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Abstract. Various vulnerabilities have been found in message parsers
of protocol implementations in the past. Even highly sensitive software
components like TLS libraries are affected regularly. Resulting issues
range from denial-of-service attacks to the extraction of sensitive infor-
mation. The complexity of protocols and imprecise specifications in nat-
ural language are the core reasons for subtle bugs in implementations,
which are hard to find. The lack of precise specifications impedes formal
verification.
In this paper, we propose a model and a corresponding domain-specific
language to formally specify message formats of existing real-world bi-
nary protocols. A unique feature of the model is the capability to define
invariants, which specify relations and dependencies between message
fields. Furthermore, the model allows defining the relation of messages
between different protocol layers and thus ensures correct interpreta-
tion of payload data. We present a technique to derive verifiable parsers
based on the model, generate efficient code for their implementation, and
automatically prove the absence of runtime errors. Examples of parser
specifications for Ethernet and TLS demonstrate the applicability of our
approach.

1 Introduction

Security issues are common in parsers of communication protocol implemen-
tations, and new vulnerabilities are found every day. Vulnerabilities caused by
incorrect parsing exist on all protocol layers: from physical and network layer
protocols like Bluetooth (BlueBorne [21]) over session-layer protocols like TLS
(Heartbleed [19]) to application-layer protocols like SMB (EternalBlue [20]).
Communication protocols are an increasingly worthwhile attack target, as more
and more devices of our everyday life are connected to the Internet. Their reliabil-
ity is especially important in business-critical, mission-critical and safety-critical
software. Software that suddenly stops working is a potential threat to human
life, be it in case of patients with an artificial heart or drivers steering their vehi-
cles and braking using x-by-wire. While the problem is quite obvious for highly
interconnected cars, even medical devices have at least an interface for software
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updates, which represent an attack surface for potential compromise by targeted
attacks. Therefore, appropriate methods are needed to prevent the introduction
of critical errors in protocol implementations.

Message formats of existing real-world protocols are often complex, but rarely
formally specified. The simple syntax that is commonly used only defines the
basic structure of a message. Additional properties, conditions, and relations
between fields are just described in English prose. Such descriptions are imprecise
and can easily be misunderstood by developers, which leads to implementation
bugs. Lack of formal specification also prevents automatic checks and verification
of the implementations.

Manual implementation has yielded ’shotgun parsers’ that mix parsing and
processing of messages, in the past. The consequence have been various critical
vulnerabilities [12]. We assert that generating the parsing code from a formal
grammar yields more cleanly separated implementations.

A recurrent cause of vulnerabilities is the widespread use of unsafe program-
ming languages, like C++. Rust and other memory-safe languages have been de-
veloped to avoid memory corruptions. Using these languages is a clear progress
towards security, but it does not prevent all errors at runtime.

Runtime errors like integer overflows or divisions by zero must still be handled
explicitly. Negligence of the matter can have devastating effects, as reported for
instance in [16]. Formal verification is the only convincing approach towards this
end. Data and control flow analyses can prove their absence, and proving specific
properties of software components is the only way to guarantee that unexpected
errors do not occur at runtime.

In summary it becomes clear that a suitable process for the secure implemen-
tation of message parsers is needed. Concluding from the observations above, we
pose the following requirements. At its heart, we need a simple, readable, and
expressive domain-specific language (DSL) for a data format specification that
is suitable for messages of existing real-world protocols. It shall also cover all
invariants of the message parts. It is crucial that the generated code has been
verified to be free of runtime errors, to enable its use in security-critical and
safety-critical applications. To facilitate application in a wide range of areas, the
generated code has to meet the performance requirements and resource limita-
tions, even of embedded systems.

In this paper we introduce a generic approach for the specification of message
formats and a methodology for creating verifiable parsers. Our main contribu-
tions are:

– We propose a DSL and model for the formal specification of message for-
mats of existing real-world binary protocols, which covers all properties and
dependencies of message parts by using invariants.

– We introduce a methodology for the automatic generation of parsers, for
which the absence of runtime errors can be shown.

– We show the applicability of our approach on TLS 1.3 and the TLS Heartbeat
protocol.
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The rest of the paper is organized as follows: Section 2 gives an overview of
related work. Section 3 introduces the model for the specification of messages.
The design and implementation of the RecordFlux toolset is described in Sec-
tion 4. The applicability is shown in Section 5 for two case studies. Section 6
gives a conclusion and an outlook for the future.

2 Related Work

In this section we describe related work for interface generators and generic
parsers.

Interface Generators Interface generators like ASN.1 [15], XDR [28], or Pro-
tocol Buffers [4] are used for the development of programs which communicate
with each other using serialized structured data. Although they are used to de-
scribe the message formats in various protocols or applications, they are not
compatible to each other and lack the generality to specify messages of already
existing protocols. Today’s commonly used communication protocols are quite
complex. Such protocols have grown historically, and therefore contain ambigu-
ous idioms, like overlapping message fields that need to be parsed before their
existence is clear. Their representation hence is impossible with the given inter-
face generators.

Generic Parsers Generic parsers differ in the way how message formats are
specified and which properties the generated code achieves.

One class are parser generators with a declarative description of the message
structure. PacketTypes [17] and DataScript [8] use a type-based language to
describe the layout of data formats. Binpac [26] is a declarative language for
analyzing network protocols. GAPA [11] has a BNF-based specification language
which matches the syntax commonly used in RFCs. Kaitai Struct [3] is YAML-
based language to specify binary data formats.

