
Achieving Determinism in Adaptive AUTOSAR
Christian Menard∗, Andrés Goens∗, Marten Lohstroh† and Jeronimo Castrillon∗
∗ Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, Germany

{christian.menard, andres.goens, jeronimo.castrillon}@tu-dresden.de
† Department of EECS, UC Berkeley, USA

marten@berkeley.edu

Abstract—AUTOSAR Adaptive Platform (AP) is an emerging
industry standard that tackles the challenges of modern auto-
motive software design, but does not provide adequate mech-
anisms to enforce deterministic execution. This poses profound
challenges to testing and maintenance of the application software,
which is particularly problematic for safety-critical applications.
In this paper, we analyze the problem of nondeterminism in
AP and propose a framework for the design of deterministic
automotive software that transparently integrates with the AP
communication mechanisms. We illustrate our approach in a
case study based on the brake assistant demonstrator application
that is provided by the AUTOSAR consortium. We show that
the original implementation is nondeterministic and discuss a
deterministic solution based on our framework.

Index Terms—automotive engineering, reliability and testing,
software and system safety, software engineering

I. INTRODUCTION

Designing and developing software for automotive applica-
tions is challenging due to stringent safety and real-time re-
quirements. New use cases like the self-driving car have caused
a dramatic increase in complexity and computational demands
of automotive software. The AUTOSAR1 consortium addresses
the challenges in industrial automotive software design by
standardizing the design process, the runtime environment, and
the common software framework. The consortium maintains
two standards called Classic Platform (CP) and Adaptive
Platform (AP) that serve different goals and requirements. The
former is already established in industry and mostly intended for
hard real-time applications with low computational complexity
deployed on single-core processors. The latter was introduced
more recently in order to handle applications with a high
computational demand and the need for maintaining ongoing
interaction with a changing environment.

One particular challenge that the automotive industry faces
is nondeterminism in the software architecture. A deterministic
program yields exactly one behavior given an initial state and
inputs, whereas a nondeterministic program may yield many.
Nondeterminism may be harmless in some applications while
it can lead to unintended and unanticipated behavior in others.
In either case, unintended or “accidental” nondeterminism
tends to impair testability and negatively impact maintainability
of the software. This serves as a compelling argument for
allowing nondeterminism only when needed [1]. In safety-
critical systems, unintended system behavior could translate

1https://www.autosar.org/

int main() {
s = ServiceProxy();

s.set_value(1);
s.add(2);
result = s.get_value();

std::cout << result.get();
return 0;

}

0.0

0.1

0.2

0.3

0.4

0 1 2 3
Printed Value

P
ro

ba
bi

lit
y

Figure 1. A nondeterministic AUTOSAR Adaptive Platform (AP) client/server
application. The client manipulates the server’s state variable in a series of
(non-blocking) procedure calls. The client prints out one of four different
results, distributed as shown in the graph on the right.

into physical damage, injury, or even loss of life. For this
reason, the nuclear, aeronautics, and railways industries often
rely on synchronous languages like LUSTRE [2], Esterel [3],
and SCADE [4] to rule out nondeterminism in their designs
of safety-critical software [5].

In the latest iteration of its well established CP standard,
the AUTOSAR consortium introduced support for the logical
execution time (LET) paradigm [6], [7]. This can be used to
build deterministic software while exploiting the parallelism
of multi-core architectures [8]. However, in AP no effective
means have been provided for ensuring deterministic execution.
On the contrary, AP applications are commonly distributed,
and the service-oriented model of AP poses major challenges
to the development of deterministic software.

Consider the C++ code in Figure 1 that implements a naive
client/server application in AUTOSAR AP. At first glance,
C++ being a procedural language, the code suggests that the
printed value should be 3. However, potentially unbeknownst
to the programmer that wrote the client, the server implements
methods set_value and add in a non-blocking fashion. And
while the server implementation enforces mutual exclusion
between the execution of method invocations, by default,
the runtime environment maps each invocation to a different
thread [9], meaning the order in which the calls are handled
is determined purely by the thread scheduler. As a result, no
order is enforced on the handling of calls to set_value,
add, and get_value, leading to nondeterministic results.

