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Abstract The increasing demands of modern embedded systems, such as high-

performance and energy-efficiency, have motivated the use of heterogeneous multi-

core platforms enabled by Multiprocessor System-on-Chips (MPSoCs). To fully ex-

ploit the power of these platforms, new tools are needed to address the increasing

software complexity to achieve a high productivity. An MPSoC compiler is a tool-

chain to tackle the problems of application modeling, platform description, software

parallelization, software distribution and code generation for an efficient usage of

the target platform. This chapter discusses various aspects of compilers for het-

erogeneous embedded multi-core systems, using the well-established single-core C

compiler technology as a baseline for comparison. After a brief introduction to the

MPSoC compiler technology, the important ingredients of the compilation process

are explained in detail. Finally, a number of case studies from academia and industry

are presented to illustrate the concepts discussed in this chapter.
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1 Introduction

1.1 MPSoCs and MPSoC Compilers

The current design trend in embedded systems show that heterogeneous Multipro-

cessor System-on-Chip (MPSoC) is the most promising way to keep on exploiting

the high level of integration provided by the semiconductor technology and, at the

same time, matching the constraints imposed by the embedded systems market in

terms of performance and power consumption. Looking at today’s smartphones, it is

clear to see that they are integrated with a great number of functions, such as camera,

personal digital assistant applications, voice/data communications and multi-band

wireless standards. Moreover, like many other consumer electronic products, many

non-functional parameters are evenly critical for their successes in the market, e.g.,

energy consumption and form factor. All these requirements need the emergence of

heterogeneous MPSoC architectures. They usually consist of programmable cores

of various types, special hardware accelerators and efficient Networks-on-Chips

(NoCs), to execute a large amount of complex software, in order to catch up with

the next wave of integration.

Compared to high-performance computing systems in supercomputers and com-

puter clusters, embedded computing systems require a different set of constraints

that need to be taken into consideration during the design process:

• Real-time constraints: Real-time performance is key to the embedded devices,

especially in the signal processing domain, such as wireless and multimedia.

Meeting real-time constraints requires not only the hardware being capable of

satisfying the demands of high-performance computations, but also the pre-

dictable behavior of the running applications.

• Energy-efficiency: Most mobile devices are battery powered, therefore, energy-

efficiency is one of the most important factors during the system design.

• Area-efficiency: How to efficiently use the limited chip area becomes critical,

especially for consumer electronics, where portability is a must-to-have.

• Application Domain: Unlike in general-purpose computing, embedded products

usually target at specific market segments, which in turn ask for the specialization

of the system design tailored for specific applications.

With these design criteria, heterogeneous MPSoC architectures are called to out-

perform the previous single-core or homogeneous solutions. For a detailed discus-

sion on the architectures, the readers are referred to Chapter [15]. MPSoC design

methodologies, also referred as Electronic System-Level (ESL) tools, are growing in

importance to tackle the challenge of exploring the exploding design space brought

by the heterogeneity [53]. Many different tools are required for completing a suc-

cessful MPSoC design, or a series of MPSoC product generations, such as the Texas

Instruments Keystone family [73]. The MPSoC compiler (or Multi-Core Compiler)

is one important tool among those, which is the main focus of this chapter.
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First of all, what is an MPSoC Compiler? The large majority of the current com-

pilers are targeted to single-core, and the design and implementation of special com-

pilers optimized for various core types (RISC, DSP, VLIW, among others) has been

well understood and practiced. Now, the trend moving to MPSoCs raises the level of

complexity of the compilers targeting these platforms. The problems of application

modeling, platform description, software parallelization, software distribution, and

code generation for an efficient usage of these platforms, still remain as open issues

both in academia and industry [17]. In this chapter, MPSoC Compiler is defined as

the tool-chain to tackle those problems for a given (pre-)verified MPSoC platform.

It is worth mentioning that this definition of MPSoC compiler is slightly different

from the term software synthesis as it appears in the hardware-software co-design

community [28]. In this context, software synthesis emphasizes that starting from

a single high-level system specification, the tools perform hardware/software parti-

tioning and automatically synthesize the software part so as to meet the system per-

formance requirements of the specifications. The flow is also called an application-

driven “top-down” design flow. In contrast, the MPSoC compiler is used mostly

in platform-based design, where the semiconductor suppliers evolve the MPSoC

designs in generations targeting a specific application domain. The function of an

MPSoC compiler is very close to that of a single-core compiler, where the compiler

translates the high-level programming language (e.g., C/C++) into the machine bi-

nary code. The difference is that an MPSoC compiler needs to perform additional

(and more complex) jobs over the single-core one, such as software parallelization

and distribution, as the underlying MPSoC platform is by orders of magnitude more

complex. Although, software synthesis and MPSoC compilers share some similari-

ties, the major difference is that they exist in the context of different methodologies,

thus focusing on different objectives [18].

The rest of the chapter is organized as follows. Section 1.2 briefly introduces the

challenges of building MPSoC compilers, using a comparison of an MPSoC com-

piler to a single-core compiler, followed by Section 2, where detailed discussions

are carried out. Finally, Section 3 looks into how the challenges are tackled by pre-

senting case studies of MPSoC compilers from the academia and the industry.

1.2 Challenges of Building MPSoC Compilers

Before the multi-core era, single-core systems have been very successful in creating

a comfortable and convenient programming environment for software developers.

The success is largely due to the fact that the sequential programming model is very

close to the natural way humans think and that it has been taught for decades in ba-

sic engineering courses. Also, the compilers of high-level programming languages

(e.g., C/C++) for single-core are well studied, which hide nearly all hardware de-

tails from the programmers as a holistic tool [34]. User-friendly graphical integrated

development environments (IDEs) like Eclipse [1] and debugging tools like gdb [2]

also contribute to the ecosystem of hardware and software in the single-core era.
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The complexity of programming and compiling for MPSoC architectures has

greatly increased compared to single-core. The reasons are manifold and the most

important ones are as follows. On the one hand, MPSoCs inherently ask for appli-

cations being written in parallel programming models so as to efficiently utilize the

hardware resources. Parallel programming (or thinking) has been proven to be dif-

ficult for programmers, despite years of efforts invested in high-performance com-

puting. On the other hand, the heterogeneity of MPSoC architectures requires the

compilation process to be ad-hoc. The programming models for different Processing

Elements (PEs) can be different. The granularity of the parallelism might also vary.

The compiler tool-chains can originate from different vendors for PEs. All those

make MPSoC compilation an extremely sophisticated process, which is most likely

not anymore “the holistic compiler” for the end users. Neither the software tool-

chains are fully prepared to handle MPSoCs, nor productive multi-core debugging

solutions are available. The software tool-chains are not yet fully prepared to well

handle MPSoC systems, plus the lack of productive multi-core debugging solutions.

An MPSoC compiler, as the key tool to enable the power of MPSoCs, is known

to be difficult to build. A brief list of the fundamental challenges is provided below,

with an in-depth discussion in the following Section 2.

1. Programming Models: Evidently the transition to parallel programming models

impacts the MPSoC compiler fundamentally.

2. Platform Description: The traditional single-core compiler requires architecture

information, such as the instruction set and latency table in the backend to per-

form code generation. In contrast, the MPSoC compiler needs another type of

platform description including further details, such as information about the PEs

and available communication resources. This information is used in multiple

phases of the compilation process beyond the backend.

3. Software Parallelization: While Instruction-Level Parallelism (ILP) is exploited

by single-core compilers, MPSoC compilers focus on a wider variety of forms of

parallelism, which are more coarse-grained.

4. Software Distribution: An MPSoC compiler distributes coarse-grained tasks (or

code blocks), while the single-core compiler performs this at instruction-level.

5. Code generation: It is yet another leaping complexity for the MPSoC compiler

to be able to generate the final binaries for heterogeneous PEs and the NoC com-

pared to generate the binary for a one-ISA architecture.

2 Foundation Elements of MPSoC Compilers

This section delves into the details of the problems mentioned in the introduction

of this chapter. The discussion is based on the general structure of a single-core

compiler, shown in Figure 1. The issues that make the tasks of an MPSoC compiler

particularly challenging are highlighted, taking the single-core compiler technology

as a reference.
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Fig. 1: Coarse View of a Single-core Compiler

Fig. 2: Coarse View of a MPSoC Compiler

A single-core compiler is typically divided into three phases: the front end, the

middle end and the back end. The front end checks for the lexical, syntactic and

semantic correctness of the application. Its output is an abstract Intermediate Rep-

resentation (IR) of the application, which is suitable for optimizations and for code

generation in the following phases of the compiler. The middle end, sometimes con-

ceptually included within the front end, performs different analyses on the IR. These

analyses enable several target-independent optimizations that mainly aim at improv-

ing the performance of the posterior generated code. The backend is in charge of the

actual code generation and is divided into phases as well. Typical backend steps in-

clude code selection, register allocation and instruction scheduling. These steps are

machine dependent and therefore require a model of the target architecture.

MPSoC compilers are also divided into phases in order to manage complex-

ity. The overall structure of the single-core compiler (in Figure 1) will suffer some

changes though, as Figure 2 shows. In general, an MPSoC compiler is also divided

into three phases: software parallelization, software distribution and code genera-

tion. Throughout this section more details about these phases will be provided, to

help understanding the differences between single-core and MPSoC compilers.

