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Abstract—Modern embedded computing platforms consist of a
high amount of heterogeneous resources, which allows executing
multiple applications on a single device. The number of running
application on the system varies with time and so does the
amount of available resources. This has considerably increased
the complexity of analysis and optimization algorithms for
runtime mapping of firm real-time applications. To reduce the
runtime overhead, researchers have proposed to pre-compute
partial mappings at compile time and have the runtime efficiently
compute the final mapping. However, most existing solutions
only compute a fixed mapping for a given set of running
applications, and the mapping is defined for the entire duration
of the workload execution. In this work we allow applications
to adapt to the amount of available resources by using mapping
segments. This way, applications may switch between different
configurations with varied degree of parallelism. We present a
runtime manager for firm real-time applications that generates
such mapping segments based on partial solutions and aims
at minimizing the overall energy consumption without deadline
violations. The proposed algorithm outperforms the state-of-the-
art approaches on the overall energy consumption by up to 13%
while incurring an order of magnitude less scheduling overhead.

Index Terms—energy-efficiency, runtime systems, scheduling

I. INTRODUCTION

Most modern computing systems are embedded in end-user
devices. Some of these systems consist of many-cores, and
the number of cores have already reached the thousands [1].
Many-cores allow executing multiple applications in parallel
on a single device. These applications are launched at any
time, making resource management particularly challenging.

The problem of optimally executing multiple applications
is well-known in the embedded domain. Existing solutions
might be classified into design-time, runtime and hybrid [2].
The latter combines the benefits of the first two approaches.
In a hybrid mapping, the decision where to execute an
application is split between design- and runtime. At design
time, partial solutions for each application are generated by
analyzing the applications in isolation. This is done, e.g.,
using established methodologies for Design Space Exploration
(DSE). At runtime, the runtime manager (RM), being aware
of the overall workload, transforms these solutions into final
mappings. Hybrid mappings thus benefit from extensive design
space exploration to find near-optimal partial solutions, and
can adapt to the workload at runtime via efficient heuristics.

In runtime and hybrid approaches, when a new application
arrives, the RM has to assign resources to it. An incremental

RM allocates the new application on free resources [3], [4].
If available resources do not suffice, the RM either rejects
the application, or uses fast heuristics to remap existing jobs.
For instance in [5], [6], a joint mapping is computed for all
applications at once. Authors formulate the problem as multi-
choice multidimensional knapsack problem (MMKP) [7] and
solve it using fast heuristics. Similarly, when an application
finishes execution, more resources become available and the
RM can generate new mappings. State-of-the-art solutions,
as discussed above, generate fixed mappings, i.e., mappings
that do not change during the execution of the applications.
Those fixed mappings are optimized locally for the duration
of the fixed set of applications, and at the subsequent RM
activations, new local optimal mappings will be generated.
However, a sequence of local optimal decisions might lead
to a sub-optimal schedule in the scope of the entire runtime
of the system.

Recently, Niknafs et al. [8] attempted to enlarge the scope
of analysis for firm real-time applications by computing joint
mappings. In the generated schedules, different applications
might be mapped to the same core and executed according
to the earliest deadline first (EDF) policy. Applications might
be also preempted in favour of more critical and proactively
predicted jobs. However, the presented approach is limited
to single-threaded applications. In this paper we generalize
Niknafs’ approach to multi-threaded applications. We express
the schedules as fragmented into mapping segments, which ex-
plicitly express resource adaptations (Section IV). We propose
a fast algorithm for firm real-time multi-threaded applications,
which analyzes the applications in the scope until the last
application finishes, and generates the mapping segments opti-
mized w.r.t. the overall energy consumption (Section V). Due
to the enlarged scope of the analysis, the generated schedules
will be near-optimal for the entire execution of the current
workload (Section VI).

II. RELATED WORK

The problem of optimal execution of multiple applications
is well-known. The common aim is to increase the overall
throughput by using historical data [9], [10], or by exploit-
ing the concavity of throughput of multi-threaded applica-
tions [11]. These works do not optimize energy efficiency.

Several runtime managers for energy efficient execution of
applications exist. Das et al. [12] uses energy-awareness of
single applications to improve both energy consumption and
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Table I: Request parameters.

