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Racetrack memories (RMs) have significantly evolved since their conception in 2008, making them a serious
contender in the field of emerging memory technologies. Despite key technological advancements, the access
latency and energy consumption of an RM-based system are still highly influenced by the number of shift
operations. These operations are required to move bits to the right positions in the racetracks. This article
presents data-placement techniques for RMs that maximize the likelihood that consecutive references access
nearby memory locations at runtime, thereby minimizing the number of shifts. We present an integer linear
programming (ILP) formulation for optimal data placement in RMs, and we revisit existing offset assignment
heuristics, originally proposed for random-access memories. We introduce a novel heuristic tailored to a
realistic RM and combine it with a genetic search to further improve the solution. We show a reduction in
the number of shifts of up to 52.5%, outperforming the state of the art by up to 16.1%.
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1 INTRODUCTION

Conventional SRAM/DRAM-based memory systems are unable to conform to the growing de-
mand for low-power, low-cost, large-capacity memories. Increase in the memory size is barred
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Table 1. Comparison of RM with Other Memory Technologies [33, 37]

SRAM eDRAM | DRAM |[STT-RAM|ReRAM| PCM |RaceTrack 4.0

Cell Size (Fz) 120-200 30-100 4-8 6-50 4-10 4-12 <2
Write Endurance > 10" >10" | >10° | 4X10% | 10" 10° 10
Read Time Very Fast Fast Medium | Medium |Medium| Slow Fast

Write Time Very Fast Fast Medium Slow Slow |[Very Slow| Medium

Dynamic Write Energy Low Medium | Medium High High High Medium
Dynamic Read Energy Low Medium | Medium Low Low | Medium Low
Leakage Power High Medium | Medium Low Low Low Low
Retention Period As long as |30-100 ps|64-512 ms| Variable | Years Years Years

volt applied

by technology scalability as well as leakage and refresh power. As a result, multiple non-volatile
memories such as phase change memory (PCM), spin transfer torque (STT-RAM), and resistive RAM
(ReRAM) have emerged and attracted considerable attention [8, 15, 54, 55]. These memory tech-
nologies offer power, bandwidth and scalability features amenable to processor scaling. However,
they pose new challenges such as imperfect durability and higher write latency. The relatively
new spin-orbitronics-based racetrack memory (RM) represents a promising option to surmount
the aforementioned limitations by offering ultra-high capacity, energy efficiency, lower per bit
cost, and higher durability [36, 37]. Due to these attractive features, RMs have been investigated
at all levels in the memory hierarchy. Table 1 provides a comparison of RM with contemporary
volatile and non-volatile memories.

The diverse memory landscape has motivated research on hardware and software optimizations
for more efficient utilization of NVMs in the memory subsystem. For instance, intelligent data
placement and other architectural optimizations have been proposed to improve the lifetime of
PCM [6, 16, 17, 64] and the performance of NVM-S/DRAM hybrid memory systems [23, 41, 51,
59]. However, these solutions require additional hardware, which not only increases the design
complexity of the memory system but also incur latency and energy overheads. To avoid the design
complexity added by hardware solutions, software-based data placement has become an important
emerging area for compiler optimization [32]. Even modern-day processors such as Intel’s Knight
Landing Processor offer means for software-managed on-board memories. Compiler-guided data-
placement techniques have been proposed at various levels in the memory hierarchy, not only
for improving the temporal/spatial locality of the memory objects but also the lifetime and high-
write latency of NVMs [21, 39, 45, 52]. In the context of near data processing (NDP), efficient data
placement improves the effectiveness of NDP cores by allowing more accesses to the local memory
stack and mitigating remote accesses.

In this article, we study data-placement optimizations for the particular case of racetrack mem-
ories. While RMs may not suffer from endurance and latency issues, they pose a significantly dif-
ferent challenge. From the architectural perspective, RMs store multiple bits—1 to 100—per access
point in the form of magnetic domains in a tape-like structure, referred to as track. Each track is
equipped with one or more magnetic tunnel junction (MT]) sensors, referred to as access ports, that
are used to perform read/write operations. While a track could be equipped with multiple access
ports, the number of access ports per track are always much smaller than the number of domains.
In the scope of this article, we consider the ideal single access port per track for ultra-high density
of the RM. This implies that the desired bits have to be shifted and aligned to the port positions
prior to their access. The shift operations not only lead to variable access latency but also impact
the energy consumption of a system, since the time and the energy required for an access depend
on the position of the domain relative to the access port. We propose a set of techniques that reduce
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Fig. 1. Racetrack horizontal and vertical placements (I5; and s, represent left and right shift currents, re-
spectively).

the number of shift operations by placing temporally close accesses at nearby locations inside the
RM.
Concretely, we make the following contributions.

(1) An integer linear programming (ILP) formulation of the data-placement problem for RMs.

(2) A thorough analysis of existing offset assignment heuristics, originally proposed for data
placement in DSP stack frames, for data placement in RM.

(3) ShiftsReduce, a heuristic that computes memory offsets by exploiting the temporal locality
of accesses.

(4) An improvement in the state-of-the-art RM-placement heuristic [5] to judiciously decide
the next memory offset in case of multiple contenders.

(5) A final refinement step based on a genetic algorithm to further improve the results.

We compare our approach with existing solutions on the OffsetStone benchmarks [18]. Shift-
sReduce diminishes the number of shifts by 28.8%, which is 4.4% and 6.6% better than the best
performing heuristics [18] and [5], respectively.

The rest of the article is organized as follows. Section 2 explains the recently proposed RM 4.0,
provides motivation for this work, and reviews existing data-placement heuristics. Our ILP formu-
lation and the ShiftsReduce heuristic are described in Sections 3 and 4, respectively. Benchmarks
description, evaluation results, and analysis are presented in Section 5. Section 6 discusses state of
the art, and Section 7 concludes the article.

2 BACKGROUND AND MOTIVATION

This section provides background on the working principle of RMs, current architectural sketches,
and further motivates the data-placement problem (both for RAMs and RMs).

