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Abstract
Each of the popular tensor frameworks from the machine
learning domain comes with its own language for express-
ing tensor kernels. Since these tensor languages lack pre-
cise specifications, it is impossible to understand and reason
about tensor kernels that exhibit unexpected behaviour. In
this paper, we give examples of such kernels.

The tensor languages are superficially similar to the well-
known functional array languages, for which formal defini-
tions often exist. However, the tensor languages are inher-
ently imperative. In this paper we present TeIL, an imperative
tensor intermediate language with precise formal semantics.
For the popular tensor languages, TeIL can serve as a com-
mon ground on the basis of which precise reasoning about
kernels becomes possible. Based on TeIL’s formal semantics
we develop a type-safety result in the Coq proof assistant.

CCS Concepts • Software and its engineering → Se-
mantics; Domain specific languages.

Keywords tensor frameworks, tensor kernels, tensor ex-
pressions, formal specification, formal proof, Coq

ACM Reference Format:
Norman A. Rink and Jeronimo Castrillon. 2019. TeIL: A Type-Safe
Imperative Tensor Intermediate Language. In Proceedings of the
6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming (ARRAY ’19), June 22, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3315454.3329959

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ARRAY ’19, June 22, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6717-2/19/06. . . $15.00
https://doi.org/10.1145/3315454.3329959

1 Introduction
In recent years, many frameworks have appeared that sup-
port the development of applications in which tensors are
the central data structures [2, 3, 5, 16, 18, 19, 26, 27, 30]. Most
of these frameworks target the machine learning domain,
and one main motivation for using such a framework is the
promise of an easy route to efficient application deployment
on parallel and heterogeneous platforms. Each framework
typically comes with its own programming language, a tensor
language designed specifically for expressing tensor kernels.
Tensors are multi-dimensional arrays for which certain

natural collective (viz. global) operations are defined. Collec-
tive operations can be expressed without explicitly indexing
into an array or tensor. Prominent examples of collective
operations are (1) element-wise arithmetic and (2) the reduc-
tion of a tensor along a given dimension. Writing programs
with collective operations, as is possible for many relevant
tensor kernels in the machine learning domain, has advan-
tages for program analysis and code generation: the absence
of explicit indexing eases analyses and can thus help with
parallelization, and optimization in general.
Superficially, tensor languages have much in common

with array languages. There is, however, one fundamen-
tal difference between the array languages from the litera-
ture [9, 12, 13, 15, 22, 23, 25] and the tensor languages from
recent frameworks: while most array languages are func-
tional, the tensor languages are inherently imperative. This
is mostly unsurprising for two reasons. First, many of the
tensor languages appear to be, at least syntactically, dialects
of Python. Second, many commonly used platforms for het-
erogeneous computing are directly programmable through
(relatively low-level) imperative languages.

While typed functional languages generally enjoy type-
safety properties, which have been re-stated and proven
for functional array languages [9, 24, 29], to the best of our
knowledge, no results on type-safety have appeared for im-
perative tensor languages. Of a type-safe imperative tensor
language one would expect that no out-of-bounds accesses
occur during the execution of a well-typed tensor kernel.
This can of course be ensured by inserting dynamic bounds
checks [11, 12, 22]. Indeed, when arbitrary expressions are
allowed as indices into tensors, the absence of out-of-bounds
accesses is impossible to establish statically. However, when
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Figure 1. Guarding code generation with TeIL.

only collective tensor operations are allowed, static type-
safety should hold.

In this paper we propose TeIL, a Tensor Intermediate Lan-
guage that is imperative and type-safe, in the sense that there
are no out-of-bounds accesses in well-typed TeIL programs.
TeIL is intended to be a smallest common denominator of
recent imperative tensor languages, and of newly emerging
ones. As such, we do not expect that all programs that can
be expressed in any of the commonly used tensor languages
can also be lowered to TeIL.1 Instead, successfully lowering a
tensor kernel to TeIL should be considered a guarantee that
executing the kernel does not cause out-of-bounds accesses.
Although we have implemented the generation of low-

level C code from TeIL, we do not suggest that TeIL should
replace existing code generators in tensor frameworks. In-
stead, as Figure 1 illustrates, TeIL can be used to guard ex-
isting code generation processes whenever a guarantee of
type-safety is needed, for example in safety-critical applica-
tions such as autonomous vehicles or in security-sensitive
processing of customer or patient data.

Establishing type-safety for TeIL, of course, requires that
the language be formally specified, which makes TeIL at-
tractive to users and implementers of tensor languages alike.
Users can unambiguously reason about tensor kernels in
terms of TeIL’s semantics. Implementers can use TeIL as
a tool for quality assurance: if a kernel written in a ten-
sor language can be lowered to TeIL but is not accepted by
the original language processor, this may hint at a bug in
the language implementation. This may of course also be
due to a mismatch between the semantics of the original
tensor language and TeIL. We will see examples of prac-
tically relevant kernels that can be expressed in TeIL but
that exhibit unexpected behaviour when processed within
the tensor framework in which the kernels were originally
implemented.

The specific contributions of this paper are as follows.
1 In particular, programs that are not built out of collective operations may
not be expressible in TeIL without adding further primitives to the language.

1. We show that commonly used tensor languages suffer
from a lack of clarity as far as their semantics are
concerned. This is evidenced by tensor kernels whose
semantics should be in general agreement with their
implementation language but that are rejected by the
language processor. (Section 2.)

2. We give a formal specification for the TeIL language,
including unambiguous definitions for common tensor
operations such as, e.g., reduction or the tensor product.
The previously introduced problematic kernels can be
expressed correctly in TeIL. (Section 3.)

3. We formally establish, in the Coq proof assistant [28],
type-safety for a core of TeIL. While slightly less flexi-
ble, the core language can express the same programs
as full TeIL. (Section 4.)

4. TeIL can be used effectively as an intermediate lan-
guage in code generation. To demonstrate this, we
have implemented an operator language that is low-
ered to TeIL, which in turn is lowered to C. (Section 5.)

Our formal development in Coq and the implementation
of our operator language are publicly available.2

2 Kernels with Unexpected Behaviour
In this section we study a number of tensor kernels, imple-
mented in the following frameworks: The Tensor Algebra
Compiler (TACO), TVM, and Tensor Comprehensions (TC).3
For the given kernels either the behaviour of the language
processor or that of the generated executable kernel code
differs from what the user would expect. In the absence of
precise specifications for tensor languages, the user’s expec-
tations can only be based on how a tensor framework reacts
to similar kernels or on the typical behaviour of natural
tensor operations.