Another class are parser combinators. They combine several existing parsers
that are represented by functions into a single, new parser. Representatives are
Hammer [2], a parsing library for binary formats written in C, attoparsec [25], a
parser combinator library for Haskell, and nom [13], a parser combinator written
in Rust that leverages Rust’s strong type system and memory safety. Parser
combinators may contain ambiguities in the grammar which are not reported at
compile-time. Consequently, parser combinators do not meet our requirements.

Parser generators in contrast can provide means to prevent ambiguities be-
fore generating code. Many parser generators, however, use unsafe programming
languages like C or C++: Binpac [26], PADS [14], Nail [10]. Even if the au-
tomatic nature of code generation alleviates some risk, these solutions are still
prone to low-level bugs. Some parsers like GAPA [11] especially focus on safety
or use a memory-safe language. As many errors still have to be handled correctly
at runtime, these approaches are not sufficient for highly critical applications.
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Lastly, parsers generated for interpreted languages [1,27], which rely on a com-
plex runtime, have limited use for resource-constraint systems.

Summary In summary, we observe that no current solution offers expressive-
ness and legibility, combined with an easy venue towards formal verification and
convincingly efficient generated code. None of the analyzed approaches is expres-
sive enough to parse binary messages of existing real-world protocols including
all its properties, ensures absence of runtime errors, and is suitable for embedded
systems at the same time. Its design and implementation hence remains an open
challenge.

3 Modeling and Processing Message Formats

In this section we introduce a methodology for the specification of message for-
mats and subsequent generation of the corresponding verifiable parsers. Using
Ethernet frames as a running example demonstrates several intricacies that re-
quire consideration. We start with a simple variant of an Ethernet frame and
refine this definition iteratively to reach a complete specification. We set out to
define the specification as a linear list of fields, like several previous approaches,
but turn to a graph-based modeling later, to allow for strict specification of
ambiguities in the standards. We then describe the algorithms to generate the
code of the verifiable parsers. Each parser comprises a number of functions to
validate and access the content of a message. We use Isabelle/HOL to formalize
our model and describe the corresponding algorithms3.

3.1 Example: Ethernet Frame

Destination
(6 bytes)

Source
(6 bytes)

TPID
(2 bytes)

Payload
(46 ‒ 1500 bytes)

TCI
(2 bytes)

Type / Length
(2 bytes)

Optional 802.1Q Header / VLAN Tag

Ethernet Header Data

Fig. 1. Ethernet frame structure

Figure 1 depicts the basic structure of an Ethernet frame. Several variants
of Ethernet exist, Ethernet II is most commonly used. It consists of two address
fields of 6bytes each, a Type field of 2 bytes encoding which protocol is encapsu-
lated in the payload, and a variable-length Payload field which comprises the rest
of the message. Both IEEE 802.3 and Ethernet II frames are used in practice,
3 Isabelle is an automated proof assistant, HOL can be used as a functional program-
ming language that allows proving certain properties. We refer the interested reader
to [24] for an introduction into the matter.
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so protocol instances have to distinguish them implicitly on the fly. The payload
size is limited to 1500 bytes in Ethernet, so the field following the Source ad-
dress is interpreted as IEEE 802.3 Length for values below 1500, and Ethernet II
Type if the value is 1536 or above. Ethernet also defines extensions, like VLAN
tagging (IEEE 802.1Q). It inserts a VLAN tag between the Source address and
the Type/Length field, which consists of two fields: the TPID field and the TCI
field. To determine if this extension is used, the instance checks the same field
for the value 810016, and interprets the bytes as the TPID, the subsequent two
bytes as control information, and only the subsequent bytes as Type or Length.

3.2 Message Representation

To generate a parser and reason about a message format like an Ethernet frame
we need a formal specification that captures the message structure and all rel-
evant constraints that must be enforced. The simplest possible representation
of a message is a list of fields. For the Ethernet header each field can be repre-
sented by an identifier and a fixed length. The protocol may transmit Payload
of different sizes, so a variable length value is needed for this part. To make
matters worse, the payload length is defined depending on the overall length of
the message in Ethernet II, using a mathematical expression. The underlying
assumption is that there is a message buffer which comprises a number of bytes
and potentially contains the message to parse. We use a deep embedding in our
model for the representation (cmp. Appendix A):

datatype ′a field = Field ′a ′a expr

Enumeration types can be used for identifiers, for instance for Ethernet II:

datatype ethernet-v2 = Destination | Source | Type | Payload

The message structure then is described as a list of fields. For the Destination,
Source and Type field a fixed number is sufficient to specify the field length, while
for the Payload field the length of the header needs to be subtracted from the
length of the message. In our deep embedding, the variable MessageLength refers
to the length of the message buffer. For sake of generality we define all lengths in
bits and thereby enable the definition of non-byte-granular fields. An Ethernet II
frame is thus defined as follows:

definition ethernet-v2-frame :: ethernet-v2 field list where
ethernet-v2-frame = [Field Destination (Num 48), Field Source (Num 48), Field Type
(Num 16), Field Payload (Sub MessageLength (Num 112))]

To represent length fields like in the original IEEE 802.3 frame format, we
need references to values of other fields in mathematical expressions. Our deep
embedding contains the constructor FieldValue ’a for this purpose. Since our
model works on bit granularity, but the Length field is byte-based, the value of
the Length field has to be multiplied by 8. The specification for an IEEE 802.3
frame is as follows:
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definition ethernet-frame :: ethernet field list where
ethernet-frame = [Field Destination (Num 48), Field Source (Num 48), Field Length
(Num 16), Field Payload (Mul (FieldValue Length) (Num 8))]

To deal with the parallel use of both Ethernet frames in practice, either both
formats could be treated as completely separate and handle their parallel use by
other code. We decide to combine both variations in the same model instead. This
increases model complexity slightly but prevents the need for manual handling of
message variations, which could induce errors. Combining both formats prevents
representation as a linear list of fields, as the semantics of the Payload Length
depends on the value of the Type/Length field.