2.1 Racetrack Memory

Memory devices have evolved over the last decades from hard disk drives to novel spin-orbitronics-
based memories. The latter uses spin-polarized currents to manipulate the state of the memory.
The domain walls (DWs) in RMs are moved into a third dimension by an electrical current [36, 38].
The racetracks can be placed vertically (3D) or horizontally (2D) on the surface of a silicon wafer
as shown in Figure 1. This allows for higher density but is constrained by crucial design factors,
such as the shift speed, the DW-to-DW distance, and insensitivity to external influences such as
magnetic fields.

In earlier RM versions, DWs were driven by a current through a magnetic layer, which attained a
DW velocity of about 100 ms™ [9]. The discovery of even higher DW velocities in structures where
the magnetic film was grown on top of a heavy metal allowed to increase the DW velocity to about
300 ms~! [31]. The driving mechanism is based on spin-orbit effects in the heavy metal, which
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Fig. 2. Racetrack memory architecture [48].

lead to spin currents injected into the magnetic layer [44]. However, a major drawback of these
designs was that the magnetic film was very sensitive to external magnetic fields. Furthermore,
they exhibited fringing fields, which did not allow to pack DWs closely to each other.

The most recent RM 4.0 resolved these issues by adding an additional magnetic layer on top,
which fully compensates the magnetic moment of the bottom layer. As a consequence, the mag-
netic layer does not exhibit fringing fields and is insensitive to external magnetic fields. In addi-
tion, due to the exchange coupling of the two magnetic layers, the DWs velocity can reach up to
1,000 ms~! [37, 58].

2.1.1  Memory Architecture. Figure 2 shows a widespread architectural sketch of an RM based
on Reference [48]. In this architecture, an RM is divided into multiple Domain Block Clusters (DBCs),
each of which contains M tracks with N DWs each. Each domain wall stores a single bit, and we
assume that each M-bit variable is distributed across M tracks of a DBC. Accessing a bit from a
track requires shifting and aligning the corresponding domain to the track’s port position. We
further assume that the domains of all tracks in a particular DBC move in a lock step fashion so
that all M bits of a variable are aligned to the port position at the same time for simultaneous
access. We consider a single port per track, because adding more ports increases the area. This is
due to the use of additional transistors, decoders, sense amplifiers and output drivers. As shown
in Figure 2, each DBC can store a maximum of N variables.

Under the above assumptions, the shift cost to access a particular variable may vary from 0
to N — 1. It is worth to mention that worst case shifts can consume more than 50% of the RM
energy [61] and prolong access latency by 26X compared to SRAM [48].

2.2 Motivation Example

To illustrate the problem of data placement consider the set of data items and their access order
from Figure 3(a). We refer to the set of program data items as the set of program variables (V) and
the set of their access order as access sequence (S), where S; € V Vi € {0,1,...,|S| — 1}, for any
given source code. Note that data items can refer to actual variables placed on a function stack
or to accesses to fields of a structure or elements of an array. We assume two different, a naive
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Fig. 5. Data placement in RMs.

(P1) and a more carefully chosen (P2), memory placements of the program variables as shown in
Figure 3(b).

The number of shifts for the two different placements, P1 and P2 in Figure 3(b), are shown in
Figure 4. The shift cost between any two successive accesses in the access sequence is equivalent to
the absolute difference of their memory offsets (e.g., |2 — 4| for b, ¢ in P1). The naive data placement
P1 incurs 51 shifts in accessing the entire access sequence, while P2 incurs only 21, i.e., 2.4X better.
This leads to an improvement in both latency and energy consumption for the simple illustrative
example.

2.3 Problem Definition

Figure 5 shows a conceptual flow of the data-placement problem in RMs. The access sequence
corresponds to memory traces, which can be obtained with standard techniques. They can be
obtained via profiling and tracing, e.g., using Pin [26], inferred from static analysis, e.g., for Static
Control Parts using polyhedral analysis, or with a hybrid of both as in Reference [43]. In this article,
we assume the traces are given and focus on the data-placement step to produce the memory
layout. We investigate a number of exact/inexact solutions that intelligently decide memory offsets
of the program variables referred to as memory layout based on the access sequence. The memory
for which the layout is generated could either be a scratchpad memory, a software-managed flat
memory similar to the on-board memory in intel’s Knight Landing Processor or the memory stack
exposed to an NDP core.
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Fig. 6. Access graph for the access sequence in Figure 3(a).

The shift cost of an access sequence depends on the memory offsets of the data items. We assume
that each data item is stored in a single memory offset of the RM (cf. Section 2.1.1). We denote the
memory offset of a data item u € V as (u). The shift cost between two data items v and v is then

A(w,v) = |f(u) - f(0)] Yu,v V. (1)

The total shift cost (C) of an access sequence (S) is computed by accumulating the shift costs of
successive accesses:
IS|-2

C= Z A(Si, Siv1) |- (2

i=0
The data-placement problem for RMs can be then defined as follows:

Definition 1. Given a set of variables V = {vy,v1,,...,05-1} and an access sequence S =
(S05S15 -+ -+ Sm-1), Si € V, find a data placement f for V such that the total cost C is minimized.

2.4 State-of-the-art Data-placement Solutions

The data-placement problem in RMs is similar to the classical single offset assignment (SOA) prob-
lem in DSP’s stack frames [2, 3, 18, 25]. The heuristics proposed for SOA assign offsets to stack
variables; aiming at maximizing the likelihood that two consecutive references at runtime will be
to the same or adjacent stack locations.

Most SOA heuristics work on an access graph and formulate the problem as maximum weighted
Hamiltonian path (MWHP) or maximum weight path covering (MWPC). An access graph G =
(V,E) represents an access sequence where V is the set of vertices corresponding to program vari-
ables (V). An edge e = {u, v} € E has weight w,,, if variables u,v € V are accessed consecutively
Wy times in S. The assignment is then constructed by solving the MWHP/MWPC problem. The
access graph for the access sequence in Figure 3(a) is shown in Figure 6.

