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Abstract. Application mapping is key for efficient multicore processing,
i.e., selecting which resources to allocate to a given application, like com-
putation to cores. Mapping is increasingly difficult in multi-application
scenarios, where resource contention might degrade the performance of
an application. In order to solve this, a promising avenue is to consider
“compact” mappings, those which require a small and (geometrically) com-
pact area within the chip. Compact mappings should decrease contention
between applications by providing regional isolation and allowing multiple
applications to be mapped simply. Previous work has shown that compact
mappings can significantly outperform mappings obtained with a random
strategy. In this paper we investigate the promise of compact mappings
by running extensive simulations on Noxim, a cycle-accurate network-
on-chip simulator. Results show the promises of compact mappings do
not hold up in practice. When comparing to mappings selected with a
heuristic better than simply choosing cores at random, our experiments do
not indicate significant advantages from compact mappings. We outline
possible reasons for this.

1 Introduction

As multicores become more ubiquitous, Network-on-Chip (NoC) technologies
play a role of continuously increasing importance in modern computing systems.
Programming these systems is a difficult task, and a central component of it
is that of finding a mapping, i.e., an allocation of computation and the flow
of data on the system’s resources. The mapping problem has been extensively
studied [15], in particular in static single-application scenarios [5,18,3,13,12].
For multi-application systems, researchers commonly study so-called hybrid ap-
proaches, where (partial) single application mappings are combined dynamically
at run-time [15,2]. Besides coordinating execution and communication within a
single application, the execution of multiple-applications requires that contention
between applications is minimized, which is achieved through a (partial) remap-
ping at run-time in multi-application hybrid approaches [19,14,6] or isolation for
security concerns [20].

Systems featuring a NoC are typically arranged in a regular fashion, which
falls within only a handful of topology types, e.g. meshes, stars, rings or tori.
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Out of these, regular n × n mesh topologies, like the one depicted in Figure 1
for n = 4, are by far the most common in the literature. These topologies allow
designers to think in geometrical terms of mappings, which is what makes the
idea of finding compact mappings for multi-application scenarios an evident one.
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Fig. 1. Comparing compact and non-compact mappings.

Figure 1 illustrates the idea behind compact mappings. It depicts the task
graphs of two applications, which are colored in green and blue respectively. The
nodes of these task graphs represent computational tasks, and their directed
edges the flow of data from one task to another. The figure shows two different
multi-application mappings of both applications to a 4× 4 mesh network-on-chip
topology. Both mappings use exactly the same processing elements (PEs) of the
architecture. In fact, if we ignore contention, both mappings should have the
exact same behavior: a careful inspection reveals that the distances —in terms of
number of hops— between any two communicating tasks in any of the applications
are all exactly the same in both mappings. However, it is intuitively obvious
that the mapping on the right of the figure is preferable: by being more compact,
the mapping on the right will isolate communication within both applications.
This helps to avoid contention and provides increased security. Additionally, it
is intuitively simpler to combine single-application mappings like those on the
right, since they are less fragmented.

In this paper we explore how the outlined intuition holds up to experimental
scrutiny. After a brief formal background (Section 2) and discussion of related
work (Section 3), we explore an experiment designed to assess the strategy of
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mapping applications to compact regions (Section 4). We discuss (Section5) how
the results of this experiment do not show significant advantages from compact
mappings in practice, and comment on the conclusions (Section 6) we can reach
from this work.

2 Mapping Tasks to MPSoCs

The problem of mapping can be defined at several levels of granularity. In this
paper we focus on the mapping of computational tasks to cores. Let G = (T,E) be
the task graph, a directed graph representing the application. The nodes t ∈ T of
the task graph represent computational tasks that have to be executed on a core.
In this paper we focus on a homogeneous setting, as is the most common setting
in multicores featuring regular mesh NoC technologies. For homogeneous cores,
we assume all tasks to require a fixed amount of execution time, independent of
the core executing them. The focus of a mapping, and what ultimately guides its
performance, is the communication between tasks. An edge in the task graph
e = (t1, t2) ∈ E represents a (logical) data dependency between tasks. Commonly,
tasks graphs are labeled with the computational costs in the nodes and with
the communication requirements in the edges. Depending on the status of the
communication subsystem and the mapping, an application can incur in different
communication costs for the same data. Thus, we do not encode these costs in the
problem formulation directly; these have to be estimated, simulated, or better,
measured.