We hence have to allow for case distinctions. We described cases by a condi-
tion, which refers to the value of Type/Length, and a corresponding length ex-
pression for the Payload field. In other words, there are two distinct connections
between the Type/Length and the Payload field. When modeling the dependen-
cies between fields such connections can be interpreted as directed edges that
define the order of the fields. Such edges contain two attributes: a condition that
defines when the target field follows the source field and a length expression that
specifies the length of the target field. Consequently, such edges are characterized
by a source field, a target field and its attributes. A complete message thus forms
a directed-acyclic graph (DAG) where nodes represent fields. Figure 4 shows the
graph for the full specification of Ethernet frames.

We define conditions to be handled as boolean expressions, using the same
deep embedding as used for mathematical expressions. Expressions must only
contain references to field values of preceding nodes. This restriction prevents
cyclic dependencies between expressions and ensures that a sequential evaluation
of the validity of a message is possible.

Allowing for VLAN tagging further complicates specification. The existence
of the 802.1Q header can only be determined by reading the two bytes following
the Source address field. To resolve the ambiguity of potential fields we add a
virtual node, Type-Length-TPID after the Source. It is solely used to differentiate
the two message formats. It is followed by both Type-Length as well as TPID. We
add a location expression at each edge that defines the position of the first bit
of each respective field to be able to deal with the conditional overlay of fields in
the model. For the specification of the field location our expressions allow using
FieldFirst and FieldLength to refer to the location and the length of a previous
field, respectively. We hence define edges by the following variant type, which is
composed of source node, target node, condition, length expression, and location
expression.

datatype ′a edge =
Edge ′a ′a ′a expr ′a expr ′a expr

Finally, we want to be able to describe the restriction on the payload length,
and hence the overall message length, as an invariant. We hence introduce a final
node that marks the end of the message, and as it is not followed by any other
node it refers to the preceding nodes in the model, only. We introduce an initial
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node that defines the beginning of a message similarly, to define the length of
the first field.

At this point we are able to fully define an Ethernet frame including all its
variants. An excerpt of the full specification of Ethernet is shown below. An
unabridged version can be found in Appendix B.

datatype ethernet-node = Init | Source | Destination | Type-Length-TPID | Type |
Payload | TPID | TCI | Final

definition ethernet-graph :: ethernet-node edge list where
ethernet-graph = [
Edge Init Destination True (Num 48) (Num 0),
Edge Destination Source True (Num 48) (Add (FieldFirst Destination) (FieldLength

Destination)),
Edge Source Type-Length-TPID True (Num 16) (Add (FieldFirst Source) (FieldLength

Source)),
Edge Type-Length-TPID Type (Ne (FieldValue Type-Length-TPID) (Num 0x8100))

(Num 16) (FieldFirst Type-Length-TPID),
Edge Type-Length-TPID TPID (Eq (FieldValue Type-Length-TPID) (Num 0x8100))

(Num 16) (FieldFirst Type-Length-TPID),
. . .

]

We now turn to describing the functions that are generated for the parsers
corresponding to our specification.

3.3 Derivation of Validation and Accessor Functions

Parsers are called with a given message as input, and have to extract the content,
as specified above. They need to implement validation and accessor functions for
each field, which we model as follows. A parser P consists of a list of validation
and accessor functions. The validation function allows checking if all conditions
stated in the specification hold for the message field. If this is the case, the
corresponding accessor function can safely be used to retrieve the value of the
field. For each message field the code for a validation function (FieldValidFunc)
and the respective accessor function (FieldAccessFunc) have to be generated. In
this manner all fields of a message can be validated and accessed consecutively.

Several conditions must hold for a bit array to be a valid message. First of
all, a message field can only be valid if its first and last bit are within the range
of the message buffer. Data out of range indicates an incomplete message. The
validity of a message field depends on the specified conditions and the validity of
its predecessor. Mapped on the model, this means that one incoming edge must
have a valid condition and a valid source (except for the initial node) and, as the
conditions of the outgoing edges can constrain the allowed values or the length
of the field, the conditions of at least one outgoing edge must be fulfilled. Each
path from the initial node to the final node denotes a variant of a message. A
whole message is accepted if there is exactly one valid path.

Each node has to be reachable via at least one path from the initial node.
The location of a field can vary because of optional or inserted fields and thus
depends on a concrete path. Therefore the path has to be known to be able to
calculate the location of a field. As conditions can refer to other fields, the path
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is also needed to evaluate a condition. For this reason, before we can validate or
access a field, we have to determine all possible variants of a message, and for
each variant the actual conditions and field bounds.

In the following we describe the algorithms for determining path attributes,
variant functions, node paths, and field functions. We aim for simplicity in our
algorithms. As the parser generation is only done once and the graphs which
we use to represent message formats are rather small, the performance of the
algorithms is not critical.