The SOA cost for two consecutive accesses is binary. That is, if the next access cannot be reached
within the auto-increment/decrement range, then an extra instruction is needed to modify the
address register (cost of 1). The cost is 0 otherwise. In contrast, the shift cost in RM is a natural
number. For RM-placement, the SOA heuristics must be revisited, since they only consider edge
weights of successive elements in S. This may produce better results on small access sequences
due to the limited number of vertices and smaller end-to-end distance in S, but might not perform
well on longer access sequences. Chen et al. recently proposed a group-based heuristic for data
placement in RMs, which performs relatively better compared to the SOA heuristics [5]. In this
article, we extend both the SOA heuristics and the Chen heuristic to account for the more general
cost function and efficient grouping of data objects, respectively.
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3 OPTIMAL DATA PLACEMENT: ILP FORMULATION

This section presents an ILP formulation for the data-placement problem in RM. Unlike Chen’s
formulation for multi-port RMs [5], we use realistic single port RMs and develop our formulation
accordingly.

Consider the access graph G and the access sequence S to variables v € V, the edge weight
Wo,0; between variables v;, v; can be computed as

m-—2

"2y Yjers + Vi Yisrs 0%,
W'U['Uj — {0’ x=0 “IX J,x+1 Jjx i,x+1 i j’ (3)
withi,j € {0,1,...,n—=1},n = |V|,m = |S| and Y defined as
_ 1, lfo = i,
Tix = {0, otherwise. )

To model unique variable offsets, we introduce binary variables (8;,):

0, = {1, if v; ha§ memory offset o, Vi,o € {0,1,...,n—1}, 5)
0, otherwise.
The memory offset of v; is then computed as
n-1
pi) =) 64 0. (©)
0=0

Since edges in the access graph embodies the access sequence information, we use them to compute
the total shift cost as

n-1 n-2
C= Z Z Woyo; - A0, 07) | @)
i=0 j=i+1
The cost function in Equation (7) is not inherently linear due to the absolute function in A(v;, v;)
(cf. Equation (1)). Therefore, we generate new products and perform subsequent linearization. We
introduce two integer variables (p;;, qi;j) € Z to rewrite |f(v;) — B(v;)| as

A, vj) =pij+qij Yi,j€{0,1,...,n—1}, (8)

such that
B(i) = B(v)) + pij — qij = 0, (C1)
pij - qij = 0. (C2)

The second non-linear constraint (C2) implies that one of the two integer variables must be 0.
To linearize it, we use two binary variables a;;, b;; and a set of constraints:

ajj < pij < ajj - n, (C3)
b,’j <gqij < bij - n, (C4)
0Sai1-+b,-j§1. (CS)

C5 guarantees that the value of both binary variables a;; and b;; can not be 1 simultaneously for
a given pair i, j. This, in combination with C3-C4, sets one of the two integer variables to 0. We
introduce the following constraint to enforce that the offsets assigned to data items are unique:

pij +qij = 1. (CG)
It ensures uniqueness, because the left-hand side of the constraint is the difference of the two

memory locations (cf. Equation (8)).
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Fig. 7. Grouping in Chen’s heuristic.

Finally, the linear objective function is

n-1 n-2

C = min Z Z Wo,0; + (Pij + qij) |- 9)

i=0 j=i+1
The following two constraints are added to ensure that offsets are within range:

0<B(v)<n-1, (C7)

i=n-1

B(vi) =

i=0
4 APPROXIMATE DATA PLACEMENT

In this section, we describe our proposed heuristic and use the insights of our heuristic to extend
the heuristic by Chen [5].

n-(n-1)

- (©8)

4.1 State-of-the-Art Heuristic

Chen et al. recently proposed a group-based heuristic for data placement in RMs [5]. Based on an
access graph G = (V, E), it assigns offsets to vertices by moving them to a group g. The position
of a data item within a group indicates its memory offset.

Consider the access graph from Figure 6, Chen’s heuristic first finds the vertex that has the
maximum vertex-weight in G and assigns it to the first location in g. The vertex-weight is defined
as the sum of all edge weights that connect a vertex to other vertices G. In other words, it indicates
the count of successive accesses of a vertex with other vertices in S, i.e., Wy = X 4.(u, 0}eE Wuo-
Figure 7 demonstrates that vertex a has the maximum weight and is assigned to the first location
in g. The remaining elements in G are then iteratively added to the group, based on their vertex-
to-group weights (maximum first). The vertex-to-group weight of a vertex u is the sum of all edge
weights that connect u to the vertices in g.

Definition 2. The vertex-to-group weight (v, g) of a vertex v € V is defined as the sum of all
edge weights that connect v to other vertices in g, i.e., @(v,9) = Yycg:(u,0)cE Wuo-

Vertex C has the maximum vertex-to-group weight (3) and is assigned to the next offset. Other
vertices in G are assigned to g in the same fashion as demonstrated in the figure.

4.2 The ShiftsReduce Heuristic

ShiftsReduce is also a group-based heuristic but unlike Chen’s heuristic, it effectively exploits the
locality of accesses in the access sequence and assigns offsets accordingly. In addition, ShiftsReduce
does not statically assign highest weight vertex to offset 0, because it seems restrictive. The algo-
rithm starts with the maximum weight vertex in the access graph and iteratively assigns offsets
to the remaining vertices by considering their vertex-to-group weights. Note that the maximum
weight vertex may not necessarily be the vertex with the highest access frequency, considering
repeated accesses of the same vertex. ShiftsReduce maintains two groups referred to as left-group
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Fig. 8. Grouping in ShiftsReduce.

g; (highlighted in red in Figure 8) and right-group g, (highlighted in green). Both g; and g, are lists
that store the already computed vertices in V. The heuristic assigns offsets to vertices based on their
global and local adjacencies. The global adjacency of a vertex v € V is defined as its vertex-to-group
weight with the global group, i.e., @(v, ¢; U g,)! while the local adjacency is the vertex-to-group
weight with either of the sub-groups, i.e., g; or g,.

