landscape of systems and requirements is vast, the
objectives on software executing on a system vary accordingly.
Depending on these objectives, different representations of the
mapping can be ideal for representing a system.

In this section we will present different applications in
the context of software synthesis, where for each, different
representations of mappings are better suited to achieve the
desired objectives. We deal with dynamic runtime systems,
compile-time design-space exploration and with a special use
case for isolating execution in multi-application scenarios.
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Figure 4. The Idea Behind the TETRiS Runtime System

A. Runtime

At runtime, it is critical for a mapping approach to be quick
in making decisions. Therefore, computation times for any
mapping-related calculations are central. Representations of
mappings that will be used at runtime should thus be very close
to the actual thread assignment. This makes the simple vector
a very useful runtime representation. For the same reason, a
representation based on canonical representatives of mappings
is ideal for leveraging symmetries at runtime.

In previous work [10], [4] we have proposed an approach
that leverages symmetries at runtime using the simple vector
representation with canonical representatives. Figure 4 illus-
trates the main idea behind TETRiS, our approach. When a
new application will be executed on the system, we need a
strategy to decide how to map it. If we don’t take running
applications into account, as depicted by “no strategy” in the
figure, we will get very suboptimal results. However, if we
instead use a dynamic and unpredictable method, like the
Linux scheduler CFS, we will lose the performance properties
obtained by calculating a mapping. To solve this, TETRiS
takes the canonical representation of the mapping as input and
finds a new mapping that is equivalent to it, such that it fits
in the unused resources in the system. This has been shown
experimentally to improve the predictability of the system,
while preserving the properties of the mappings, both in terms
of performance and energy consumption, as compared to the
Linux scheduler CFS [10].

B. Design-space exploration

Perhaps the largest application for specific mapping rep-
resentations concerns itself with explicit explorations of the
(mapping) design space. It is common of approaches to explore
the design-space of mappings by using meta-heuristics. In
some easier cases with simple topologies and homogeneous ar-
chitectures, even brute-force approaches work by formulating
the problem as a mixed integer linear programming problem
(MILP), or using satisfiability modulo theories (SMT) [17].
However, in more complex scenarios, or when the design-
space grows intractably large, other meta-heuristics are com-
mon, like genetic algorithms [8], [26], ant-colony optimiza-



tion [7] or even geometric-based approaches like design cen-
tering [13].

In general, a metaheuristic is a procedure that iteratively
selects points in the design-space in order to optimize some
objective(s). The idea is to utilize the structure of the space to
explore it more efficiently than an exhaustive search. It is for
this reason that most metaheuristic rely on notions of distance
or, at least of locality, to search for mappings that are similar
to a given one.

In genetic algorithms, for example, the representation is
called a chromosome, and the mutation and crossover operators
are used to find new mappings to explore. The idea of a
mutation is for it to be a small perturbation, not changing
the mapping significantly. This is where the metric space
representations, as described in Section III-C, become very
useful, in order to define the distance between two mappings.
Thus, a natural way of defining mutations arises, namely, by
selecting mappings which are at most at some distance ρ
from the original mapping m. Formally, this defines the ball
Bρ(m) := {m′ ∈ M | d(m,m′) < ρ}. This can be seen as a
way of generalizing the methods from [26].

Another example is the meta-heuristic of design-centering,
as in [13]. In it, a heuristic is leveraged that is usually utilized
to find parameters in continuous spaces (e.g. values like resis-
tance in circuit design). Using this, closeness of mappings is
defined and the method is used to find mappings that are robust
to small changes which could occur unpredictably at runtime.
Central to this approach is using the geometry of the space and
a design center is defined as a point m, such that there exists a
ball Bρ(m) of maximal radius ρ where all points are feasible,
or a fixed percentage thereof. Here, feasibility refers to some
design objective, e.g. a runtime below a specific (soft) real-
time threshold. This example showcases one of a large family
of heuristics which are defined using geometric properties of
the design space M , i.e. where it is assumed that M ⊂ Rn
for some n. It is clear how these approaches benefit from a
low-distortion embedding, as described in Section III-C.