2.1 The Tensor Algebra Compiler (TACO)
The TACO [16] documentation includes the tensor kernel
reproduced in Figure 2a. The symbol B denotes a three-
dimensional tensor that is multiplied with the vector C. The
result is a matrix A that is indexed with i and j. This binds
occurrences of i and j on the right-hand side, and thus leaves
k the only free index on the right-hand side. TACO employs
the convention that free indices are summed over. Hence, the
assignment in Figure 2a expresses the mathematical formula
Ai j =

∑n
k=1 Bi jkCk . This is meaningful only if the size of the

vector C and the size of the third dimension of B (both of
which are indexed by k) are both equal to n. The sizes of ten-
sor dimensions are specified in the declarations of tensors,
2 Coq development: https://github.com/normanrink/TensorIR.
Operator language: https://github.com/normanrink/cfdlang/tree/operators.
3The following versions are used:
TACO (https://github.com/tensor-compiler/taco) commit afbd65c8b9;
TVM (https://github.com/dmlc/tvm) commit 16abe31c92;
TC (https://github.com/facebookresearch/TensorComprehensions) commit
220b590264.
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A(i,j) = B(i,j,k) * C(k)

(a) Tensor-vector multiplication.

A(i,j) = B(i,j,k) * C(i)

(b) Summation over index k.

A(i,j) = B(k,j,i) * C(i)

(c) Indices of B permuted.

Figure 2. Tensor assignments and expressions in TACO.

m, n = tvm.var('m'), tvm.var('n')
h = tvm.var('h')
A = tvm.placeholder((m,h), name='A')
B = tvm.placeholder((n,h), name='B')
k = tvm.reduce_axis((0, h), name='k')
C = tvm.compute((m, n), lambda y, x:

tvm.sum(A[k, y] * B[k, x], axis=k))

(a) Incorrect declarations of the dimensions of A and B.

m, n = tvm.var('m'), tvm.var('n')
h = tvm.var('h')
A = tvm.placeholder((h,m), name='A')
B = tvm.placeholder((h,n), name='B')
k = tvm.reduce_axis((0, h), name='k')
C = tvm.compute((m, n), lambda y, x:

tvm.sum(A[k, y] * B[k, x], axis=k))

(b) Correct declarations of A and B.

Figure 3. Transposed matrix multiplication in TVM.

def fun(float(m) B, float(m) C) -> (A) {
A(i) = B(i)
A(j) += C(j) }

(a) Implementation rejected by TC.

def fun(float(m) B, float(m) C) -> (A) {
A(i) = B(i)
A(i) += C(i) }

(b) Implementation accepted by TC.

Figure 4. Element-wise incrementing in TC.

which we have omitted in Figure 2. If there is a mismatch in
the sizes of dimensions that are summed over, TACO rejects
the kernel and issues an appropriate error message.

In the kernel in Figure 2b, the index i occurs twice on the
right-hand side but is bound and hence not summed over.
It is still checked that the sizes of the dimensions indexed
with i match. The index k is free and hence summed over.
However, since k occurs only once, no check is needed for
the dimension indexed with k.
The kernel in Figure 2c is arrived at by permuting the

indices of B. The expectation is again that the free index k
should be summed over. However, TACO apparently loops
endlessly when compiling the kernel in Figure 2c, producing
neither output nor error messages. Since the kernel can be
given a meaning that seems to be in agreement with TACO’s
semantics, it is likely that the looping is caused by a bug in
the implementation of TACO. However, it is equally likely
that the user’s intuitive understanding of TACO’s semantics
is incomplete and that the kernel should indeed be rejected.

2.2 TVM
A recent publication on the TVM deep learning compiler
stack [5] includes an example kernel for the transposed mul-
tiplication of matrices A and B, which is reproduced in Fig-
ure 3a. The matrix C that is computed by this kernel can be
expressed mathematically as C = AT B.
While the lambda expression in the definition of C per-

forms the correct summation over the index k, the sizes of
the dimensions of A and B appear to have been swapped.

The first dimension of A has size m, and the first dimension
of B has size n. However, in computing C, these dimensions
are traversed with the index k that ranges from zero to h.
If h is large compared with m, n, evaluating C produces an
out-of-bounds memory access that results in a segmentation
fault. Almost worse, when h is not large enough to cause a
segmentation fault, the lambda expression in the definition
of C silently computes incorrect results.
From this behaviour it is clear that TVM does not check

the dimensions of tensors against the variables used to index
them. This is somewhat surprising, given that TVM does
check the dimensions of tensors that are given as input to
compiled kernels when the kernels are executed.

The corrected version of the transposed matrix multiplica-
tion is given in Figure 3b. The only change from Figure 3a is
in the order of the sizes of the dimensions with which A and B
are declared. There is of course a possibility that the kernel in
Figure 3b is not in fact what the user had intended. Nonethe-
less, it remains unsafe to execute the kernel in Figure 3a, and
the user would benefit from this being detected.

2.3 Tensor Comprehensions (TC)
The Tensor Comprehensions (TC) framework [30] accepts all
of the tensor kernels given so far, and the semantics are
aligned with the user’s expectations. In particular, TC cir-
cumvents out-of-bounds accesses in the kernel in Figure 3a.
This is due to the range inference algorithm that TC employs
to determine the ranges of indices used in tensor expres-
sions. Whenever TC can successfully infer ranges, it does
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program ::= alloc stmt

alloc ::= allocx : ῑ
stmt ::= x = e

e ::= x | (e) | add e e | mul e e |

prod e e | red+ i e | transp i i e |

diag i i e | expa i i e | proj i i e

ῑ, κ̄ ::= [i, . . . , i]

Figure 5. Syntax of TeIL programs.

so conservatively in order to avoid out-of-bounds accesses.
Specifically, after the kernel in Figure 3a has been translated
into TC, the upper bound min(m,n) is inferred for the index
k. Note also that TC generally issues a warning when it in-
fers ranges that cannot statically be guaranteed not to cause
out-of-bounds accesses at kernel runtime.