For the example in Figure 6, ShiftsReduce first selects vertex a, because it has the highest vertex
weight (equal to 3 + 3 + 1 + 1 = 8) and places it at index 0 in both sub-groups. Vertices c and d have
maximum edge weights with a and are added to the right and left groups, respectively (cf. lines 6
and 8). At this point, the two sub-groups contain two elements each. The next vertex e is added to
g1, because it has higher local adjacency with g; compared to g,. In a similar fashion, b and f are
added to g, and g, respectively. ShiftsReduce ensures that vertices at far ends of the two groups
have least adjacency (i.e., vertex weights) compared to the vertices that are placed in the middle.
Note that the number of elements in g; and g, may not necessarily be equal. Finally, offsets are
assigned to vertices based on their group positions as highlighted in Figure 8.

Pseudocode for the ShiftsReduce heuristic is shown in Algorithm 1. The sub-groups g; and g,
initially start at index 0, the only shared index between ¢; and ¢g,, and expand in opposite direc-
tions as new elements are added to them. We represent this with negative and positive indices,
respectively, as shown in Figure 8. The algorithm selects the maximum weight vertex (vmax) and
places it at index 0 in both sub-groups (cf. lines 3 and 4).

The algorithm then determines two more nodes and add them to the right (cf. line 6) and left (cf.
line 8) groups, respectively. These two nodes correspond to the nodes with the highest vertex-to-
group weight (@), which boils down to the maximum edge weight to vy,ay. Lines 10-25 iteratively
select the next group element based on its global adjacency (maximum first) and add it to g; or g,
based on its local adjacency. If the local adjacency of a vertex with the left group is greater than
that of the right group, then it is added to left group (cf. lines 12-14). Otherwise, the vertex is added
to the right group (cf. lines 15-17).

The algorithm prudently breaks both inter-group and intra-group tie situations. In an inter-
group tie situation (cf. line 18), when the vertex-to-group weight of the selected vertex is equal
with both sub-groups, the algorithm compares the edge weight of the selected vertex v* with
the last vertices of both groups (v, in g, and v, in g;) and favors the maximum edge weight (cf.
lines 19-24).

To resolve intra-group ties, we introduce the TIE-BREAK function. The intra-group tie arises
when v and v have equal vertex-to-group-weights with g (cf. line 2 in TIE-BREAK). Since the
two vertices have equal adjacency with other group elements, they can be placed in any order. We
specify their order by comparing their edge weights with the fixed vertex (v, for g; and v,, for g,)
and prioritize the highest edge weight vertex. The algorithm checks the intra-group tie for every
vertex before assigning it to the left-group (cf. line 14) or right-group (cf. line 17).

!We abuse notation, using set operations (U, \) on lists for better readability.
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ALGORITHM 1: ShiftsReduce Heuristic

Input : Access graph G = (V, E) and a DBC with minimum n empty locations
Output : Final data placement f

R A L R

T S T N T N T N S S
R R A ol = -~ A A~ 4

25:

> v, = fixed element in g;, v, = fixed element in g,
D> vg = last element in g, vy = last element in g,

¢ B O, Umax < argmaxy, ey wy

: gr~append(vmax)s gl-append(vmax)> V V\ {Umax}
v*  argmaxyeva(v, gr)

. gr-append(v*), V « V\ {0}, v, < 0"

: U« argmaxyeva(v, gr \ {v*})

: gr.prepend(v*), V « V' \ {v*}, v « 0"

vn — vmax: vm — vmax

: while V is not empty do

v* « argmaxyeya(v, gr U gp)
if a(v*, g;) > a(v*, g,) then
g1.prepend(v*)
(vg>vn) < TIE-BREAK(V", Vg, Up, g1)
else if a(v*, g;) < a(v*, g,) then
9r-append(v")
(Vp, Um) < TIE-BREAK(V", Up, U, Gr)
else
if Worn, > Woro, then
gi.prepend(v*)
(vg»vn) < TIE-BREAK(V", Vg, Un, g1)
else
gr-append(v”)
(vp, Um) < TIE-BREAK(V", Up, U, Gr)

V<V {v*)

26: ASSIGN-OFFSETS(f3, g;.append(g,.tail()))

> inter-group tie

Tie-break Function

1:
2
3
4
5:
6
7
8
9

=
(=]

11:
12:

function TIE-BREAK(vs, Uk, Vfix, )

if (05,9 \ {or)) = €(0r,g \ [0¢)) then
if Wy o > Wopop, then
Vfix € Us
swap(vg, Us)
else
Ufix = Uk , Uk < Us
else

Ufix €~ Uk , Uk < Us
return (v, vgy)

: procedure ASSIGN-OFFSETS(f3, g)

fori«<—0Oton—1do
var « variable represented by vertex g;

B =pU{(var,i)}

> swap positions of v, v
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‘(tg? (t) A . (to) (t3)

lg,‘f c, a,d,e,f b

Fig. 9. Chen-TB heuristic. The fixed element is underlined. The green element has higher edge weight with
the fixed element and is moved closer to it. (t; shows the iteration.)

offsets 0 1 2 3 4 5  shift cost
Chen | f |b |e |d|lc | a 33

Chen-TB | b |f |e | d |a | c 31

ShiftsReduce | b | ¢ |a | d |e | f | ()

Fig. 10. Final data placements and costs of Chen, Chen-TB, and ShiftsReduce. Initial port position marked
in green.

Given that we add vertices to two different groups, there are less occurrences of tie compared to
algorithms such as Chen’s [5], where vertices are always added to the same group. For comparison
reasons, we extend Chen’s heuristic with tie-breaking in the following section.

