
ComPy-Learn: A toolbox for exploring machine
learning representations for compilers

Alexander Brauckmann, Andrés Goens and Jeronimo Castrillon
Chair for Compiler Construction

Technische Universität Dresden, Germany
{first.last}@tu-dresden.de

Abstract—Deep Learning methods have not only shown to
improve software performance in compiler heuristics, but also
e.g. to improve security in vulnerability prediction or to boost
developer productivity in software engineering tools. A key to
the success of such methods across these use cases is the expres-
siveness of the representation used to abstract from the program
code. Recent work has shown that different such representations
have unique advantages in terms of performance. However,
determining the best-performing one for a given task is often not
obvious and requires empirical evaluation. Therefore, we present
ComPy-Learn, a toolbox for conveniently defining, extracting,
and exploring representations of program code. With syntax-
level language information from the Clang compiler frontend and
low-level information from the LLVM compiler backend, the tool
supports the construction of linear and graph representations and
enables an efficient search for the best-performing representation
and model for tasks on program code.

Index Terms—Compilers, Clang, LLVM, Machine Learning,
Code Representations

I. INTRODUCTION

In the last decades, improvements in processing power have
enabled a revolution in machine learning (ML). ML methods
have had an impact in most disciplines of engineering, and
compilers are not the exception [1]. While perhaps not yet
achieving the same level of success as in image recognition,
ML methods have been used in multiple ways in the context
of compilers and programming languages [2].

While earlier methods rely on manually-defined features, in
many domains they have been outperformed by deep learning
methods [3]. This holds also true for compiler tasks [4]. Inde-
pendent of the goal, any deep learning method that operates
on source code has an underlying concrete representation
of the code. The taxonomy presented in [2] distinguishes
between the representation itself, and the ML model used
for the representation. For example, one of the most common
representations are characters or tokens, which can be modeled
in different ways, e.g. with simple n-grams, or deep neural
network models like Long Short Term Memory (LSTM).
However, other representations can be advantageous to expose
different structures in the code, like those based on the
language syntax or on control- and dataflow graphs.

The representation chosen and the corresponding model
play an important role in the effectiveness of ML methods
in compilers. They determine what information is available to
the algorithm, as well as how accessible it is, based on the
structure of the representation [5]. However, in order to use

ML-enabled compiler

Opt1 OptML2

Repr. Model

Opt3 OptML4

Repr. Model

So
ur

ce
co

de

E
xe

cu
ta

bl
e

ComPy-Learn

Fig. 1. ComPy-Learn in the context of a ML-enabled compiler.

these ML methods in practice in a compiler, we need to embed
them into one. Figure 1 shows our vision of such an ML-
enabled compiler. Multiple different optimizations will benefit
from different models. We first need to understand which
representations and models are best-suited to the individual
optimizations in these compilers. For a single optimization
already, this is a complex and time-consuming endeavor,
since modifying the representation and the model requires a
significant rewrite of the codebase of a learning compiler. In
practice, integrating multiple optimizations leveraging differ-
ent representations would be prohibitively costly to engineer
without a framework to explore and manage the different
representations and models.

In this paper we present a toolbox to effectively explore
multiple representations and models for code in ML-enabled
compilers. Our toolbox, ComPy-Learn1, fills an important gap
needed to research and design efficient ML-enabled compilers.
Its modular design clearly separates the learning task, the
representation and the model (cf. Section II). This allows
designers to seamlessly explore multiple models and repre-
sentations to find the best-suited ones for the task at hand
by using a simple programming model (cf. Section III). We
evaluate ComPy-Learn by reenacting the exploration carried
out by independent groups over the past years for ML-enabled
OpenCL kernel mapping (cf. Section IV).

II. ARCHITECTURE AND DESIGN

The high-level flows of ComPy-Learn, its components, and
the ML Pipeline are shown in Figure 2: Given a set of
(Source Code, Property) pairs, commonly referred to as the
dataset, ComPy-Learn learns a mapping function f(Source
Code) −→ Property with the objective to best fit the training

1Tool available at https://github.com/tud-ccc/compy-learn

https://github.com/tud-ccc/compy-learn

ComPy.Representation ComPy.Model

ML Pipeline

ComPy.Dataset

Source CodeSource CodeSource CodeSource Code
Clang/LLVM

Compiler
Representation

Builder
Compiler

IRs+
Embedding

Model
Prediction

Model
Features PropertyPropertyPropertyProperty

ML Program
Representation

(Source Code, Property)(Source Code, Property)(Source Code, Property)(Source Code, Property)
training set,

validation set

(Representation, Model)
best-performing

configuration

Exploration

Fig. 2. High-level flow of ComPy-Learn and ML pipeline. ComPy-Learn flow in solid, ML Pipeline flow in dashed arrows.

set. Multiple such functions are explored by evaluating on dif-
ferent combinations of representations and models in the ML
Pipeline. Finally, ComPy-Learn results in a best-performing
configuration of Representation and Model. In the ML Pipeline
flow, the ComPy.Representation components first transform
the raw Source Code into a ML Program Representation,
which is input to components of ComPy.Model that predict
the properties.

