
Towards Scalable UDTFs in Noria
Justus Adam

Technische Universität Dresden
Chair for Compiler Construction

Dresden, Germany
justus.adam@tu-dresden.de

ABSTRACT
User Defined Functions (UDF) are an important and pow-
erful extension point for database queries. Systems using
incremental materialized views largely do not support UDFs
because they cannot easily be incrementalized.

In this work we design single-tuple UDF and User Defined
Aggregates (UDA) interfaces for Noria, a state-of-the art
dataflow system with incremental materialized views. We
also add limited support for User Defined Table Functions
(UDTF), by compiling them to query fragments. We show
our UDTFs scale by implementing a motivational example
used by Friedman et al. [7].
ACM Reference Format:
Justus Adam. 2020. Towards Scalable UDTFs in Noria. In Proceedings
of the 2020 ACM SIGMOD International Conference onManagement of
Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3318464.3384412

1 INTRODUCTION
Noria [8] is a novel database that implements incremental,
partially materialized views [10, 17] that speed up reads sig-
nificantly at the expense of immediate consistency. It lever-
ages multicore parallelism and distributed deployment on
clusters. This architecture is well suited for medium- to large-
scale web applications where data access is read-heavy and
non-uniform. Views in the Noria database are currently de-
fined using a subset of SQL with no support for UDFs yet.
This limits which kinds of processing tasks can be expressed
and thus performed. For instance decoding or computing a
distribution of a series is impossible to express.

In this work we try to remedy this by providing facilities
for two basic kinds of UDF: single-tuple UDFs and User De-
fined Aggregations (UDA). Single-tuple UDFs can express
decoding tasks or unit conversions, UDAs cover distribution
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3384412

or variance calculations. We apply known techniques [1, 15]
for incrementalizing single-tuple UDFs and UDAs and par-
tially automate the process for developer convenience.

We integrate the state needed by UDAs into Noria’s mate-
rialization, which allows UDAs to be data parallelized and
integrate with Noria’s memory management.

fn main(clicks: RowStream <i32 , i23 , i32 >)

-> GroupedRows <i32 , i32 > {

let click_streams = group_by(0, clicks);

for (uid , group_stream) in click_streams {

let sequences = IntervalSequence ::new();

for (_, category , timestamp) in group_stream {

let time = deref(timestamp);

let cat = deref(category);

if eq(cat , 1) {

sequences.open(time)

} else if eq(cat , 2) {

sequences.close(time)

} else {

sequences.insert(time)

}

};

sequences.compute_average ()

}

}

Figure 1: Clickstream analysis as a UDTF

We further add support for a limited form UDTFs, which
has not been done before. UDTFs pose a significant threat to
performance. To the engine they are black boxes, prevent-
ing optimization such as parallelization. We apply insights
from the domain of implicit parallel programming [4–6] and
compile the UDTF to a query fragment which gives the en-
gine a more fine grained view of the UDTF. To evaluate we
implement a clickstream analysis UDTF (Figure 1) adapted
from Friedman et al. [7]. They showed that this query is dif-
ficult to write in pure SQL and performs poorly. Our UDTF
version is simpler to read and write and the experiments
show the engine is able to parallelize it.

2 RELATEDWORK
Simple materialized views [10, 13] recompute the entire
query, which requires no changes to the UDF integration.
Incrementally maintained materialized views [11, 17, 18] are
more difficult because UDFs also need to be incremental.

Student Abstract SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2869

https://doi.org/10.1145/3318464.3384412
https://doi.org/10.1145/3318464.3384412

DBToaster [1] does support UDFs, but only single-tuple
ones, which are trivial to incrementalize. Mohapatra and
Genesereth [15] support User Defined Aggregates only in
so far as they have to also be defined in the query language
Datalog, offering no effective integration for library code de-
veloped in other languages. Oracle [12] developed interfaces
for incremental UDAs supporting foreign code. Our approach
builds on a similar interface, but also automates part of in-
crementalizing the UDA. To the best of our knowledge there
is no proposal yet for UDTFs in incremental materialized
views.

There are approaches to scalable UDTFs, separate fromma-
terialized views, using MapReduce [7] and annotations [9].
Our approach uses a more general language than MapRe-
duce [3] and is orthogonal to the annotation approach.

Stream processing systems, such as Apache Flink [2] also
process data in a distributed and incremental fashion. How-
ever Database Management Systems (DBMS) also offers data-
management capabilities [14] and leverage in-depth knowl-
edge about size and structure [16] of the data when selecting
processing strategies.