Req. App. S1-Arr. S1-Dead. S2-Arr. S2-Dead.

σ1 λ1 0 9 0 9
σ2 λ2 1 5 1 4

thermal dissipation. Greedy heuristics are used for thread allo-
cations, and reinforcement learning is employed for selecting
the minimum frequency. Tzilis et al. [13] uses profiling data to
predict the performance and energy consumption of a single-
threaded application co-scheduled with another applications,
and decides on application placement and frequency settings.
Similarly, Libutti et al. [14] exploits collected off-line infor-
mation such as CPU demands and memory sensitivity for job
co-scheduling. Libutti et al. target multi-threaded applications
but without controlling frequency settings. Singh et al. [15]
capture the trace information of individual applications at
design-time, and then merge execution intervals of multiple ap-
plications at runtime. This approach is limited to Synchronous
Data Flow Graphs (SDFG) and thus cannot be applied to
dynamic workloads.

Unlike aforementioned works, hybrid approaches prepare a
set of partial or complete mappings of individual applications
at design-time, which correspond to Pareto-optimal configura-
tions. Ascia et al. [16] were one of the first to propose multi-
objective mapping generation, using evolutionary algorithms
to find Pareto-optimal points. Approaches such as [3], [17]–
[19] use heuristics for efficient exploration of Pareto-optimal
configurations, while others such as [4], [20] use evolutionary
algorithms. The amount of considered configuration can be
also reduced by exploiting system symmetries [21], [22].

Identified Pareto-optimal points at design time are passed to
the RM. The essential task of the RM is to select the operating
points for multiple applications. Singh et al. [3] iteratively
map applications onto the platform, whereas Weischlgartner et
al. [4] enhance the iterative binding of application with a repair
heuristic. More sophisticated approaches express the prob-
lem as a multiple-choice multidimensional knapsack problem
(MMKP) [7]. Ykman-Couvreur et al. [5], for instance, propose
a fast heuristic, which expresses the resource demands of oper-
ating points as a single value, and then use a greedy algorithm
to solve the MMKP. This heuristic underlies the solutions
proposed in [17], [20]. Wildermann et al. [6], [23] solve the
problem by applying a Lagrangian relaxation method. Shojaei
et al. [24] propose a compositional Pareto-algebraic heuristic
using Pareto-algebra. However, these algorithms assume that
applications are constantly running, and do not consider ap-
plication reconfiguration. As mentioned in Section I, Niknafs
et al. [8] do consider application reconfiguration, but limited
to single-threaded applications.

III. MOTIVATIONAL EXAMPLE

Assume a heterogeneous multi-core device with 2 little
and 2 big cores that serves requests arriving according to
Scenario S1 in Table I. Each request consists of the application
to run, its arrival and (absolute) deadline. Table II describes

Table II: Application parameters.

λ1, pr. 0% - 18.87% - 62.08% λ2, pr. 0%

#L #B τ [s] ξ[J ] τ [s] ξ[J ]

1 0 16.8 - 13.63 - 6.37 7.90 - 6.41 - 3.00 10.0 2.00
2 0 10.3 - 8.36 - 3.91 7.01 - 5.69 - 2.66 7.0 2.87
0 1 11.2 - 9.09 - 4.25 18.54 - 15.04 - 7.03 5.0 7.55
0 2 6.3 - 5.11 - 2.39 17.70 - 14.36 - 6.71 3.5 10.5
1 1 8.1 - 6.57 - 3.07 10.90 - 8.84 - 4.13 3.5 6.44
1 2 7.9 - 6.41 - 3.00 10.60 - 8.60 - 4.02 3.0 6.81
2 1 5.3 - 4.30 - 2.01 8.90 - 7.22 - 3.38 3.0 5.73
2 2 4.7 - 3.81 - 1.78 11.00 - 8.92 - 4.17 2.0 6.58

configurations of the two applications of the example (λ1, λ2),
characterized by the number of little and big cores, the
execution time τ and the energy consumption ξ. For λ1 we
show time/energy values in triples, in which the first (initial)
state is followed by the states states with a progress ratio of
18.87% and 62.08% correspondingly, to which we refer below.
The values in the table are synthetic, but feature ratios similar
to what we observed in real applications (see Section VI).