Of course, the client could instead serialize each method
call by waiting for the future returned by the server to
resolve prior to invoking the next method call; and the server
could inform the runtime to use a single thread rather than
multiple. However, multi-threading may be necessary to meet
performance requirements, yet it is often far from obvious

ar
X

iv
:1

91
2.

01
36

7v
2 

 [
cs

.D
C

] 
 1

1 
D

ec
 2

01
9

https://www.autosar.org/


how this may lead to nondeterminism in realistic AUTOSAR
applications which are, of course, incomparably more complex
than this simple example. Therefore, we argue that the software
designer should not be responsible for engineering solutions to
concurrency problems in order to achieve determinism. Rather,
the underlying model should allow for the exploitation of
concurrency in ways that preserve determinism, making it easy
to write deterministic programs and requiring explicit directions
from the programmer to forgo determinism.

In this paper, we address the lack of an execution model ca-
pable of guaranteeing determinism in AUTOSAR AP and show
how this can be solved. We make the following contributions:

• We analyze AUTOSAR AP and identify three potential
sources of nondeterminism (Section II).

• We propose a solution based on reactors [10], a recently
introduced deterministic reactive programming model
in which software components are coordinated under a
discrete-event semantics. We demonstrate that reactors can
integrate with the existing communication mechanisms of
AUTOSAR AP and deliver determinism while maintaining
compatibility with the standard (Section III).

• We present a case study based on the brake assistant ap-
plication provided by the Adaptive Platform Demonstrator
(APD). We show that this application exhibits nondeter-
minism that directly translates into problematic behavior.
Finally, we describe a deterministic implementation based
on reactors that addresses the problem (Section IV).

II. AUTOSAR ADAPTIVE PLATFORM

A. Overview

AUTOSAR Adaptive Platform is a service-oriented architec-
ture (SoA) that is based on a POSIX-compliant operating
system. The software stack consists of a middleware that
handles communication between services, and the Runtime
Environment for Adaptive Applications (ARA) that provides
common APIs and services. While the standard does not specify
the precise middleware and supports third-party solutions,
the AUTOSAR consortium suggests using the SOME/IP
protocol [11], [12].

Adaptive AUTOSAR applications are organized in software
components (SWCs) that communicate via services that they
may provide or request. We call an SWC that provides a service
a server and an SWC that requests a service a client. Client
and server roles may be fulfilled by the same SWC. SWCs
provide or request services as needed; the binding between
clients and servers is determined at runtime by the middleware
through service discovery. The dynamic binding of services is
the core mechanism for providing adaptivity in AP.

The service interfaces are fully specified at design time and
are composed of methods, events, and fields. While events
are one-way messages that the server initiates and the client
handles, methods are two-way messages that the client initiates
and the server responds to. Fields are state variables exposed
by the server. Each field may provide a get method, a set
method and an event that indicates state changes.

Client SWC Server SWC

Client
Logic

Service
Proxy SOME/IP

Service
Skeleton

Server
Logic

method

event

method

event

Figure 2. Communication mechanism in AUTOSAR AP. Client and server
use auto-generated proxies and skeletons to communicate with their peers.

Figure 2 illustrates the communication mechanisms of
AUTOSAR AP. SWCs abstract over the precise middleware by
using proxies and skeletons that are generated from a service
description. A skeleton is an abstract interface that a server
needs to implement in order to provide a service. A proxy
is an object that a client receives when requesting a service.
Client and server communicate directly through the proxy and
skeleton objects. For instance, the invocation of a method
provided by the proxy translates into a message being sent
via the middleware to the server, which then translates the
message back into a method call. The implementation of the
service method is expected to return a future. As soon as the
corresponding promise is fulfilled, the server sends a message
back to the client.