A (task) mapping refers to a mathematical mapping m : T → {PEi,j | i, j =
1 . . . n} from the set of tasks to the set of processing elements (PEs), in this case
indexed by two integers representing their position on the mesh. This mapping
defines the allocation of tasks to PEs. The mapping problem is that of finding
a mapping m : T → {PEi,j | i, j = 1 . . . n} that fulfills a particular goal, like
minimizing execution time, energy consumption or NoC communication. In this
paper we will define a mapping as minimizing the execution time, which we
will measure by the average latency (network delay) as a proxy for execution
time, since the cores are homogeneous. While a mapping m does not need to be
injective, i.e., two tasks could be mapped to the same core m(t1) = m(t2) for
t1 6= t2, we will consider mappings where this is not the case. This is common in
many NoC-based multicore systems where the cores are smaller and scheduling
and computational contention are costly.

3 Related Work

The work focusing on hybrid mapping [19,14,6] usually focuses on transforming
single-application mappings or finding mappings at run-time with a particular set
of constraints. To the best of our knowledge, none of these approaches directly
concern themselves with compact mappings. Other work explicitly investigates the
composability of applications in such scenarios, but focuses on explicit hardware
support for this, not on leveraging the NoC topology [9,8]. While all of this work
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proposes sophisticated approaches, far beyond what is presented in this paper,
the issue of compact mappings by itself has not been investigated by any of the
these approaches. The intention of this paper is not to propose good heuristics for
hybrid or composable mapping, but rather, to assess to what extent compactness
is useful for this end.

Unlike all the other references focusing on hybrid and composable approaches,
authors of [21] do consider compact mappings in multi-application scenarios for
NoC architectures explicitly. The rigor of the contribution is unclear, as they
compare their strategy to mapping at random. To avoid this, we compare to a
non-compact mapping strategy that strives to find good mappings nevertheless.
More importantly though, while the work of [21] is focused on proposing a
heuristic, we focus punctually on the aspect of compactness in this paper.

4 Evaluation

In this section we evaluate the strategy of defining compact mappings for multi-
application scenarios. For this we define an algorithm to find mappings with good
communication properties and show how we can use it to generate compact and
non-compact mappings.

4.1 Mapping Algorithm

We designed and implemented a mapping heuristic to find mappings with good
communication properties. Since we are focusing on homogeneous multicore
systems with a NoC in a regular mesh topology, our algorithm is designed for such
a regular architecture. However, it would work for any mapping representation
which yields a metric space on the architecture and mappings [7].

Our mapping heuristic is described in Algorithm 1. It starts with any node in
the application that can be considered a root, i.e., such that there is a path from
it to every node in the application. We assume the application graph is (weakly)
connected and such a node exists. The algorithm assigns an unused core at
random to this node and then iterates through the application graph in a breadth
first fashion to assign cores such that the distance from a node to its predecessor
is minimized in the mapping. This greedy algorithm does not ensure that the
communication is minimized globally for the whole application, but it yields
mappings with a total communication close to the minimum. We use it to produce
compact mappings as well, by marking every core as occupied, except for anm×m′
rectangle such that mm′ > |V |, and we choose {m,m′} ⊆ {

√
|V |,

√
|V | + 1}

minimal with this property. If we leave out the additional rectangle constraint,
we get low-communication mappings that are not necessarily compact.

4.2 Experimental Setup

For our evaluation, we use a slightly modified version of the NoC simulator
Noxim [4]. Noxim is a SystemC based simulator that is capable of modelling a
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Algorithm 1 A greedy heuristic for low-communication mapping

input: A connected application graph Γ = (V,E), the size of the mesh n, a set of
occupied cores X ⊆ {1, . . . , n} × {1 . . . , n} =: M

output: A mapping m : V →M
1: CurNode ← RandomFrom(M \X)
2: v0 ← Root(Γ )
3: mapping ← (v0 7→ CurNode)
4: X ← X ∪ {CurNode}
5: for e = (n1, n2) ∈ BreadthFirstEdgeSearch(Γ ) do
6: CurNode ← mapping(n1)
7: d← mind=1...n{a ∈M \X | |a− CurNode| ≤ d} 6= ∅
8: q ← RandomFrom({a ∈M \X | |a− CurNode| ≤ d})
9: mapping(n2)← q

10: X ← X ∪ {q}
return mapping

wide range of NoC configurations and traffic patterns. We modified Noxim to
obtain more detailed statistics that also include the variance of packet delays
in order to evaluate the predictability of given mappings. In our configuration,
Noxim simulates a mesh topology with xy-routing and worm-hole switching. This
basic setup is comparable to current research platforms [1] as well as commercial
products like Intel Xeon Phi [16], Intel Xeon Scalable Platform [17] and Mellanox
Technologies TILE-Gx series [10,11]. We choose a network size of 10× 10 nodes
for our experiments.