At t = 0, the RM receives request σ1 to execute application
λ1. An energy-optimizing mapper decides to map it to 2 little
and 1 big cores (i.e., 2L1B), since this configuration meets
the deadline (t = 9) with the least energy consuming (8.9 J,
underlined). After 1 s, request σ2 arrives while request σ1

progressed to ≈ 18.87%. To meet the deadline, σ2 must be
executed either as 2B, 1L1B, 1L2B, 2L1B or 2L2B. If any of
these mappings is chosen, σ1 must then continue as 1L, 2L,
1L1B or 1B. A mapper that only explores fixed mappings
would choose one where both jobs meet their deadlines, e.g.,
1L1B for both σ1 and σ2. By t = 4.5, σ2 finishes its
execution and σ1 progresses to ≈ 62.08%. If σ1 continues
as 1L1B till the end, as depicted in Fig. 1(a), the overall
energy consumption is 16.96 J. If the RM decides to remap
application at t = 4.5, then it would choose the most efficient
mapping 2L, see Fig. 1(b), with overall energy consumption
of 15.49 J. However, if at t = 1 the RM runs σ2 on 2L1B
and suspends momentarily σ1, then when σ2 finishes, σ1 may
continue with 2L1B leading to an overall energy consumption
of 14.63 J (see Fig. 1(c)).

Assume now the tighter Scenario S2 in Table I. At t = 1, σ2

can only choose 1L2B, 2L1B, or 2L2B, which leaves at most
either 1 big or 1 little core for σ1. Since these configurations
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(c) Adaptive mapper, energy = 14.63J

Figure 1: Three resource management scenarios.



cannot meet the deadline, a fixed mapper will be unable to find
a schedule and σ2 will be rejected. With explicit adaptations,
a dynamic mapper in the RM can produce the schedule in
Fig. 1(c) and meet the constraints. By allowing mapping
reconfigurations and global analysis scope, the overall energy
consumption and the request acceptance rate can be improved.

IV. SYSTEM MODEL AND PROBLEM DEFINITION

To formalize the resource management problem illustrated
above, assume a heterogeneous platform with m resource
types, and core counts represented by the vector ~Θ =
(Θ1, . . . ,Θm). The platform executes multi-threaded appli-
cations, in which each thread perform computations during
the whole execution of the application. Additionally, we as-
sume that in each fixed configuration all threads process the
workload with a constant progress rate. Via a DSE method
or benchmarking, the RM is given information about each
application λ and its Nλ operating points (cf. Table II). Each
operating point consists of needed resources ~θ, the (worst
case) execution time τ and the energy consumption ξ, i.e.,
cjλ = 〈~θ, τ, ξ〉. Operating points are assumed to be already
Pareto-filtered, i.e., each operating point is better than any
other in at least one parameter.

Every time a request arrives, the RM is activated. We denote
by Σt′ the set of unfinished jobs admitted in t < t′ plus the
newly arrived job at time t′. For a given job, σ[α] denotes the
arrival time, σ[δ] the (absolute) deadline, σ[λ] the application,
and σ[ρ] ∈ [0, 1] the remaining progress ratio of the job, i.e.,
σ = 〈α, δ, λ, ρ〉. Given a set of requests Σt′ , the RM attempts
to find a schedule κ, which is defined as a list of mappings µ
defined on consecutive time segments:

κ = {µi ×∆µi}, 0 ≤ i < N (1)

where N is a number of segments, ∆µ = [∆µ,∆µ) is a
time interval of the mapping µ, ∆µ0 = t′ and ∆µi = ∆µi+1 ,
0 ≤ i < N − 1. Each mapping µ contains individual job map-
pings ν = 〈σ, λ, j〉, which expresses that application λ of
request σ runs with configuration j. Note that this formulation
allows jobs to be remapped from one configuration to another
in the schedule.