2.1 Programming Models

The main entry for any compiler is a representation of an application using a given

programming model, as shown in Figure 1. A programming model is a bridge that

provides humans access to the resources of the underlying hardware platform. De-
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(a) Matlab

(b) C (c) DSP-C

Fig. 3: FIR implementation on different programming languages

signing such a model is a delicate art, in which hardware details are hidden for the

sake of productivity and usually at the cost of performance. In general, the more

details remain hidden, the harder the job of the compiler is to close the performance

gap. In this sense, a given programming model may reduce the work of the compiler

but will never circumvent using one. Figure 3 shows an implementation of an FIR

filter using different programming languages representing different programming

models. This figure shows an example of the productivity-performance trade-off.

On one extreme, the Matlab implementation (Figure 3a) features high simplicity

and no information of the underlying platform. The C implementation (Figure 3b)

provides more information, having types and the memory model visible to the pro-

grammer. On the other extreme, the DSP-C implementation (Figure 3c) has explicit

memory bank allocation (through the memory qualifiers X and Y) and dedicated

data types (accum, fract). Programming at this level requires more knowledge

and careful thinking, but will probably lead to better performance. Without this ex-

plicit information, a traditional C compiler would need to perform complex memory

disambiguation analysis in order to place the arrays in separate memory banks.

In [11], the authors classify programming models as being either hardware-

centric, application-centric or formalism-centric. Hardware-centric models strive

for efficiency and usually require a very experienced programmer (e.g., Intel IXP-C

[51]). Application-centric models strive for productivity allowing fast application

development cycles (e.g., Matlab [65], LabView [57]), and formalism-centric mod-

els strive for safeness due to the fact of being verifiable (e.g., Actors [30]). Practical

programming models for embedded MPSoCs cannot pay the performance overhead

brought by a pure application-centric approach and will seldom restrict programma-

bility for the sake of verifiability. As a consequence, programming models used in

industry are typically hardware-centric and provide some means to ease programma-

bility, as will be discussed later in this section.

Orthogonal to the previous classification, programming models can be broadly

classified into sequential and parallel ones. The latter being of particular interest for

MPSoC programming and this chapter’s readers, though having its users outnum-
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bered by the sequential programming community. As a matter of fact, C and C++

are still the top languages in the embedded domain [23], which have underlying

sequential semantics. Programmers have been educated for decades to program se-

quentially. They find it difficult to describe an application in a parallel manner, and

when doing so, they introduce a myriad of (from their point of view) unexpected

errors. Apart from that, there are millions of lines of sequential legacy code that will

not be easily rewritten within a short period of time to make use of the new parallel

architectures. Parallel programming models for heterogeneous architectures can be

further classified as host-centric and non-host centric. In the host-centric approach

the PEs in the platform have specific roles, either as hosts or accelerators. Here the

execution is controlled by the hosts and eventually they offload computationally in-

tensive code blocks to specialized accelerators to improve performance. In contrast,

in the non-host centric approach code blocks are assigned to PEs without assuming

any specific role for each of them and the control flow is distributed.

Compiling a sequential application, for example written in C, for a simple core is

a very mature field. Few people would program an application in assembly language

for a single issue embedded RISC processor, such as the ARM7 or the MIPS32. In

general, compiler technology has advanced greatly in the single-core domain. Sev-

eral optimizations have been proposed for superscalar processors [40], DSPs [49],

VLIW processors [24] and for exploiting Single Instruction Multiple Data (SIMD)

architectures [50]. Nonetheless, high performance routines for complex processor

architectures with complex memory hierarchies are still hand-optimized and are

usually provided by processor vendors as library functions. In the MPSoC era, the

optimization space is too vast to allow hand-crafted solutions across different cores.

The MPSoC compiler has to help the programmer to optimize the application, pos-

sibly taking into account optimized routines for some of the processing elements.

In spite of the efforts invested in classical compiler technology, plain C program-

ming is not likely to be able to leverage the processing power of future MPSoCs.

When coding a parallel application in C, the parallelism is hidden due to the inherent

sequential semantics of the language and its centralized control flow. Retrieving this

parallelism requires complex dataflow and dependence analyses which are usually

NP-complete and sometimes even undecidable (see Section 2.3.2). For this reason

MPSoC compilers need also to cope with parallel programming models, some of

which will be introduced in the following.

2.1.1 Mainstream Parallel Programming Models

There are manifold parallel programming models. Modern parallel programming

models are built on top of traditional sequential languages like C or C++ by means

of compiler directives, libraries or language extensions. These models are usually

classified by the underlying memory architecture that they support; either shared or

distributed. They can be further classified by the parallel patterns that they allow

to express (see Section 2.3.3). Today a great majority of the mainstream parallel

programing models are industry standards, which have a solid tooling support and
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are constantly evolving to satisfy the needs of developers and to exploit the new

features of modern multi-core platforms. These programming models have their

roots in the High Performance Computing (HPC) community, however, they have

gained acceptance in the embedded domain [5, 41, 71, 74]. Prominent examples of

these models are presented in the following:

• POSIX Threads (Pthreads): This is a library-based shared memory parallel

programming model [69]. Pthreads is a low level approach, as the developer has

to explicitly create and destroy threads, partition the workload, map the threads

to cores and ensure a proper thread synchronization. The accesses to shared data

(critical sections) have to be carefully designed to avoid data races and dead-

locks. The protection to the critical sections can be achieved by means of mutual

exclusion (mutex) or semaphores.

• OpenMP: This is an industry standard parallel programming model for shared

memory systems based on compiler directives [3]. The use of compiler directives

implies minimal source code modifications in contrast to Pthreads. Moreover,

thread management in OpenMP is performed by a runtime system, which further

simplifies the challenging task of multi-core programming. Initially, OpenMP fo-

cused on regular loop level parallelism for homogeneous multi-core platforms.

However, it was later extended to support both irregular parallelism by means its

tasking model, and heterogeneous platforms by means of its accelerator model.

The accelerator model is particular important for the embedded domain, as it

enables the designer to exploit all types of cores in heterogeneous MPSoC, in-

cluding DSPs [71, 74]. Furthermore, recent research efforts have confirmed the

applicability of OpenMP in the embedded domain, as it has been demonstrated

that it is feasible to use it in real time systems [77].

• OpenCL: This is a parallel programming model for heterogeneous systems,

which is also an industry standard [70]. OpenCL follows a host-centric approach

in which a host device (e.g., CPU) offloads data and computation typically to

accelerator devices (e.g., GPUs or DSPs). In this programming model, computa-

tions are described as kernels, which are the basic units of execution (e.g., one

iteration of a parallel loop). Kernels are written in a language called OpenCL C,

which is simultaneously a subset and a superset of the C99 standard. In addition,

OpenCL offers an API that allows the host to manage data transfers and ker-

nel execution on the target devices. In the embedded domain OpenCL has also

gained acceptance, and it is already available for a wide variety of heterogeneous

embedded platforms [41, 74].

• MPI: This is a parallel programming model for distributed systems based on a

library. It relies on the message passing principle, where both point-to-point and

collective form communications are supported. MPI can be used in combination

with other parallel programming models for shared memory systems, such as

OpenMP. While MPI allows to exploit parallelism across nodes in a distributed

system, OpenMP allows to exploit parallelism within each node. This approach is

usually referred as hybrid programming [64]. MPI is currently the de facto stan-

dard for distributed systems in HPC, and it has been also applied in the embedded

domain [5, 74].
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(a) KPN (b) SDF

(c) DDF

Fig. 4: Example of Concurrent MoCs (P: Process, A: Actor)

2.1.2 Dataflow Programming Models

Dataflow or streaming Models of Computation (MoCs) appear to be one promis-

ing choice for describing signal processing applications. In dataflow programming

models, an application is represented as a graph. The nodes of this graph (also called

processes or actors) perform computation whereas the edges (also called channels)

are used to transfer data among nodes. These MoCs originated from theoretical

computer science for formally describing a computing system and were initially

used to compute bounds on complexity. MoCs were thereafter used in the early

1980s to model VLSI circuits and only in the 1990s started to be utilized for model-

ing parallel applications. Dataflow programming models based on concurrent MoCs

like Synchronous Dataflow (SDF) [46] and some extensions (like Boolean Dataflow

(BDF) [47]) have been deeply studied in [68]. More general dataflow programming

models based on Dynamic Dataflow (DDF) and Kahn Process Networks (KPN) [36]

MoC have also been proposed [58, 44] (see also Chapters [26, 12]).

• KPN Programming Model: In this programming model, an application is rep-

resented as a graph G = (V,E) like the one in Figure 4a. In such a graph, a

node p ∈ V is called process and represent computation. The edges represent

unbounded FIFO channels for processes communication by means of data items

or tokens. Processes can only be in one of two states: ready or blocked. The

blocked state can only be reached by reading from only one empty input channel

— blocking read semantics. A KPN is said to be determinate: the history of to-

kens produced on the communication channels is independent of the scheduling.

• DDF Programming Model: In this programming model, an application is also

represented as a graph G = (V,E,R) with R a family of sets, one set for every

node in V . Edges have the same semantics as in the KPN model. Nodes are called

actors and do not feature the blocking read semantics of KPN. Instead, every

actor a ∈ V has a set of firing rules Ra ∈ R,Ra = {Ra,1,Ra,2, . . .}. A firing rule

for an actor a ∈ V with p inputs is a p-tuple Ra,i = (c1, . . . ,cp) of conditions. A
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condition describes a sequence of tokens that has to be available at the given input

FIFO. Parks introduced a notation for such conditions in [61]. The condition

[X1,X2, . . . ,Xn] requires n tokens with values X1,X2, . . . ,Xn to be available at the

top of the input FIFO. The conditions [∗], [∗,∗], [∗(1), . . . ,∗(m)] require at least 1,

2 and m tokens respectively with arbitrary values to be available at the input. The

symbol ⊥ represents any input sequence, including an empty FIFO. For an actor

a to be in the ready state at least one of its firing rules need to be satisfied. An

example of a DDF graph is shown in Figure 4c. In this example, the actor a2 has

3 different firing rules. This actor is ready if there are at least two tokens in input

i1 and at least 1 token in input i2, or if the next token on input i2 or i1 has

value 0. Notice that more than one firing rule can be activated, in this case the

dataflow graph is said to be non-determinate.