Applications in AUTOSAR AP commonly consist of mul-
tiple SWCs. Each individual SWC can be considered a full
program as it is mapped to a process on the target platform
during deployment. While the service-oriented communication
model of AUTOSAR AP specifies how SWCs interact, it does
not specify how SWCs should be implemented. The standard,
however, suggests a thread-based coding style.

B. Nondeterminism in AUTOSAR Adaptive Platform

Despite its goal of supporting safety-critical, possibly
autonomous applications, AUTOSAR AP uses a model of
computation (MoC) that is inherently nondeterministic. We
identify three distinct sources of nondeterminism in AP:

1) The suggested programming model for the implementation
of individual SWCs is based on threads. Threads, however,
make it notoriously difficult to engineer deterministic
concurrent software [1]. AUTOSAR AP provides coding
guidelines to avoid the problems with threads, but nonde-
terminism is still likely to creep in, especially when code
evolves over time [13].

2) The order in which SWCs process incoming messages
is undefined. If two clients call the same method on a
service, the calls may be processed in either order.

3) Point-to-point in-order message delivery could be achieved
by the middleware and underlying TCP/IP network stack,
but this is not a formal requirement in AUTOSAR AP.
Even if in-order message delivery is guaranteed, the time
required for message transport is still unpredictable.

One provision for deterministic execution that the AUTOSAR
AP introduces is the “deterministic client” [14], which provides
a task-based programming model for the implementation of
SWCs. Because its scope is limited to individual SWCs, the
solution only addresses the first source of nondeterminism. Ap-
plications that consist of multiple communicating deterministic
clients can still exhibit nondeterminism via 2) and 3). The
solution we outline in the remainder of this paper addresses



all three. It should be noted, however, that the mechanisms for
recovering transient errors and ensuring predictable execution
time offered by the deterministic client can be combined with
the solution we propose.

III. ACHIEVING DETERMINISM IN AUTOSAR AP
A. The Reactor Model

SWCs in AUTOSAR AP follow the design pattern of actors,
which are concurrent stateful processes that communicate via
asynchronous message passing [15], [16]. In the actor model,
no constraints are enforced on the ordering of message delivery,
but coordination strategies for achieving deterministic actor
programs are known [17]. A recently introduced variation
of actors, called reactors [10], [18], comprises an execution
model based on a discrete events semantics that is deterministic
by default, but admits explicit sources of nondeterminism to
accommodate sporadic sensors, interrupts, and other nondeter-
ministic components that are indispensable in cyber-physical
applications like automotive software.

Unlike actors, communications between reactors occur via
events that are associated with tags (also called timestamps).
Coordination entails ensuring that all communication between
reactors happens in tag order. Reactors are composed out of
reactions that can be triggered by input events and may produce
output events. The tags of events produced by a reaction are
identical to the tags of the events that triggered it; tags denote
logical time and reactions are logically instantaneous. Reactions
can also be triggered by action events, which may emanate
from asynchronous resources (e.g., a sporadic sensor) managed
within the reactor. Such asynchronously scheduled actions,
called physical actions, are tagged based on the last observed
physical time, potentially with an additional delay.

The tag of a physical action can be considered an input
to the reactor system. Hence, while physical actions may
occur unexpectedly, their occurrence does not compromise
the deterministic operation of the system—unless physical
actions are used as end points for a communication channel
between reactors in the same system. Additional coordination
is necessary to preserve determinism in that case. Precisely
because actions can be scheduled sporadically, to ensure in-
order processing of events, no events are handled before
physical time exceeds their tag.

Another difference with actors is that reactors only com-
municate to one another via channels that connect reactor
ports. The communication topology of a reactor program
translates into an acyclic precedence graph (APG) that drives
the execution. A reactor runtime scheduler is responsible for
transparently exploiting concurrency in the APG by mapping
independent reactions to separate worker threads. Reactors are
capable of performing efficient multi-threaded computation,
while the programmer is freed from the burden of managing
the interactions between threads, effectively addressing the first
source of nondeterminism discussed in Section II.