While TC’s range inference algorithm may be capable of
inferring ranges that mostly agree with the user’s intent, it
lacks a precise definition. This makes it impossible for the
user to understand whether unexpected behaviour of either
TC or of generated kernel code is intentional or not. Figure 4
underlines this. Both kernels in this figure initialize a vector
A with the vector B, and then increment each element of A
by the corresponding element in the vector C. TC rejects the
kernel in Figure 4a with an error message saying that the
variable j is undefined. The kernel in Figure 4b is accepted,
despite the fact that it expresses the same computation, albeit
using slightly different symbols. Without a precise specifi-
cation of the employed range inference algorithm, the user
is left wondering whether this behaviour is desired. As was
the case for TACO, it is of course perfectly possible that a
subtlety in TC’s semantics enforces this behaviour.

3 The TeIL Language
We have seen that mismatches between the expected and
actual behaviour of tensor kernels occur even for very simple
kernels, and are not limited to only a single tensor frame-
work. Without precise specifications for tensor frameworks
and languages, it is impossible to know whether unexpected
behaviour is the result of a genuine bug in the implemen-
tation or of a subtle design decision. This lack of clarity is
particularly troubling given the wide-spread adoption of
tensor frameworks, especially for machine learning applica-
tions that run in the data centre and, increasingly, also on
embedded devices [1, 5]. TeIL, as a formally specified and
type-safe language, attempts to introduce more clarity into
the reasoning about the behaviour of tensor kernels.

TeIL is designed to express typical tensor kernels that con-
sist of sequences of assignments of tensor expressions to

tensor variables, where expressions are formed from collec-
tive tensor operations. As an intermediate language, TeIL
resides at a fairly low level of abstraction. However, as we
introduce the details of the TeIL language, including formal
semantics, in this section, we will also see that TeIL can in
fact be used flexibly at different abstraction levels.

3.1 Syntax
Figure 5 gives the syntax of TeIL. For any entity z, we use
z to denote a sequence of similar entities. Thus, a program
consists of a sequence of allocations, followed by a sequence
of statements. Using the keyword alloc, an allocation de-
clares a tensor variable x of type ῑ. The type of a tensor is
a (finite) list of natural number literals i , in brackets.4 The
natural numbers in the list are the sizes of the dimensions
of the tensor x . Collectively they determine the shape of x .
Throughout this paper, natural numbers start from one (not
zero), and we denote this set of natural numbers as Nat. As
a consequence, dimensions of tensors cannot be empty.
Note that a scalar variable s is declared as an allocation

alloc s : [], i.e. a scalar is a tensor with type the empty list.
A statement assigns an expression e to a tensor variable

x . Expressions in TeIL are formed with built-in operations,
the meanings of which are explained in Section 3.3.

As can be seen from the examples in Section 2, the typical
tensor kernels that TeIL should be capable of expressing do
not necessarily contain explicit control flow. Therefore, the
TeIL language also does not include explicit control flow con-
structs. Note, however, that implicit control flow is present
in typical tensor kernels, and also in TeIL, in the form of
iterations over the index domains of tensor variables.

For similar reasons, TeIL does not allow user-defined func-
tions. As a relatively low-level imperative language, TeIL
ought not admit higher-order functions. The language can
easily be extended with first-order functions by introducing,
for example, global labels and jumps. Alternatively, every
TeIL program can be considered a function in its own right,
provided that some allocations are marked as function ar-
guments and return values. In this situation, considerations
of type-safety reduce to the treatment in the present paper.
Hence we omit further discussions of functions in TeIL.
Note that marking some allocations as inputs or outputs

of a tensor kernel, similar to function arguments and return
values, is required to pass data into and out of TeIL programs.
The passage of data is of course necessary in order to make
a TeIL program perform computations that are useful to the
outside world. However, for discussions of type-safety it is
irrelevant where the data for allocations comes from. We
therefore omit input and output markers from the presenta-
tion of TeIL in this paper.
4The notation ῑ is a minor deviation from our convention that overlined
entities denote sequences. By ῑ we mean a list of entities i (natural number
literals), enclosed in brackets. It is best to think of ῑ as special notation for
lists of natural numbers.
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3.2 Memory Model
Through the use of the alloc keyword, every memory allo-
cation in TeIL is associated with a unique name: the same
name may not be used again for another allocation. In TeIL’s
memory model, a name identifies a map from a list of indices
κ̄, i.e. a list of natural numbers, to a fixed target domain of
numbers, typically floating-point numbers in applications
involving tensors. We denote the target domain as D. Thus,
every name x declared in an allocation is bound to a map
such that x(κ̄) ∈ D, provided the map is defined for indices
κ̄. For most indices, this map will in fact not be defined: if x
is declared with allocx : ῑ, then x(κ̄) is defined precisely if
κ̄ ≤ ῑ, where lists are compared element-wise. The purpose
of TeIL’s type system, introduced in Section 3.4, is to ensure
that, even inside complex tensor expressions, allocations are
never accessed at indices for which they are not defined.

The collection of maps that are declared in the allocations
of a TeIL program are stored in the memory µ. An allocation
is retrieved from µ by its name, i.e. the name x from the pre-
vious paragraph refers to the object µ(x). Thus, the memory
µ is a function with the signature

µ : Name → (list of Nat) → D . (1)

We usually omit parentheses when evaluating functions at
arguments, i.e. µ(x) is written as µ x , and µ(x)(κ̄) as µ x κ̄.
Updating memory means that µ is replaced with a new

function µ ′. The smallest possible update changes the value
of µ at a fixed name y and indices η̄, i.e.

µ ′ x κ̄ =

{
r , if x = y and κ̄ = η̄
µ x κ̄ , otherwise ,

where r ∈ D. From this it is clear that in TeIL’s memory
model there is no aliasing between distinct names.
The described memory model is purposefully abstract.

By keeping the memory model abstract, the type-safety of
TeIL can be carried over to any lower-level language that is
obtained from TeIL by picking a concrete implementation
for the memory µ from Equation (1). In particular, TeIL can
be used to reason about tensor kernels in frameworks and
languages that are built on different memory models. Note
that while most frameworks assume a dense layout of tensors
in memory, TACO allows mixing of densely and sparsely
laid out dimensions even within the same tensor.
It has recently been pointed out that incompatibilities

of memory models can be a major source of performance
problems when translating between array languages [23]. To
avoid incompatibilities when translating to and from TeIL,
the abstract memory µ can be instantiated with a suitable
concrete implementation. This mechanism enables the use
of TeIL at different levels of abstraction.