Having introduced the notation, the optimization problem
can be defined as:

minimize
∑
µ∈κ

∑
ν∈µ

c
ν[j]
ν[λ][ξ]

|∆µ|
c
ν[j]
ν[λ][τ ]

(2a)

subject to
∑
ν∈µ

c
ν[j]
ν[λ][

~θ] ≤ ~Θ, ∀µ ∈ κ (2b)

ν1[σ] 6= ν2[σ], ∀ν1, ν2 ∈ µ, ν1 6= ν2 (2c)∑
µ∈κ
ν∈µ
ν[σ]=σ

|∆µ|
c
ν[j]
ν[λ][τ ]

= σ[ρ], ∀σ ∈ Σ (2d)

max
µ∈κ
ν∈µ
ν[σ]=σ

∆µ ≤ σ[δ], ∀σ ∈ Σ. (2e)

Constraint (2b) ensures that the resources required for mapping
in the segment µ does not exceed the available resources
per type ~Θ. Equation (2c) specifies that at each mapping
segment at most one job mapping relates to each request
σ. Constraint (2d) expresses that each job will run until the
end. Finally, each job must finish the execution before the
deadline (2e). If there is a feasible solution to this problem, the
RM admits the request and changes the schedule accordingly.
Otherwise the request is rejected.

V. FAST HEURISTIC FOR MMKP-BASED SCHEDULING

Algorithm 1 MMKP-MDF mapping heuristic.

Input: Set of jobs Σt, platform ~Θ, application table c
Output: The schedule κ

1: ~J ← ~Θ×max(σ[δ]− t | σ ∈ Σt)
2: for all σ ∈ Σt do jc[σ]← ∅
3: while ∃σ ∈ Σt : jc[σ] = ∅ do
4: σ∗, cl← NEXTJOBMDF(Σt, jc, ~J, c)
5: while jc[σ∗] = ∅ do
6: if |cl| = 0 then return ∅
7: j∗ ← argminj∈cl{c

j
σ∗[λ][ξ]}

8: jc∗ ← jc, jc∗[σ∗]← j∗

9: κ∗ ← SCHEDULEJOBS(Σt, jc∗, ~Θ, c)
10: if κ∗ 6= ∅ then
11: jc← jc∗, κ← κ∗

12: ~J ← ~J − cj
∗

σ∗[λ][
~θ]× cj

∗

σ∗[λ][τ ]× σ∗[ρ]
13: else
14: cl← cl \ j∗

15: return κ

We consider the core types as knapsacks with certain
capacities, and the job configurations cjλ as items with certain
weights. Weights are defined as the required processing time
to finish the job cjλ[τ ] times the required number of resources
of corresponding type cjλ[~θ], while the capacities express the
available processing time per each resource type. Each job
forms a group of items, in which exactly one item must be
chosen. After negating the energy values of each item, the
optimization goal becomes to maximize the overall (negative)
value which can be expressed as a multiple-choice multi-
dimensional knapsack problem (MMKP) [7]. Algorithm 1
describes our heuristic to solve this. It generalizes the solution
in [8] for multi-threaded applications.

At each activation of the RM, the containers ~J are initialized
with the overall processing time per resource type limited by
the largest job deadline (the time scope of the analysis), which
is followed by the initialization of the found job configuration
dictionary jc (lines 1-2). The algorithm iterates over unmapped
jobs (line 3), using NEXTJOBMDF to select the next one to
map (line 4). Similarly to [8] this function (i) filters configu-
rations by checking whether they can meet deadlines and fit
the containers ~J , (ii) determines a job, in which the difference
between the most energy-efficient feasible configuration and
the second best one is maximized, i.e., Maximum Difference



First (MDF), and (iii) returns the selected job σ∗ along with a
list of filtered configurations cl. The MDF policy prioritizes the
job that would cause the highest degradation if the best point
is not chosen in this iteration. In lines 5-14, the algorithm
iterates over the configurations in non-decreasing order of
energy consumption. It then attempts to schedule the job
σ∗ with already mapped jobs in SCHEDULEJOBS, detailed
in Algorithm 2. Once the job is successfully scheduled, its
configuration and a new schedule is saved, and the containers
~J are updated (lines 11-12). Otherwise, no feasible schedule
was found and the algorithm exits in line 6.