4.3 The Chen-TB Heuristic

Chen’s heuristic does not specify the case when more than once vertices in G have the equal vertex-
to-group weights. We argue that intelligent tie-breaking in such situations deserves investigation.
Chen-TB is a heuristic that extends Chen’s heuristic with the TIE-BREAK strategy introduced for
ShiftsReduce. As shown in Algorithm 2 (lines 2-11) and Figure 9, Chen-TB initially adds three
vertices from V referred to as v°, v!, and v? to the group. The first element in the group is v° = q,
because a has the largest vertex weight (w, = 8) (line 2). Next, v! = ¢, because ¢ has the maximum
edge weight (wge = 3) with a (cf. line 4). Note that ¢ and d have equal edge weights with a, but
since there is only one element in the group, Chen-TB randomly picks one of the two (c in this
case). Similarly, v? = d, because it has the maximum vertex-to-group weight (which is 3) with a U ¢
(cf. line 6). In contrast to Chen, we intelligently swap the order of the first two group elements by
inspecting their edge weights with the third group element. Since the edge weight between a and d
(i.e., wgg = 3) is higher than the edge weight between c and d (i.e., w.q = 0), we swap the positions
of a and c in the group (cf. lines 8 and 9). At this point, the group elements are c, a, d. The position
of a is fixed while d is the last group element.

The next selected vertex is e due to its highest vertex-to-group weight with g. In this case, the
vertex-to-group weight of d and e is compared with ¢ U a (cf. line 2 in TIE-BREAK). Since d has
higher vertex-to-group weight, e becomes the last element while the position of d is fixed (cf.
line 9 in TIE-BREAK). Following the same argument, the next selected element f becomes the last
element while the position of e is fixed. The next selected vertex b and the last element f have
equal vertex-to-group-weights, i.e., 3 with the fixed elements c, a, d, e. Chen-TB prioritizes f over
b, because it has the higher edge weight with the last fixed element e. Lines 12-16 iteratively decide
the position of the new group elements until V is empty.
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ALGORITHM 2: Chen-TB Heuristic

Input : Access graph G = (V, E) and a DBC with minimum n empty locations
Output : Final data placement f
: > vp, : fixed element in g, v, : last element in g
: B @, 0" — argmaxycyw,
. g.append(v°),V « V \ {2°}
v! « argmaxycya(v, )
: g.append(v'),V « V\ {v'}
V% argmax, ey (v, g)
: g.append(v?),V « V\ {v?}
: 1if w2 > wyi2 then
U — 00, swap(v°, v!)
else
11: Um < 0

© P N U W

—_
=4

1

12: while V is not empty do

13: v* « argmaxyeya(v, g)

14: v, < g.last(), g.append(v™)

15: (Vp» Um) < TIE-BREAK(V", Vp, U, G)
16: VeV {v}

17: ASSIGN-OFFSETS(f3, g)

The final data placements of Chen, Chen-TB and ShiftsReduce are presented in Figure 10. For
the access sequence in Figure 6, Chen-TB reduces the number of shifts to 31 compared to 33 by
Chen, as shown in Figure 10. ShiftsReduce further diminishes the shift cost to 21. Note that the
placement decided by ShiftsReduce is the optimal placement shown in Figure 3(b). We assume 3 or
more vertices in the access graph for our heuristics, because the number of shifts for two vertices,
in either order, remain unchanged.

4.4 Genetic Algorithms

Apart from heuristics, genetic algorithms (GAs) have also been employed to solve the SOA prob-
lem [19] and the data-placement problem in RMs [29]. GAs imitate the biological evolution process
to achieve good solutions by performing the select, crossover and mutate operations on chromo-
somes. The genetic algorithm for SOA represents variables (V) by chromosomes where each gene
in a chromosome represents one variable and its position in the chromosome represents its offset.

The GA population initially consists of 30 individuals, having both randomly generated and
more carefully selected permutations. The chosen permutations are the output of OFU, Chen-TB,
and ShiftsReduce heuristics provided as seed to the GA to accelerate its convergence. The GA
evaluates the fitness, i.e., the shift cost (cf. Equation (2)) of all individuals in the population in each
iteration and selects the fittest (those having minimum shift cost) for crossover. The crossover
operation generates new individuals in the GA population to accelerate the GA convergence. Our
GA uses the standard order crossover operation that generates two offspring individuals from two
parental individuals as explained in Reference [19].

The mutation operation is performed on the offsprings generated by crossover. In order for the
mutation operation to be permutation preserving, we use transpostions to mutate chromosomes.
A transpostion refers to the interchange of contents of two genes in a chromosome. The positions
of the two genes, to be mutated, are randomly selected and the permutation probability of each
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gene is 1/(n — 1). For termination, the GA waits until 5,000 iterations (generation) are completed
or the shift cost does not change for 2,000 iterations.

The improved genetic algorithm (IGA) proposed for data placement in RMs [29] also starts with
carefully selected initial populations. IGA takes the output of three heuristics proposed in Refer-
ence [29] as initial input and carefully selects the crossover and mutation points in each generation.
Our modified genetic algorithm IGA-Ours takes the output of OFU, Chen-TB and ShiftsReduce as
initial population and provide better results compared to IGA (cf. Section 5.4).

5 RESULTS AND DISCUSSION

This section provides evaluation and analysis of the proposed solutions on real-world application
benchmarks. It presents a detailed qualitative and quantitative comparison with state-of-the-art
techniques. Further, it brings a thorough analysis of SOA solutions for RMs.

5.1 Experimental Setup

We perform all experiments on a Linux Ubuntu (16.04) system with Intel core i7-4790 (3.8 GHz)
processor, 32 GB memory, g++ v5.4.0, with —O3 optimization level. We implement our ILP model
using the python interface of the Gurobi optimizer, with Gurobi 8.0.1 [7].

As benchmark, we use OffsetStone [18], which contains more than 3,000 realistic sequences
obtained from complex real-world applications (control-dominated as well as signal, image and
video processing). Each application consists of a set of program variables and one or more access
sequences. The number of program variables per sequence varies from 1 to 1,336, while the length
of the access sequences lies in the range of 0 to 3,640. We evaluate and compare the performance
of the following algorithms.

(1) Order of first use (OFU): A trivial placement for comparison purposes in which variables
are placed in the order they are used.

(2) Offset assignment heuristics: For thorough comparison, we use Bartley [3], Liao [25], SOA-
TB [20], INC [2], INC-TB [18], and the genetic algorithm (GA-SOA) in Reference [19].

(3) Chen/Chen-TB: The RM data-placement heuristic presented in Reference [5] and our ex-
tended version (cf. Algorithm 2).