3.3 Tensor Expressions
According to Figure 5, expressions in TeIL are formed by
combining variables x , parentheses, and the collective op-
erations add, mul, . . . , proj. Some operations also require
integer literals i as arguments. Figure 6 specifies the eval-
uation semantics of expressions in a denotational style. As
the signature of the double bracket in the top-left corner
of Figure 6 indicates, expressions are evaluated in a static
context (Γ), a memory (µ), and at a list of indices of natural
numbers. As before, lists of natural numbers are generally
denoted by ῑ. To be precise, the symbol ῑ in Figure 6 should
be thought of as ameta-variable (and not as a list of syntactic
entities, as in Figure 5).
The definitions for some expressions in Figure 6 require

that indices be mademore explicit, i.e. that lists ῑ be expanded
into their elements. In this case we enclose lists of natural
numbers in pairs of (single) brackets. An example of this ap-
pears in the definition of the transposition operation transp
that swaps the indices ji0 and ji1 , at positions i0 and i1 in the
list [j1, . . . , jk ]. Here, again, the indices j1, . . . , jk , and also i0
and i1, are meta-variables that stand in for concrete natural
numbers from Nat.
The definition of the operation diag also employs an ex-

panded list of indices [j1, . . . , jk ] to express that the diagonal
is taken of the argument expression e along the dimensions
at positions i0 and i1. The expa operation expands an expres-
sion e along the dimension at position i , i.e. for any value of
the index at position i , expa i n e takes the same value as e .
The projection proj, in a sense, is the inverse operation of
expa: it projects an expression e onto the slice at fixed index
m for the dimension at position i .

The operations add, mul are defined element-wise, except
that mul also denotes multiplication of a tensor expression e1
with a scalar e0. In the definition of the tensor product prod,
sometimes also referred to as the outer product, we use the
symbol # to denote the concatenation of two lists of indices.
The operation red+ computes the reduction of an expression
e by summing the slices of e along the dimension at posi-
tion i . Other reduction operations, e.g. product, minimum,
maximum, are defined analogously.
Finally, evaluating a variable x requires looking up the

name x in the memory µ.
To illustrate the evaluation semantics of expressions in

TeIL, let us look at the example of matrix multiplication. The
top pane of Figure 7 gives the TeIL kernel for the multiplica-
tion of matrices A and B. First, the outer product of A and
B is formed with prod. This results in a four-dimensional
tensor, of which a suitable diagonal is selected with diag.
Lastly, the index of the diagonal is summed over with a red+
operation. The result is then assigned to the matrix C . The
bottom pane of Figure 7 shows how the TeIL expression on
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J·K : Context → Memory → (list of Nat) → D

JxK Γ µ ῑ = µ x ῑ

J(e)K Γ µ ῑ = JeK Γ µ ῑ

Jadd e0 e1K Γ µ ῑ = Je0K Γ µ ῑ + Je1K Γ µ ῑ

Jmul e0 e1K Γ µ ῑ =
{

Je0K Γ µ [] · Je1K Γ µ ῑ , if typeΓ(e0) = []

Je0K Γ µ ῑ · Je1K Γ µ ῑ , otherwise
Jprod e0 e1K Γ µ (ῑ0#ῑ1) = Je0K Γ µ ῑ0 · Je1K Γ µ ῑ1 ,

if rankΓ(e0) = length(ῑ0) and rankΓ(e1) = length(ῑ1)

Jred+ i eK Γ µ [j1, . . . , ji−1, ji , . . . , jk ] =
∑n
m=1JeK Γ µ [j1, . . . , ji−1,m, ji , . . . , jk ] , if typeΓ(e) = [n1, . . . ,ni−1,n,ni+1, . . . ,nk+1]

Jtransp i0 i1 eK Γ µ [j1, . . . , ji0 , . . . , ji1 , . . . , jk ] =
JeK Γ µ [j1, . . . , ji1 , . . . , ji0 , . . . , jk ]

Jdiag i0 i1 eK Γ µ [j1, . . . , ji0−1, ji0 , ji0+1, . . . , ji1−1, ji1 . . . , jk ] =

JeK Γ µ [j1, . . . , ji0−1, ji0 , ji0+1, . . . , ji1−1, ji0 , ji1 . . . , jk ]

Jexpa i n eK Γ µ [j1, . . . , ji−1, ji , ji+1, . . . , jk ] =

JeK Γ µ [j1, . . . , ji−1, ji+1, . . . , jk ]

Jproj i m eK Γ µ [j1, . . . , ji−1, ji . . . , jk ] =

JeK Γ µ [j1, . . . , ji−1,m, ji , . . . , jk ]

Figure 6. Evaluation of tensor expressions in TeIL.

allocA : [l ,m]

allocB : [m,n]
allocC : [l ,n]

C = red+ 2 (diag 2 3 (prodAB))

Jred+ 2 (diag 2 3 (prodAB))K Γ µ [j1, j2]

=
∑
k

Jdiag 2 3 (prodAB)K Γ µ [j1,k, j2]

=
∑
k

JprodABK Γ µ [j1,k,k, j2]

=
∑
k

(
JAK Γ µ [j1,k]

)
·
(
JBK Γ µ [k, j2]

)
=
∑
k

(µ A [j1,k]) · (µ B [k, j2])

Figure 7. Matrix multiplication Cj1 j2 =
∑

k Aj1kBk j2 in TeIL.

the right-hand side of the assignment to C is evaluated ac-
cording to Figure 6. Each equality is obtained by applying
precisely one of the definitions in Figure 6.
Several meta-functions ease the definitions in Figure 6.

The function length yields the length of a list. The type of a
tensor expression is a list of natural numbers, also referred
to as the shape of the tensor expression. The precise typing
rules are presented in Section 3.4. For now, it suffices to know
that typing is syntax-directed, and hence computable. The
function typeΓ computes the type of an expression in the
context Γ, and rankΓ is defined as the composition

rankΓ = length ◦ typeΓ . (2)

TeIL’s syntax, as given in Figure 5, allows the nesting of
tensor operations in expressions. By restricting the syntax
such that only names are allowed as arguments of tensor
operations, one can lower the abstraction level of TeIL and

effectively turn it into a 3-address code with tensor vari-
ables, similar to the language for tensor expressions and
assignments in [27].