Algorithm 2 Schedule jobs.

Input: Set of jobs Σt, their configurations jc, platform ~Θ,
application table c

Output: The schedule κ
1: Σ̃← {σ ∈ Σt | jc[σ] 6= ∅}, κ← ∅, te ← t

2: while
∣∣∣Σ̃∣∣∣ 6= 0 do

3: σ∗ ← argminσ∈Σ̃{σ[δ]}
4: j∗ ← jc[σ∗], ρ∗ ← σ∗[ρ]
5: for all µ×∆ ∈ κ do
6: ~θ∗ ←

∑
ν∈µ c

ν[j]
ν[λ][

~θ]

7: if ¬(cj
∗

σ∗ [
~θ] + ~θ∗ ≤ ~Θ) then continue

8: r ← cj
∗

σ∗[λ][τ ]× ρ∗
9: if r ≥ |∆| then

10: µ← µ ∪ {ν〈σ∗, σ∗[λ], j∗〉}
11: ρ∗ ← ρ∗ − |∆|

cj
∗
σ∗[λ][τ ]

12: else
13: µ1 ×∆1, µ2 ×∆2 ← SPLIT(µ×∆,∆ + r )
14: µ1 ← µ1 ∪ {ν〈σ∗, σ∗[λ], j∗〉}
15: κ← (κ \ {µ×∆}) ∪ {µ1 ×∆1, µ2 ×∆2}
16: ρ∗ ← 0, tf ← ∆1

17: break
18: if ρ∗ = 0 then tf ← ∆, break
19: if ρ∗ 6= 0 then
20: r ← cj

∗

σ∗[λ][τ ]× ρ∗, ∆← [te, te + r)

21: µ← {ν〈σ∗, σ∗[λ], j∗〉}, κ← κ ∪ {µ×∆}
22: te ← te + r, ρ∗ ← 0, tf ← ∆

23: if tf > σ∗[δ] then return ∅
24: Σ̃← Σ̃ \ σ∗

25: return κ

Algorithm 2 takes the job configurations as input and gen-
erates a feasible schedule on. Line 1 initialize the algorithm.
The algorithm iterates over unmapped jobs (lines 2-24) in
non-decreasing order of their deadlines, i.e., Earliest Deadline
First (EDF) (line 3). The loop in lines 5-18 schedules the job
on already constructed mapping segments in the ascending
order of the time segments (with a slight abuse of notation).
After checking resource constraints on the segment (line 7),
the algorithm checks whether the job will execute during the
whole segment (lines 10-11) or only a part of it (lines 13-17).
In the last case, the mapping segment is split at time the job

Table III: Amount of test cases differentiated by a number of
jobs and deadline level.

Deadline level
# Jobs

1 2 3 4

Weak 15 255 255 230
Tight 35 340 340 206

finishes execution (line 13), and the job is added only to the
first part of it. To track the remaining progress rate of the job
while iterating the mapping segments, the algorithm initialize
ρ∗ in line 4 and updates it in lines 11 and 16. If the job is
not finished after the last mapping segment, the new mapping
segment is created and added to the schedule (lines 19-22).
At the end, line 23 verifies that the job meets its deadline.
As a result, the algorithm puts more time-critical jobs into the
earliest mapping segments as possible (EDF policy).

Note that the proposed algorithm is backward-compatible
with the single-threaded version of the algorithm (without
predictions) [8], and the generated schedules will be the same
due to MDF and EDF policies. At the same time, due to a
constraint to schedule all the threads on the same mapping
segments, the original single-threaded algorithm cannot be
employed for multi-threaded applications.

VI. EVALUATION

This section describes the experimental setup, the generation
of the experimental workload and the alternative algorithms.
We evaluate the scheduling success rate, the energy-efficiency
of found schedules, and the overhead of our approach.

