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ABSTRACT
User Defined Functions (UDF) are an important and pow-
erful extension point for database queries. Systems using
incremental materialized views largely do not support UDFs
because they cannot easily be incrementalized.

In this work we design single-tuple UDF and User Defined
Aggregates (UDA) interfaces for Noria, a state-of-the art
dataflow system with incremental materialized views. We
also add limited support for User Defined Table Functions
(UDTF), by compiling them to query fragments. We show
our UDTFs scale by implementing a motivational example
used by Friedman et al. [7].
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1 INTRODUCTION
Noria [8] is a novel database that implements incremental,
partially materialized views [10, 17] that speed up reads sig-
nificantly at the expense of immediate consistency. It lever-
ages multicore parallelism and distributed deployment on
clusters. This architecture is well suited for medium- to large-
scale web applications where data access is read-heavy and
non-uniform. Views in the Noria database are currently de-
fined using a subset of SQL with no support for UDFs yet.
This limits which kinds of processing tasks can be expressed
and thus performed. For instance decoding or computing a
distribution of a series is impossible to express.

In this work we try to remedy this by providing facilities
for two basic kinds of UDF: single-tuple UDFs and User De-
fined Aggregations (UDA). Single-tuple UDFs can express
decoding tasks or unit conversions, UDAs cover distribution
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or variance calculations. We apply known techniques [1, 15]
for incrementalizing single-tuple UDFs and UDAs and par-
tially automate the process for developer convenience.

We integrate the state needed by UDAs into Noria’s mate-
rialization, which allows UDAs to be data parallelized and
integrate with Noria’s memory management.

fn main(clicks: RowStream <i32 , i23 , i32 >)

-> GroupedRows <i32 , i32 > {

let click_streams = group_by(0, clicks );

for (uid , group_stream) in click_streams {

let sequences = IntervalSequence ::new();

for (_, category , timestamp) in group_stream {

let time = deref(timestamp );

let cat = deref(category );

if eq(cat , 1) {

sequences.open(time)

} else if eq(cat , 2) {

sequences.close(time)

} else {

sequences.insert(time)

}

};

sequences.compute_average ()

}

}

Figure 1: Clickstream analysis as a UDTF

We further add support for a limited form UDTFs, which
has not been done before. UDTFs pose a significant threat to
performance. To the engine they are black boxes, prevent-
ing optimization such as parallelization. We apply insights
from the domain of implicit parallel programming [4–6] and
compile the UDTF to a query fragment which gives the en-
gine a more fine grained view of the UDTF. To evaluate we
implement a clickstream analysis UDTF (Figure 1) adapted
from Friedman et al. [7]. They showed that this query is dif-
ficult to write in pure SQL and performs poorly. Our UDTF
version is simpler to read and write and the experiments
show the engine is able to parallelize it.

2 RELATEDWORK
Simple materialized views [10, 13] recompute the entire
query, which requires no changes to the UDF integration.
Incrementally maintained materialized views [11, 17, 18] are
more difficult because UDFs also need to be incremental.
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DBToaster [1] does support UDFs, but only single-tuple
ones, which are trivial to incrementalize. Mohapatra and
Genesereth [15] support User Defined Aggregates only in
so far as they have to also be defined in the query language
Datalog, offering no effective integration for library code de-
veloped in other languages. Oracle [12] developed interfaces
for incremental UDAs supporting foreign code. Our approach
builds on a similar interface, but also automates part of in-
crementalizing the UDA. To the best of our knowledge there
is no proposal yet for UDTFs in incremental materialized
views.

There are approaches to scalable UDTFs, separate fromma-
terialized views, using MapReduce [7] and annotations [9].
Our approach uses a more general language than MapRe-
duce [3] and is orthogonal to the annotation approach.

Stream processing systems, such as Apache Flink [2] also
process data in a distributed and incremental fashion. How-
ever Database Management Systems (DBMS) also offers data-
management capabilities [14] and leverage in-depth knowl-
edge about size and structure [16] of the data when selecting
processing strategies.

3 APPROACH
First we provide incremental single-tuple UDFs and UDAs, by
applying techniques similar to DBToaster [1] and Oracle [12].
We also simplify the creation of incremental UDAs by noting
that an aggregator state with reversible mutations is suffi-
cient. We require the developer to provide this reversible
state implementation and generate the rest of the UDA oper-
ator implementation automatically. UDTFs are incremental
by construction, as they compile to query fragments, the
constituents of which are all incremental.
To compile the UDTF we plug into the parallelizing lan-

guage and compiler Ohua [5]. Our source language supports
features that SQL does not, such as shared mutable state,
enabling more efficient algorithms to be expressed. State
sharing between dataflow operators however introduces po-
tentially costly synchronization. It makes reasoning about
the graph more complicated because the bidirectional state
dependencies have different semantics to data dependencies.
Our plugin in fuses the manipulation of shared mutable

state and generates Rust code which forms the core of a UDA
operator. The state thus becomes operator-private, allowing
safe, unsynchronized mutation. It also allows us to pair the
state directly with Noria’s materialization. With this pairing
Noria manages the state memory, as well as partitioning and
distributing it.
We also add a new backend to Ohua that targets Noria’s

query intermediate representation MIR. The main challenge
here is the representation of procedural control flow in a

query. Our source language supports iteration and condition-
als. Conditional execution can be constructed using native
Filter and Join operators and is omitted here for brevity.
Iteration is different, because the type of data flowing be-
tween backend operators is restricted to database tuples. We
therefore stream elements individually, tagged with indices.

The index facilitates state scoping. This occurs when state
is used in a for loop (Figure 1). Scoping rules mean that
each iteration of the loop needs a new state. We create a
map of these states and dispatch for each tuple based on
the sequence index. This lets us emulate scoped, procedural
semantics using a cheap tagging mechanism.

4 RESULTS AND CONCLUSION
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Figure 2: Scaling of the clickstream analysis UDTF
over sharded data

We implement the efficient version of a clickstream analy-
sis query from [7]. It shows that our approach allows intu-
itive, though restricted, procedural queries, such as in Fig-
ure 1, to run as a queries on Noria. They also parallelizes
with Norias sharding capabilities, shown in Figure 2, without
additional developer effort.
Our approach can express procedural UDFs as database

query fragments. It allows for the use of state for efficient
queries, correctly handling the scope of the state. These
UDTFs are capable of leveraging parallelizing optimizations.
Our approach could be expanded with annotations and anal-
ysis [9], giving the query engine even more information and
further expanding the optimization potential. We also believe
that a substantial part of the restrictions currently placed on
the shape of the source UDTF could be lifted in the future.
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