3.4 Static Semantics
Figure 8 gives the typing rules T-Var, T-Paren, . . . , T-Proj for
tensor expressions in TeIL. These rules make TeIL a type-
safe language, with respect to the evaluation semantics from
Figure 6. This is achieved essentially by carefully crafting
the typing rules such that no undefined values occur in the
evaluation of well-typed expressions according to the defini-
tions in Figure 6. We describe a formal proof of type-safety
for a core of TeIL in Section 4.
The rules OK-Stmt, . . . , OK-Prog in Figure 8 define the

judgement ok that must hold for well-formed TeIL programs.
Well-formed programs are sequences of well-formed (assign-
ment) statements, and are judged ok in the context Γallocs.
Note that allocs is a meta-variable that stands in for a spe-
cific instance of an entity with syntax alloc. Analogously,
stmts stands in for any entity with syntax stmt.
The context Γallocs is obtained from the sequence of allo-

cations allocs by adding to the context a mapping x 7→ ῑ
for each allocation allocx : ῑ in allocs. As stated before, all
names that appear in the allocations in a TeIL program are
required to be unique.

3.5 Program Evaluation
Figure 9 specifies how sequences of statements and full pro-
grams are evaluated. Evaluation proceeds by transforming
memory, as is to be expected of an imperative language. The
rule St-Stmt enforces that assignments only take place at
indices κ̄ that are within the bounds of the allocation for
the name x . This is expressed by the premise ∀κ̄ ≤ ῑ. κ̄ ∈

dom(µ x). The requirement ∀κ̄ ≤ ῑ. let rκ̄ = JeK Γ µ κ̄ implic-
itly enforces that indexing the tensor expression e at κ̄ yields
a well-defined result. The update to the memory µ, in the
conclusion of rule St-Stmt, takes place at the name x , for
which each index list κ̄ is then mapped to rκ̄ ∈ D.
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The memory µallocs in Figure 9 is formed analogously to
the context Γallocs in Figure 8. For each allocation allocx : ῑ
that appears in allocs, a map (list of Nat) → D is added to
the memory. The map is defined only for arguments κ̄ with
κ̄ ≤ ῑ. Note that, for the purpose of discussing type-safety,
the precise values taken by this map are not important.

3.6 Equational Reasoning
The specification of the tensor expressions in Figure 6 en-
ables equational reasoning that can validate optimizations
or, generally, transformations of tensor kernels expressed in
TeIL. We list only a few example equalities that can be de-
rived from the definitions in Figure 6. All of these examples
can be used to reduce the complexity of tensor expressions
and hence also the runtime of TeIL programs.

As already hinted at, projection is indeed the left-inverse
of expansion,

proj i m (expa i n e) � e . (3)

Transposing the dimensions that are involved in a diagonal
has no effect,

diag i0 i1 (transp i0 i1 e) � diag i0 i1 e . (4)

Finally, reducing along a constant dimension, as obtained
from the expa operation, can be done in constant time

red+ i (expa i n e) � n · e . (5)

Note that reduction is generally a O(n) operation. Analogous
statements hold for reductions that, instead of the sum, com-
pute the minimum, maximum, or product along a dimension.

3.7 Example Kernels
We demonstrate the usability of TeIL by expressing in it
the example kernels from Section 2. All of these kernels,
apart from the one corresponding to Figure 3a, are valid TeIL
programs whose semantics match the expected meanings of
the kernels as described in Section 2.

To simplify notation, we introduce tensor contraction as a
composed operation in TeIL,

contr i0 i1 e := red+ i0 (diag i0 i1 e) . (6)

It is clear from this definition that tensor contraction is a
reduction operation along two dimensions. Contraction is a
very natural operation: it generalizes the vector dot product
and matrix multiplication to higher-dimensional tensors.
The TeIL versions of the TACO kernels in Figure 2 can

then be written as in Figure 10a. Note that the allocations
for A, B, and C have been omitted, just as the declarations
were omitted in Figure 2.

The TVM kernel in Figure 3b can be expressed in TeIL as
shown in Figure 10b. Note that the equivalent of the TVM
kernel in Figure 3a would be rejected by TeIL as it violates
the typing rule T-Diag.
Both TC kernels from Figure 4 can be expressed in TeIL

as in Figure 10c. The problem with TC that it cannot make

sense of the index j in Figure 4a is of course avoided since
there is no explicit indexing in TeIL.
As a final example, independent of the pathological ker-

nels from Section 2, we look at element-wise operations in
TeIL that combine tensors of different dimensions. Specifi-
cally, Figure 11 demonstrates different ways of performing
element-wise addition between a two-dimensional tensor A
and a three-dimensional tensor B. The tensor C is obtained
by adding to A the projection of B onto its second slice, with
respect to its first dimension. This assumes 2 ≤ k (cf. rule T-
Proj in Figure 8). For the tensor D, we add to B the expansion
ofA. Choosing the natural number k as the second argument
of expa leads to a tensor the dimensions of which match
those of B. Hence element-wise addition with B is possible.

4 Verified Core-TeIL
This section introduces Core-TeIL and presents the formal
result of its type-safety. The formally verified core of TeIL
differs from full TeIL only in the flexibility with which the
individual dimensions of a tensor or tensor expression can be
addressed. This restricted flexibility greatly eases our formal
development in the Coq proof assistant [28]. At the same
time, no generality is lost: Core-TeIL can express the same
tensor operations as the full language.

4.1 Overview of Core-TeIL
The differences between Core-TeIL and full TeIL are best
understood by looking at those typing rules of Core-TeIL
that replace some of the rules for expression typing in full
TeIL. Figure 12 lists these rules.

The transp operation in Core-TeIL transposes adjacent
dimensions only. Hence, in Core-TeIL, the transp operation
only takes a single index argument i . No generality is lost by
this since any transposition can be expressed by composing
adjacent transpositions. Analogously, red+, diag, expa, and
proj loose their index arguments and only affect the first
dimension of a tensor expression (or the first pair of dimen-
sions in the case of diag). This, again, presents no loss of
generality: by pre- and post-composing any of these oper-
ations with suitable sequences of transpositions, the same
operations can be expressed as in full TeIL.