Path Attributes As one of the first steps of the parser generation the path-attrs
algorithm derives the attributes for all possible paths from the initial node to any
node in the graph. All references to other fields in expressions are eliminated dur-
ing this process. The starting point of the algorithm is a graph definition, where
each edge can be uniquely identified by an index number, e.g., by enumerating
the edges of the graph definition.

type-synonym ′a agraph = (nat × ′a edge) list

The result of the algorithm is a list of tuples. For each path, which is repre-
sented by a list of indices, an expression for the condition, the length and the
location of the first bit is returned.

The algorithm iterates over all edges of the graph definition. For each edge it
determines all paths from the initial node by using the paths function. Applying
concat on the resulting list of lists gives us a list of all paths from the initial
node to any other node in the graph. Each path in this list is converted into the
corresponding list of edges on the path by the path-edges function. From each
list of edges the last edge is taken, and for this edge the condition, length and
location expression extracted. References to other nodes in these expressions
are replaced by the corresponding expression of the referenced node. This is
realized by subs which recursively looks up the concrete expression in the graph
definition.

definition path-attrs :: ′a agraph ⇒ (nat list × ′a expr × ′a expr × ′a expr) list where
path-attrs graph =

[let edges = path-edges graph path in
(path, subs edges (get-condition (last edges)),
subs edges (get-length (last edges)),
subs edges (get-first (last edges)))

. path ← concat [paths graph i . i ← map fst graph]]

Variant Functions The parser P contains a variant validation function Vari-
antValidFunc and a variant accessor function VariantAccessFunc for each mes-
sage variant to allow the validation and access of a concrete variant of a field.
These variant functions form the building blocks of the field validation functions
and the field accessor functions. For each tuple generated by path-attrs contain-
ing condition, length and location for a specific path, a VariantValidFunc and a
VariantAccessFunc are derived.

The body of a VariantValidFunc is based on the condition, a check which
ensures that the field is within the bounds of the input buffer, and a call to



RecordFlux 9

the validation function of the preceding field, if it is not the first field of the
message. Each variant function is identified by a path. As a path is represented
by a list of indices, the preceding field can be determined by removing the last
element of the current path.4 Calls to other variant functions are denoted by
VariantValidCall and VariantAccessCall, respectively.

fun variant-valid-funcs :: (nat list × ′a expr × ′a expr × ′a expr) list ⇒ ′a func list
where
variant-valid-funcs [] = [] |
variant-valid-funcs ((path, cond, len, first) # xs) =
VariantValidFunc path (And (if init path 6= [] then VariantValidCall (init path)

else True)
(And (Ge BufferLength (Add first len)) cond))

# variant-valid-funcs xs

A VariantAccessFunc is defined by the location expression and the length
expression of the field.

fun variant-access-funcs :: (nat list × ′a expr × ′a expr × ′a expr) list ⇒ ′a func list
where
variant-access-funcs [] = [] |
variant-access-funcs ((path, -, len, first) # xs) =
VariantAccessFunc path (Value first len) # variant-access-funcs xs

The result of variant-valid-funcs and variant-access-funcs form the variant
functions V.

Node Paths The node-paths algorithm determines which paths lead to a field,
i.e., which variants of a field exist, and which conditions at outgoing edges a node
has. As described in Section 3.2 the values of a field can be further restricted by
outgoing edges. At least one condition of an outgoing edge has to be fulfilled.
Therefore, the corresponding conditions have to be determined as well. Like
before, all references to other fields need to be resolved in dependence of a
variant.

node-paths iterates over all nodes of the graph. The list of nodes of a graph
is provided by graph-nodes. For each node all incoming edges are determined by
incoming. Each incoming edge is used to determine all paths from the initial
node by paths. For each path it then creates a tuple with two elements: the path
represented by a list of indices and a disjunction of all conditions at outgoing
edges. The disjunction is created by any, which takes a list of conditions from
path-conds. path-conds extracts the conditions of the list of outgoing edges de-
termined by path-edges and outgoing. Finally, the list of tuples is assigned to the
corresponding node identifier.

definition node-paths :: ′a agraph ⇒ ( ′a × (nat list × ′a expr) list) list where
node-paths graph =

[(node,
concat [[(path,

subs (path-edges graph path)
(any (path-conds (path-edges graph (outgoing graph node)))))

. path ← paths graph edge]
. edge ← incoming graph node])

. node ← graph-nodes graph {}]

4 The init function returns a list without its last element.
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Field Functions A FieldValidFunc determines if one variant is valid. If a valid
variant exists, the FieldAccessFunc can be used to return the value of the field.
Field functions rely on the functionality provided by variant functions.

The resulting list of node-paths is used to generate validation and accessor
functions for each field of the message. Each element of this list contains all the
necessary information to create a validation and accessor function for one field.
A field function is identified by a node identifier.