(4) ShiftsReduce (cf. Algorithm 1).

(5) IGA (cf. Section 4.4).

(6) GA-Ours/IGA-Ours: Our modified genetic algorithm for RM data placement described
in 4.4.

(7) ILP (cf. Section 3).

5.2 Revisiting SOA Algorithms

We, for the first time, reconsider all well-known offset assignment heuristics. The empirical results
in Figure 11 show that the SOA heuristics can reduce the shift cost in RM by 24.4%. On average,
(Bartley, Liao, SOA-TB, INC, and INC-TB) reduce the number of shifts by (10.9%, 10.9%, 12.2%,
22.9%, 24.4%) compared to OFU, respectively. For brevity, we consider only the best performing
heuristic, i.e., INC-TB for detailed analysis in the following sections.

5.3 Analysis of ShiftsReduce

In the following, we analyze our ShiftsReduce heuristic.

5.3.1 Results Overview. An overview of the results for all heuristics across all benchmarks, nor-
malized to the OFU heuristic, is shown in Figure 12. As illustrated, ShiftsReduce yields considerably
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Fig. 12. Individual benchmark results (sorted in the decreasing order of benefit for ShiftsReduce).

better performance on most benchmarks. It outperforms Chen’s heuristic on all benchmarks and
INC-TB on 22 out of 28. The results indicate that INC-TB underperforms on benchmarks such as
mp3, viterbi, gif2asc,dspstone, and h263. On average, ShiftsReduce curtails the number of shifts by
28.8%, which is 4.4% and 6.6% better compared to INC-TB and Chen, respectively.

Closer analysis reveals that Chen significantly reduces the shift cost on benchmarks having
longer access sequences. This is because it considers the global adjacency of a vertex before offset
assignment. On the contrary, INC-TB maximizes the local adjacencies and favors benchmarks that
consist only of shorter sequences. ShiftsReduce combines the benefits of both local and global
adjacencies, providing superior results. None of the algorithms reduce the number of shifts for fft,
since in this benchmark each variable is accessed only once. Therefore, any permutation of the
variables placement results in identical performance.

5.3.2  Impact of Access Sequence Length. As mentioned above, the length of the access sequence
plays a role in the performance of the different heuristics. To further analyze this effect, we parti-
tion the sequences from all benchmarks in six bins based on their lengths. The concrete bins and
the results are shown in Figure 13, which reports the average number of shifts (smaller is better)
relative to OFU.

Several conclusions can be drawn from Figure 13. First, INC-TB performs better compared to
other heuristics on short sequences. For the first bin (0-70), INC-TB reduces the number of shifts by
26.3% compared to OFU, which is 10.9%, 7.1%, and 2.2% better than Chen, Chen-TB, and ShiftsRe-
duce, respectively. Second, the longer the sequence, the better is the reduction compared to OFU.
Third, the performance of INC-TB aggravates compared to group-based heuristics as the access
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sequence length increases. For bin-5 (501-800), INC-TB reduces the shift cost by 25.2% compared
to OFU while Chen, Chen-TB, and ShiftsReduce reduces it by 38.3%, 38.6%, and 41.2%, respectively.
Beyond 800 (last bin), INC-TB deteriorates performance compared to OFU and even increases the
number of shifts by 97.8%. This is due to the fact that INC-TB maximizes memory accesses to con-
secutive locations (i.e., edge weights) without considering its impact on farther memory accesses
(i-e., global adjacency). Fourth, Chen performs better compared to INC-TB on long sequences (av-
erage 36.6% for bins 3—-6) but falls after it by 6.9% on short sequences (bins 1 and 2). Fifth, Chen-TB
consistently outperforms Chen on all sequence lengths, demonstrating the positive impact of the
tie-breaking proposed in this article. Finally, the proposed ShiftsReduce heuristic consistently out-
performs Chen in all six bins. This is due to the fact that ShiftsReduce exploit bi-directional group
expansion and considers both local and global adjacencies for data placement (cf. Section 4.2). On
average, it surpasses (INC-TB, Chen, and Chen-TB) by (39.8%, 3.2%, and 2.8%) and (0.3%, 7.3%, and
4.5%) for long (bins 3-6) and short (bins 1 and 2) sequences, respectively.

Based on the above analysis, we classify all benchmarks into three categories as shown in Ta-
ble 2 and categorize access sequences into three ranges, i.e., short (0-140), long (greater than 140),
and very long (greater than 300). The first benchmark category comprises 19 benchmarks; each
containing at least 15% long and 5% very long access sequences. The second and third categories
mostly contain short sequences.

Figure 14 shows that ShiftsReduce provides significant gains on category-I and curtails the
number of shifts by 31.9% (maximum up to 43.9%) compared to OFU. This is 8.1% and 6.4% better
compared to INC-TB and Chen, respectively. Similarly, Chen-TB outperforms both Chen and
INC-TB by 2.3% and 4%, respectively. INC-TB does not produce good results, because the majority
of the benchmarks in category-I are dominated by long and/or very long sequences (cf. Table 2 and
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Table 2. Distribution of Short, Long, and Very Long Access Sequences
in OffsetStone Benchmarks

Short Long Very Long

Category Benchmarks | Seqs (%) | Sequences (%) | Sequences (%)
mp3 65.1% 25.6% 9.3%
veterbi 35.0% 40.0% 25.0%
gif2asc 17.7% 50.0% 33.3%
dspstone 63.0% 29.6% 7.4%
gsm 65.1% 21.6% 13.3%
cavity 20.0% 40.0% 40.0%
h263 0.0% 75.0% 25.0%
codecs 59.7% 33.3% 8.0%
category-I flex 75.8% 16.9% 7.3%
(ShiftsReduce sparse 69.6% 22.8% 7.6%
performs better) kit 54.5% 15.9% 29.6%
triangle 75.4% 17.2% 7.4%
f2c 79.5% 15.2% 6.3%
mpeg?2 50.7% 32.4% 16.9%
bison 63.8% 26.4% 9.8%
cpp 43.7% 33.3% 13.0%
gzip 50.1% 35.2% 14.7%
Ipsolve 44.6% 38.5% 16.9%
ipeg 54.5% 15.9% 29.6%
bdd 85.8% 10.8% 3.4%
category-II adpcm 93.2% 3.4% 3.4%
(comparable fft 100.0% 0.0% 0.0%
performance +2%) anagram 100.0% 0.0% 0.0%
eqntott 100.0% 0.0% 0.0%
fuzzy 100% 0.0% 0.0%
category-IIT (INC hmm 79.7% 10.3% 0.0%
performs better) 8051 80.0% 20.0% 0.0%
cc65 84.6% 13.1% 2.3%