It is straightforward to adjust the definitions in Figure 6 to
the restrictions of Core-TeIL discussed in the previous para-
graph. The rules for judging statements and programs ok
(right-most column of Figure 8), as well as the rules for evalu-
ating statements and programs (Figure 9) remain unchanged
in Core-TeIL.

4.2 Formal Results and Type-Safety
The definitions in Figure 6 rely on the existence of a func-
tion typeΓ that computes the type of a tensor expression in
the context Γ. In Section 3.3, we used the observation that
the typing rules of TeIL are syntax-directed to justify the
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Γ(x) = ῑ

Γ ⊢ x : ῑ T-Var Γ ⊢ e : ῑ
Γ ⊢ (e) : ῑ T-Paren

Γ ⊢ e0 : ῑ0 Γ ⊢ e1 : ῑ1
Γ ⊢ prod e0 e1 : (ῑ0#ῑ1)

T-Prod

Γ ⊢ e0 : ῑ Γ ⊢ e1 : ῑ
Γ ⊢ add e0 e1 : ῑ T-Add

Γ ⊢ e0 : ῑ Γ ⊢ e1 : ῑ
Γ ⊢ mul e0 e1 : ῑ T-Mul

Γ ⊢ e0 : [] Γ ⊢ e1 : ῑ
Γ ⊢ mul e0 e1 : ῑ T-SMul

Γ ⊢ e : [n1, . . . ,ni , . . . ,nk ]

Γ ⊢ red+ i e : [n1, . . . ,nk ]
T-Red+

Γ ⊢ e : [n1, . . . ,ni0 , . . . ,ni1 , . . . ,nk ]

Γ ⊢ transp i0 i1 e : [n1, . . . ,ni1 , . . . ,ni0 , . . . ,nk ]
T-Transp

Γ ⊢ e : [n1, . . . ,ni0 , . . . ,ni1 , . . . ,nk ] ni0 = ni1
Γ ⊢ diag i0 i1 e : [n1, . . . ,ni0 , . . . ,nk ]

T-Diag

Γ ⊢ e : [n1, . . . ,ni−1,ni , . . . ,nk ]

Γ ⊢ expa i n e : [n1, . . . ,ni−1,n,ni , . . . ,nk ]
T-Expa

Γ ⊢ e : [n1, . . . ,ni , . . . ,nk ] m ≤ ni
Γ ⊢ proj i m e : [n1, . . . ,nk ]

T-Proj

Γ(x) = ῑ
Γ ⊢ e : ῑ

Γ ⊢ x = e : ok OK-Stmt

Γ ⊢ : ok OK-Empty

Γ ⊢ stmts : ok
Γ ⊢ stmt : ok

Γ ⊢ stmts stmt : ok OK-Seq

Γallocs ⊢ stmts : ok
Γallocs ⊢ allocs stmts : ok

OK-Prog

Figure 8. Static semantics of TeIL.

Γ(x) = ῑ ∀κ̄ ≤ ῑ. κ̄ ∈ dom(µ x)
∀κ̄ ≤ ῑ. let rκ̄ = JeK Γ µ κ̄

⟨µ, x = e⟩ −→Γ µ{x 7→ λκ̄ .rκ̄ }
St-Stmt

⟨µ, ⟩ −→Γ µ
St-Empty

⟨µ ′, stmts⟩ −→Γ µ ′ ⟨µ ′, stmt⟩ −→Γ µ ′′

⟨µ, stmts stmt⟩ −→Γ µ ′′
St-Seq

⟨µallocs, stmts⟩ −→Γallocs µ
′

⟨µallocs, allocs stmts⟩ ⇓ µ ′
Eval-Prog

Figure 9. Evaluation of statements and programs.

existence of the function typeΓ . In our formal development
in Coq, we can make this rigorous.

Lemma 4.1 (Typing is computable). There exists a unique,
total, computable function “type” such that for all contexts Γ,
expressions e , and lists of naturals ῑ,

Γ ⊢ e : ῑ ⇔ typeΓ(e) = ῑ .

Proof. Structural induction on e and case analysis. For the⇒
direction, case analysis is applied to the typing judgement.
For the ⇐ direction, case analysis is applied to typeΓ . □

We omit the definition of typeΓ , which can be derived
straightforwardly from the typing rules. Note that unique-
ness follows directly from the uniqueness of types, another
simple result that we do not state as an explicit lemma.
For type-safety, the exact contents of memories are not

important. What matters, however, is that memories are
suitably defined, i.e. have suitable domains. For the purpose
of establishing type-safety, therefore, memories that have
matching domains are considered equivalent, a notion that
is made precise by the following definition.

Definition 4.2 (Equivalence of memories). The memories
µ1, µ2 are equivalent, in symbols µ1 ∼ µ2, if
(a) for all names x , x ∈ dom(µ1) ⇔ x ∈ dom(µ2), and

(b) for all x ∈ dom(µ1) and all lists of naturals κ̄,
κ̄ ∈ dom(µ1 x) ⇔ κ̄ ∈ dom(µ2 x).

The key ingredient in proving type-safety for Core-TeIL
is the next lemma that states that the double bracket JeK is
well-defined for well-typed expressions e .

Lemma 4.3 (Well-definedness of J·K). For all sequences of
allocations “allocs”, for all memories µ, for all expressions e ,
and for all lists of naturals ῑ, the following holds:
If Γallocs ⊢ e : ῑ and µ ∼ µallocs, then JeK Γallocs µ κ̄ is well-
defined for all lists of naturals κ̄ with κ̄ ≤ ῑ.

Proof. Structural induction on e . □

Through the definition of JxK, where x is the name of an
allocation (cf. Figure 6), the previous Lemma 4.3 amounts to
type-safety for read accesses to the memory µ. That is, the
memory µ is only ever read from at names x with x ∈ dom(µ),
and at indices κ̄ that are in-bounds.

Lemma 4.3 can be strengthened into an existence theorem
for types of expressions that occur in well-formed programs.
This is achieved by our next theorem, the essence of which
is still the same part of type-safety as in Lemma 4.3, i.e. that
there are no out-of-bounds reads from µ.