Because events are timed, the reactor model also allows for
the expression of deadlines, making it suitable for specifying
programs with real-time constraints. A deadline D is considered

violated when an event with tag t triggers a reaction associated
with D after physical time T has exceeded t+D.

Importantly, reactors can also be coordinated determinis-
tically across SWCs, by leveraging safe-to-process analysis
known from PTIDES [19], [20]. This addresses the second
and third source of nondeterminism discussed in Section II.
This approach assumes that each network interface has an
associated deadline D. By further assuming that distributed
reactors have synchronized physical clocks with a bounded
clock synchronization error E (this is the case in AP [21]) and
their communication has a bounded latency L, in-order event
handling can be assured. Specifically, when a reactor receives
a message with tag t from the network, it has to schedule an
action with tag t+D+L+E in reaction to which it can later
safely output the message. The physical time delay enforced
by the scheduler ensures that no message with a timestamp
smaller than t is still expected to arrive over the network.

We propose to use reactors as a programming model for
designing deterministic SWCs and attach tags to communi-
cations between SWCs to allow for the preservation of the
deterministic discrete event semantics of reactors across SWCs.

B. Integrating Reactors with AUTOSAR AP

We created a framework called DEAR2 (Discrete Events
for AUTOSAR) that provides a C++ implementation of the
reactor model. It implements type-safe mechanisms for the
definition of reactors with ports, actions and reactions. This
also includes mechanisms for composing reactors to form
deterministic programs. The framework further provides an
implementation of the runtime scheduler to coordinate the
execution of the reactor network. This establishes a foundation
for the design and execution of deterministic SWCs.

In order to enable composition of deterministic applications
from deterministic SWCs, a mechanism is needed for transport-
ing tagged messages in AUTOSAR AP so that safe-to-process
analysis can be performed prior to inserting events into the
receiving reactor network. This is challenging since the standard
for AUTOSAR AP explicitly specifies the interface that SWCs
use for communication. Exposing reactor ports directly to
the interface of SWCs would break compatibility with the
standard. We can work around this by introducing transactors
that translate between the service-oriented interfaces of SWCs
and the event-based input and output ports of reactors.

DEAR provides four distinct transactors, each implemented
as a reactor and enabling the composition of reactors through
regular AUTOSAR service interfaces. The client method
transactor interacts with a given method of a service interface in
the client role. Similarly, the server method transactor interacts
with a method in the server role. Analogous to methods, a
similar pair of transactors for interacting with AP events in the
role of clients and servers exists. Since fields are composed
of a get method, a set method and an event, interaction
with fields requires the use of one event and two method
transactors. All four transactors are shown in Figure 3. Given

2Available at: https://github.com/tud-ccc/dear

https://github.com/tud-ccc/dear


Client SWC Server SWC

(6)

(17)

(6)

(17)

Client Method
Transactor

Client Event
Transactor

Client
Reactor

(1)

(22) Service
Proxy

(3)

(20) SOME/IP
Binding

(4)

(19)

Timestamp
Bypass

(2)

(21)

(5)

(18)

Server Method
Transactor

Server Event
Transactor

Server
Reactor

(11)

(12)Service
Skeleton

(9)

(14)SOME/IP
Binding

(8)

(15)

Timestamp
Bypass (13)

(10)

(16)

(7)

E
th

er
ne

t

Figure 3. Integration of reactors in AUTOSAR AP. Special reactors (transactors) translate between the reactor implementation of the SWC logic and the
service interface that the SWC exposes to its environment.

a service interface, the transactors required for interacting via
this particular interface can be automatically generated.

AUTOSAR AP provides no mechanisms for associating
metadata like reactor tags with method calls or events. This,
however, is required for the transmission of tagged messages
between deterministic SWCs. Therefore, we modified the
library that binds to the SOME/IP middleware to optionally
append tags to outgoing messages and to retrieve tags from
incoming messages if available. This modification is not in
violation of the standard. It can be seen as the introduction
of a new third-party middleware that extends over SOME/IP
by allowing the transmission of tagged messages. While the
transactors use the regular AUTOSAR AP service proxies and
skeletons, for each event occurrence or method call they store
a corresponding tag that is picked by the modified SOME/IP
middleware prior to transmitting the payload over the network.