The execution of dataflow application is simulated by providing a traffic table
to Noxim. For each edge in the application task graph we add one entry to
the table which specifies source node, target node and the packet injection rate.
During the simulation, each node randomly injects packets at the given rate. By
varying the packet injection rate of the channels, we can simulate low and high
network loads. In the following, we report experiments using a fixed packet size
of 32 flits. We did test several packet sizes, up to 212 = 4096 flits, but found the
results to be comparable for all packet sizes tested.

We use 10 applications with 4 to 6 nodes, and generated 100 compact mappings,
100 non-compact mappings and 100 completely random mappings for these 10
applications. Algorithm 1 has some random choices, which results in different
mappings for each of the applications. These 100 iterations together with the
random choices are intended to account for the variance between mappings and
scenarios.

4.3 Results

Figure 2 shows how the average network delay (latency) in the system varied
across the different mapping strategies and corresponding mappings for three
distinct values of the injection rate. We see how compact mappings are indeed
significantly better than a random mapping, in all cases. However, a comparison of
the compact and non-compact mappings shows no significant difference between
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Fig. 2. Comparison of the average network delay of 100 mappings for different strategies
and injection rates. Additional to the box and whiskers plot, the actual points are
overlayed with random horizontal jitters for visibility.

both strategies, in terms of the average network delay. While non-compact
mappings obtained with Algorithm 1 are also designed to reduce the average
delay, one would expect more contention between applications to worsen the
average delay. This does not seem to be the case in Figure 2.

Injection rate: 1e-05 Injection rate: 1e-04 Injection rate: 0.001

compact noncompact random compact noncompact random compact noncompact random

1e-01

1e+01

1e+03

type

R
M

S
n
et

w
o
rk

d
el

ay
/

cy
cl

es

type

compact
noncompact
random

Fig. 3. Comparison of the root mean square network delay (log) of 100 mappings for
different strategies and injection rates. Additional to the box and whiskers plot, the
actual points are overlayed with random horizontal jitters for visibility.

Predictability is of comparable importance to the average latency in many
use cases. To measure how predictable a mapping behaves we used the slightly
modified version of Noxim to obtain the root mean square of the network delay.
The results for the 100 mappings can be seen in Figure 3 (note the logarith-
mic axis). We see how, in a few cases, compact mappings had a significantly
higher predictability. However, in general, there does not seem to be statistically
significant differences between compact and non-compact mappings.
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(a) Inejection rate of 0.00001
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(b) Inejection rate of 0.0001
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(c) Inejection rate of 0.001
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(d) Inejection rate of 0.01

Fig. 4. Comparison of average network delay (log) for the first application, running in
isolation vs a joint environment with 9 additional applications.

A better measure of predictability, however, is the comparison between the
application running in isolation, i.e. alone in the system with no contention,
versus the same application running in a multi-application scenario with possible
contention. To asses this, we reproduced the previous setup, but instead of all
ten applications, we executed only the first one in isolation. We compared it
to the values for that same application in the multi-application scenario. In an
ideal case, with no contention, these scenarios would result in the same latencies.
However, as we can see in Figure 4, this is not the case. All three mapping types,
compact, non-compact and random, suffered significant performance penalties in
the multi-application scenario. Moreover, for the lower injection rates (figures 4a
and 4b), the results seem to be again very similar between compact and non-
compact mappings. However, with an injection rate of 0.001, which means that
roughly every 1000 cycles a package is injected, a small albeit significant difference
emerges, as seen in Figure 4c. This injection rate is already extremely fast: it
means in a system clocked at 1 GHz, a package is sent every µs. It is unrealistic
for many applications to actually fire at these rates. Nevertheless, to investigate it
further we repeated the setup with an injection rate of 0.01, shown in Figure 4d.
Here, indeed, compact mappings very significantly outperform non-compact ones
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when contention is present in a multi-application scenario. Such a high rate is
however of no practical relevance.

5 Discussion
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Fig. 5. Comparing a typical compact and non-compact mapping.