Section 5.3.2). Category-II comprises five benchmarks, mostly dominated by short sequences.
INC-TB provides higher shift reduction (19.6%) compared to Chen (13.2%) and Chen-TB (15.3%).
However, it exhibits comparable performance with ShiftsReduce (within +2% range). On average,
ShiftsReduce outperforms INC-TB by 1.1%. INC-TB outperforms ShiftsReduce only on the four

benchmarks listed in category-III.

5.4 Comparison of Genetic Algorithms

This section leverages four genetic algorithms (namely, GA-SOA, GA-Ours, IGA, and IGA-Ours)
for RM data placement. We analyze the impact on the results of GA using our solutions compared
to solutions obtained with SOA heuristics and heuristics in Reference [29] as initial population. All
algorithms use the same parameters as presented in Reference [18]. The initial populations of GA-
SOA, GA-Ours, IGA, and IGA-Ours are composed of (OFU, Liao [25], INC-TB [18]), (OFU, Chen-TB,
ShiftsReduce), (OFU, MAIM [29], MAF [29]), and (OFU, Chen-TB, ShiftsReduce), respectively.
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Fig. 16. Results summary.

Experimental results demonstrate that GAs populated with our heuristics as initial solution (GA-
Ours, IGA-Ours) are superior compared to others (GA-SOA, IGA) in all benchmarks. The average
reduction in shift cost across all benchmarks (cf. Figure 16) translate to 35.1%, 38.3%, 36.4%, and
39.8% for GA-SOA, GA-Ours, IGA, and IGA-Ours, respectively.

5.5 ILP Results

As expected, the ILP solver could not produce any solution in almost 30% of the instances when
given three hours per instance. In the remaining instances, the solver either provides an opti-
mal solution (on shorter sequences) or an intermediate solution. We evaluate ShiftsReduce and
IGA-Ours on those instances where the ILP solver produces results and show the comparison in
Figure 15.

On average, the ShiftsReduce results deviate by 8.2% from the ILP result. IGA-Ours bridges this
gap and deviates by only 1.7%.

5.6 Summary Performance and Energy Analysis

Recall the results overview from Figure 16. In comparison to OFU, ShiftsReduce and Chen-TB mit-
igate the number of shifts by 28.8% and 24.5%, which is (4.4%, 0.1%) and (6.6%, 2.3%) superior than
INC-TB and Chen, respectively. Compared to the offset assignment heuristics in Figure 11, the
performance improvement of ShiftsReduce and Chen-TB translate to (17.9%, 17.9%, 16.6%, 5.9%)
and (13.6%, 13.6%, 12.3%, 1.6%) for Bartley, Liao, SOA-TB, and INC, respectively. IGA-Ours further
reduces the number of shifts in ShiftsReduce by 11%. The average runtimes of Chen-TB and Shift-
sReduce are 2.99 ms, which is comparable to other heuristics, i.e., Bartley (0.23 ms), Liao (0.08 ms),
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Table 3. Configuration Details for RM

Technology 32 nm
Word/bus size 32 bits (4 B)
Number of banks 4
Leakage power [mW] 19.3
Read/Write/Shift energy [p]] 19.8/30.6/13.7
Read/Write/Shift latency [ns] 0.95/1.27/1.04
Number of tracks/DBC, DBCs/bank, domains/track 32,32, 64

SOA-TB (0.11 ms), INC (2.3 s), INC-TB (2.7 s), GA-SOA (4.98 s), GA-Ours (4.96 s), IGA (4.76 s),
IGA-Ours (4.73 s), and Chen (2.98 ms).

To analyze the impact of the shifts reduction on the overall memory system performance and
energy consumption, we run all benchmarks in the RM simulator RTSim [12] and report results in
Figure 17. For evaluation, we take a 32 KiB scratch-pad memory (SPM) with configuration param-
eters listed in Table 3. The overall performance and energy benefits of (Chen, ShiftsReduce, and
IGA-Ours) compared to OFU translate to (22.2%, 25.4%, and 31.7%) and (12.4%, 17.5%, and 26.4%),
respectively. The suitability of RMs compared to other memory technologies such as SRAM, STT-
MRAM, and DRAM has already been established [13, 30, 48].

Using the latest RM 4.0 prototype device in our in-house physics lab facility, a current pulse
of 1 ns, corresponding to a current density of 5 x 10! Amp/m?, is applied to the nano-wire to
drive the domains. Employing a 50-nm-wide, 4-nm-thick wire, the shift current corresponds to
0.1 mA. With a 5V applied voltage, the power to drive a single domain translates to 0.5 mW (P =
Vx I=5Vx 0.1mA = 0.5mW). Therefore, the energy required for a single shift amounts to
0.5p] (E=Pxt=05mW X 1ns = 0.5p]). Note that this is much smaller compared to the per-
shift energy in Table 3, which also includes the latency/energy of the peripheral circuitry. The
RM 4.0 device characteristics indicate that domains in RM 4.0 shift at a constant velocity without
inertial effects. Therefore, for a 32-bit data item size, the total shift energy amounts to 16pJ without
inertia. The overall shift energy saved by a particular solution is calculated as the total number of
shifts for all instances across all benchmark multiplied by per data item shift energy (i.e., 16 pJ).
Using RM 4.0, the shift energy reduction for ShiftsReduce relative to OFU translates to 35%. In
contrast to RM 4.0, the domains in earlier RM prototypes show inertial effects when driven by
current. Considering the inertial effects in earlier RM prototypes, we expect less energy benefits
compared to RM 4.0.
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6 RELATED WORK

Conceptually, the racetrack memory is a one-dimensional version of the classical bubble memory
technology of the late 1960s. The bubble memory employs a thin film of magnetic material to hold
small magnetized areas known as bubbles. This memory is typically organized as two-dimensional
structure of bubbles composed of major and minor loops [10]. The bubble technology could not
compete with the Flash RAM due to speed limitations and it vanished entirely by the late 1980s.
Various data reorganization techniques have been proposed for the bubble memories [10, 49, 53].
These techniques alter the relative position of the data items in memory via dynamic reordering
so that the more frequently accessed items are close to the access port. Since these architectural
techniques are blind to exact memory reference patterns of the applications, they might excerbate
the total energy consumption.