The entire process of transmitting tagged messages between
SWCs in DEAR is illustrated in Figure 3. The sequence starts
with a client that invokes a method call on a remote service. In
the reactor implementation, that corresponds to producing an
event with tag tc on the output port connected to the request
input port of the client method transactor (1). This input port
has a configurable deadline Dc. If the deadline is not violated,
the corresponding reaction sends tc + Dc to the timestamp
bypass (2) and invokes the actual method call on the service
proxy object (3). Thereby, it forwards the data associated with
the incoming event as method arguments. The service proxy
calls the SOME/IP binding (4) to prepare a network message.
Our modified binding retrieves tc +Dc from the timestamp
bypass (5) and attaches it to the SOME/IP message, which it
then sends over the network to the server (6).

Upon receiving the network message on the server side, our
modified SOME/IP binding retrieves tc+Dc from the message
and sends it to the local timestamp bypass (7) before invoking
the corresponding method call on the service skeleton (8).
This method call triggers an interrupt of the server method
transactor (9) which retrieves tc + Dc from the timestamp
bypass (10) and schedules an action with tag tc +Dc +L+E
accounting for the worst-case network latency L, as well as the
maximum clock skew E between platforms. The reaction to
this action produces an event on the output port that forwards
the method arguments to the reactor that implements the server
logic (11). The server logic then reacts to this event.

The server eventually sends a response by producing an event
with tag ts (ts ≥ tc+Dc+L+E) on the output port connected
to the input port of the service method transactor (12). This
input port has a configurable deadline Ds. If the deadline is
not violated, the corresponding reaction sends ts +Ds to the

timestamp bypass (13) and returns the data associated with the
event to the service skeleton (14). The service skeleton calls
the SOME/IP binding (15) to create a response message. The
binding retrieves ts +Ds from the timestamp bypass (16) and
attaches it to the outgoing message which it then sends over
the network to the client (17).

The client SOME/IP binding retrieves ts + Ds from the
message and sends it to the timestamp bypass (18) while
forwarding the return value to the service proxy (19). The
arrival of the return value triggers an interrupt in the client
method transactor (20) which retrieves ts + Ds from the
timestamp bypass (21) and schedules an action with tag
ts+Ds+L+E to again account for transmission latency and
clock synchronization error. Finally, the reaction for this action
produces an event on the output port of the transactor (22).

While transparently enabling deterministic composition of
reactor-based SWCs, our solution leaves open the possibility
of composing reactor-based SWCs with regular service imple-
mentations that do not communicate via tagged signals. The
default behavior of our transactors is to fail when receiving
messages without an associated timestamp, but they can also
be configured to tag received messages with the physical time
at which they are received. This approach treats the arrival
of untagged messages the same way as reactors deal with the
arrival of sporadic sensor readings. This essentially furnishes
backward compatibility with existing service implementations
and the ability to gradually introduce reactor-based SWCs.

IV. CASE STUDY: ADAPTIVE PLATFORM DEMONSTRATOR

A. Nondeterministic Brake Assistant

The AUTOSAR consortium provides the Adaptive Platform
Demonstrator (APD), which is an example implementation
of the specification for AUTOSAR AP. It provides a set of
demo applications, where the most realistic and advanced
application is the brake assistant shown in Figure 4. Unlike
what may be expected of a safety-critical application, the
brake assistant exhibits nondeterminism that could potentially
have fatal consequences. While this demo is not designed for
deployment in the real world, it illuminates the presence of
uncontrollable and safety-undermining nondeterminism in AP.

