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Abstract
Adaptive software becomes more and more important as

computing is increasingly context-dependent. Runtime adapt-

ability can be achieved by dynamically selecting and apply-

ing context-specific code. Role-oriented programming has

been proposed as a paradigm to enable runtime adaptive soft-

ware by design. Roles change the objects’ behavior at run-

time and thus allow adapting the software to a given context.

However, this increased variability and expressiveness has

a direct impact on performance and memory consumption.

We found a high overhead in the steady-state performance of

executing compositions of adaptations. This paper presents

a new approach to use run-time information to construct a

dispatch plan that can be executed efficiently by the JVM.

The concept of late binding is extended to dynamic func-

tion compositions. We evaluated the implementation with a

benchmark for role-oriented programming languages lever-

aging context-dependent role semantics achieving a mean

speedup of 2.79× over the regular implementation.

CCS Concepts • Software and its engineering → Soft-
ware performance; Compilers; Context specific languages.

Keywords Role-Oriented Programming, DispatchOptimiza-

tion, Virtual Machine
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1 Introduction
Ubiquitous computing leads to new challengeswhere context-

dependent software is more and more important. Developing

such software requires approaches that focus on objects, their

context-dependent behavior and relations. Object-oriented

programming (OOP) is the de facto standard approach to

those problems today. This is because of the comprehensi-

bility of object-oriented models and code which enables an

intuitive representation of aspects of the real world. That is

how classes, objects, functions and inheritance originated.

For example, an aspect of the real world is that an object may

appear in different roles at different times (i.e., contexts). To

reflect the different roles of entities, design patterns have

been proposed to achieve separation of concerns [7, 15]. Be-

cause these approaches can only compose or decompose in a

single dimension by using delegation or inheritance, context-

dependent concerns are tangled with the application and

scattered over it.

With the advent of aspect-oriented programming (AOP) [33]

and context-oriented programming (COP) [28] it was possi-

ble to separate behavioral concerns in multiple dimensions.

However, the focus of these multi-dimensional separation of

concerns (MDSOC) paradigms is on the cross-cutting nature

of concerns and adaptation of classes.

Role-oriented programming (ROP) has been proposed as

an extension to object-oriented programming to enable adap-

tive software by design [43, 47]. Classes represent the struc-

tural view of the program while context-dependent behavior

is encapsulated in separate entities called roles. To model

context-dependency compartments encapsulate roles and

represent the context in which these roles can be active.

Adaptation is achieved by attaching roles dynamically to

objects to superimpose their behavior. Object Teams [23, 24]

is one of the most mature role-oriented programming lan-

guages. It allows adapting Java programs available in source

code or binary form dynamically at runtime.

It is common practice to lower MDSOC mechanisms to

object-oriented mechanisms, which results in a verbose de-

scription that incurs high runtime overhead [3, 40]. The over-

head is especially noticeable in the steady-state performance

of dynamic role-oriented programming languages as the be-

havior of every object may be potentially adapted [46]. We

argue that the major cause for the overhead is that current
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translation approaches have not been able to properly close

the semantic gap between role-oriented mechanisms and

object-oriented machine models preventing many possible

optimisationz.

To close the semantic gap and reduce verbosity the execu-

tion environment must understand the enhanced execution

semantics. We address this problem by applying the concept

of late binding of virtually dispatched functions to function

compositions using exact runtime type information. Func-

tions superimposed by role functions are by default virtual,

but may become static until superimposition is released re-

sulting in no subsequent lookups. The runtime provides

exact instructions to the execution environment about how

to find and execute role functions by composing a directed

acyclic graph (DAG) of function calls. This not only allows

optimizing role dispatch in the sense of Just-in-Time (JIT)

compilation by the execution environment but also improves

the runtime and generated code in terms of lookup and reuse.