A. Experimental setup and test generation

In our experiments we used three different dataflow ap-
plications from the automotive and multimedia domains: an
algorithm of speaker recognition with 8 processes [25], audio
filter, a stereo frequency filter with 8 processes [21], and
an algorithm of pedestrian recognition with 6 processes,
provided by Silexica. To obtain application configurations we
exhaustively benchmarked these applications with input data
of different sizes on the Hardkernel Odroid XU4 featuring
an Exynos 5422 big.LITTLE chip with four Cortex-A15 and
four Cortex-A7 cores, fixed at frequencies of 1.8 GHz and
1.5 GHz respectively. We measured the power consumption of
the Odroid-XU4 board using ZES Zimmer LMG450 Power
Analyzer connected to DC input with an external readout
rate of 20 Sa/s. To identify Pareto-optimal configurations we
executed the variants 50 times to get average execution times
and energy consumptions. In this way we obtained 36 Pareto-
configurations for audio filter, 35 for pedestrian recognition,
and 28 for speaker recognition.

The multi-application setup consists of 1676 test cases. Each
test has one to four jobs, which are characterized by the current
progress ratio and the remaining deadline. 31.9% of the test
cases consist of requests of a single application (uniformly
distributed among each application and input data), while the
remaining 68.1% are application mixes. In around 22.6% of
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Figure 2: Scheduling rate of different schedulers for test cases
with tight deadlines.

the tests we set the progress state of the jobs to zero (initial
state). For all others, we randomly choose a progress rate in
the range 0 − 0.9 except for the first job, which naturally
starts in the initial state. To set deadlines, we randomly select
a configuration, calculate the remaining time to finish the job
using this configuration and then scale it by a factor. In the
case of weak deadlines, we randomly choose large factors in
the range 2 − 6. For tighter deadlines factors are selected in
the range 0.6 − 2 at random. Table III reports the amount of
tests for each pair of number of jobs and deadline level.

Our proposed algorithm MMKP-MDF (Section V) was
implemented in Python 3 and runs on a 3.20 GHz Intel Core
i5-6500 CPU. Our so implemented RM prototype receives the
Pareto-optimal configurations of the applications, reads a test
case, and maps the applications on the Odroid XU4 platform.
We implemented alternative algorithms in the RM prototype
to evaluate our solution. EX-MEM exhaustively checks all
possible mappings for each of the mapping segments. In
each constructed mapping segment it cuts the segment on
the shortest job, and generates the next mapping segment. To
accelerate the algorithm, we use memoization by storing and
re-using the best energy consumption for a given current state
(a pair of jobs, their progress rates, and time). MMKP-LR
is based on the Lagrangian Relaxation algorithm described
in [6]. This method solves Lagrangian relaxations of the
MMKP problem using a subgradient method (limited by 100
iterations), and iteratively maps applications in the increasing
order of the minimum configuration costs. Similarly, during
job mapping, the algorithm iteratively checks the configura-
tions in the increasing order of their cost. A configuration is
mapped if there are enough resources and the job can meet
the deadline either using this configuration till the end, or
reconfigured to another configuration at the end of the mapping
segment (optimistic check). This process is repeated for the
next mapping segment. Thus, the analysis scope is limited to
a single mapping segment.

B. Scheduling rate and energy-efficiency

We evaluated all three implemented algorithms w.r.t the
percentage of test cases they could find a feasible schedule.
All algorithms scheduled 100% of the test cases with weak
deadlines. The results are completely different for the tests
with tight deadline as shown in Fig. 2. For test cases with one
or two jobs, all three schedulers feature a similar scheduling
success rate, with a difference within 2.3%. For the tests with

Table IV: Geometric mean of the relative energy consumption
compared to EX-MEM.

MMKP-LR MMKP-MDF

# Jobs Weak Tight Weak Tight

1 1.0000 1.0000 1.0000 1.0000
2 1.0480 1.1291 1.0003 1.0682
3 1.1534 1.2250 1.0031 1.0978
4 1.2648 1.3404 1.0099 1.0618

Overall 1.1452 1.1923 1.0042 1.0756
(all levels) 1.1665 1.0356
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Figure 3: S-curves of the relative energy consumption com-
pared to EX-MEM (lower is better).

more jobs, EX-MEM shows significantly higher rate than the
other two algorithms, up to 14.1%. In all test cases, MMKP-
LR and our MMKP-MDF achieve a similar scheduling success
rate, with a difference within 3.6% in favour of MMKP-LR.