C. Visualization

Another useful application of having structured represen-
tations of the design space is that they allow researchers to
visualize the design space. While this would not necessarily
be directly relevant during the execution of a DSE phase in an
optimizing compiler, it can be extremely useful for researchers
and engineers designing such a compiler. In Section V we will
describe and show a concrete example of such a visualization.

D. Isolating Applications

Focusing on the representations of mappings makes it
easier to concentrate on new properties which might be very
difficult to capture otherwise. As an example, consider the two
mappings depicted in Figure 5. The figure shows two different
multi-application mappings of both applications to a 4×4 mesh
network-on-chip topology. Both mappings use exactly the
same PEs of the architecture. In fact, if we ignore contention,
both mappings should have the exact same behavior: a careful
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inspection reveals that the distances —in terms of number
of hops— between any two communicating tasks in any of
the applications are all exactly the same in both mappings.
However, it is intuitively obvious that the mapping on the
right of the figure is preferable: by being more “compact”,
the mapping on the right will isolate communication within
both applications. This helps to avoid contention and provides
increased security. Additionally, it is intuitively simpler to
combine single-application mappings like those on the right,
since they are less “fragmented”.

While intuitive, it is not trivial to define this notion of
compactness formally, in a way that an algorithm might try
to search for such mappings. In cases where the topology
does not have a very straightforward geometric interpretation,
this becomes even more complicated. The metric space
representation from Section III-C allows us to actually define
compactness in a meaningful way, even in cases where the
topology is complex.

Mathematical Definition of Compactness

Given a mapping m : R→ P to an architecture with topol-
ogy graph T = (P,E), we define the topology graph of the
mapping T (m) to be the subgraph of T that is induced by the
image of m on P . This means that T (m) := (m(R), {(p, q) ∈
E | p, q ∈ m(R)}), where m(R) = {m(r) | r ∈ R} ⊆ P .

This induced topology subgraph shows the topology of
the mapping. It captures its shape, in a sense. This is
what we want to keep compact. For this, we define the
compactness C of the mapping m as follows: C(m) :=∑
{p,q}⊂m({PEs}),p6=q dT (p, q). Here, dT denotes the graph

metric, just like the one used for defining the shortest path
problem. The compactness just adds up the graph metrics of
the edges of the induced topology subgraph. Note that we do
this in the graph metric of the full topology graph (since the
paths that matter are those in the whole architecture, not only
in the mapping). A mapping m is maximally compact if its
compactness is minimal among all subgraphs of T of the same
size as T (m).

It can be shown that this concept has some desirable
properties. Maximally compact mappings in this sense are not



only connected, they also do not have “holes”, and when PEs
are missing they are always on the “corners” of the mapping.
This makes isolation and composability easier with these kinds
of mappings. However, defining and proving this in detail is
beyond the scope of this paper.

V. IMPLEMENTATION

In order to explore the applications described in the previous
section, we use a python based framework called pyKPN1.
The framework’s core component provides classes that model
dataflow applications, topology and architecture graphs, as
well as mappings. Other components within this framework
operate on these common models. For instance, the mapper
component implements mapping algorithms that take one or
multiple dataflow applications as well as an architecture graph,
and produce a mapping.

A. Simulation

A central component of pyKPN is the simulator. It models
the execution of a dataflow application on a given architecture
implementing a given mapping and provides a performance
estimate. The simulator operates on a high level of abstrac-
tion and is based on the SimPy module for discrete event
simulation [19], [25].

The simulator models the execution of dataflow application
by replaying previously recorded process traces. A process
trace represents one execution of a dataflow node. It divides the
execution into multiple segments where each segment denotes
a phase of computation between communication events. Here,
a communication event is the production or consumption of
a token on one of the node’s dataflow channels. Traces can
be recorded on a host machine or the target device using an
instrumented implementation of the dataflow application, that
records each communication event. We used the tools from
SLX [22] to obtain these traces and estimations.

The simulator focuses on modeling the communication
between dataflow nodes. Therefore, it simply models com-
putation as static delays. The length of the processing delay
is estimated for the target architecture based on the segment
length in the process trace. To correctly simulate the execution
of multiple processes on the same processor, the simulator also
provides models for schedulers that manage process execution.