3 APPROACH
First we provide incremental single-tuple UDFs and UDAs, by
applying techniques similar to DBToaster [1] and Oracle [12].
We also simplify the creation of incremental UDAs by noting
that an aggregator state with reversible mutations is suffi-
cient. We require the developer to provide this reversible
state implementation and generate the rest of the UDA oper-
ator implementation automatically. UDTFs are incremental
by construction, as they compile to query fragments, the
constituents of which are all incremental.
To compile the UDTF we plug into the parallelizing lan-

guage and compiler Ohua [5]. Our source language supports
features that SQL does not, such as shared mutable state,
enabling more efficient algorithms to be expressed. State
sharing between dataflow operators however introduces po-
tentially costly synchronization. It makes reasoning about
the graph more complicated because the bidirectional state
dependencies have different semantics to data dependencies.
Our plugin in fuses the manipulation of shared mutable

state and generates Rust code which forms the core of a UDA
operator. The state thus becomes operator-private, allowing
safe, unsynchronized mutation. It also allows us to pair the
state directly with Noria’s materialization. With this pairing
Noria manages the state memory, as well as partitioning and
distributing it.
We also add a new backend to Ohua that targets Noria’s

query intermediate representation MIR. The main challenge
here is the representation of procedural control flow in a

query. Our source language supports iteration and condition-
als. Conditional execution can be constructed using native
Filter and Join operators and is omitted here for brevity.
Iteration is different, because the type of data flowing be-
tween backend operators is restricted to database tuples. We
therefore stream elements individually, tagged with indices.

The index facilitates state scoping. This occurs when state
is used in a for loop (Figure 1). Scoping rules mean that
each iteration of the loop needs a new state. We create a
map of these states and dispatch for each tuple based on
the sequence index. This lets us emulate scoped, procedural
semantics using a cheap tagging mechanism.

4 RESULTS AND CONCLUSION

●

●

●

●
●

● ●
●

0e+00

1e+06

2e+06

3e+06

4e+06

2 4 6 8
Number of parallel shards

Th
ro

ug
hp

ut
 (p

er
 s

ec
on

d)

Figure 2: Scaling of the clickstream analysis UDTF
over sharded data

We implement the efficient version of a clickstream analy-
sis query from [7]. It shows that our approach allows intu-
itive, though restricted, procedural queries, such as in Fig-
ure 1, to run as a queries on Noria. They also parallelizes
with Norias sharding capabilities, shown in Figure 2, without
additional developer effort.
Our approach can express procedural UDFs as database

query fragments. It allows for the use of state for efficient
queries, correctly handling the scope of the state. These
UDTFs are capable of leveraging parallelizing optimizations.
Our approach could be expanded with annotations and anal-
ysis [9], giving the query engine even more information and
further expanding the optimization potential. We also believe
that a substantial part of the restrictions currently placed on
the shape of the source UDTF could be lifted in the future.

5 ACKNOWLEDGEMENTS
This work was part of my Master’s thesis at the Chair for
Compiler Construction at the Technische Universität Dres-
den. I want to thank Sebastian Ertel, Malte Schwarzkopf,
Dirk Habich and Jeronimo Castrillon for their invaluable
input — this work would not have been possible without
their help.

Student Abstract SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2870

REFERENCES
[1] Yanif Ahmad, Oliver Kennedy, Christoph Koch, andMilos Nikolic. 2012.

DBToaster: Higher-order Delta Processing for Dynamic, Frequently
Fresh Views. Proc. VLDB Endow. 5, 10 (June 2012), 968–979. https:
//doi.org/10.14778/2336664.2336670

[2] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. [n.d.]. Apache Flink: Stream and
Batch Processing in a Single Engine. 36, 4 ([n. d.]).

[3] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51, 1 (jan 2008), 107–113.
https://doi.org/10.1145/1327452.1327492

[4] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and
Jeronimo Castrillon. 2019. STCLang: State Thread Composition As
a Foundation for Monadic Dataflow Parallelism. In Proceedings of
the 12th ACM SIGPLAN International Symposium on Haskell (Berlin,
Germany) (Haskell 2019). ACM, New York, NY, USA, 146–161. https:
//doi.org/10.1145/3331545.3342600

[5] Sebastian Ertel, Christof Fetzer, and Pascal Felber. 2015. Ohua: Im-
plicit Dataflow Programming for Concurrent Systems. In Proceedings
of the Principles and Practices of Programming on The Java Platform
(Melbourne, FL, USA) (PPPJ ’15). ACM, New York, NY, USA, 51–64.
https://doi.org/10.1145/2807426.2807431