In terms of energy efficiency, we compared the algorithms
to the optimal solutions obtained by EX-MEM. For each suc-
cessfully scheduled test case, we compute the relative energy
consumption compared to EX-MEM, and report the geometric
mean of these values for each test group in Table IV. All
schedulers generate optimal schedules in case of a single job.
For tests with weak deadlines, the relative energy consumption
of MMKP-MDF schedules increases slowly from 0.03% for
two jobs till 0.99% for four jobs (in geometric mean), and
over all tests with weak deadline, the schedules are off by
0.42% from the optimal one. For tighter deadlines, the relative
energy consumption of MMKP-MDF varies nonmonotonically
with the number of jobs, and they are off by 7.56% in geo-
metric mean. For MMKP-LR, the relative energy consumption
increases with the number of jobs, and overall the geometric
mean of these values are 14.52% and 19.23% for weak and
tight deadlines, correspondingly. Overall, MMKP-MDF gen-
erates more energy-efficient schedules by 13.1% than MMKP-
LR. Fig. 3 presents S-curves of relative energy consumption
over all tests. As we see, MMKP-MDF generates optimal
schedules for 954 tests (69.6% of successfully scheduled),
while MMKP-LR only for 125 tests (9.0%).

C. Search time

Fig. 4 shows the boxplots and the average values of the
execution times of different algorithms differentiated by the
number of jobs. As we see in the figure, the scheduling
time increases with the number of jobs for all three imple-
mentations. As expected, EX-MEM displays an exponential
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Figure 4: Box plots and the average values summarizing the
scheduling overhead for different algorithms.

growth, with an average of 152 s to schedule four jobs,
while the median and the worst-case values are 22.65 s and
2550 s (≈ 37.5 min) correspondingly. The scheduling time of
MMKP-LR and MMKP-MDF grows less rapidly. MMKP-LR
needs around 1.3 ms to schedule one job and around 163 ms for
four jobs. MMKP-MDF is significantly faster, requiring only
5.7 ms in average for four jobs with a worst-case of 21.6 ms.

To summarize, our proposed MMKP-MDF algorithm
achieves comparable scheduling success rate as the MMKP-
LR scheduler, while outperforming it in terms of overall
energy efficiency and scheduling overhead. MMKP-MDF
schedules applications within 21.6 ms, which makes it a good
candidate to implement in a fully-functional resource runtime
manager. As mentioned in the experimental setup, the over-
head analysis for all schedulers was performed on a prototyped
RM written in Python 3. Better performances can be expected
from a C implementation.

VII. CONCLUSION

We investigated how mapping analysis with global scope
can improve the quality of generated schedules for multi-
threaded firm real-time applications. We proposed a fast al-
gorithm to schedule the applications on heterogeneous multi-
core systems. The proposed approach achieves a scheduling
rate competitive with the state-of-the-art, while improving the
energy efficiency by around 13%. The generated solutions are
only 3.6% off from optimal schedules obtained exhaustively.
The algorithm runs an order of magnitude faster than the state-
of-the-art approach, making it a good candidate for integration
into other runtime resource managers.

ACKNOWLEDGMENT

This work was supported in part by the German Research
Foundation (DFG) within the Collaborative Research Center
HAEC and the Center for Advancing Electronics Dresden
(cfaed). We thank Silexica (www.silexica.com) for making
their SLX Tool Suite and the applications available to us.

REFERENCES

[1] A. Olofsson, “Epiphany-v: A 1024 processor 64-bit risc system-on-
chip,” arXiv preprint arXiv:1610.01832, 2016.

[2] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Proceedings of DAC. ACM, May 2013, pp. 1–10.

[3] A. K. Singh, A. Kumar, and T. Srikanthan, “Accelerating throughput-
aware runtime mapping for heterogeneous mpsocs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 18, no. 1, pp. 9:1–9:29, Jan. 2013.

[4] A. Weichslgartner, D. Gangadharan, S. Wildermann, M. Glaß, and J. Te-
ich, “Daarm: Design-time application analysis and run-time mapping
for predictable execution in many-core systems,” in Proceedings of
CODES+ISSS. IEEE, 2014, pp. 1–10.