Platform 1 Platform 2

Video
Provider

Video
Adapter

Pre-
processing

Computer
Vision

EBA

frame frame frame

lane

vehicles brake

Figure 4. Brake assistant application in APD



The brake assistant consists of a pipeline of five SWCs,
distributed across two platforms. Video Provider captures video
frames and sends one approximately every 50ms (via a
proprietary protocol) to Video Adapter, which is running on
the second platform. The communication along the remainder
of the component chain occurs through AP service interfaces
via the SOME/IP middleware. Event notifications are used to
transfer data from one SWC to the next and the corresponding
event handler stores the data in a one-slot input buffer. Each
SWC sets up a periodic callback so that the OS triggers the
SWC logic every 50ms. Each component then reads the current
data item from its input buffer, performs some computations,
and then communicates the result via an event.

For each frame Preprocessing receives from Video Adapter,
it computes a bounding box demarcating the current travel
lane. Computer Vision receives from Preprocessing both the lane
information as well as the original frame and uses it to detect
vehicles in the lane and estimates their distance. It forwards the
list of detected vehicles to the EBA component, which in turn
decides whether an emergency brake maneuver is required.

The logic of each component processes the last data written
to its one-slot input buffer. If there is no data, the SWCs
silently stop computation and wait for the next periodic trigger
to occur. This introduces nondeterminism as data could get
overwritten before it is read by a downstream component,
causing entire frames to be dropped. Moreover, since the
Computer Vision component reads not one but two inputs,
this can lead to misalignment between the video frames and
the lane information. We instrumented the brake assistant code
to detect and report frame loss and misalignment. Execution
on our evaluation platform, consisting of two MinnowBoard
Turbot3 boards connected via an Ethernet switch, confirmed
that the described errors indeed occur in a real-world setting.
The boards are equipped with an Intel Atom E3845 Quad-Core
processor and are officially supported by the APD.

We performed a series of experiments to analyze the
prevalence of the described errors. We let the brake assistant
processes a total of 100,000 frames and counted dropped inputs
and mismatches. Figure 5 plots the obtained results for a total
of 20 experiments. Each bar in the figure shows the error
prevalence for one instance of the experiment. The results are
ordered by error rate for better visibility.

The error rate varies significantly between experiments.
In the best case we observed an error rate of 0.018% and
in the worst case an error rate of 22.25%. On average we
observed 5.60% errors. Also the composition of error types
varies significantly. In most experiments frame dropping at
Computer Vision was dominant, but sometimes dropped vehicles
at EBA or dropped frames at Preprocessing dominated. This
underlines the difficulty of assessing the performance and
correctness of the brake assistant. It appears the error rate is
strongly influenced by the offset between the individual periodic
callbacks of the SWCs, which depends on when SWCs are
started and is difficult to control.

3https://minnowboard.org/minnowboard-turbot-dual-e/technical-specs

0

5

10

15

20

0 5 10 15 20
Prevalence (%)

E
xp

er
im

en
ti

ns
ta

nc
e

(s
or

te
d) Error Type

Dropped frames (Preprocessing)
Dropped frames (Computer Vision)
Input mismatches (Computer Vision)
Dropped vehicles (EBA)

Figure 5. Prevalence of errors for 20 executions of the brake assistant.

B. Deterministic Brake Assistant

DEAR allows us to easily transform the brake assistant
application into a deterministic reactor implementation. Since
the original implementation separates computational logic from
the communication mechanism, transformation requires only a
few code changes. We encapsulate the logic of each SWC in a
reactor that has one reaction to process incoming events. This
reaction calls the original logic to process the data associated
with the incoming event and produces an output event. In order
to support the transmission of tagged messages between SWCs,
each reactor binds to the service interfaces of the SWC using
the DEAR transactors. As described in Section III, a carefully
chosen deadline on the reaction of each sending transactor
ensures that there is an upper bound on how much logical time
lags behind physical time. The receiving transactor further
accounts for the physical delay of message transmission and
ensures that incoming messages are only processed when it is
safe to do so.