We demonstrate our approach by extending the static com-

piler, dynamic compiler and the runtime of Object Teams [23,

24]. We used a typical synthetic benchmark already reported

in the literature to compare different language implementa-

tions of the role-oriented concept [46]. The benchmark uses

many demanding role-oriented programming features such

as multiple active contexts, deep roles (i.e., roles play roles),

and exchanged function bodies that are not easily built with

object-oriented design patterns. Our evaluation features a

mean speedup of 2.79× over the original implementation

when callsites can be reused and a mean slowdown of 9.76×

if there is no possible reuse ever.

The paper introduces in Section 2 concepts similar to

roles that could also benefit from the approach and gives an

overview of howObject Teams implements roles. In Section 3

late binding for function compositions of role functions is

presented and how a directed acyclic graph (DAG) can be

built from that composition. The approach is evaluated in

Section 4. Related approaches are discussed in Section 5. In

Section 6 a conclusion is drawn and future work is high-

lighted.

2 Background
This section motivates multi-dimensional separation of con-

cerns and assesses the cost of related separation of concerns

approaches on modern object-oriented VMs. It introduces

role-oriented programming and highlights the semantic gap.

2.1 Multi-Dimensional Separation of Concerns
Object-orientation excels at representing the structure of a

domain but struggles at representing how objects collaborate

dynamically. However, in different points in time different

parts of the interface of an object is used by multiple other

objects. The reason is that classes tend to exhibit behavior

(i.e., functions) for multiple concerns and multiple functions

have code for multiple concerns. This collaboration-scoped

usage cannot be directly represented but is scattered over

the program. While design patterns improve the quality of

software architectures, they cannot solve the problem of

tangling and scattering of concerns satisfactorily. To solve

the problem, different approaches for separation of concerns

have been proposed with varying degree of granularity rang-

ing from adapting single objects or functions to classes and

components.

Aspect-Oriented Programming AOP decomposes cross-

cutting concerns to encapsulate each concern separately. As-
pects encapsulate such concerns and provide expressions to

define interceptors, class extensions (inter-type declarations)

and its own properties [12]. An aspect can alter the behav-

ior of non-aspect parts of the program called base classes
by applying advices which define the additional behavior.

Alternative behavior can be applied at join points in the

base program including function calls and property access.

Pointcuts provide predicates that quantify over the set of

existing join points and choose the set of join points where

the execution of the advice is desired. Aspects are woven

into the application using special compilers called weavers.
Join points where advice invocation code may be woven in

are called join point shadows [27].
A compiler for the aspect-oriented language consists of

a module for evaluating pointcuts and the aforementioned

weaver, beside the elements of a traditional compiler. After

evaluating a pointcut, the join point shadows are forwarded

to the weaver. But at weave-time it cannot be decided for all

join point shadows whether pointcuts apply or not. Thus,

for some join points advice invocation logic and guards are

compiled into the application called residuals.
Since virtual machine does not understand aspect seman-

tics, the aspect compiler produces a verbose description of

aspects in an object-oriented paradigm which incurs high

overhead [19]. The reason is, that function invocations and

member accesses are typical locations for join point shad-

ows that will be decorated with advice invocation logic (i.e.,

residues). Standard object-oriented optimizations such as late

binding do not apply to the aspect-oriented execution se-

mantics where advice code is implemented externally to the

advised class or object, obscuring control flow. This results

in a severe performance penalty ranging from two orders

of magnitude in AspectWerkz [11] while Steamloom’s [18]

performance loss is always less than one decimal power [17].

Moreover, the focus of AOP is cross-cutting, class-wide

aspects. For class-wide aspects Steamloom can generate

efficient code compiling aspect invocation into the func-

tion body which incur minimal overhead. Object-centric or

instance-local aspects on the other hand introduce perfor-

mance penalties. A major reason is that Steamloom compiles

different versions of the functions each associated to the

respective object. Whenever such a function is a call target it
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Figure 1. An overview of classes and layers in context-

oriented programming and their influence on the execution

semantics (adapted from [37, Fig.1]).

cannot be inlined because the compiler is not able to decide

which version of the function to inline [18].