Compared to other memory technologies, RMs have the potential to dominate in all perfor-
mance metrics, for which they have received considerable attention as of late. RMs have been
proposed as replacement for all levels in the memory hierarchy for different application scenar-
i0s. Mao and Wang et al. proposed an RM-based GPU register file to combat the high leakage and
scalability problems of conventional SRAM-based register files [30, 50]. Xu et al. evaluated RM at
lower cache levels and reported an energy reduction of 69% with comparable performance relative
to an iso-capacity SRAM [56]. Sun et al. and Venkatesan et al. demonstrated RM at last-level cache
and reported significant improvements in area (6.4X), energy (1.4X), and Performance (25%) [47,
48]. Park advocates the usage of RM instead of SSD for graph storage, which not only expedites
graph processing but also reduces energy by up to 90% [35]. Besides, RMs have been proposed as
scratchpad memories [29], content addressable memories [62], and reconfigurable memories [63].

Various architectural techniques have been proposed to hide the RM access latency by pre-
shifting the likely accessed DW to the port position [48]. Sun et al. proposed swapping highly
accessed DWs with those closer to the access port(s) [47]. Atoofian proposed a predictor-based
proactive shifting by exploiting register locality [1]. Likewise, proactive shifting is performed on
the data items waiting in the queue [30]. While these architectural approaches reduce the access
latency, they may increase the total number of shifts, which exacerbates energy consumption.

To abate the total number of shifts, techniques such as data swapping [47, 56], data compres-
sion [57], data reorganization for bubble memories [10, 49, 53], and efficient software supported
data and instruction placement [5, 29, 34] have been proposed. In addition, reconfigurable cache
organizations have been proposed that mitigate the number of RM shifts by (de-)activating RM-
cache sets/ways, which are far from the access ports at run time [42, 46]. Amongst all, data place-
ment has shown great promise, because it effectively reduces the number of shifts with negligible
overheads.

Historically, hardware/software guided data placement has been proposed for different mem-
ory technologies at different levels in the memory hierarchy. It is demonstrated that efficient data
placement improves energy consumption and system performance by exploiting temporal/spatial
locality of the memory objects [4]. In a multi-level cell (MLC) PCM device, intelligent page place-
ment in logically decoupled fast/slow regions significantly improve both performance and en-
ergy [60]. More recently data-placement techniques have been employed in NVM-S/DRAM hybrid
memory systems to improve their performance and lifetimes. For instance, References [21, 22] em-
ploy data-placement techniques to hide the higher write latency and hence cache blocks migration
overhead in an STT-SRAM hybrid cache. The caching policies in Reference [59] mitigate the costly
PCM row buffer misses by caching rows with higher reusability and lower row buffer hit rate in
the DRAM row buffer in a DRAM-PCM hybrid memory. In another similar configuration, rank-
based page placement and page migration policies track pages with high access frequencies and
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high-write intensities and migrate highest rank pages to DRAM [41]. However, individual opti-
mizations for row buffer locality, write intensity and access frequencies do not capture the overall
system’s performance and may lead to sub-optimal placement decisions. Li et al. proposed a utility-
based hybrid memory management that uses several factors to determine the impact of page mi-
gration on the overall system’s performance and migrate only pages with the greatest estimated
system level performance benefits [23]. Similarly, in References [39, 40, 45, 52], data-placement
techniques have been proposed to make efficient utilization of the memory systems equipped
with multiple memory technologies. While most of these solutions effectively improve both per-
formance and energy, their applicability to RMs is of secondary interests (hybrid RM-S/DRAM
memory system). Fundamentally, the data-placement solutions in RMs such as for GPU register
files [24], scratchpad memories [13, 29], and stacks [14] aim at reducing the number of RM shifts.

In the past, various data-placement solutions have been proposed for signal processing in the
embedded systems domain (i.e., SOA, cf. 2.4). These solutions include heuristics [2, 3, 18, 20, 25],
genetic algorithms [19] and ILP-based exact solutions [11, 27, 28]. As discussed in Section 5 our
heuristic builds on top of this previous work, providing an improved data allocation.

7 CONCLUSIONS

This article presented a set of techniques to minimize the number of shifts in RMs by means of
efficient data placement. We introduced an ILP model for the data-placement problem for an ex-
act solution and heuristic algorithms for efficient solutions. We show that our heuristic computes
near-optimal solutions, at least for small problems, in less than 3 ms. We revisited well-known off-
set assignment heuristics for racetrack memories and experimentally showed that they perform
better on short access sequences. In contrast, group-based approaches such as the Chen heuris-
tic exploit global adjacencies and produce better results on longer sequences. Our ShiftsReduce
heuristic combines the benefits of local and global adjacencies and outperforms all other heuris-
tics, minimizing the number of shifts by up to 40%. ShiftsReduce employs intelligent tie-breaking,
a technique that we use to improve the original Chen heuristic. To further improve the results,
we combined ShiftsReduce with a genetic algorithm that improved the results by 9.5%. In future
work, we plan to investigate placement decisions together with reordering of accesses from higher
abstractions in the compiler, e.g., from a polyhedral model or by exploiting additional semantic
information from domain-specific languages. We also plan to research hybrid solutions where a
simplified hardware logic in the shift controller of RMs will support the placement decisions to
hide the shift latencies.
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