[6] Sebastian Ertel, Andrés Goens, Justus Adam, and Jeronimo Castrillon.
2018. Compiling for Concise Code and Efficient I/O. In Proceedings
of the 27th International Conference on Compiler Construction (Vienna,
Austria) (CC 2018). ACM, New York, NY, USA, 104–115. https://doi.
org/10.1145/3178372.3179505

[7] Eric Friedman, Peter Pawlowski, and John Cieslewicz. 2009.
SQL/MapReduce: A Practical Approach to Self-describing, Polymor-
phic, and Parallelizable User-defined Functions. Proc. VLDB Endow. 2,
2 (aug 2009), 1402–1413. https://doi.org/10.14778/1687553.1687567

[8] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó
Araújo, Martin Ek, Eddie Kohler, M. Frans Kaashoek, and Robert
Morris. 2018. Noria: dynamic, partially-stateful data-flow for high-
performance web applications. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 213–231. https://www.usenix.org/conference/osdi18/
presentation/gjengset

[9] Philipp Große, Norman May, and Wolfgang Lehner. 2014. A Study of
Partitioning and Parallel UDF Execution with the SAPHANADatabase.
In Proceedings of the 26th International Conference on Scientific and
Statistical Database Management (Aalborg, Denmark) (SSDBM ’14).
ACM, New York, NY, USA, Article 36, 4 pages. https://doi.org/10.1145/
2618243.2618274

[10] H. Gupta and I. S. Mumick. 2005. Selection of views to materialize in a
data warehouse. IEEE Transactions on Knowledge and Data Engineering
17, 1 (Jan 2005), 24–43. https://doi.org/10.1109/TKDE.2005.16

[11] Himanshu Gupta and Inderpal Singh Mumick. 2006. Incremental
maintenance of aggregate and outerjoin expressions. Information
Systems 31, 6 (2006), 435 – 464. https://doi.org/10.1016/j.is.2004.11.011

[12] Ying Hu, Seema Sundara, and Jagannathan Srinivasan. 2010. Material-
ized views with user-defined aggregates.

[13] Ki Yong Lee and Myoung Ho Kim. 2005. Optimizing the Incremen-
tal Maintenance of Multiple Join Views. In Proceedings of the 8th
ACM International Workshop on Data Warehousing and OLAP (Bre-
men, Germany) (DOLAP ’05). ACM, New York, NY, USA, 107–113.
https://doi.org/10.1145/1097002.1097021

[14] S. Madden. 2012. From Databases to Big Data. IEEE Internet Computing
16, 3 (May 2012), 4–6. https://doi.org/10.1109/MIC.2012.50

[15] Abhijeet Mohapatra and Michael Genesereth. 2014. Incremental main-
tenance of aggregate views. In International Symposium on Foundations
of Information and Knowledge Systems. Springer, 399–414.

[16] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J.
DeWitt, Samuel Madden, and Michael Stonebraker. 2009. A Compari-
son of Approaches to Large-scale Data Analysis. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data
(Providence, Rhode Island, USA) (SIGMOD ’09). ACM, New York, NY,
USA, 165–178. https://doi.org/10.1145/1559845.1559865

[17] Jingren Zhou, Per-Ake Larson, and Hicham G. Elmongui. 2007. Lazy
Maintenance of Materialized Views. In Proceedings of the 33rd Interna-
tional Conference on Very Large Data Bases (Vienna, Austria) (VLDB
’07). VLDB Endowment, 231–242. http://dl.acm.org/citation.cfm?id=
1325851.1325881

[18] Yue Zhuge, Héctor García-Molina, Joachim Hammer, and Jennifer
Widom. 1995. View Maintenance in a Warehousing Environment.
In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data (San Jose, California, USA) (SIGMOD ’95). ACM,
New York, NY, USA, 316–327. https://doi.org/10.1145/223784.223848

Student Abstract SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2871

https://doi.org/10.14778/2336664.2336670
https://doi.org/10.14778/2336664.2336670
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/3331545.3342600
https://doi.org/10.1145/3331545.3342600
https://doi.org/10.1145/2807426.2807431
https://doi.org/10.1145/3178372.3179505
https://doi.org/10.1145/3178372.3179505
https://doi.org/10.14778/1687553.1687567
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://doi.org/10.1145/2618243.2618274
https://doi.org/10.1145/2618243.2618274
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1016/j.is.2004.11.011
https://doi.org/10.1145/1097002.1097021
https://doi.org/10.1109/MIC.2012.50
https://doi.org/10.1145/1559845.1559865
http://dl.acm.org/citation.cfm?id=1325851.1325881
http://dl.acm.org/citation.cfm?id=1325851.1325881
https://doi.org/10.1145/223784.223848

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Results and Conclusion
	5 Acknowledgements
	References