Since Computer Vision has two inputs, the reaction that calls
its logic expects to receive two events with the same tag at
both inputs. If only one input is received, this is considered an
error. Video Adapter has no well-defined input. It sporadically
receives frames over the network sent by the camera. As the
timing of the camera cannot be controlled, we implement Video
Adapter as a sensor that inserts frames into the reactor network
with a tag equal to the physical time of message reception.
Once the incoming frame is tagged, subsequent reactions are
carried out in a deterministic order.

In order to achieve correct execution, it is important
to carefully consider the physical delays imposed by the
computations of each SWC as well as by the transport of
messages between SWCs. Only if the deadlines associated with
each SWC account for its WCET and the specified maximum
communication latency and synchronization error are accurate,
correct execution is guaranteed. In our implementation, we set
the deadlines to 5ms for Video Adapter, 25ms for Preprocessing,
25ms for Computer Vision and 5ms for EBA. We further assume
a maximum communication latency of 5ms. Since all SWCs
of this application are deployed to the same platform, there is
no clock synchronization error to account for. Note that these
numbers are estimated upper bounds of delays. More precise
values can be obtained from WCET analysis.

With this implementation, we achieve correct and deter-
ministic execution on the MinnowBoard platform. Moreover,

https://minnowboard.org/minnowboard-turbot-dual-e/technical-specs


the timed semantics of reactors facilitates reasoning about the
worst-case end-to-end latency between receiving a frame and
producing an output brake signal. These benefits come at the
cost of an extra physical time delay as each SWC needs to
account for worst case computation and communication delays.
This, however, is not a necessity. For certain applications it is
acceptable to deliberately introduce the possibility of sporadic
errors by setting deadlines to values lower than the actual
WCET. Independent from how deadlines and communication
delay are chosen, the reactor semantics guarantees determinism
and translates any violation of one of the assumptions directly
into observable errors. In contrast to the original brake assistant
implementation, the trade-off between end-to-end latency and
error rate becomes apparent.

V. RELATED WORK

We are unaware of any publications that address determinism
in AUTOSAR AP. In AUTOSAR CP, deterministic execution
can be achieved based on the LET paradigm [6]–[8], which
can also be extended for use in distributed applications [22].
However, while LET is compatible with the task-based program-
ming model of AUTOSAR CP, it is not easily applicable to the
adaptive and reactive programming required in AUTOSAR AP.
In particular, LET is a real-time programming paradigm
where logical time strictly matches physical time at each task
invocation and termination. The reactor semantics, in contrast,
provides for a more flexible application design where real-time
constraints are only enforced when this is explicitly indicated
by a deadline. Time violations are not treated as system failure
but become observable errors that can be handled as appropriate
for the given application. Another difference is that, while LET
tasks always take a non-zero amount of logical time, reactions
are logically instantaneous and thus compose without requiring
explicit alignment.

Synchronous languages like LUSTRE [2], Esterel [3], and
SCADE [4] have been designed for the development of complex
reactive systems and are completely deterministic. While the
semantics of reactors is also a synchronous one, reactors
provide an additional coupling to physical time that allows
for the specification of real-time requirements and can be
used for deterministic distributed execution without a central
coordinator.

VI. CONCLUSION

We have shown that AUTOSAR AP exhibits nondeterminism
in the core elements of its architecture. Our case study of
a brake assistant demonstrator application exposes that this
could lead to serious malfunction. To address this, we propose
to use reactors as programming model for the design of
applications in AUTOSAR AP. We introduce the DEAR
framework that effectively enables reactor-based programming
and coordination between distributed components as shown
in our case study. While our approach warrants standard
compatibility, we advocate for an extension of the standard
that obviates the need for the workarounds we implemented
to associate method calls and events with tags.

ACKNOWLEDGMENT

We thank Edward A. Lee for his feedback on an earlier
version of this paper. This work was supported in part by the
KMU-innovativ project EM-RAM funded by German Federal
Ministry of Education and Research (BMBF). The work was
further supported in part by the National Science Foundation
(NSF), award #CNS-1836601 and the iCyPhy Research Center
(Industrial Cyber-Physical Systems), supported by Camozzi
Industries, Denso, Ford, Siemens, and Toyota.