The algorithm field-valid-funcs creates a list of FieldValidFunc. In order that
a field is valid, a variant of the field and the conditions of one of the outgoing
edges must be valid. Hence, the body of a FieldValidFunc is a disjunction of calls
to all variant validation functions and the corresponding expression which was
determined for the conditions at outgoing edges.

fun field-valid-funcs :: ( ′a × (nat list × ′a expr) list) list ⇒ ′a func list where
field-valid-funcs [] = [] |
field-valid-funcs ((path, path-cond) # xs) =
FieldValidFunc path (valid-calls path-cond) # field-valid-funcs xs

The body of each function is determined by valid-calls. valid-calls iterates
over all path-condition tuples which it receives as arguments. For each path it
creates a call to a VariantValidFunc and combines this call with the correspond-
ing expression derived from the outgoing edges by a conjunction, as a variant
is only valid if one of the conditions at the outgoing edges is valid. All created
conjunctions are connected by a disjunction, as only one variant has to be valid.

fun valid-calls :: (nat list × ′a expr) list ⇒ ′a expr where
valid-calls [] = True |
valid-calls ((path, out-cond) # []) = And (VariantValidCall path) out-cond |
valid-calls ((path, out-cond) # xs) = Or (And (VariantValidCall path) out-cond)

(valid-calls xs)

The list of field accessor functions is created by field-access-funcs. A Field-
AccessFunc checks subsequently which variant of a field is valid and calls the
corresponding VariantAccessFunc.

fun field-access-funcs :: ( ′a × (nat list × ′a expr) list) list ⇒ ′a func list where
field-access-funcs [] = [] |
field-access-funcs ((path, path-cond) # xs) =
FieldAccessFunc path (access-calls path-cond) # field-access-funcs xs

The body of such a function is created by access-calls. It iterates over the
list of paths and creates a nested if-expression, where the else-branch is created
recursively. Each if-expression has a call to a VariantValidFunc as condition and
a call to the corresponding VariantAccessFunc as body.

fun access-calls :: (nat list × ′a expr) list ⇒ ′a expr where
access-calls [] = Null |
access-calls ((path, -) # xs) =
IfThenElse (VariantValidCall path) (VariantAccessCall path) (access-calls xs)

The result of field-valid-funcs and field-access-funcs form the field func-
tions F . The parser P comprises all variant functions V and field functions F .
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3.4 Message Refinement

Communication protocols are typically structured in layers. A protocol message
contains a message of a higher layer protocol as its payload. We model this
relation by message refinements. A message refinement is a tuple consisting of
an identifier of the message, the name of the payload field, an identifier for
the contained message and an expression. The expression describes under which
conditions a message is contained in the payload field of another message. In the
case of Ethernet the expression could specify that an IPv4 packet is contained in
the Ethernet frame’s payload field, if the Type/Length field has the value 080016.
For each message multiple message refinements can be defined.

4 Implementation

Specification Parser Model Generator SPARK Code
Verification

Tools

Fig. 2. Architecture

The RecordFlux toolset5 comprises multiple parts (Figure 2). The specifica-
tion language allows describing message formats and the relation of a message
field to messages of higher protocol layers. The specification parser transforms
this textual description into the model introduced in Section 3, which is used by
the code generator. We chose SPARK [7] as the target language for code gener-
ation, as it already provides simple verification including all required tools. It is
supported by the standard GCC toolchain and suitable for resource constrained
systems.6 We hence generate SPARK code, including all necessary function con-
tracts. We then use the SPARK verification toolset to ensure the absence of
runtime errors and the functional correctness of the generated code.

4.1 Specification Language

To specify message formats in a simple and readable manner, we have designed
a specification language that allows expressing all properties of a message in
accordance to our model. The specification language describes messages based
on types. A type definition has the form: type NAME is DEFINITION;

The language supports two integer types to represent numbers: modular and
range integers. A modular type represents the values from zero to one less than
the modulus. The bit size of a modular type is determined by calculating the
binary logarithm of the modulus. The destination and source address fields of
Ethernet is represented by the following modular integer:
5 RecordFlux is available as open source [5].
6 We refer the interested reader [18] for an introduction into the language including
all of its beneficial properties.
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type Address is mod 2**48;

A range integer allows restricting the range of numbers by bounds. The set of
values of a range type consists of all numbers from the lower bound to the upper
bound. For a range type the bit size has to be specified explicitly. A range integer
can be used for the Type/Length field, and allows incorporating the minimum
length restriction of the payload field into the type definition:

type Type_Length is range 46 .. 2**16 - 1 with Size => 16;

This defines a type with a size of 16 bit which comprises all numbers from
46 to 216 − 1.

A message format is specified by a message type. A message type is a collec-
tion of components. Each component corresponds to one field in a message and is
of form: FIELD_NAME : FIELD_TYPE. A simplified specification of an Ethernet II
frame is as follows:

type Simplified_Frame is
message

Destination : Address;
Source : Address;
Type_Length : Type_Length;
Payload : Payload;

end message;

But as argued in Section 3 such a simple specification is not sufficient for
Ethernet in general.

A then clause following a component allows defining which field follows. If
no then clause is given, it is assumed that always the next component of the
message follows. If no further component follows, it is assumed that the message
ends with this field. A then clause can contain a condition under which the
corresponding field follows and aspects which allow defining the length of the
next field and the location of its first bit. The condition can refer to previous
fields (including the component containing the then clause). In case of Ethernet
two then clauses can be added to the Type/Length field to differentiate the two
different meanings of this field:

Type_Length : Type_Length
then Payload

with Length => Type_Length * 8
if Type_Length <= 1500,

then Payload
with Length => Message’Last - Type_Length’Last
if Type_Length >= 1536;

The full specification of an Ethernet frame including VLAN tags is shown in
Figure 3. Figure 4 depicts the corresponding graph representation. The package
Ethernet consists of multiple integer types and a message type Frame. Packages
are used to structure a specification and thus make the specification modular.