• SDF Programming Model: An SDF can be seen as a simplification of DDF

model1, in which an actor with p inputs has only one firing rule of the form

Ra,1 = (n1, . . . ,np) with n ∈ N. Additionally, the amount of tokens produced by

one execution of an actor on every output is also fixed. An SDF can be defined

as a graph G = (V,E,W ) where W = {w1, . . . ,w|E|} ⊂ N
3 associates 3 integer

constants we = (pe,ce,de) to every channel e = (a1,a2) ∈ E . pe represents the

number of tokens produced by every execution of actor a1, ce represents the

number of tokens consumed in every execution of actor a2 and de represents the

number of tokens (called delays) initially present on edge e. An example of an

SDF is shown in Figure 4b with delays represented as dots on the edges. For the

SDF in the example, W = {(3,1,0),(6,2,0),(2,3,0),(1,2,2)}.

Different dataflow models differ in their expressiveness, some being more gen-

eral, some being more restrictive. By restricting the expressiveness, models possess

stronger formal properties (e.g., determinism) which make them more amenable to

analysis. For example, since the token consumption and production of an SDF actor

are known beforehand, it is possible for a compiler to compute a plausible static

schedule for an SDF. For a KPN instead, due to control dependent access to chan-

nels, it is impossible to compute a pure static schedule.

Apart from explicitly exposing parallelism, dataflow programming models be-

came attractive mainly for two reasons. On the one hand, they are well-suited for

graphical programming, similar to the block diagrams used to describe signal pro-

cessing algorithms. On the other hand, some of the underlying MoC’s properties fa-

cilitate the analysis performed by the tools. For example, channels explicitly expose

data dependencies among computing processes/actors, and they have a distributed

control flow which is easily mapped to different PEs.

To understand how dataflow models can potentially reduce the compilation ef-

fort, an example of an application written in a sequential and in two parallel forms

is shown in Figure 5. Let us assume that the KPN parallel specification in Figure 5b

represents the desired output of a parallelizing compiler. In order to derive this KPN

from the sequential specification in Figure 5a, complex analyses have to be per-

formed. For example, the compiler needs to identify that there is no dependency

1 Being more closely related to the so-called Computation Graphs [38]
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(a) C Implementation

(b) A “Good” KPN Representation

(c) A “Bad” KPN Representation

Fig. 5: KPN Example

on array A among lines 11 and 16 (i.e., between f2 and f3), which is a typical

example of dataflow analysis (see Section 2.3.4). Only for a restricted subset of C

programs, namely Static Affine Nested Loop Programs (SANLP), similar transfor-

mations to that shown in Figure 5 have been implemented in [78]. Therefore, starting

from a specification already parallel greatly simplifies the work of the compiler.

However, even with a parallel specification at hand, an MPSoC compiler has to

be able to look inside the nodes in order to attain higher performance. With the

applications becoming more and more complex, a compiler cannot completely rely

on the programmer’s knowledge when decomposing the application into blocks. A

block diagram can hide lots of parallelism in the interior of the blocks and thus, com-

puting nodes cannot always be considered as black boxes but rather as gray/white

boxes [52]. As an example of this, consider the KPN shown in Figure 5c. Assume

that this parallel specification was written by a programmer to represent the same

application logic in Figure 5a. This KPN might seem appropriate to a programmer,

because the communication is reduced (5 instead of 6 edges). However, if functions

f2 and f3 are time consuming, running them in parallel could be advantageous.

However, in this representation the parallelism remains hidden inside block f2+f3.

Summary

Currently, MPSoC compilers should support sequential programming models as in-

put, both because of the great amount of existing sequential legacy code and because

of the generations of programmers that were taught to program sequentially. At the

same time, the MPSoC compilers need to be aware of the properties of the target

parallel programming models, particularly the forms of parallelism that they allow

to express, as it will be discussed in Section 2.3.3.
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2.2 Platform Description for MPSoC Compilers

After performing optimizations in the middle end, a single-core compiler backend

generates code for the target platform based on a model of it. Such a platform model

is also required by an MPSoC compiler, but in contrast to a single-core compiler

flow, the architecture model may also be used during multiple phases of the compiler

and not just by the backend, as Figure 2 shows. For example, if the programming

model exposes some hardware details to the user, the front end needs to be able

to cope with that and eventually perform consistency checks. Besides, some MP-

SoC optimizations in the middle end may need some information about the target

platform as discussed in Section 2.3. Traditionally an architecture model describes:

• Available operations: In form of an abstract description of the Instruction Set

Architecture (ISA). This information is mainly used by the code selection phase.

• Available resources: A list of hardware resources such as registers and func-

tional units (in case of a superscalar or a VLIW). This information is used, for

example, by the register allocator and the scheduler.

• Communication links: Describe how data can be moved among functional units

and register files (e.g., cross paths in a cluster VLIW processor).

• Timing behavior: In form of latency and reservation tables. For each available

operation, the latency table tells the compiler how long it takes to generate a re-

sult, whereas the reservation table tells the compiler which resources are blocked

and for how long. This information is mainly used to compute the schedule.

In the case of an MPSoC, a platform description has to provide similar infor-

mation but at a different level. Instead of a representation of an ISA, the available

operations describe which kinds of processors and hardware accelerators are in the

platform. Instead of a list of functional units, the model provides a list of PEs and a

description of the memory subsystem. The communication links represent no longer

interconnections among functional units and register files, but possibly a complex

Network-On-Chip (NoC) that interconnects the PEs among them and with the mem-

ory elements. Finally, the timing behavior has to be provided for individual opera-

tions (instructions).

Usually, the platform description is a graph representation provided in a given

format (usually XML files, see Section 3 for practical examples). Recently, the Mul-

ticore Association has introduced a standard to specify multi-core platforms called

Software-Hardware Interface for Multi-Many-Core (SHIM) [56]. This standard al-

lows the abstraction of hardware properties that are key to enable multi-core tools.

The SHIM implementation is based on XML files that describe the core types and

the platform itself.

One of the main uses of the platform description is to enable the performance

estimation of applications. Getting the timing behavior of given code blocks run-

ning on a particular MPSoC platform, is a major research topic and a requisite

for an MPSoC compiler. Several performance estimation techniques, are applied

in order to get specific execution times: Worst/Best/Average Case Execution Time

(W/B/ACET) [79]. These techniques can be roughly categorized as follows [16]:
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• Analytical: Analytical or static performance estimation tries to find theoretical

bounds to the WCET, without actually executing the code. Using compiler tech-

niques, all possible control paths are analyzed and bounds are computed by us-

ing an abstract model of the architecture. This task is particularly difficult in the

presence of caches and other non-deterministic architectural features. For such

architectures, the WCET might be too pessimistic and thus induces bad decisions

(e.g., wrong schedules). There are already some commercial tools available for

such purposes, aiT [4] is a good example.

• Emulation-based: The simulation time of cycle accurate models can be pro-

hibitively high. Typical simulation speeds range from 1 to 100 KIPS (Kilo In-

structions per Second). Therefore, some techniques emulate the timing behav-

ior of the target platform in the host machine without modeling every detail of

the processor by means of instrumentation. Source level timing estimation has

proven to be useful for simple architectures [39, 33], the accuracy for VLIW or

DSP processors is however not satisfactory. The authors in [25] use so-called

virtual back ends to perform timing estimation by emulating the effects of the

compiler back end and thus improving the accuracy of source level timing esti-

mation considerably. With these techniques, simulation speeds of up to 1 GIPS

are achievable.

• Simulation-based: In this case the execution times are measured on a simu-

lator. Usually cycle accurate virtual platforms are used for this purpose [72].

Virtual platforms allow full system simulation, including complex chip intercon-

nects and memory subsystems. Simulation-based models suffer from the context-

subset problem, i.e., the measurements depend on the selection of the inputs.

• Table-based: This is a performance estimation technique based on source code

instrumentation and a table with the costs of elementary processor operations.

The cost of executing every elementary operation is based on the cost provided

by the architecture model and the execution counts provided by the profiling in-

formation resulting from the execution of the instrumented code. This approach

allows to identify application hot spots and provides an early idea of the ap-

plication runtime. However, it is not very accurate, in particular for non-scalar

architectures such as VLIW.

Summary

Platform models for MPSoC compilers describe similar features to those of tradi-

tional compilers but at a higher level. Processing elements and NoCs take the place

of functional units, register files and their interconnections. On an MPSoC com-

piler, the platform model is no longer restricted to be used on the back end but a

subset of it may be used by the front end and the middle end. Out of the information

needed to describe the platform, the timing behavior is the most challenging. This

timing information is needed for performing successfully software parallelization

and distribution, as it will be described in the next sections.
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(a) Sample C Code

(b) Optimized Code (c) CDFG for 6a

Fig. 6: Example of a CDFG

2.3 Software Parallelization

The software parallelization phase of an MPSoC compiler aims at identifying prof-

itable parallelization opportunities hidden in legacy sequential code. The following

sections will give more insights on the main challenges for software paralleliza-

tion, namely the selection of an intermediate representation, the granularity issue,

prominent parallel patterns and the problem of dataflow analysis.