The results from Section 4 show basically no difference between compact
and non-compact mappings for realistic scenarios. The advantages of compact
mappings only seem apparent when the network traffic is so high that the average
latency becomes hundreds of times higher than the computation time, with
computation times between communication instances that would be smaller than
a µs in most modern systems. We believe these scenarios are not of practical
relevance. Thus, from the results we cannot conclude that compact mappings
are better. However, we can neither conclude they are worse from our results. It
is evident that ensuring compactness is an additional restriction, which makes
algorithms more complex, but also reduces the space of possible mappings. Thus,
the engineering investment to find and exploit compact mappings does not seem
to be worth the effort.

These results defy intuition. To better understand why this is the case, we
can return to the motivating example of Figure 1. If we simulate both scenarios
in a setup like the one used for our evaluation, the non-compact variant turns out
to be unequivocally better. If we look at the mappings more carefully, especially
the compact ones, they generate a large amount of inter-application contention.
In short, they simply are bad mappings. Compare this to the illustration from
Figure 5. The two mappings shown here are typical results of mapping using
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Algorithm 1. They are significantly better mappings than the mappings shown in
Figure 1 (note that the application graph is slightly different). The two mappings
from Figure 5 are also identical in terms of their topology: the distances, in
terms of number of hops, between any two nodes, are identical in both mappings.
However, these are also good mappings, since said distances are short (they are
all 1 hop). The fact that their geometry is very different becomes irrelevant in
practice, as shown from our evaluation. We believe the key takeaway from our
evaluations to be that focusing on finding good mappings for an application
seems to be more important than finding mappings that can be easily combined,
if the latter come at the cost of the performance of the application in isolation.
Inter-communication contention is significant for concurrent multi-processor
applications.

5.1 Limitations

The evaluation of this paper has some clear limitations, which should be pointed
out as part of this discussion.

The setup, including the applications evaluated are, in a sense, very homoge-
neous. All tasks have identical fire rates and the system is a regular mesh with
homogeneous cores. While this type of architecture is indeed very common, it
neglects heterogeneous multicores and more exotic topologies. It is possible to
define and investigate compactness in these scenarios [7]. However, we do not see
a compelling reason to believe these systems would behave differently.

Similarly, most applications have heterogeneity in the amounts of computation
and data transfer that occur between tasks. This limitation is exacerbated by
the fact that our simulation only considers traffic. This certainly limits the
conclusive power of our experiments. However, we believe there is validity in
the results even when accounting for these limitations. An application with
heterogeneous amounts of data transfer will always have a critical path of nodes
that effectively bounds the maximal achievable performance. Applications with a
homogeneous behavior, like used in this paper, can be seen as an approximation
of the behavior of this critical subgraph that neglects the minor effects from the
non-critical parts of the application. Similarly, the mappings considered all had no
computational scheduling, and thus at most one task per core. This is increasingly
common in multi- and manycore systems, but it certainly restricts the generality
of the investigation. Additionally, while there was a non-zero probability of cores
overlapping, this happened at an average of 0.03 cores per scenario. It means
that for a core executing a task in our simulations, chosen uniformly at random,
there was a probability of less than 0.0006 that it was a core shared between two
different tasks. Even in this case the simulation is not necessarily wrong, if the
computational contention is not high enough. This makes the error introduced
by this fact negligible.

Finally, we only considered performance as seen by latency in this work. Thus,
any conclusions we might draw about compact mappings will only apply to
performance-related issues. There might me other reasons for which compact
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mappings could prove to be a valuable idea, like privacy (see [20]), or when
considering thermal effects.

6 Conclusion

In this paper we investigated the concept of compact mappings for multicore
systems based on a mesh NoC. Counter-intuitively, our experiments did not show
any advantages of compact mappings w.r.t. latency, both in terms of average and
deviation, i.e. predictability. For extremely high and unrealistic traffic rates, this
ceased to hold and compact mappings performed better than non-compact ones.
However, the results seem to suggest that for any practical applications, focusing
on finding a good mapping is more important than finding a mapping that can
be easily composed in multi-application scenarios.

These conclusions are based on simulations of traffic and with a particular
setup of applications. We see reasons to believe this would probably not change
even if these limitations were removed. While we cannot rule out the usefulness
of compact mappings, especially for goals other than system performance, we
believe that there might be more worthwhile avenues of research in the field of
multi-application mapping.
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