REFERENCES

[1] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5,
pp. 33–42, May 2006.

[2] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[3] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of computer
programming, vol. 19, no. 2, pp. 87–152, 1992.

[4] G. Berry, “SCADE: Synchronous design and validation of embedded
control software,” in Next Generation Design and Verification Method-
ologies for Distributed Embedded Control Systems, S. Ramesh and
P. Sampath, Eds., Dordrecht: Springer Netherlands, 2007, pp. 19–33.

[5] J.-L. Boulanger, F.-X. Fornari, J.-L. Camus, and B. Dion, SCADE:
Language and applications, 1st. Wiley-IEEE Press, 2015.

[6] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
in Advances in Real-Time Systems, S. Chakraborty and J. Eberspächer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 103–120.

[7] AUTOSAR, “Specification of timing extensions,” AUTOSAR CP Release
4.4.0, Oct. 2018.

[8] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the LET paradigm,” in 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), Apr. 2018, pp. 240–250.

[9] AUTOSAR, “Specification of communication management,” AUTOSAR
AP Release 19-03, Mar. 2019.

[10] M. Lohstroh, M. Schoeberl, A. Goens, et al., “Actors revisited for time-
critical systems,” in Proceedings of the 56th Annual Design Automation
Conference 2019, ser. DAC ’19, Las Vegas, NV, USA: ACM, 2019,
152:1–152:4.

[11] AUTOSAR, “SOME/IP protocol specification,” AUTOSAR FO Release
1.5.0, Oct. 2018.

[12] ——, “SOME/IP service discovery protocol specification,” AUTOSAR
FO Release 1.5.0, Oct. 2018.

[13] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, “What change history tells
us about thread synchronization,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015,
Bergamo, Italy: ACM, 2015, pp. 426–438.

[14] AUTOSAR, “Specification of execution management,” AUTOSAR AP
Release 19-03, Mar. 2019.

[15] C. Hewitt, “Viewing control structures as patterns of passing messages,”
Artificial intelligence, vol. 8, no. 3, pp. 323–364, 1977.

[16] G. A. Agha, “Actors: A model of concurrent computation in distributed
systems,” MIT Artificial Intelligence Lab, Tech. Rep., 1985.

[17] M. Lohstroh and E. A. Lee, “Deterministic actors,” in 2019 Forum on
Specification and Design Languages (FDL), IEEE, 2019.

[18] M. Lohstroh, Í. Íncer Romeo, A. Goens, et al., “Reactors: A determin-
istic model for composable reactive systems,” in Model-Based Design
of Cyber Physical Systems (CyPhy’19), 2019, To appear.

[19] Y. Zhao, J. Liu, and E. A. Lee, “A programming model for time-
synchronized distributed real-time systems,” in 13th IEEE Real Time
and Embedded Technology and Applications Symposium (RTAS’07),
Apr. 2007, pp. 259–268.

[20] P. Derler, T. H. Feng, E. A. Lee, et al., “PTIDES: A programming
model for distributed real-time embedded systems,” EECS Department,
University of California, Berkeley, Tech. Rep., May 2008.

[21] AUTOSAR, “Specification of time synchronization for adaptive plat-
form,” AUTOSAR AP Release 19-03, Mar. 2019.

[22] R. Ernst, L. Köhler, and K.-B. Gemlau, “System level LET: Mastering
cause-effect chains in distributed systems,” in 44th Annual Conference
of the IEEE Industrial Electronics Society (IECON), Oct. 2018.


	I Introduction
	II AUTOSAR Adaptive Platform
	II-A Overview
	II-B Nondeterminism in AUTOSAR Adaptive Platform

	III Achieving Determinism in AUTOSAR AP
	III-A The Reactor Model
	III-B Integrating Reactors with AUTOSAR AP

	IV Case Study: Adaptive Platform Demonstrator
	IV-A Nondeterministic Brake Assistant
	IV-B Deterministic Brake Assistant

	V Related Work
	VI Conclusion