Theorem 4.4. Let “allocs” be a sequence of allocations, and
“stmts” a sequence of statements. Let “x = e” be a statement that
occurs in “stmts”, and let µ be a memory such that µ ∼ µallocs.
If Γallocs ⊢ allocs stmts : ok, then there exists a unique list of
naturals ῑ such that

1. Γallocs(x) = ῑ,
2. Γallocs ⊢ e : ῑ, and
3. JeK Γallocs µ κ̄ is well-defined for all κ̄ ≤ ῑ.

Proof. Case analysis of the judgement Γallocs ⊢ allocs stmts :
ok. Existence of ῑ follows by inversion of the rule OK-Stmt,
which must have been used in arriving at the judgement
Γallocs ⊢ allocs stmts : ok. The proof is completed by an appli-
cation of Lemma 4.3. Uniqueness of ῑ follows again from the
uniqueness of types. □
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(a) A = contr 3 4 (prodBC)
(b) A = red+ 3 (diag 1 4 (prodBC))
(c) A = red+ 1 (diag 3 4 (prodBC))

(a) TeIL versions of the kernels in Figure 2.

allocA : [h,m]

allocB : [h,n]
allocC : [m,n]

C = contr 1 3 (prodAB)

(b) TeIL version of the
kernel in Figure 3b.

allocA : [m]

allocB : [m]

allocC : [m]

A = B

A = addAC

(c) TeIL version of the
kernel in Figure 4.

Figure 10. Example kernels from Section 2 expressed in TeIL.

allocA : [m,n]
allocB : [k,m,n]
allocC : [m,n]
allocD : [k,m,n]

C = addA (proj 1 2B)
D = add (expa 1k A)B

Figure 11. Combining a two-dimensional
tensor A with a three-dimensional tensor B.

Γ ⊢ e : [n1, . . . ,ni ,ni+1, . . . ,nk ]

Γ ⊢ transp i e : [n1, . . . ,ni+1,ni , . . . ,nk ]
T-Transpcore

Γ ⊢ e : [n1,n2, . . . ,nk ]

Γ ⊢ red+ e : [n2, . . . ,nk ]
T-Redcore+

Γ ⊢ e : [n1,n2, . . . , . . . ,nk ] n1 = n2

Γ ⊢ diag e : [n2, . . . ,nk ]
T-Diagcore

Γ ⊢ e : [n1, . . . ,nk ]

Γ ⊢ expan e : [n,n1, . . . ,nk ]
T-Expacore

Γ ⊢ e : [n1,n2, . . . ,nk ] m ≤ n1

Γ ⊢ projme : [n2, . . . ,nk ]
T-Projcore

Figure 12. Static semantics of Core-TeIL. (Shown are only
those typing rules that differ from the ones in Figure 8.)

The following lemma extends the absence of out-of-bounds
accesses also to write access to the memory. This is some-
what implicit in the statement of the lemma, which says that
a well-formed statement can take an evaluation step −→Γallocs .
It is in fact the premise of the rule St-Stmt that ensures that
no writes can occur out-of-bounds in this evaluation step.

Lemma 4.5 (Evaluation of well-formed statements). Let “al-
locs” be a sequence of allocations, and “x = e” a statement. Let
µ be a memory with µ ∼ µallocs. If Γallocs ⊢ x = e : ok, then
there exists µ ′ such that ⟨µ, x = e⟩ −→Γallocs µ

′ and µ ′ ∼ µallocs.

Proof. The premises of rule St-Stmt hold by inversion of
Γallocs ⊢ x = e : ok and by Lemma 4.3. The domain of the
memory is not changed by the update in the conclusion of
rule St-Stmt. □

Finally, repeated application of the previous Lemma 4.5
yields our type-safety result for Core-TeIL.

Theorem 4.6 (Type-safety for well-formed programs). Let
“allocs” be a sequence of allocations, and “stmts” a sequence
of statements. If Γallocs ⊢ allocs stmts : ok, then there exists
a memory µ ′ such that ⟨µallocs, allocs stmts⟩ ⇓ µ ′. Moreover,
µ ′ ∼ µallocs.

Proof. Inversion of Γallocs ⊢ allocs stmts : ok, followed by
structural induction on the judgement Γallocs ⊢ stmts : ok,
which effectively amounts to induction on the length of stmts.
The induction step uses Lemma 4.5. □

In prose, the previous type-safety theorem states that well-
formed programs can be fully evaluated. As has already been
explained, the absence of out-of-bounds accesses is implicit
in this, and is in fact a more direct consequence of the lemmas
that have led up to Theorem 4.6.

5 A Simple Operator Language
To demonstrate that TeIL can indeed be used effectively as an
intermediate language, we now briefly motivate and describe
a simple operator language that we have implemented on top
of TeIL. Code generation for the operator language relies on
our TeIL code generator that lowers TeIL programs to C.

One application of tensors and tensor expressions in scien-
tific computing are the so-called high-order methods in com-
putational fluid dynamics (CFD) [7]. A typical tensor kernel
in high-order methods evaluates the action of a tensor opera-
tor on a three-dimensional tensor, given a fluid flow problem
in three spatial dimensions. Tensor operators are constructed
by forming the tensor product of one-dimensional operators,
i.e. matrices A, B, C , where the matrices define the action
of the tensor operator in each of the three spatial dimen-
sions. The tensor operator constructed from A, B, C is the
tensor product A ⊗ B ⊗ C , which can be expressed in TeIL
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as prodA (prodBC). General tensor operators in high-order
methods are linear combinations of operators of this form.
The tensor kernel corresponding to A ⊗ B ⊗ C applies

this operator to a three-dimensional tensor u, and stores the
result in v . Making indices explicit, this kernel is

vi1i2i3 = (A ⊗ B ⊗ C) j1 j2 j3
i1 i2 i3 uj1 j2 j3 (7)

= A j1
i1 B j2

i2 C j3
i3 uj1 j2 j3 . (8)

Doubly occurring indices are contracted (i.e. summed over)
as usual, and we use the convention that raised/lowered
indices denote the input/output dimensions of an operator.5

Our operator language is a domain-specific language (DSL)
embedded in C++. It relies on operator overloading to express
the construction and application of tensor operators. The
running example of A ⊗ B ⊗ C is written in the operator
language as follows.

auto A = Matrix(m, n), B = Matrix(m, n),
C = Matrix(m, n);

auto u = Tensor<3>(n, n, n);
auto v = (A*B*C)(u);

In our implementation of the operator language, code is
lowered to TeIL. The code generation of TeIL then produces
C code for tensor kernels. This has three key advantages.