Context-Oriented Programming COP aims at adapting

the behavior of an application to a known context by pro-

viding contextual variations. In AOP context-sensitive adap-

tations have to be embedded in the predicates of a pointcut

while COP provides dedicated language support. Similar to

AOP the base program is altered at join points with method-

level granularity. To achieve contextual variation, layers im-

plement the context-dependent behavior in partial methods.
Variations can replace the original functions, be executed

before or after, or use the mechanisms of proceed to delegate

to the next active layer. Layer activation and deactivation

drives the contextual adaptation. This process is called side-
way composition as the original inheritance hierarchy is en-

hanced orthogonally at runtime [29]. An overview is given

in Figure 1.

In an object-oriented execution model function invoca-

tion is understood as a two-dimensional message send to

the receiver object consisting of the name of the function to

be executed and a list of parameters. In COP, however, the

message is extended to four dimensions which also takes

the sender object and the context of the actual message sent

into account [28]. This means that COP resembles multiple
dispatch which takes any argument into account. However,

single dispatch as found in modern object-oriented program-

ming languages such as C++ and Java just takes the runtime

type of the receiver into account.

While there have been implementations of multiple dis-

patch in single dispatched languages like Java [50], context-

aware execution semantics is often implemented using im-

perative control flow in libraries [45]. Layers and partial

functions often are implemented with proxy objects encod-
ing the semantics instead of the original functions [3]. The

result is a severe performance hit introduced by sideway

composition with up to 99.7% in ContextJS [37] or 95% in

ContextPy [39].

2.2 Role-Oriented Programming
Previously discussed approaches achieve separation of con-

cerns at the granularity of functions, classes or modules.

The successful adoption of roles in software analysis and

modeling [1, 42, 43] led to a demand for programming lan-

guage support. Roles take the idea further, as “no object is
an island. All objects stand in relationship to others” [8]. First
approaches resulted in the role concept being hidden in the

implementation of the host language [7, 14].

Role-oriented programming distinguishes between the

base entities themselves and the roles they play in a collab-

oration. This provides explicit support for object collabo-

ration in a way not normally supported by language fea-

tures [20]. While base classes stay untouched the behavioral

adaptations are implemented in roles. Roles encapsulated
in compartments define clear boundaries when roles can be

active enabling context-dependent behavior. Adaptation is

achieved by attaching roles to objects whose behavior is

superimposed by their roles. There are different variants of

role-oriented programming languages providing different

sets of role features [35].

In the following we will concentrate on the different ap-

proaches emerged in the past years [4–6, 13, 16, 24, 31, 32,

36, 41, 48].

Contextual Roles with Object Teams Object Teams [23,

24] is the most mature role-oriented programming language

supporting most of the features attributed to roles [35]. It ex-

tends the syntax of Java and introduces a new class keyword

named team class. Teams can be instantiated to represent

context and encapsulate roles. Roles are defined as inner

classes of teams and have a slight extension to Java syntax

in order to specify the playedBy relation from roles to the

role-playing base classes. Roles in Object Teams define new

or modified behavior of their base classes while their seman-

tics is similar to crosscutting concerns in AOP [21]. Thus,

every instance of the base class which plays a role in a team

is affected whenever an instance of that team is active.

Object Teams uses a sophisticated mechanism to change

the behavior of base classes via roles. While most approaches

resort to structural typing where the signature of role func-

tions must be identical to the signature of the base function,

Object Teams provides mappings to state the binding from
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role functions to base functions such as argument permuta-

tions or arbitrary glue code.

Role functions may have two directions. A callout dele-
gates a role function to a base function to reuse behavior

of base classes. Role functions that alter the behavior of

base classes are called callins. The adaptation can take place

before, after, or even replace the original function.