2.3.1 Intermediate Representation (IR)

In a classical compiler, the front end translates application code into an Interme-

diate Representation (IR). Complex constructs of the original high level program-

ming languages are lowered into the IR while keeping machine independence. The

IR serves as basis for performing analysis (e.g., control and data flow), upon which

many compiler optimizations can be performed. Although there is no de facto stan-

dard for IRs, most compiler IRs use graph data structures to represent the applica-

tion. The fundamental analysis units used in traditional compilers are the so-called

Basic Blocks (BB), where a BB is defined as a maximal sequence of consecutive

statements in which flow of control enters at the beginning and leaves at the end

without halt or possibility of branching except at the end [10]. A procedure or func-

tion is represented as a Control Flow Graph whose nodes are BBs and edges rep-

resent the control transitions in the program. Data flow is analyzed inside a BB

and as a result a Data Flow Graph is produced, where nodes represent statements

(or instructions) and edges represent data dependencies (or precedence constraints).
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(a) DFG (b) HTG

Fig. 7: Hierarchical IRs Examples for the Code in Fig. 6a

With intra-procedural analysis, data dependencies that span across BB borders can

be identified. As a result both control and data flow information can be summarized

in a Control Data Flow Graph (CDFG). A sample CDFG for the code in Figure 6a

is shown in Figure 6c. BBs are identified with the literals v1,v2,...,v6. For this code

it is easy to identify the data dependencies by simple inspection. Notice however,

that the self-cycles because of variable c in v3 and v4 will never be executed, i.e.,

the definition of c in line 7 will never reach line 6. Moreover, notice that the code in

Figure 6a is equivalent to that in Figure 6b. Even for such a small program, a com-

piler needs to be equipped with powerful analysis to derive such an optimization.

For simple processors, the analysis at the BB granularity has been considered

the state-of-the-art during the last decades. The instructions inside a BB will al-

ways be executed one after another in an in-order processor, and for that reason

BBs are very well-suited for exploiting ILP. Already for more complex processors,

like VLIW, BBs fall short to leverage the available ILP. Predicated execution and

software pipelining [24] are just some examples of optimizations that cross the BB

borders seeking for more parallelism. This quest for parallelism is even more chal-

lenging in the case of MPSoC compilers, as they must go beyond ILP. The question

of granularity and its implication on parallelism becomes a major issue. The ideal

granularity depends on the characteristics of the form of parallelism and of the tar-

get platform. Therefore, extensions to the CDFG have been proposed to address the

granularity issue. One example of this is the Statement Control Data Flow Graph

(SCDFG) [19] in which nodes are single statements instead of BBs to allow more

flexibility. More insights on the granularity issue are provided in Section 2.3.2.

Another major issue for MPSoC compilers is the size of the solution space, which

could be prohibitively large even for small applications. This issue has been ad-

dressed by introducing the notion of hierarchy in the IR, by also retaining high

level information about program structure in the intermediate representation, such as
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loops and conditional blocks. This is a powerful property that enables a divide-and-

conquer parallelization approach in which code regions can be analyzed in isolation

based on their type. The Dependence Flow Graph (DFG) [35] and the Hierarchical

Task Graph (HTG) [63] are examples of representations that incorporate the notion

of hierarchy, which have been already used in existing MPSoC compilers [7, 8, 22].

Figure 7a shows an example of a DFG for the code presented in Figure 6a. The DFG

incorporates the notion of hierarchy by means of the so-called Single-Entry Single-

Exit (SESE) regions. A SESE region is a sub-graph of the DFG, which has a unique

incoming control edge leading to the region execution, and a unique outgoing con-

trol edge that exits the region. Regions can be nested or sequentially ordered and

they can be statements, basic blocks, loops or conditional blocks (e.g. if or switch-

case constructs). SESE regions related to loops and conditional blocks are enclosed

by artificial nodes, namely switch and merge, as Figure 7a illustrates. A key

feature of the artificial nodes is that they allow to re-route data dependencies inside

regions where they are relevant. For example, in Figure 7a the data dependencies

edges on b and c are re-routed inside the region SESE If, while the data depen-

dency edge on i is bypassed, as it is not relevant for that particular region. This

feature is useful not only for software parallelization analysis, but also for parallel

code generation [9]. An example of a HTG for the code in Figure 6a is presented

in Figure 7b. The aim of the HTG is to hide cyclic dependencies by leveraging the

explicit hierarchy in a program. In general, the HTG has two main types of nodes:

simple and compound. Single nodes are used to encapsulate a single statement or

basic block, while compound nodes introduce hierarchy, as they contain other sin-

gle or compound nodes. Compound nodes are the counter part of SESE regions in

a DFG, as they represent high level program constructs (e.g., loops or conditional

blocks). However, the drawback of the HTG is that it has no artificial nodes that al-

low to re-route data dependencies in and out of the compound nodes, which makes

data dependence analysis more challenging.

2.3.2 Granularity and Partitioning

Granularity is one major issue for software parallelization and has a direct impact

on the form and degree of parallelism that can be achieved [6]. We define partition-

ing as the process of analyzing an application and fragmenting it into blocks with

a given granularity suitable for parallelism extraction. In this sense, the process of

constructing CFGs out of an application as discussed before can be seen as a parti-

tioning. The following are the most intuitive granularities for MPSoC compilers:

• Statement: A statement is the smallest standalone entity of a programming lan-

guage. An application can be broken to the level of statements and the relations

among each of them. The statements could be simple expressions, such as arith-

metic operations or function calls. This granularity provides the highest degree

of freedom to the analysis but could prevent ILP from being exploited at the

single-core level. Moreover, the parallelization overhead for such small granular-

ity could be prohibitively large.
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(a) Statement (b) Basic Block (c) Function

Fig. 8: Granularity examples

• Basic Block: As already discussed, traditional compilers work on the level of

BBs, as they are well suited for ILP. However, in practice BBs could be either

too big or too small for coarse-grained parallelism extraction. A BB composed

of a sequence of function calls inside a loop would be seen as a single node, and

potential parallelism will be therefore hidden. On the other extreme, a couple of

small basic blocks divided by simple control constructs could be better handled

by a single-core compiler with support for predicated execution.

• Function: A function is defined as a subroutine with its own stack. At this level,

only function calls are analyzed and the rest of the code is considered as irrele-

vant. As with BBs, this granularity can be too coarse or too fine-grained depend-

ing on the application. It is possible to force a coding style, where parallelism is

explicitly written in a way that the behavior is factorized into functions. However,

an MPSoC compiler should not make any assumption on the coding style.

As an example, partitions at different granularity levels for the program intro-

duced in Figure 5a are shown in Figure 8. The partition at statement level is shown

in Figure 8a. In this example the statements at lines 12, 13 and 15 are too light

weight. The partition of function foo at BB level is shown in Figure 8b. The BB

on line 9 is too light weight in comparison to the other BBs, whereas the BB in

lines 16-17 may be too coarse. Finally, the partition at function level is shown in

Figure 8c. This partition happens to match the KPN derivation introduced in Fig-

ure 5b. Whether this granularity is appropriate or not, depends on the amount of data

flowing between the functions and the timing behavior of each one of the functions.

As illustrated with the examples, it is not clear what will be the ideal granularity

for an MPSoC compiler to work on. Existing research efforts have been directed

towards the identification of a suitable granularity for particular parallelism patterns

and platforms [7, 20, 22]. The approach is usually based on partitioning an appli-

cation into code blocks of arbitrary granularity by means of heuristics or clustering

algorithms, which use the previously described granularities as the starting point

(i.e., a code block is built by clustering multiple statements). In the remaining of

this chapter we refer to code blocks as statements, BBs, SESE regions, functions or

the result of clustering algorithms.



18 Rainer Leupers, Miguel Angel Aguilar, Jeronimo Castrillon, and Weihua Sheng

(a) TLP (b) DLP

(c) PLP (d) RLP

Fig. 9: Parallelism Patterns

2.3.3 Parallelism Patterns

While a traditional compiler tries to exploit fined-grained ILP, the goal of an MPSoC

compiler is to extract coarser parallelism. The most prominent forms of coarse-

grained parallelism are illustrated in Figure 9 and described in the following.

• Task Level Parallelism (TLP): In TLP different tasks can compute in parallel on

different data sets as shown in Figure 9a. This form of parallelism is inherent to

programming models based on concurrent MoCs (see Section 2.1). Tasks may

have dependencies to each other, but once a task has its data ready, it can execute

in parallel with the already running tasks in the system. Typically, TLP can be

exploited by the parallel execution of independent function calls or loops.

• Data Level Parallelism (DLP): In DLP the same computational task is carried

out on several disjoint Data Sets, as illustrated in Figure 9b. This is one of the

most scalable forms of parallelism. DLP is typically present in multimedia appli-

cations, where a decoding task performs the same operations on different portions

of an image or video. Several programming models provide support for DLP, e.g.

OpenMP by means of its for construct.