Communication events are modeled in more detail. To
correctly implement the Kahn-MacQueen blocking seman-
tics [14], the simulator keeps track of the number of tokens
available on each dataflow channel. The delay for producing
and consuming tokens is computed based on the path taken
through the architecture graph. Communication costs may be
modeled statically or dynamically based on the system state,
e.g., to comprise contention.

B. Visualization

Visually representing real-valued vector spaces with dimen-
sions higher than 2, or perhaps 3, is extremely difficult to

1The camera-ready version will have a link to a github page here.
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(b) Metric Space Embedding

Figure 6. Visualizations of the Design Space using t-SNE

impossible in a two-dimensional piece of paper. The embed-
dings presented in this paper will have a number of dimensions
higher than 3 in all but the most trivial cases. However, in
order to aid researchers and give an intuition, we can leverage
an embedding that is specifically designed to make multi-
dimensional spaces visually intuitive. It works by making
multi-dimensional spaces two-dimensional in a way that cap-
tures some structure and allows for an intuitive inspection
of the space. The t-SNE embedding [16] has precisely this
goal, which it achieves not by having a low distortion (which
is impossible in general), but instead, by striving only to
maintain large distances large, and small distances small in
the embedding.

Figure 6 shows the visualization of the mapping space of an
application to the Exynos architecture depicted in Figure 1a.
The application has 8 tasks, and thus, an 8-dimensional design
space. We used the simulator described above to simulate
10000 randomly-generated mappings. In order to visualize
them, we used t-SNE as described above (see [16] for more
details), with the color-coded labels being the simulated ex-
ecution time. Note that the algorithm uses randomness, and
the axes do not have a meaning, other than points being close
in the image means that they are close in the design-space.
In the image we show side-by-side both, the naive vector
representation and a metric-space low-distortion embedding
representation. A careful inspection of the figure shows that
the space seems to be more structured in the metric-space
representation, having more homogeneity in the clusters of
mappings with similar execution times, whereas the naive
vector representation yields a more chaotic image.

VI. RELATED WORK

As discussed in Sections II and Section III, the mapping
problem is the subject of an extensive amount of research,
with several different use-cases, objectives and specialized
algorithms. However, this work does not concern itself with
any mapping method in particular, but with the way mappings
are represented within those methods. This is almost never
explicitly addressed in the current literature. Most work either
omits describing the representation used, or uses a naive vector
representation similar to the one presented in Section III. We
have discussed some related work to the presented approaches
throughout the paper, wherever relevant.



Some work has, however, concerned itself more directly
with the representation. Our own previous work only considers
some aspects [11], in this case, particularly the symmetries.
The closest work dealing with this is from the authors of [26],
which consider representations in a more systematic way, but
for limited class of architectures. In particular, their approach
only considers homogeneous systems. This work can be seen
as a generalization of their methods. Finally, the authors
of [21] also consider only a specific representation, symme-
tries, and also only do so for a limited class of architectures.
They explore the mapping space using a symmetry-reducing
representation and show how this yields significantly better
results.

VII. CONCLUSION

In this paper we have discussed the mapping problem in
software synthesis, and made a case for focusing on the repre-
sentations of mappings. We showed several representations in
a way that is not known from literature, by considering a met-
ric space structure on the mapping space, taking symmetries of
the problem into account, and finding efficiently-usable low-
distortion embeddings into real spaces, which allows to use
large classes of optimization algorithms from literature. We
have also shown how these mappings can be useful in a wide
variety of different applications within the software synthesis
realm.

While there are certainly very useful representations we
have not considered in this paper, we believe a stronger focus
on the representations in general is indeed imperative to solve
the problem efficiently in the future. The methods suggested in
this paper should be a start, allowing for fundamentally new
ways of looking at these variants of the mapping problem
through the lens of representations. More important than
improving a particular method, the focus in representation
should give new and better abstractions, providing a new
language upon which to build better heuristics to solve the
mapping problem, in all its diverse incarnations and use-cases.
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