There can be multiple active teams that provide roles that

have bindings for the same base function. The Object Teams

runtime keeps a stack of active teams where the latest ac-

tivated team has the highest priority. If a callin replaces a

base function it can also call back into the original function

performing a base call. Whenever there is such a base call

the next callin from the stack of active teams has precedence

over the original function. This results in a recursive appli-

cation of replace callins until there is no more active callin

or there is no more base call executed.

To implement the behavior Object Teams decoupled the

definition and resolution of role functions by providing two

different compilers. The concept of static and runtime com-

pilation is introduced to account for base classes loaded at

runtime (i.e., subclass of base class) that have not been seen

by the static compiler.

First, the program is compiled to Java bytecode by the Ob-

ject Teams compiler
1
whose task is to compile role function

definitions inside teams and to type check role bindings. It

also generates trampoline functions to implement transla-

tion polymorphism [25]. Every callin is associated with a

unique identifier that is used within these functions to del-

egate to the correct role functions for base classes. Teams

will be compiled into Java classes and roles will be nested

classes of their team. Advanced inheritance mechanisms and

role usages such as instance-based scoping in the style of

family polymorphism is also handled by the compiler [22].

For every team the compiler generates metadata of the role

bindings into the attribute section of the class bytecode that

is read by the runtime compiler.

Second, a runtime compiler transforms every loaded class

by peeking into the metadata section to identify teams and

roles.Whenever a class is loaded that is subject of a callin (i.e.,

a base class) the respective function body is changed to point

to the Object Teams runtime entry point. The original func-

tion is tagged with a unique identifier and its body is moved

into an artificial function. A generated switch instruction
uses the identifier to delegate to the original implementation.

The dynamic dispatch to role functions is not resolved

by the JVM but verbosely compiled into the control flow of

the program. The entry point into the Object Teams runtime

retrieves all necessary data from the runtime and constructs

the call stack. This includes the calling context, i.e., base

1
The Eclipse Compiler for Object Teams (ecotj) is an extension of and

compatible to the Eclipse Java Compiler (ejc).

instance, a copy of the stack of active teams and the actual ar-

guments provided. Furthermore, the generated trampolines

use the identifiers to delegate to the right role invocations

that implement the proper lifting of base instances to their

respective role instance. Executing replace callins results in

a recursive descent over the stack of active teams.

On each call to the original function the whole procedure

is repeated including preparing the stack, lifting, and del-

egate to the role functions. As a consequence, embedding

the higher semantics of roles into the control flow results

in many missed optimizations by the JIT compiler [46]. Re-

cursion reduces the possibilities of method inlining as well

as deep chains of method calls. As Figure 2b reveals, the

indirection from the original function call to role functions

is involved, which results in no possibilities for role function

inlining. Function signatures with arrays of Object are a

fundamental generic way to treat arbitrary sizes and types

of arguments. However, as a consequence it incurs the over-

head of constructing the arrays and boxing and unboxing

primitive types to their equivalent class types (e.g., int to

Integer). As a result Object Teams has a severe performance

penalty of 59.9× compared to an object-oriented program

using design patterns [46].

Semantic Gap This mismatches between role-oriented se-

mantics and object-oriented VMs discussed above also hold

for other MDSOC approaches [3, 40]. While other MDSOC

approaches provide external implementations of methods

(i.e., partial methods in COP), roles have a deeper relation-

ship superimposing behavior to their players on the level

of individual objects. Consequently, playing a role changes

the type of the player temporarily resulting in a possible

different lookup for every role-playing object [32]. That is

fundamentally different to dispatch in the JVM which opti-

mises dispatch on the type of the receiver.

2.3 Dynamic Callsites in the JVM
The different kinds of dispatch offered by Java all require

to know call targets and types at compile time. Dynamic

languages do not know these in advance and have histori-

cally been implemented using reflective capabilities of the

language. To ease the implementation of dynamic languages

executed on the JVM the invokedynamic bytecode has been
introduced [44, 49].