• Pipeline Level Parallelism (PLP): In PLP a computation within a loop is broken

into a sequence of tasks called stages, as Figure 9c shows. These tasks follow

a producer-consumer relationship in which there is a flow of data from the first

to the last stage. PLP is a well-suited form of parallelism for streaming applica-

tions in the embedded domain, in which there are serially dependent tasks that

continuously operate on a flow of data (e.g., audio/video encoding-decoding).
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• Recursion Level Parallelism (RLP): In RLP tasks are created from self-calls

in functions that exhibit multiple recursion (i.e., recursive functions that contain

two or more self-calls). Applications with multiple recursion typically implement

divide-and-conquer algorithms, which recursively break problems into smaller

sub-problems that are more simple to solve. A scalable form of nested parallelism

can be exploited if the sub-problems are independent (i.e., the recursive call-sites

are mutually independent). In RLP each task can further spawn parallel work as

nested tasks in subsequent recursive calls, as illustrated in Figure 9d.

Exploiting these kinds of parallelism is a must for an MPSoC compiler, which has

to be therefore equipped with powerful flow and dependence analysis capabilities.

2.3.4 Flow and Dependence Analysis

Flow analysis includes both control and data flow. The result of these analyses can

be summarized in a CDFG, a DFG or a HTG, as discussed at the beginning of this

section. Data flow analysis serves to gather information at different program points,

e.g., about available defined variables (reaching definitions) or about variables that

will be used later in the control flow (liveness analysis). As an example, consider

the CDFG in Figure 6c in which a reaching definitions analysis is carried out. The

analysis tells, for example, that the value of variable c in line 5 can come from three

different definitions in lines 2, 7 and 10.

Data flow analysis deals mostly with scalar variables, like in the previous exam-

ple, but falls short when analyzing the flow of data when explicit memory accesses

are included in the program. In practice, memory accesses are very common through

the use of pointers, structures or arrays. Additionally, in the case of loops, data flow

analysis only says if a definition reaches a point but does not specify exactly in

which iteration the definition is made. The analyses that answer these questions are

known as array analysis, loop dependence analysis or simply dependence analysis.

Given two statements S1 and S2, dependence analysis determines if S2 depends

on S1, i.e., if S2 cannot execute before S1. If there is no dependency, S1 and S2 can

execute in any order or in parallel. Dependencies are classified into control and data:

• Control Dependency: A statement S2 is control dependent on S1 (S1 δ c S2) if
whether or not S2 is executed depends on S1’s execution. In the following exam-
ple, S1 δ c S2:

S1: if (a > 0) goto L1;

S2: a = b + c;

S3: L1: ...

• Data Dependencies:

– Read After Write (RAW, also true/flow dependency): There is a RAW depen-

dency between statements S1 and S2 (S1 δ f S2) if S1 modifies a resource that

S2 reads thereafter. In the following example, S1 δ f S2:

S1: a = b + c; S2: d = a + 1;
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(a) NP Complete

(b) Inter-procedural analysis (c) Undecidable

Fig. 10: Examples of Dependence Analysis

– Write After Write (WAW, also output dependency): There is a WAW depen-
dency between statements S1 and S2 (S1 δ o S2) if S2 modifies a resource that
was previously modified by S1. In the following example, S1 δ o S2:

S1: a = b + c; S2: a = d + 1;

– Write After Read (WAR, also anti-dependency): There is a WAR dependency
between statements S1 and S2 (S1 δ a S2) if S2 modifies a resource that was
previously read by S1. In the following example, S1 δ a S2:

S1: d = a + 1; S2: a = b + c;

Obviously, two statements can exhibit different kinds of dependencies simulta-

neously. Computing these dependencies is one of the most complex tasks inside a

compiler, both for single-core and for multi-core systems. For a language like C,

the problem of finding all dependencies statically is NP complete and in some cases

undecidable. The main reason for this being the use of pointers [31] and indexes to

data structures that can only be resolved at runtime. Figure 10 shows three sample

programs to illustrate the complexity of dependence analysis. In Figure 10a, in or-

der to determine if there is a RAW dependency between S3 and S4 (S3δ f S4) across

iterations, one has to solve a constrained integer linear system of equations, which

is NP complete. For the example, the system of equations is:

3x1 + 2x2 + 2 = 4y1 + y2 + 1

x1 + x2 + 1 = 2y1 + y2 + 1

subject to X < x1,y1 < N and Y < x2,y2 < M. Notice for example that there is

a RAW dependency between iterations (1,1) and (2,−2) on A[7][3]. In order to

analyze the sample code in Figure 10b, a compiler has to perform inter-procedural

analysis to identify if f1 modifies the contents of A[i] and to sort out the potential

return values of f2(i). This problem could be potentially undecidable. Finally, the
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(a) Summarized CDFG (b) Unrolled Dependencies

Fig. 11: Dependence Analysis on Example in Figure 5a

code in Figure 10c is an extreme case of the previous one, in which it is impossible

to know the values of the indexes at compile time. The complexity of dependence

analysis motivated the introduction of memory disambiguation at the programming

language level, such as the restrict keyword in C99 standard [80].

For an MPSoC compiler, the situation is not different. The same kind of analy-

sis has to be performed at the granularity produced by the partitioning step. Array

analysis could still be handled by a vectorizing compiler for one of the processors

in the platform. The MPSoC compiler has to perform the analysis at a coarser gran-

ularity level in which function calls will not be an exception. This is for example

the case for the code in Figure 5a. In order to derive KPN representations, like those

presented in Figure 5b-c, the compiler needs to be aware of the side effects of all

functions. For example, it has to make sure that function f2 does not modify the

array A, otherwise there would be a dependency (an additional channel in the KPN)

between processes f2 and f3 in Figure 5b. The dependence analysis should also

provide additional information, for example, that the sum function is only executed

every four iterations of the loop. This means that every four instances of f3 followed

by f4 can be executed in parallel. This is illustrated in Figure 11. A summarized

version of the CDFG is shown in Figure 11a. In this graph, data edges are annotated

with the variable that generates the dependency and, in the case of loop-carried de-

pendencies, with the distance of the dependency [54]. The distance of a dependency

tells after how many iterations a defined value will be actually used. With the de-

pendency information, it is possible to represent the precedence constraints along

the execution of the whole program as shown in Figure 11b. In the figure, n: f

represents the n-th execution of function f. With this partitioning, it is possible to

identify two different forms of parallelism: T1 and T2 represent TLP, whereas T3

represents DLP. This is a good example where flow and dependence analysis help

determining a partitioning that exposes coarse grained parallelism.
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Due to the complexity of static analyses, multiple research groups started to rely

on Dynamic Data Flow Analysis DDFA [7, 20, 76]. Unlike static analyses, where

dependencies are determined at compile time, DDFA uses traces obtained from pro-

filing runs. This analysis is of course not fully safe and the results need approval

from the developer. In general, DDFA is used to obtain a coarse measure of the data

flowing among different portions of the application in order to derive plausible par-

titions and in this way identify DLP, TLP, PLP and/or RLP. Being a profile-based

technique, the quality of DDFA depends on a careful selection of the input stimuli.

In interactive programming environments, DDFA can provide hints to the program-

mer about where to perform code modifications to expose more parallelism.

Summary

Traditional compilers work at the basic block granularity which is well suited for

ILP. MPSoC compilers in turn need to be equipped with powerful flow analysis

techniques, that allow to partition the application into a suitable granularity. This

granularity may not match any mainstream granularity and may depend on the par-

allel pattern. The partitioning step must break the application into code blocks from

which coarse level parallelism such as DLP, TLP, PLP or RLP can be extracted.

2.4 Software Distribution

The software distribution phase in an MPSoC compiler aims at deciding where and

when to execute tasks of a parallel application on the target platform. In this chapter

we discuss two forms of software distribution: (i) accelerator offloading in host-

centric programming models and (ii) mapping and scheduling of dataflow MoCs.

2.4.1 Accelerator Offloading

The use of specialized accelerators, such as DSPs and GPUs, has gained popularity

due to their high peak performance/watt ratio in contrast to homogeneous multi-

cores. However, the heterogeneity introduced by the accelerators makes the pro-

grammability of these platforms a complex task. Therefore, multiple host-centric

parallel programming models have been proposed to address the challenge of accel-

erator computing (see Section 2.1.1). These models can be classified as low-level,

such as OpenCL, or high-level directive-based, such as the OpenMP accelerator

model. Despite these efforts to provide a convenient programming model, develop-

ers still have to manually specify the code regions to be offloaded and the data to

be transferred, while at the same time taking into account that profitable accelerator

computing is enabled by abundant DLP and low offloading overhead.



Software Compilation Techniques for Heterogeneous Embedded Multi-Core Systems 23

The accelerator offloading analysis in MPSoC compilers is enabled by hierar-

chical IRs in which applications are decomposed into structured code regions or

blocks. An example of these IRs is the DFG introduced in Section 2.3.1, which has

been successfully used for accelerator offloading analysis in [9]. The use of hier-

archical IRs together with the architectural model of the target platform, enables

a divide-and-conquer approach in which every region (typically loops with DLP)

can be analyzed in isolation to reason about its potential performance improvement

when it is offloaded to a particular accelerator. On the one hand, the region-based

analysis allows to compare the performance of a particular region running on a host

core with the performance running on an accelerator device. On the other hand, this

approach allows to estimate the offloading overhead by looking at the incoming and

outgoing data dependencies of the region. Therefore, region-based analysis enables

MPSoC compilers to decide whether or not to offload a given region to a particular

accelerator, as it provides information about the key aspects for profitable accel-

erator computing, namely region execution performance and offloading overhead.

Finally, the compiler has to be also aware of the desired target programming model

to synthesize the appropriate code to offload code regions (see Section 2.5).