[5] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal, “Fast
multi-dimension multi-choice knapsack heuristic for mp-soc run-time
management,” in Proceedings of SOC, Nov 2006, pp. 1–4.

[6] S. Wildermann, A. Weichslgartner, and J. Teich, “Design methodology
and run-time management for predictable many-core systems,” in Pro-
ceedings of ISORCW, April 2015, pp. 103–110.

[7] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[8] M. Niknafs, I. Ukhov, P. Eles, and Z. Peng, “Runtime resource manage-
ment with workload prediction,” in Proceedings of DAC. ACM, 2019,
pp. 169:1–169:6.

[9] C. Gregg, M. Boyer, K. M. Hazelwood, and K. Skadron, “Dynamic
heterogeneous scheduling decisions using historical runtime data,” 2011.

[10] J. Castrillon et al., “Trace-based kpn composability analysis for mapping
simultaneous applications to mpsoc platforms,” in Proceedings of DATE,
Mar. 2010, pp. 753–758.

[11] V. Venkataramani, A. Pathania, and T. Mitra, “Scalable optimal greedy
scheduler for asymmetric multi-/many-core processors,” in SAMOS,
2019.

[12] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical
runtime manager for energy-aware thermal management of embedded
systems,” ACM TECS, vol. 15, no. 2, pp. 24:1–24:25, Jan. 2016.

[13] S. Tzilis, P. Trancoso, and I. Sourdis, “Energy-efficient runtime manage-
ment of heterogeneous multicores using online projection,” ACM TACO,
vol. 15, no. 4, pp. 63:1–63:26, Jan. 2019.

[14] S. Libutti, G. Massari, and W. Fornaciari, “Co-scheduling tasks on
multi-core heterogeneous systems: An energy-aware perspective,” IET
Computers Digital Techniques, vol. 10, no. 2, pp. 77–84, 2016.

[15] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Resource and
throughput aware execution trace analysis for efficient run-time mapping
on mpsocs,” IEEE TCAD, vol. 35, no. 1, pp. 72–85, Jan 2016.

[16] G. Ascia, V. Catania, and M. Palesi, “Multi-objective mapping for mesh-
based noc architectures,” in Proceedings of CODES+ISSS. ACM, 2004,
pp. 182–187.

[17] G. Massari et al., “Combining application adaptivity and system-wide re-
source management on multi-core platforms,” in Proceedings of SAMOS,
July 2014, pp. 26–33.

[18] W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm for
heterogeneous mpsocs,” ACM TECS, vol. 14, no. 1, p. 14, 2015.

[19] G. Onnebrink, A. Hallawa, R. Leupers, G. Ascheid, and A. Shaheen,
“A heuristic for multi objective software application mappings on
heterogeneous mpsocs,” in Proceedings of ASPDAC. ACM, 2019, pp.
609–614.

[20] G. Mariani et al., “Using multi-objective design space exploration to
enable run-time resource management for reconfigurable architectures,”
in Proceedings of DATE, March 2012, pp. 1379–1384.

[21] A. Goens et al., “Tetris: a multi-application run-time system for pre-
dictable execution of static mappings,” in Proceedings of SCOPES.
ACM, Jun. 2017, pp. 11–20.

[22] A. Goens, S. Siccha, and J. Castrillon, “Symmetry in software synthesis,”
ACM TACO, vol. 14, no. 2, pp. 20:1–20:26, Jul. 2017.

[23] S. Wildermann, M. Glaß, and J. Teich, “Multi-objective distributed run-
time resource management for many-cores,” in Proceedings of DATE,
2014, pp. 221:1–221:6.

[24] H. Shojaei, T. Basten, M. Geilen, and A. Davoodi, “A fast and scalable
multidimensional multiple-choice knapsack heuristic,” ACM TODAES,
vol. 18, no. 4, pp. 51:1–51:32, Oct. 2013.

[25] H. Bouraoui, J. Castrillon, and C. Jerad, “Comparing dataflow and
openmp programming for speaker recognition applications,” in Proceed-
ings of PARMA-DITAM. ACM, 2019, pp. 4:1–4:6.

www.silexica.com