While other invoke bytecodes require target type, method

name, and signature at compile time to statically type check

callsites the invokedynamic bytecode just requires a signa-

ture. This reduces lookup to signature polymorphism instead

of polymorphism on the receiver type. Any invocation has

to conform to the signature which is enforced by the JVM.

To link a callsite, user defined code is executed which

implements the discovery and returns a callsite object the

JVM checks and executes. The user defined function (i.e.,

bootstrap method) can accept any additional argument. On
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class Account {

void withDraw(float amount) {...}

}

team class Bank {

class CheckingsAccount

playedBy Account {...}

class SavingsAccount

playedBy Account {

callin void
withFee(float amount) {

base.withFee(FEE * amount );

}

withFee <- replace withDraw;

}

}

(a) Object Teams source code showing how Accounts can have

different behaviorwhenwithdrawingmoney. The SavingsAccount
adds a fee for each withdraw.

Account Bank SavingsAccount

withDraw

callAllBindings

callAllBindings

Recursion over Teams
callBefore

callReplace

withFee

callNext

callOrig

(b) The UML sequence diagram of the dispatch in Object Teams.

Grey coloured execution occurences mean framework code while

white mean user code.

Figure 2. An example of how to define roles in Object Teams and how calls will be dispatched highlighting the intermediate

functions to implement role dispatch.

subsequent invocations the bootstrap method will not be

visited anymore.

Instead of pointing to a single function the callsite can

consist of a graph of function invocations building a directed,

acyclic graph (DAG). Such a DAG consists of MethodHandles
that may represent actual functions bound to instances or are

unbound placeholders defining the required MethodType2

of objects that are passed in at runtime. Handles can be

combined by generated adapters from an API of trusted

system code. Whenever such a DAG can be constant folded

to the root it can possibly be inlined by the JIT compiler.

Linked callsites may be invalidated which can also be

triggered externally. Invalidation is expensive as the JVM

has to deoptimize every function the callsite has been inlined.

3 Late Binding of Role Dispatch
Efficient execution of role functions requires removing or re-

ducing the verbosity in implementing role dispatch. Current

implementations exploit capabilities of the host language

only instead the VM or JIT compiler resulting in less to none

2
The signature describes the parameters and return types. It can be under-

stood as (ArgumentType [,ArgumentType]*)ReturnType where the first

argument type either defines the type of the receiver or the first argument

if the function is static.

optimizations. However, a custom virtual machine might

hold the best possible speedup but lacks broad applicability

as it mandates to use a specific VM.

An alternative is to provide runtime feedback at language

level via intrinsics to inform the compiler about possible

optimizations that it can not infer by its heuristics such

as promote() in RPython’s VM PyPy [10]. This allows to

communicate runtime constants, i.e., values that are dynamic

over the course of the program but constant as long as some

conditions hold. For example, roles played by an object are

constant as long as there is no new role being played or

dropped. With runtime feedback the compiler can use the

knowledge to do lookup in constant time.

3.1 Runtime Feedback in Object Teams
The Object Teams static compiler produces metadata when

type checking callins that is compiled into the Java bytecode

as class attributes. These are read by the runtime compiler

to identify and change base classes and function invocations.

However, this metadata can also be used to identify and link

callins directly from a callsite.

The stack of active teams is valuable runtime feedback

because they provide the callins that change the behavior

of base class instances. To include this feedback the code
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compiled by the Object Teams compilers needs to be adapted

as well as the runtime to forward the values to the callsite.

The result is a mutable callsite that can be relinked whenever

a change happens to the role-play graph of the application.

Otherwise, the callsite can be directly reused without reeval-

uation.

Prior, the Object Teams compiler enhanced the signature

of base functions and callins to pass relevant stack frame

data. That data was used to drive the dispatch. By directly

linking callins signatures do not need to be enhanced and

unnecessary argument conversions may be dropped (i.e.,

boxing and unboxing). The control-flow dependent nature

of role dispatch is exchanged with a compilation strategy

handing all optimization potential over to the JIT compiler.