First, the strong typing of tensor expressions in TeIL helps
avoid mistakes in the lowering of operator language code. In
particular, it ensures that contractions only take place over
compatible index pairs. This is hugely beneficial given that
the implicit index structure of operators and their applica-
tions can easily become very complex.
Second, because of TeIL’s type-safety, the generated C

code is guaranteed not to cause out-of-bounds accesses (i.e. no
segmentation faults).
The third advantage is to do with performance. Contrac-

tions can easily be detected in TeIL if the composed contr
operation from Equation (6) is made a primitive of the lan-
guage. Nested contractions can then be lifted into a sequence
of assignments of single contractions. Assumingm ≈ n, this
reduces the complexity of our operatorA⊗B ⊗C from O(n6)

to O(n4), and analogously for linear combinations of opera-
tors. Although n is typically small, i.e. n ∈ {2, . . . , 20}, this
reduction in complexity has sizeable effects in practice, not
least because the same tensor kernel is typically evaluated for
each of several thousand volume elements, cf. [21]. TeIL en-
ables the lifting of nested contractions in a type-safe manner,
and can make this optimization accessible to all higher-level
languages that generate code through TeIL.

5In general relativity, raised and lowered indices are referred to as con-
travariant and covariant indices, respectively. Usage of these indices in
general relativity corresponds directly to the intuition of input and output
dimensions of operators that we employ here.

6 Related Work
APL [13] is widely recognized as one of the first array lan-
guages. It is inspired by mathematical notation and relies
heavily on collective operations. APL is interpreted, thus
naturally allowing for dynamic checks, but compilers also
exist, see, e.g., [4, 8] and references therein.
Over time, many array languages have been proposed,

e.g. [9, 12, 15, 22, 23, 25]. While syntax and concepts, such
as collective operations, are similar across these languages,
there are notable differences both in static and dynamic
semantics. For example, it has recently been shown [23]
that translation between array languages, while retaining
performance, is a non-trivial problem that is at least partly
rooted in the differences between memory models.

The functional array languages SaC [22] and Futhark [12]
come with carefully worked out type systems. Despite the
strong static guarantees that are offered by the type systems,
there remains a need for some dynamic bounds checks, see
also [11]. Note that both SaC and Futhark allow restricted
forms of explicit indexing into arrays.
The need for dynamic bounds checks can be fully elimi-

nated by relying on the expressive power of dependent type
systems. This expressive power stems from allowing types
to depend on values, which, however, may impede phase
separation and introduce undecidability into the type system.
These issues can be avoided if the dependence of types on
values is suitably restricted. Such restrictions are explored
in [31] and also in [24, 29], where type-safety results are
also given. Note that Lift [25] also relies on a restricted form
of dependent types. The rewrite rules employed by Lift are
justified by equational reasoning similar to what is enabled
by the evaluation semantics for expressions in TeIL.
Lift is a functional language aimed at the generation of

efficient code for data-parallel execution on GPU platforms.
The addition of data-parallel arrays to Haskell has also been
studied [14, 15]. NOVA is another functional language [6]
that is specifically designed for parallel programming and
hence for targeting execution on parallel platforms. A formal
specification for NOVA is available.6
The mentioned array languages generally support the

paradigm of shape-polymorphic programming. TeIL can be
made to support this paradigm by replacing the natural num-
ber literals that determine the shapes of tensors with vari-
ables within the language. Note, however, that in typical
use cases of TeIL, this flexibility may not even be desired
since compile-time specialization of the shapes of tensors is
generally preferred for performance reasons.
Recently, the need for intermediate representations with

formal semantics and the curation thereof has been high-
lighted in [17]. A typed intermediate functional language
was formally specified in [9]. The proposed language is an

6https://research.nvidia.com/sites/default/files/pubs/2013-07_
NOVA-A-Functional/nvr-2013-002.pdf
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array language with collective operations similar to the ones
in TeIL, and type-safety results have also been established
in [9]. To the best of our knowledge, the present paper is the
first to report a type-safety result for an imperative tensor
language that has also been formalized and checked in a
theorem prover.7

7 Summary and Outlook
We have presented TeIL, an imperative intermediate tensor
language geared at expressing typical tensor kernels as they
appear, for example, in the context of machine learning appli-
cations. A key feature of TeIL is its type-safety, in the sense
that a well-typed program does not cause out-of-bounds
memory accesses when executed. This result has been for-
mally developed within the Coq proof assistant. Moreover,
the precise specification of TeIL enables users and imple-
menters of tensor languages and frameworks to reason about
the semantics of tensor kernels in unambiguous ways.

While we have demonstrated practical uses of TeIL, there
are certainly many directions in which the language could
grow. To extend TeIL in meaningful ways, it would first of
all be helpful to have a precise classification of the tensor
computations that can be expressed in TeIL. Such a classifi-
cation would likely also produce hints at classes of kernels
that are currently difficult or impossible to express, or for
which code generation is impeded by the design of TeIL. For
example, computations for which there is no direct support
in the version of TeIL presented here are stencil or convolu-
tion kernels. However, to support stencils in TeIL, operations
and primitives similar to the ones described in [10] can eas-
ily be added to the language. Even without modifying the
language, it remains an open question what transformations,
other than the lifting of nested contractions, are enabled or
eased by TeIL.

One source of TeIL’s flexibility is its purposefully abstract
memory model. It would be interesting to see how this fea-
ture can be put to good use when the abstract memory model
is instantiated with formalizations of concrete implementa-
tions. One would expect that our formal development is
independent of the choice of concrete implementation of the
memory model. However, this choice will affect the utility
of transformations employed by TeIL’s code generator.

There is also an interesting practical use for different mem-
ory models in TeIL: different stages of the same code gener-
ation process can use versions of TeIL that differ only in the
specifics of the employed memory model. This can perhaps
help overcome some of the performance problems recently
encountered in translating between languages [23].
Due to our focus on type-safety, we have omitted discus-

sions of mechanisms for composing larger programs in TeIL,
e.g. functions, and for communicating with the outside world,
7A formal specification of a prototype of TeIL, together with pen-and-paper
proofs, appeared in [20].

e.g. passing arguments. To what extent our implementation
of TeIL provides mechanisms that are well-suited to typical
use cases remains to be determined.
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