2.4.2 Mapping and Scheduling of Dataflow MoCs

Mapping and scheduling in a traditional compiler is done in the backend provided

a description of the architecture. Mapping refers to the process of assigning opera-

tions to instructions and functional units (code selection) and variables to registers

(register allocation). Scheduling refers to the process of organizing the instructions

in a timed sequence. The schedule can be computed statically (for RISC, DSPs

and VLIWs) or dynamically at runtime (for Superscalars), whereas the mapping of

operations to instructions is always computed statically. The main purpose of map-

ping and scheduling in single-core compilers had been always to improve perfor-

mance. Code size is also an important objective for embedded processors (specially

VLIW). Only recently, power consumption became an issue. However, the reduc-

tion in power consumption with backend techniques does not have a big impact on

the overall system power consumption.

In an MPSoC compiler similar operations have to be performed. Mapping, in this

context, refers to the process of assigning code blocks to PEs and logical commu-

nication links to physical ones. In contrast to the single-core case, mapping can be

also dynamic. A code block could be mapped at runtime to different PEs, depend-

ing on availability of resources. Scheduling for multi-cores has a similar meaning as

for single-core, but instead of scheduling instructions, the compiler has to schedule

code blocks. The presence of different application classes, e.g. real time, add com-

plexity to the optimizations in the compiler. Particularly, there is much more room

for improving power consumption in an MPSoC; after all, power consumption is

one of the MPSoC drivers in the first place.
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(a) Partition with PLP, direct implementation of Figure 5b

(b) Full Parallelism Exposed in Figure 11b

Fig. 12: Mapping and Scheduling Examples for Code in Figure 5a

The result of scheduling and mapping is typically represented in form of a Gantt

Chart, similar to the ones presented in Figure 12. The PEs are represented in the

vertical axis and the time in the horizontal axis. Code blocks are located in the plane,

according to the mapping and the scheduling information. In Figure 12a functions

f1 and f2 are mapped to PE 1, the functions f3 and sum are mapped to PE 2 and

function f4 to processor PE 3.

Given that code blocks have a higher time variability than instructions, schedul-

ing can be rarely performed statically. Pure static scheduling requires full knowl-

edge of the timing behavior and is only possible for very predictable architectures

and regular computations, like in the case of systolic arrays [42]. If it is not possible

to obtain a pure static schedule, some kind of synchronization is needed. Different

scheduling approaches require different synchronization schemes with different as-

sociated performance overhead. In the example, the timing information of task T3

is not known precisely. Therefore the exact starting time of function sum cannot be

determined and a synchronization primitive has to be inserted to ensure correctness

of the result. In this example, a simple barrier is enough in order to ensure that the

execution of T3 in PE 3, PE 4 and PE 5 has finished before executing function sum.

Scheduling Approaches

Which scheduling approach to utilize depends on the characteristics of the applica-

tion and the properties of the underlying MoC used to describe it. Apart from pure

static schedules, one can distinguish among the following scheduling approaches:
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• Self-timed Scheduling: Typical for applications modeled with dataflow MoCs.

A self-timed schedule is close to a static one. Once a static schedule is computed,

the code blocks are ordered on the corresponding PEs, and synchronization prim-

itives are inserted that ensure the presence of data for the computation. This kind

of scheduling is used for SDF applications. For a more detailed discussion the

reader is referred to [68].

• Quasi-static Scheduling: Used in the case where control paths introduce a pre-

dictable time variation. In this approach, unbalanced control paths are balanced

and a self-timed schedule is computed. Quasi-static scheduling for dynamically

parameterized SDF graphs is explored in [14] (see also Chapter [75]).

• Dynamic Scheduling: Used when the timing behavior of the application is dif-

ficult to predict and/or when the number of applications is not known in advance

(like in the case of general purpose computing). The scheduling overhead is usu-

ally higher, but so is also the average utilization of the processors in the platform.

There are many dynamic scheduling policies. Fair queue scheduling is common

in general purpose operating systems (OSs), whereas different flavors of priority

based scheduling are typically used in embedded systems with real time con-

straints, e.g., Rate Monotonic (RM) and Earliest Deadline First (EDF).

• Hybrid Scheduling: Term used to refer to scheduling approaches in which sev-

eral static or self-timed schedules are computed for a given application at compile

time, and are switched dynamically at run-time depending on the scenario [27].

This approach is applied to streaming multimedia applications, and allows to

adapt at runtime making it possible to save energy [52].

Virtually every MPSoC platform provides support for implementing mapping

and scheduling. The support can be provided in software or in hardware and might

restrict the available policies that can be implemented. This has to be taken into

account by the compiler, which needs to generate/synthesize appropriate code (see

Section 2.5).

Computing a Schedule

Independent of which scheduling approach and how this is supported, the MPSoC

compiler has to compute a schedule (or several of them). Finding an optimal one

in terms of performance is known to be NP-complete even for simple Directed

Acyclic Graphs (DAGs). Single-core compilers therefore employ heuristics, most

of them being derived from the classical List Scheduling algorithm [32]. Computing

a schedule for multi-core platforms is by no means simpler. The requirements and

characteristics of the schedule depend on the underlying MoC with which the ap-

plication was modeled. In this chapter we distinguish between application modeled

with centralized and distributed control flow.
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Centralized control flow:

Single-core compilers deal with centralized control flow, i.e., instructions are placed

in memory and a central entity dictates which instructions to execute next, e.g.,

the program counter generator. The scheduler in a traditional single-core compiler

leaves the control decisions out of the analysis and focus on scheduling instruc-

tions inside a BB. Since the control flow inside a BB is linear, there are no circular

data dependencies and the data dependence graph is therefore acyclic. The resulting

DAG is typically scheduled with a variant of the list scheduling algorithm.

In order to achieve a higher level of parallelism, single-core compilers apply

different techniques that go beyond BBs. Typical examples of this techniques in-

clude loop unrolling and software pipelining [45]. An extreme example of loop un-

rolling was introduced in the previous section, where the dependence graph in Fig-

ure 11a was completely unrolled in Figure 11b. Note that the graph in Figure 11b

is acyclic and could be scheduled with the list scheduling algorithm. The results

of list scheduling with 5 resources would look similar to the scheduling traces in

Figure 12b.

In principle, the same scheduling approach can be used for multi-core. However,

since every core in a MPSoC has its own control flow, a mechanism has to be imple-

mented to transfer control. In the example in Figure 12b, some core has the control

code for the loop in line 14 of Figure 5 and activates the four parallel tasks T3.

There are several ways of handling this distribution of control. Parallel program-

ming models like Pthreads and OpenMP offer source level primitives to implement

forks and joins. Some academic research platforms offer dedicated instructions to

send so-called control tokens among processors [81].

Distributed control flow:

Parallel programming models based on concurrent MoCs like the ones discussed

in Section 2.1.2 feature distributed control flow. For applications represented in

this way, the issue of synchronization is greatly simplified and can be added to

the logic of the channel implementation. Simple applications represented as acyclic

task precedence graphs with predictable timing behavior can be scheduled with a

list scheduling algorithm or with one of many other available algorithms for DAGs.

For a survey on DAG scheduling algorithms the reader is referred to [43]. Applica-

tions, where precedence constraints are not explicit in the programming model and

where communication can be control dependent, e.g., KPNs are usually scheduled

dynamically. Finally, for applications represented as SDF, a self-timed schedule can

be easily computed.

• KPN scheduling: KPNs are usually scheduled dynamically. There are two major

ways of scheduling a KPN: data and demand driven. In data driven scheduling,

every process in the KPN with available data at its input is in the ready state. A

dynamic scheduler then decides which process gets executed on which processor

at runtime. A demand driven scheduler first schedules processes with no output
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(a) Derived DAG with r = 1 3 2T

(b) Possible Schedule on Two Cores

Fig. 13: Example of SDF scheduling, for SDF in Figure 4b

channels. These processes execute until a read blocks in one of the input chan-

nels. The scheduler triggers then only the processes from which data has been

requested (demanded). This process continues recursively. For further details the

reader is referred to [61].

• SDF scheduling: As mentioned before, SDFs are usually scheduled using a self-

timed schedule, which requires a static schedule to be computed in the first place.

There are two major types of schedules: blocked and non-blocked schedules. In

the former, a schedule for one cycle is computed and is repeated without over-

lapping, whereas in the latter, the execution of different iterations of the graph

are allowed to overlap. For computing a blocked schedule, a complete cycle in

the SDF has to be determined. A complete cycle is a sequence of actor firings

that brings the SDF to its initial state. Finding a complete cycles requires that

(i) enough initial tokens are provided in the edges and (ii) there is a non trivial

solution for the system of equations Γ · r = 0, where [Γi j] = pi j − ci j, and pi j ci j

are the number of tokens that actor i produces to and consumes from channel j

respectively. In the literature, r is called repetition vector and Γ topology matrix.

As an example, consider the SDF in Figure 4b. This SDF has a topology matrix:

Γ =









3 −1 0

6 −2 0

0 2 −3

−2 0 1









and a repetition vector is r = [1 3 2]T . By unfolding the SDF according to its

repetition vector and removing the feedback edges (those with delay tokens) one

obtains the DAG shown in Figure 13a with a possible schedule on two cores

sketched in Figure 13b. Using this procedure, the problem of scheduling an SDF

is turned into DAG scheduling, and once again, one of the many heuristics for

DAGs can be used. See Chapter [29] for further details.
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For general application models and with the aim to obtain better results than with

human-designed heuristics, several optimization methods are used. Integer Linear

Programming is used in [59] and a combination of Integer Linear Programming and

Constraint Programming (CP) is employed in [13]. Genetic Algorithms have also

been used for this purpose, see Chapter [12]. Apart from scheduling and mapping

code blocks and communication, a compiler also needs to map data. Data locality is

already an issue for single-core systems with complex memory architectures: caches

and Scratch Pad Memories (SPM). In multi-core systems, maximizing data locality

and minimizing false sharing is an even bigger challenge [37].