Figure 3 gives an overview of how the runtime feedback

influences control flow. The left side shows the twofold ini-

tialization phase. In the bootstrap phase the callsite is unini-

tialized and points to the generic trampoline that bootstraps

the callsite by returning a mutable callsite that will be in-

voked afterwards. This initial bootstrap will happen at most

once per callsite. The second phase is the actual initialization

of the callsite.

There is no recursive function invocation anymore be-

cause the runtime iterates over active teams that actually

provide adapted behavior and chains their callins appro-

priately. Thus, the control-flow dependent dispatch can be

removed and replaced by a call graph directly observable

and walkable by the JIT compiler. The callsite is guarded and

will either link to the initialization or due to invalidation link

to the relink function again.

In summary, this removes the verbose description of role

dispatch and allows the JIT compiler to be able to optimize

this function compositions.

3.2 Dispatch Plans for Fast Role Dispatch
A dispatch plan is a composition of role functions and neces-

sary type conversions in order to generate a DAG at runtime

that is directly observable and walkable by the JIT compiler.

Callins are composed according to the semantics of Object

Teams [26].

The signature (i.e., method type) of a base functionwithout

arguments is (BaseType)ReturnType. Each callin is signa-

ture polymorph to its base function w.r.t. translation poly-

morphism [25], i.e., (RoleType)ReturnType. That is, each
base instance must be lifted to its role instance. Lifting can

be directly implemented by filtering the callee using the

compiler generated lifting function which returns the appro-

priate role instance.

Figure 4 gives an overview of how the method type of the

base function has to be adapted to conform to the method

type of a callin. Since role types represent dependent types

(i.e., dependent on the team instance), Object Teams stores

the binding of base instances to role instances inside the

teams. Thus, for each callin BIND-TEAM has to be executed

resulting in a bound method handle capturing the team in-

stance. FILTER-0 applies the bound lifting to a method han-

dle of the base function and returns a method handle of the

role function.

Constructing the DAG requires two steps. The process is

highlighted in Figure 5 showing a DAG with a before callin

and the original function. First, the dynamic compiler pre-

pares the base function code to deliver the statically available

information to the bootstrap method. This metadata is used

to identify the base type, required lifting functions and reg-

istered callins. Second, the set of active teams is stored in a

context object that is connected with the callsite. The DAG is

valid as long as there is no change in the activation of teams

that contribute callins to the callsite. At runtime, the base

instance and its arguments are passed into the callsite and

the DAG is executed.

Figure 3b shows the control flow of the actual invocation

of the chain of callins of the example code of Figure 2a.

For each replace callin there will be a new invokedynamic

instruction callNext. That is, whenever the replace callin has

a base call it will start iterating over active teams stored

in the context of the callsite where it stopped in the last

iteration. The whole chain will eventually stabilize resulting

in a subsequent execution of callins without intervening

framework code.

4 Evaluation
This section evaluates the runtime performance and charac-

teristics of dispatch plans and compares it with the original

implementation of Object Teams.

4.1 Benchmark Characterization
We used a typical synthetic benchmark already reported in

the literature to compare different language implementations

of the role-oriented concept [46]. The benchmark uses many

demanding role-oriented programming features such as mul-

tiple active contexts, deep roles (i.e., roles play roles), and

multiple callins that are not easily built with object-oriented

design patterns.

The benchmark describes a simple banking scenario. Per-

sons and accounts are naturals implementing basic behavior.

For example, accounts can withdraw and deposit money.

A bank is a compartment (i.e., context) where persons can

play the role of customers. Accounts play roles that change

their behavior such as different fees involved in withdrawing

money from a checking account.

The two variations invalidation and reuse evaluate differ-
ent characteristics of context-dependent software. While the

software must be adaptable it also has to deliver performance

whenever there is a period of static behavior.