A type refinement describes the relation of a component in a message type
to another message type. It states under which condition a specific protocol
message is expected inside of a payload field. Only components of the built-in
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package Ethernet is

type Address is mod 2**48;
type Type_Length is range 46 .. 2**16 - 1

with Size => 16;
type TPID is range 16#8100# .. 16#8100#

with Size => 16;
type TCI is mod 2**16;

type Frame is
message

Destination : Address;
Source : Address;
Type_Length_TPID : Type_Length

then TPID
with First => Type_Length_TPID’First
if Type_Length_TPID = 16#8100#,

then Type_Length
with First => Type_Length_TPID’First
if Type_Length_TPID /= 16#8100#;

TPID : TPID;
TCI : TCI;
Type_Length : Type_Length

then Payload
with Length => Type_Length * 8
if Type_Length <= 1500,

then Payload
with Length => Message’Last - Type_Length’Last
if Type_Length >= 1536;

Payload : Payload
then null

if Payload’Length / 8 >= 46
and Payload’Length / 8 <= 1500;

end message;

end Ethernet;

Fig. 3. Full specification of an Ethernet
frame covering Ethernet II, IEEE 802.3,
and IEEE 802.1Q

(⊤, 48, ∗)

Destination

(⊤, 16, ∗)

(Type_Length <= 1500,
Type_Length * 8, ∗)

(Payload'Length / 8 >= 46 and Payload'Length / 8 <= 1500, 0, ∗)

(⊤, 48, ∗)

(⊤, 16, ∗)

(Type_Length >= 1536,
Message'Last - Type_Length'Last, ∗)

Type_Length

Payload
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16, Type_Length_TPID'First)
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Source

Type_Length_TPID

TPID
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Fig. 4. Graph representation of Ethernet
frame specification (Notation: For an edge
e = (s,t,c,l,f): ∗ denotes f = s’First +
s’Length, > denotes c = True)

type Payload can be refined. Types defined in other packages are referenced by
a qualified name in the form package_name.message_type_name. The condition
can refer to components of the refined type.

type IPv4_In_Ethernet is new Ethernet.Frame (Payload => IPv4.Packet)
if Type_Length = 16#0800#;

In this example the relation between an Ethernet frame and an IPv4 packet
is specified. The message type Frame in package Ethernet contains a Packet
defined in package IPv4 if the Type_Length field of the Ethernet frame equals
to 0x0800.

4.2 Code Generation

The basis for the code generation is the model described in Section 3. The gen-
erated code takes a plain byte array as input and allows validating and accessing
the message data in a structured way. For each specified message a number of
functions is generated. The user of the generated code finds a validation function
and accessor function for each field of the message. The validity of a field must
be checked before accessing its value. This is realized by preconditions. By this
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means it is ensured that the value of a field is only accessible if all previous fields
and the value of the field is valid.

Applying a function to a wrong input buffer or to an incorrect part of the
buffer could lead to unexpected results. To prevent this a buffer has to be labeled
correctly. This is realized by a predicate used as precondition of all validation
and accessor functions. A label is added automatically if the relation between a
payload field and a contained message is specified by a type refinement, and a
contains function is used to check if the corresponding conditions are fulfilled for
the input buffer in question. A contains function is the representation of a type
refinement in the generated code. If the input data is received from an external
source, the input buffer must be labeled explicitly.

The structure of the specification is reflected in the generated code. As a
result it is possible to keep the code as well as the specification modular and
extendable. For example type refinements can be defined in a separate specifica-
tion. This allows adding further higher layer protocols transmitted in an already
specified protocol without changing existing code.

4.3 Verification

The SPARK programming language allows the detailed specification of the be-
havior of software components by the use of contracts. This specification is used
by the SPARK verification tools to formally proof that the stated properties
of the program hold. The achievable assurance ranges from showing that no
runtime exceptions occur to ensuring functional correctness based on a formal
specification. This is realized by analyzing the source code and generating verifi-
cation conditions, which are then passed to multiple theorem provers to formally
verify the correctness of the code.

The use of SPARK allows us proving the absence of runtime errors and the
correct use of the generated code. All of the generated code is valid SPARK code
and will be analyzed by the verification tools. The incorrect use of the generated
code, e.g. accessing a field value without prior verification, is prevented by adding
appropriate contracts to these functions.

A key benefit of using SPARK is that the code generator need not to be
trusted with regard to the absence of runtime errors in the generated code,
as this property is proved by the verification tools. Furthermore, the SPARK
verification tools assist ensuring the correctness of the specified message format.
For example the tools will find potential integer overflows in expressions, which
could indicate a missing restriction of the value range of a field.

5 Case Studies

We demonstrate the applicability of RecordFlux using the example of TLS in two
case studies. In the first study we replaced the whole parsing code of an existing
TLS library by an implementation specified and generated by RecordFlux and
analyzed its impact. In the second study we used RecordFlux to specify and
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parse messages of the TLS Heartbeat protocol, an optional extension of the TLS
standard, which is not supported by the library used in the first study.

5.1 Verified TLS Parser

Fizz [22] is a TLS 1.3 implementation developed and used by Facebook, written
in C++. As a proof of concept we have replaced the C++ parser by verified
SPARK code. Therefore, we used our specification language (see Section 4.1)
to specify the messages of TLS 1.3, as standardized in RFC8446. Based on this
specification, RecordFlux generated SPARK code for TLS Record messages, TLS
Handshake messages and TLS extensions. We integrated the existing C++ code
with the generated SPARK code manually. The glue code mainly performs the
conversion between C++-specific structures like vectors and SPARK-compatible
data formats.