Summary

Software distribution in the form of accelerator offloading and mapping and

scheduling is one of the major challenges of MPSoC compilers. Different applica-

tion constraints lead to new optimization objectives. Besides, different programming

models with their underlying MoC allow different scheduling approaches. Most of

these techniques work under the premise of accurate performance estimation (Sec-

tion 2.2) which is by itself a hard problem. In addition, due to the high heterogeneity

of signal processing multi-core systems, mapping of data represents a bigger chal-

lenge than in single-core systems.

2.5 Code Generation

The code generation phase of an MPSoC compiler is ad-hoc due to the heterogene-

ity of MPSoCs. To name a few examples: the cores are heterogeneous where the

programming models may differ, the communications networks (and thus the APIs)

are heterogeneous, and the OS-service libraries implementations can vary from one

to another. After the software parallelization and the distribution phases, the code

generation of an MPSoC compiler acts like a meta-compiler on top of multiple off-

the-shelf compilers of the target MPSoC, to coordinate the compilation process.

In this process, the code generator first performs a source-to-source transformation

of the input application (which is either a sequential code or an abstract dataflow

MoC), into a concrete parallel implementation, which is then further compiled with

the tool-chain (including assemblers, compilers and linkers) of the target MPSoC.

This tool-chain in turn can enable its own optimization features to further improve

the code quality.

During the source-to-source transformation multiple steps take place, such as

implementation of the parallel patterns according to the programming model, as-

signment of code blocks to cores, generation of the code for communication and

scheduling, linking with the low-level libraries, among others. The complexity of

the code generation process depends on the parallel programming model. For ex-
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ample, the code transformations for OpenMP are minimal, since it only implies in-

serting simple compiler directives. In contrast, other parallel programming models,

such as Pthreads or OpenCL require heavy program transformations. For example,

in OpenCL the kernels have to be extracted and the host code managing kernel ex-

ecution and data transfers has to be added. Similarly, for abstract dataflow MoCs,

the code generator has to make use of target specific OS APIs and libraries to create

concrete implementations of actors/processes and FIFO channels.

In an MPSoC, PEs will communicate with each other using the NoC, which re-

quires communication/synchronization primitives (e.g., semaphores, message pass-

ing) correctly set in place of the code blocks that the MPSoC compiler distributes to

the PEs. Again, due to the heterogeneous nature of the underlying architecture, the

same communication link may look very different in the implementation, e.g., when

the sending/receiving points are in different PEs. Embedded applications often need

to be implemented in a portable fashion for the sake of software re-use. Abstrac-

tion of the communication functions to a higher level into the programming model

is widely practiced, though it is still very ad-hoc and platform-specific. Recently,

the Multicore Association has published the first draft of Multicore Communica-

tions API (MCAPI), which is a message-passing API to capture the basic elements

of communication and synchronization that are required for closely distributed em-

bedded systems [55]. This might have been a good first step in this area.

As discussed in Section 2.4.2, the scheduling decision is a key factor in the MP-

SoC compiler, especially in dataflow MoCs for embedded computing where real-

time constraints have to be met. No matter which scheduling policy is determined

for the final design, the functionality has to be implemented, in hardware, or soft-

ware, or in a hybrid manner. A common approach is to use an off-the-shelf OS,

often an RTOS, to enable the scheduling. There are many commercial solutions

available such as QNX and WindRiver. The scheduler implementation in hardware

is not uncommon for embedded devices, as software solutions may lead to larger

overhead, which is not acceptable for RT-constrained embedded systems. Industry

and academia have delivered promising results in this area, though more success-

ful stories are still needed to justify this approach. A hybrid solution is a mixture,

where some acceleration for the scheduler is implemented in hardware while flex-

ibility is provided by software programmability, therefore customizing a trade-off

between efficiency and flexibility. If the scheduling is not helped by e.g., an OS or

a hardware scheduler, the code generation phase needs to generate or synthesize the

scheduler e.g., [21] and [44].

Summary

Code generation is a complicated process, where many efforts are made to hide the

compilation complexity via layered SW stacks and APIs. Heterogeneity will cause

ad-hoc tool-chains to exist for a long time. The complexity of the code generation

process depends of the parallel programming model.
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3 Case Studies

As discussed in Section 2, the complexity of MPSoC compilers grows rapidly com-

pared to single-core compilers. Nowadays, MPSoC compiler constructions for dif-

ferent industrial platforms and academic prototypes are still very much ad-hoc. This

section surveys some prominent examples to show the readers how concrete imple-

mentations address the various challenges of MPSoC compilers.

3.1 Academic Research

In academia, vast research efforts have been recently directed towards MPSoC com-

piler technologies. Since the topic is very heterogeneous in nature, it has caught the

attention of different research communities, such as real-time computing, compiler

optimization, parallelization and fast simulation. A considerable amount of efforts

have been invested in areas, such as MoCs, automatic parallelization and virtual

simulation platforms. Compared to their counterparts in industry, the academic re-

searchers focus mostly on the upstream of the MPSoC compilation flow, e.g., using

MoCs to model applications, automatic task-to-processor mapping, early system

performance estimation and holistic construction of MPSoC compilers.

3.1.1 SHAPES

SHAPES [60] is a European Union FP6 Integrated Project whose objective is to de-

velop a prototype of a tiled scalable hardware and software architecture for embed-

ded applications featuring inherent parallelism. The major SHAPES building block,

the RISC-DSP tile (RDT), is composed of an Atmel Magic VLIW floating-point

DSP, an ARM9 RISC processor, on-chip memory, and a network interface for on-

and off-chip communication. On the basis of RDTs and interconnect components,

the architecture can be easily scaled to meet the computational requirements.

The SHAPES framework is shown in Figure 14a. The starting point is the Model-

driven compiler/Functional simulator, which takes an application specification in

the form of process networks as input. High-level mapping exploration involves the

trace information from the Virtual Shapes Platform (VSP) and the performance re-

sults from the Analytical Estimator, based on multi-objective optimization consider-

ing throughput, delay, predictability and efficiency. With the mapping information,

the Hardware dependent Software (HdS) phase then generates the necessary dedi-

cated communication and synchronization primitives, together with OS services.

The central part of the SHAPES software environment is the Distributed Op-

eration Layer (DOL) framework [67]. The DOL structure and interactions with

other tools and elements are shown in the Figure 14b. DOL mainly provides the

MPSoC software developers two main services: system level performance analysis

and process-to-processor mapping exploration.
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(a) Software Development Environment (b) DOL Framework

Fig. 14: SHAPES Design Flow

• DOL Programming Model: DOL uses process networks as its programming

model — the structure of the application is specified in an XML format con-

sisting of processes, software channels and connections, while the application

functionality is specified in C/C++ and process communications are performed

by the DOL APIs, e.g., DOL read() and DOL write(). DOL uses a special

iterator element to allow the user to instantiate several processes of the same

type. For the process functionality in C/C++, a set of coding rules needs to be

followed. In each process there must be an init and a fire procedure. The

init procedure allocates and initializes data, which is called once during the

application initialization. The fire procedure is called repeatedly afterwards.

• Architecture Description: DOL aims at mapping, therefore its architecture de-

scription abstracts away several details of the underlying platform. The XML

format contains three types of information: structural elements such as proces-

sors/memories, performance data such as bus throughputs, and parameters such

as memory sizes.

• Mapping Exploration: DOL mapping includes 2 phases: performance evaluation

and optimization. Performance evaluation collects the data from both analytical

performance evaluation and the simulation. The designer defines the optimization

objectives and DOL uses evolutionary algorithms to generate the mapping.

With the mapping descriptor the HdS layer generates hardware dependent im-

plementation codes and makefiles. Thereafter, the application can be compiled and

linked against communication libraries and OS services. The final binary can be

executed on the VSP or on the SHAPES hardware prototype.
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Fig. 15: Daedalus Framework

3.1.2 Daedalus

Daedalus framework [58] is a tool-flow developed at Leiden University for auto-

mated design, programming and implementation of MPSoCs starting at a high level

of abstraction. The Daedalus design-flow is shown in Figure 15. It consists of three

key tools, PNgen tool, Sesame (Simulation of Embedded System Architectures for

Multilevel Exploration) and ESPAM (Embedded System-level Platform synthesis

and Application Modeling), which work together to offer the designers a single en-

vironment for rapid system-level architectural exploration and automated program-

ming and prototyping of multimedia MPSoC architectures. The PNgen tool auto-

matically transforms the sequential application into a parallel specification in the

form of Polyhedral Process Networks (PPNs), which are a subset of KPNs. The code

that can be expressed in PPNs should be analyzable in the polyhedral model [48],

which implies that the input sequential code is restricted to Static Affine Nested Loop

Programs (SANLP). Then, the PPNs are used by Sesame modeling and simulation

tool to perform a system-level design space exploration (DSE), where the perfor-

mance of multiple mappings, HW/SW partitions and target platform architectures

is quickly evaluated using high-level models from the IP library. Finally, the most

promising mapping and platform specifications resulting from the DSE, together

with the application specification (PPN) are the inputs to the ESPAM synthesis tool.