Figure 6 shows the measured part of the invalidation

benchmark. In the most inner loop transactions are mod-

eled as teams are activated and deactivated both triggering
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Bootstrapping

withDraw
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(a) Bootstrapping and initialisation of a callsite
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Figure 3. A sequence diagram of how to dispatch a role function call in the presence of callins.
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(BaseType)RoleType
(BIND-TEAM)

(BaseType)RoleType
(BaseType[,ArдumentType]∗)ReturnType

(RoleType[,ArдumentType]∗)ReturnType
(FILTER-0)

Figure 4. Semantics of lifting a base function to a role func-

tion

an invalidation of the callsite. To evaluate reuse the bench-

mark does not model transactions but money is transferred

directly from one account to the other.

The experiments have been performed on a 3.60GHz Intel

Core i7-4790 CPU running Ubuntu 18.04 and OpenJDK JDK

9.0.4. For problem size N there are N persons having 2·N

accounts (a CheckingAccount and a SavingsAccount). To

reduce variation the benchmark has been repeated 100 times

per data point with 3 iterations and each iteration has N
2

transactions. We are interested in the overall execution time.

lift

root

before
callin

orig

team1
team2

…
teamN

base instance

role instance result

Control Flow

Data Flow

runtime values

bootstrap values

Method 
Handles

Figure 5. A DAG of a before callin and the original function.

To observe if there are scalability problems, we measured

with different problem sizes.

4.2 Results
The results, depicted Figure 7, show a comparison of the

classic Object Teams dispatch and our proposed dispatch

plans. The overall picture is that, in average, dispatch plans

are slower by 9.76× if the role-play graph is constantly in-

validated and built up again. But whenever reuse is possible,

an average speedup of 2.79× can be achieved.

147



SLE ’19, October 20–22, 2019, Athens, Greece Lars Schütze and Jeronimo Castrillon

bank.activate ();

for (Account from :

bank.getSavingAccounts ()) {

for (Account to :

bank.getCheckingAccounts ()) {

Transaction transaction =

new Transaction ();

transaction.activate ();

transaction.execute(from ,to,amount );

transaction.deactivate ();

}

}

bank.deactivate ();

Figure 6. The measured part of the Bank benchmark written

in Object Teams/Java.

Invalidation is implemented by triggering a costly mecha-

nism of the JVM. Every callsite is guarded by a SwitchPoint
which can be invalidated by the runtime. In consequence, ev-

ery callsite that is associated by that team will be invalidated.

The benchmark has two invalidations per loop as activating

a team changes the dispatch plan of the callsite as well as

removing a team.

One main drawback is that dispatch plans currently can-

not be reused across different callsites. Another drawback

is that the late binding of role function compositions can-

not be combined with polymorphic inline caches (PIC) [30]

to cache and reuse compositions. The reason can be found

in Figure 4 BIND-TEAM. To lift a base instance to its role in-
stance, the lifting function of the respective team instance
has to be called. This is due to the nature of path-dependent
types. The call stack only provides the BaseType instance,

while BIND-TEAM also requires the TeamType instance. Thus,
the generated combination to lift the base instance is bound

to the particular instance of the team. Because the JVM en-

forces signature polymorphism, the combination cannot be

postponed.

For virtual callsites the JVM degrades dispatch to a lookup

if there is too much variation (i.e., megamorphic callsite). The

current approach requires a similar degradation mechanism

whenever there is too much variation affecting a callsite.

A future optimization would be to include a smart mecha-

nism that decides when to use dispatch plans and when to

use classical dispatch switching between both variants at

runtime.

5 Related Work
This section compares the approach presented in the paper

with related work of similar approaches.

While there are different approaches of VMs to identify

and optimize hot code they all use heuristics that can fail

leaving potential performance improvements unexplored.

In ContextPyPy [39] the capabilities of the meta-tracing JIT

compiler is used tomark code that must be promoted for com-

pilation. That is, the steps of the interpreter are recorded. The

sequence of instructions is called a trace. This way, the dis-
patch code for layer compositions can be efficiently executed.