Security Parsing of protocol messages is a sensitive part of a TLS implemen-
tation. [9] reports an integer overflow in Fizz. An exploit could have left the
application using Fizz in an infinite loop, just by sending a short sequence of
messages with a well-chosen value in the length field of a TLS Record message.
Facebook fixed the bug by choosing a bigger integer type (size_t instead of
uint16). RecordFlux checks the length field for allowed values before continuing
the parsing, which we argue is a better solution to the problem. The SPARK
verification tools can then prove the absence of unexpected integer overflows.
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Fig. 5. Performance at Handshake layer;
separate TLS handshake for each request
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Fig. 6. Performance at Record layer; one
TLS handshake for multiple requests

Performance Performance is considered at least of equal importance as security
in practice. We hence evaluated the performance impact of replacing the original
message parser with the code generated by RecordFlux. For that purpose we
used a modified version of wrk2 [6], where we added the possibility to run in two
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different modes. To measure the impact of RecordFlux on the TLS handshake,
the first mode of wrk2 creates a TLS connection for each HTTP request. The
impact of RecordFlux during data transmission is measured by the second mode
of wrk2 that only creates one TLS connection before sending requests. wrk2
sends requests in a constant rate and measures the resulting throughput and
latency of the responses. The sending rate of wrk2 is increased iteratively until
the throughput is not improving any more. For each sending rate the mean
values of 40 measurements with a duration of 60 seconds each are calculated. To
minimize the impact of network hardware on the results we run Fizz and wrk2
on the same machine.

We expected to see some performance impact due to the additional validation
checks in the generated code and the conversions between C++ and SPARK
structures. The diagrams in Figures 5 and 6 show the resulting mean values of
throughput and latency and the corresponding 95% confidence intervals. The
maximum throughput is around 2.7% lower in the Handshake layer and 1.1%
lower in the Record layer compared to the original parser. An analysis of the
CPU cycles used by both variants with Valgrind [23] showed that the majority
of additional cycles are spent on memory allocations and processing of data
conversions in the glue code.

The results show that there is no significant performance degradation. We
conclude that the approach is generally applicable, although mixing existing
C++ code with SPARK code is not ideal from the point of view of performance.

5.2 TLS Heartbeat

Message Type   (1 byte) Payload Length  (2 bytes) Payload   (0 ‒ 2**14-20 bytes) Padding   (16 ‒ 2**14-20 bytes)

TLS Heartbeat Message  (19 ‒ 2**14 bytes)

Fig. 7. Message format of a TLS Heartbeat

The Heartbeat extension adds keep-alive functionality to TLS. It gained in-
glorious prominence by Heartbleed [19], a security vulnerability in the OpenSSL
library that affected millions of devices. Heartbleed allowed to extract sensitive
data from a TLS endpoint due to an improper input validation.

Both sides of a TLS connection can request the use of the Heartbeat pro-
tocol during the TLS handshake. If accepted by the other side, the initiator is
allowed to periodically send Heartbeat requests during the lifetime of the TLS
connection. Each request contains payload of arbitrary length and content. The
receiver of a Heartbeat request must send a response back which contains the
same payload as the request. The format of a TLS Heartbeat message is shown
in Figure 7. The corresponding RecordFlux specification of a TLS Heartbeat
message is as follows:
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package TLS_Heartbeat is

type Message_Type is (HEARTBEAT_REQUEST => 1, HEARTBEAT_RESPONSE => 2) with Size => 8;
type Length is range 0 .. 2**14 - 20 with Size => 16;

type Heartbeat_Message is
message

Message_Type : Message_Type;
Payload_Length : Length

then Payload with Length = Payload_Length * 8;
Payload : Payload

then Padding with Length = Message’Last - Payload’Last;
Padding : Payload

then null if Message’Length <= 2**14 * 8 and Padding’Length >= 16 * 8;
end message;

end TLS_Heartbeat;

Heartbeat_Message represents a TLS Heartbeat Message. Such a message
consists of four fields: The Message_Type field specifies the type of the message.
It is represented by a enumeration type with a size of 1 byte and comprises two
valid values: 1 for a request and 2 for a response. All other values are considered
invalid. Payload_Length defines the length of the following Payload field. The
Payload field contains the content of the message, and Padding comprises the
rest of the message.

The lengths of the Payload and the Padding field is explicitly defined by
length expressions. The whole message is restricted to a length of 214 bytes. The
Padding field must be at least 16 bytes long.

The following excerpt shows some of the generated SPARK subprogram dec-
larations for the a Heartbeat_Message:
function Is_Contained (Buffer : Bytes) return Boolean with Ghost, Import;

procedure Label (Buffer : Bytes) with Ghost, Post => Is_Contained (Buffer);

function Valid_Message_Type (Buffer : Bytes) return Boolean
with Pre => Is_Contained (Buffer);

function Get_Message_Type (Buffer : Bytes) return Message_Type
with Pre => (Is_Contained (Buffer) and then Valid_Message_Type (Buffer));

function Valid_Payload (Buffer : Bytes) return Boolean
with Pre => Is_Contained (Buffer);

procedure Get_Payload (Buffer : Bytes; First : out Natural; Last : out Natural)
with Pre => (Is_Contained (Buffer) and then Valid_Payload (Buffer)),

Post => (First = Get_Payload_First (Buffer) and then
Last = Get_Payload_Last (Buffer));

function Is_Valid (Buffer : Bytes) return Boolean
with Pre => Is_Contained (Buffer);

The Is_Contained function which is a precondition for all validation and
accessor functions ensures that always the correct message buffer is used. The
Is_Contained predicate is set automatically for all defined message refinements.
If a message buffer is received from an external source it can be explicitly labeled
with the Label function. For each message field a validation function (prefixed
with Valid) and an accessor function (prefixed with Get) is created. Each acces-
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sor function has the corresponding validation function as a precondition. This
ensures that the validity is always checked before accessing a field value. The
Is_Valid checks the validity of the whole message. It returns True if the input
buffer contains one valid message variant.