The ESPAM tool uses these inputs along with the low-level RTL models from the

IP library to automatically generate synthesizable VHDL code that implements the

hardware architecture. It also generates, from the XML specification of the appli-

cation, the C code for those processes that are mapped on to programmable cores,

including the code for synchronization of the communication between the proces-

sors. Furthermore, commercial synthesis tools and the component compilers can be

used to process the outputs for fast hardware/software prototyping.
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Fig. 16: PREESM Framework

3.1.3 PREESM

The Parallel and Real-time Embedded Executives Scheduling Method (PREESM)

is a framework for rapid prototyping and code generation, whose primary target is

multi-core DSP platforms [62]. PREESM is developed at the Institute of Electronics

and Telecommunications-Rennes (IETR) in collaboration with Texas Instruments.

The PREESM framework is shown in Figure 16. It takes as input an algorithm spec-

ification, an architectural model and a scenario that links the algorithm with the

architecture. The Parameterized and Interfaced Synchronous Dataflow (PiSDF) is

the MoC used here for the algorithm specification. PiSDF is an extension of SDF

in which the production and consumption rates of the actors and the FIFO delays

can be parameterized. The System-Level Architecture Model (S-LAM) describes

the target platform as a graph in which the processing elements offer the processing

capabilities for the actors and the communication elements offer the FIFO commu-

nication capabilities. The algorithm and architecture models are then transformed

to enable scheduling and memory optimizations. On the one hand, the scheduling

optimization aims at providing a static schedule that is deadlock-free. On the other

hand, the memory optimization aims at reducing the memory requirements by al-

lowing the re-utilization of memory for the FIFOs during code generation. Finally,

the PREESM simulation facilities allow to asses the system performance by pro-

viding a gantt chart of the parallel execution of the algorithm, speedup estimates

and memory requirements. Finally, the code generation stage emits the software

for the selected multi-core DSP platform, which includes the necessary instruc-

tions for proper inter-core communication, cache management and synchronization.

PREESM has been successfully evaluated in commercial multi-core DSP platforms,

such as the ones from the Keystone family from Texas Instruments described in Sec-

tion 3.2.1.
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3.2 Industrial Case Studies

Several large semiconductor companies have already a few mature product lines

aiming at different segments of the market due to the application-specific nature of

the embedded devices. The stringent time-to-market window calls for the necessity

to adopt platform-based MPSoC design methodology. That is, a new generation of

an MPSoC architecture is based on a previous successful model with some evo-

lutionary improvements. Compared to their counterparts in academia, the MPSoC

software architects in industry focus more on the software tools re-use (considering

the huge amount of certified code), providing abstractions and conveniences to the

programmers for software development and efficient code-generation.

3.2.1 TI Keystone Multi-Core DSP Platform

The Keystone is a family of MPSoCs from Texas Instruments for high performance

systems [73], which integrates RISC and DSP cores together with application spe-

cific co-processors and peripherals. The application domains of the Keystone plat-

forms include high performance computing, wireless communications, network-

ing, and audio/video processing. The Keystone architecture provides a high internal

bandwidth by allowing non-blocking accesses to the processing cores, co-processors

and peripherals. This is enabled by four main components: Multicore Navigator,

TeraNet, Multicore Shared Memory Controller (MSMC) and HyperLink. The Mul-

ticore Navigator is a hardware controller for packet-based communication. Typical

use cases are: message exchange or data transfer among cores, and data transfers be-

tween cores and co-processors or peripherals. The TeraNet is a low latency switch

fabric that allows the movement of the Multicore Navigator packets among the main

components within the Keystone platforms. The Multicore Shared Memory Con-

troller allows to access the shared memory without using the TeraNet, which avoids

interference with the packet movement. Finally, the HyperLink allows to intercon-

nect multiple Keystone MPSoC.

Currently, there are two generations of the Keystone family. In the first gener-

ation, only DSPs were integrated as programmable cores. The architecture of the

DSPs used in the Keystone platforms is called C66x. One interesting feature of

the C66x cores is that they have both fixed-point and floating-point computation

capabilities. In the second generation, the major enhancement is the integration of

Cortex-A15 multi-core processors. In addition, the storage and bandwidth capacities

of the main components were increased. Figure 17a shows the 66AK2H12 devices

of the Keystone II family. This device offers a quad-core Cortex-A15 processor and

eight C66x DSP cores, along with the main components of the Keystone family.

Figure 17b illustrates the software stack that TI provides for the Keystone plat-

forms [74]. This software stack is divided into two coordinated sub-stacks, one for

the ARM cores and another one for DSP cores. TI promotes the philosophy of ab-

stractions among the software layers to hide just enough details for the developers

at different roles/layers.
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(a) 66AK2H12 Keystone II Device (b) Keystone Software Stack

Fig. 17: TI Keystone Multi-Core DSP Platform

• OS Level: At the OS level the choice on the ARM side is Linux and on the

DSP side is the TI-RTOS kernel (formerly known as SYS BIOS, which was the

successor of DSP/BIOS) [74]. The TI-RTOS is optimized for real-time multi-

tasking and scheduling. Along with the OS, low-level device drivers are provided

to enable the use of hardware components in the Keystone platforms by higher

software layers.

• Software Platform Level: The support for multi-core programming is at software

platform level, including the TI IPC package [74] for inter-core communication

and the support for industry standards, such as OpenMP and OpenCL. At this

level there are also packages that enable tools for debugging, instrumentation

and multi-core performance.

• Algorithm Level: Algorithms/codecs are usually allocated onto the DSP due to

its computation power. At this level TI provides optimized libraries for multi-

ple domains from general purpose math and signal processing libraries (e.g.,

DSPLIB and MATHLIB) to application specific libraries (e.g., IMGLIB and

FFTLIB) [74].

• Application Level: The application developer uses the software layers introduced

earlier to build the final system. Third-party tools that provide valuable add-ons

such as GUI or streaming frameworks can be ported here.

The abstractions among the layers are realized by the standardized interfaces.

Therefore, different teams can work in different domains at the same time thus

boosting the productivity. Moreover, this also enables the possibility of third-parties

participating in the TI software stack to provide valuable/commercial solutions, e.g.,

multi-core development tools and application-level GUI frameworks.
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Fig. 18: SLX Tool Suite

3.2.2 Silexica: SLX Tool Suite

Silexica (SLX) [66] is a provider of software automation tools that addresses the

increasingly complex task of multi-core programming in a variety of application

domains, such as embedded vision, automotive and wireless telecommunications.

Silexica is a spin-off of the Institute for Communication Technologies and Embed-

ded Systems (ICE) at RWTH Aachen University. Its core technology is the SLX Tool

Suite shown in Figure 18. This tool suite has its roots in the academic project called

MPSoC Application Programming Studio (MAPS), which started over a decade ago

at ICE. The SLX Tool Suite is an excellent example of the adoption by the industry

of the MPSoC compiler technologies described in this chapter, since it addresses the

challenges of application modeling, platform description, software parallelization,

software distribution, and code generation.

The SLX Tool Suite is composed of three main tools: SLX Parallelizer, SLX

Mapper and SLX Generator. For an effective target-specific analysis, this tool suite

uses fast and accurate software performance estimation technologies and an archi-

tectural model of the target platform. First, the SLX Parallelizer helps to migrate

legacy C/C++ applications into the multi-core domain by identifying profitable par-

allelization opportunities. This parallelizer focuses on parallel patterns, such as DLP,

PLP and TLP (see Section 2.3.3). As an output it provides source level information,

which helps developers to understand the parallelization opportunities and its po-

tential. In addition, the parallelized application can be exported using industry stan-

dards, such as OpenMP, or as the SLX specification called C for Process Networks

(CPN). CPN is a language extension that allows to specify applications as dataflow

MoCs (e.g KPNs). The CPN specification can be either derived from the SLX Par-

allelizer analysis or manually by the developer. The SLX Mapper performs the task

of software distribution by analyzing the computation and communication behavior

of the CPN specification, to automatically distribute the processes on the platform

cores and the FIFO channels on the platform interconnects. Finally, the SLX Gener-

ator is a source-to-source translation tool that takes both the CPN and the mapping

specification generated by the SLX Mapper, to emit architecture-aware code, which

is further compiled with the native tool-chain of the target platform.
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4 Summary

In this chapter is presented an overview of the challenges for building MPSoC com-

pilers and described some of the techniques, both established and emerging, that

are being used to leverage the computing power of current and yet to come MPSoC

platforms. The chapter concluded with selected academic and industrial examples

that show how the concepts are applied to real systems.

It can be observed how new programming models are being proposed that change

the requirements of the MPSoC compiler. It was discussed that, independent of the

programming model, an MPSoC compiler has to find a suitable granularity to ex-

pose parallelism beyond the instruction level (ILP), demanding advanced analysis

of the data and control flows. Software distribution is one of the most complex tasks

of the MPSoC compiler and can only be achieved successfully with accurate per-

formance estimation or simulation. Most of these analyses are target-specific, hence

the MPSoC itself needs to be abstracted and fed to the compiler. With this infor-

mation, the compiler can tune the different optimizations to the target MPSoC and

finally generate executable code.

The whole flow shares similarities with that of a traditional single-core compiler,

but is much more complex in the case of a multi-core embedded system. In this

chapter it was presented some foundations and described approaches to deal with

these problems. However, there is still a great amount of research to be done to

make the leap from a high level specification to executable code as transparent as it

is in the single-core case.
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