The VMs used in our approach employ partial evaluation [51]
if a function has been found hot.

Layer composition in Context JS [34] follows a similar

approach of gradually inlining dispatch code. In the begin-

ning wrapper methods are generated that forward to each

partial method. On subsequent calls the partial methods are

combined into one big method that is ultimately replacing

the wrapper at all. This can be compared to the approach

presented in the paper as the JIT compiler can constant fold

the graph to ultimately inline the role dispatch code.

Steamloom [9] is a virtual machine which understands and

optimizes aspect-oriented semantics. The Bytecode Augmen-

tation Toolkit (BAT) [18] can query bytecode and insert and

remove instructions from code. Steamloom understands the

extended set of bytecodes and generates optimized aspect in-

vocation code. Methods affected by aspects will be generated

ad-hoc and replace existing versions of these methods. This

delivers always the best performance without unnecessary

code. Whenever there are instance-local aspects that only

apply to single objects the affected methods will not be able

to be inlined anymore as the compiler cannot decide which

version to chose. Our approach is not affected by this lim-

itation. First, roles always represent instance-local aspects

because of their close relation to the playing objects. Second,

our approach is concerned with the callsites themselves and

inlining the dispatch code to role functions. If the enclosing

method is inlined elsewhere by the VM is out of our scope.

Layered method dispatch with invokedynamic [2] comes

closest to our approach presented in this paper. They do not

construct a graph of method calls but construct the composi-

tion of layers by storing the handles to each partial method

in a list. For each partial method there is its own callsite

object that will be swapped in and out when layers get acti-

vated and deactivated or a proceed is called which returns

the next callsite object pointing to the next partial method.

In contrast, our approach allows to communicate the whole

execution to the VM.

Dispatch Chains [38] is a generalization of polymorphic

inline caches (PIC). Dynamic languages often use reflective

capabilities of the VM to implement the flexible dynamic

dispatch mechanisms but sacrificing performance. Dispatch

chains can be used with meta-tracing JIT compilers or partial

evaluation and perform equally well for both approaches.

Function calls are defined by the name of the function, the ar-

gument list and the type of the callee. In a dynamic language

these can change over the course of the program exhibiting
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many types of callees. While PIC is limited to one family of

an inheritance hierarchy, dispatch chains are able to build

chains on different levels such as the name of the function

or the type of the callee. However, they do not cope with the

semantics of role functions. Especially, the composition of

callins of different teams for one function that are able to re-

place and call recursively deeper into the hierarchy is better

represented in a graph structure and iterative approach as

presented in this paper.

6 Conclusions
Context-dependent software is more and more important.

The role concept is a promising candidate to build context-

dependent software as contexts and behavioral adaptations

can be directly represented in the language. This allows for

a flexible software development process as well as a better

context-dependent software. In general, however, role lan-

guage implementations suffer from a high runtime overhead

when dispatching compositions of adaptations. In this paper

we analyzed this for the concrete case of Object Teams, the
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most mature role-oriented programming language. To re-

duce the overhead in Object Teams, we propose constructing

explicit dispatch plans. By using the concept of late binding

and signature polymorphism, compositions of role functions

can be built at runtime. Runtime feedback helps communi-

cating values to the JIT compiler normally not identified by

the heuristics leading to bigger optimization potential. This

effectively reduces the semantic gap between role-oriented

mechanisms and object-oriented machine models. For a de-

manding role-based benchmark, we showed that an average

speedup of 2.79× can be achieved in the best case (high reuse

case). In the worst case, with repetitive callsite invalidation,

we observed an average slowdown of 9.76×. We are confident

that it is possible to identify when the worst case appears, so

that the more efficient implementation of the dispatch can

be decided at runtime.

In future work, we will further analyze the effect of dis-

patch plans on a larger set of benchmarks under real world

conditions. We will also look into how path-dependent types

can be fit into the signature polymorphic approach. As a

result a polymorphic inline cache could be build which will

speedup the approach dramatically.
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