The following code example shows how the generated code is used:
with IO;
with TLS.Heartbeat_Message; use TLS.Heartbeat_Message;

procedure Main is
Buffer : Bytes := IO.Read;
Tag : Message_Type;
First : Natural;
Last : Natural;

begin
Label (Buffer);
if Is_Valid (Buffer) then

Tag := Get_Message_Type (Buffer);
Get_Payload (Buffer, First, Last);
Process_Payload (Buffer (First .. Last));

end if;
end Main;

The message buffer is read from an external source. In this example the mes-
sage buffer is explicitly labeled as a buffer which should contain a TLS Heartbeat
message. By also specifying the Record layer with RecordFlux and defining a
message refinement between Record message and Heartbeat message, no label-
ing would be needed. The validity of content of Buffer is checked by Is_Valid.
Alternatively a user could also check the validity of each field on his own. As
the Padding must be ignored and the relation between the Payload_Length
field and the Payload field is internally known, a user only needs to access the
Message_Type and the Payload.

The SPARK verification tools ensure the correct use of the generated code.
If a user would not check the validity of the input buffer, the tools will find
this mistake when proving the correctness of the code. Get_Message_Type and
Get_Payload will be flagged with precondition might fail.

While the Heartbeat protocol appears quite simple, a flawed implementation
can have serious implications. Heartbleed allowed to send a request with a high
length value while sending just a short payload and padding. On the receiver
side the length value was not checked against the actual received payload. This
led to a buffer overflow, so that not only the payload of the request was sent
back, but also data following the message buffer.

RecordFlux enforces that the length of a payload field is always defined by a
length expression. The code generator adds checks to ensure that the value of a
length field is in the allowed range and the message to parse is long enough, and so
prevents the issue seen in Heartbleed. Even if RecordFlux would erroneously miss
adding a necessary check, the SPARK verification tools will find the potential
buffer-overflow before faulty code is used involuntarily.
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6 Conclusion and Outlook

We have created a methodology for specification of message formats of com-
munication protocols and the automatic generation of a parser. Based on this
methodology we have created a practical implementation, which comprises a DSL
for describing message formats and code generator that creates SPARK code,
for which the absence of runtime errors can be shown. The generated code is
applicable in real-world applications as demonstrated for TLS 1.3, which proved
to suffer only from minor performance penalties despite its proven security.

So far we only handled the parsing of messages, but this is only one part of
a protocol. In the future we will also look into the protocol logic. We aim to
extend the current methodology to get a full formal specification of a protocol,
to generate provable secure code.
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A Deep Embedding

datatype ′a expr =
Num int |
Add ′a expr ′a expr |
Mul ′a expr ′a expr |
Sub ′a expr ′a expr |
Div ′a expr ′a expr |
Value ′a expr ′a expr |
FieldValue ′a |
FieldLength ′a |
FieldFirst ′a |
MessageLength |
MessageFirst |
MessageLast |
BufferLength |
VariantValidCall nat list |
VariantAccessCall nat list |
Null |
True |
And ′a expr ′a expr |
Or ′a expr ′a expr |
Eq ′a expr ′a expr |
Ne ′a expr ′a expr |
Lt ′a expr ′a expr |
Le ′a expr ′a expr |
Gt ′a expr ′a expr |
Ge ′a expr ′a expr |
IfThenElse ′a expr ′a expr ′a expr

B Formal Specification of Ethernet Frame
definition ethernet-graph :: ethernet-node edge list where
ethernet-graph = [
Edge Init Destination True (Num 48) (Num 0),
Edge Destination Source True (Num 48) (Add (FieldFirst Destination) (FieldLength

Destination)),
Edge Source Type-Length-TPID True (Num 16) (Add (FieldFirst Source) (FieldLength

Source)),
Edge Type-Length-TPID Type (Ne (FieldValue Type-Length-TPID) (Num 0x8100))

(Num 16) (FieldFirst Type-Length-TPID),
Edge Type-Length-TPID TPID (Eq (FieldValue Type-Length-TPID) (Num 0x8100))

(Num 16) (FieldFirst Type-Length-TPID),
Edge TPID TCI True (Num 16) (Add (FieldFirst TPID) (FieldLength TPID)),
Edge TCI Type True (Num 16) (Add (FieldFirst TCI) (FieldLength TCI)),
Edge Type Payload (Le (FieldValue Type) (Num 1500)) (Mul (FieldValue Type) (Num

8)) (Add (FieldFirst Type) (FieldLength Type)),
Edge Type Payload (Ge (FieldValue Type) (Num 1536)) (Add (Sub MessageLast (Add

(FieldFirst Type) (FieldLength Type))) (Num 1)) (Add (FieldFirst Type) (FieldLength
Type)),
Edge Payload Final (And (Ge (FieldLength Payload) (Num 368)) (Le (FieldLength

Payload) (Num 12000))) (Num 0) (Add (FieldFirst Payload) (FieldLength Payload))
]
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