A. Program representation

The program representation component consists of
Clang/LLVM-Compiler tools and a representation builder that
constructs the ML program representations:

The Clang/LLVM compiler tools are used to capture
compiler-internal intermediate representations (IRs) of a given
program and construct a data structure holding this informa-
tion. The IRs supported at the time of writing are based on
the Clang Abstract Syntax Tree (AST) and the LLVM IR in
sequential and graph-based variants. The IRs are enriched with
more semantics from compiler analyses and therefore called
IRs+. The sequential IRs+ are identifier-normalized, similar
to [4], [6], which results in identifiers of functions, constants,
and variables being named in a fixed, predefined scheme. In
addition to the raw token information of [4], ComPy-Learn’s
sequential IRs+ contains token kind information, allowing to
construct custom ML program representations. The graph-
based variants are enriched with additional information from
compiler-internal analyses, allowing to construct representa-
tions with e.g. memory access, control- and dataflow informa-
tion, such as the ones presented in [5], [7].

The representation builder component is used to transform
the IR+ to ML program representations. Within the program
representation builder, multiple definitions of representations
exist and can be exchanged in this pipeline, allowing for
reusability.

This two-component design is motivated by the observa-
tion that multiple ML program representations use common
properties of the compiler IRs. This approach also allows for
extensibility because new code representation structures can
be built conveniently by traversing the IR+ objects without
modifying the implementation-heavy Clang- and LLVM tools
that are used to extract information. A detailed example of
this is shown in Section IV.

B. ML model

To make predictions on a code sample, after encoding it in
an ML program representation, an ML model is optimized
to fit the training set. This model consists of two parts,
a learnable embedding model that extracts features, and a
prediction model that outputs a property from the extracted
features.

Different embedding models are supported, depending on
the structure of the ML program representation. Recurrent
Neural Network (RNN) models, on the one hand, learn fea-
tures of linear nature by iteratively passing a hidden state, as
well as token information along a sequence [8]. Various vari-
ants of this model class are supported as off-the-shelf models
in the underlying Deep Learning frameworks TensorFlow and
PyTorch, and can be configured by the user. Graph Neural
Networks (GNN) models, on the other hand, learn features of
graph structures by iteratively passing hidden states along a
graph’s edges [9]. ComPy-Learn integrates with the popular
GNN implementation frameworks [10] and [11]. Part of these
frameworks is e.g. the popular Gated Graph Neural Network
(GGNN) architecture that has proven to be well-suited for
learning tasks on source code [5], [7], [12].

The prediction model can be configured to perform classifi-
cations or regressions, supporting a variety of predictive graph-
and sequence-level classification tasks. Node- and token-level
prediction tasks are not supported currently, but can be easily
added if a use case requires so.

C. Dataset

Not being part of the ML pipeline per se, the ComPy.Dataset
component provides tools to define a dataset, consisting of
code samples and prediction target properties.

III. PROGRAMMING MODEL

We will demonstrate relevant parts of ComPy-Learn’s API
on the highest level. The learning pipeline, as shown in
Listing 1, consists of the stages of defining the representation
and model combinations to be explored. Then, for each
combination it builds the representation, trains the model, and
finally, evaluates the performance on the test set.

In lines 1-4 we define various combinations of representa-
tions and models. Each of the combinations consists of a triple
of subclasses of RepresentationBuilder, Visitor,
and Model. The builder is responsible of constructing the
IR+ on which the Visitor extracts linear or graph structures.

1 combinations = [
2 (ASTGraphBuilder, ASTDataVisitor, GnnModel),
3 (LLVMGraphBuilder, LLVMCDFGVisitor, GnnModel),
4 (SyntaxSeqBuilder, SyntaxSeqVisitor, LSTMModel)]
5
6 summaries = []
7 for builder, visitor, model in combinations:
8 clang_driver = ClangDriver(language=C,
9 optimization_level=O3)

10 samples = DevMapDataset.preprocess(
11 builder(clang_driver),
12 visitor)
13
14 summary = model.eval(samples[train_idx],
15 samples[test_idx])
16 summaries.append(summary)
17
18 report(summaries)

Listing 1: Example of an exploration.

In lines 6-12 we build each of the representations defined
in the combination triples. For this, the builder relies on a
ClangDriver object that represents the functionality of the
Clang compiler frontend. This object is configurable with e.g.
the programming language, optimization level, and include
paths. A subclass of Dataset that implements a task-specific
dataset then accepts a builder and a visitor. The builder is
constructed with the just instantiated ClangDriver.

In lines 14-16, the model is trained on a training set and
continuously evaluated on a test set. The resulting summaries
contain the accuracies of the training set and test set for each
epoch for each combination, which enables further evaluation.
Finally, a function report prints the performance of the
configurations.

The framework’s API offers the user to customize
the pipeline by allowing to define custom combina-
tion triples. User-implemented objects conforming to the
RepresentationBuilder, Visitor and Model inter-
faces can be passed to the pipeline.

IV. EVALUATION

To show ComPy-Lean’s capabilities to construct ML-
program representations, we will re-implement several rep-
resentations from literature. As a compiler optimization for
demonstration, we use the binary classification task of device
mapping, initially presented in [13]. The optimization consists
of deciding where to best place an OpenCL kernel on a
system with two alternative devices. A correct mapping leads
to a faster execution time compared to a wrong mapping. In
ComPy-Learn’s terminology, the property to predict is {CPU,
GPU}.

Figure 3 shows visualizations of several of the representa-
tions on the example of the recursive factorial function shown
in Figure 3a). The representations in Figures 3d) - 3f) have
been created using the visitor shown in Listing 2 through
traversal of the LLVM IR+. The code regions that account
for different edges in the graph representations are highlighted
in the corresponding colors. Various existing representations
from bleeding-edge published work, such as [5], [7] and
beyond can be easily constructed from this common data
structure (IR+), as demonstrated in Figure 3. Further, we use
the pipeline of ComPy-Learn to explore various combinations
of program representations and ML models on the described

TABLE I
EVALUATION RESULTS OF DIFFERENT REPRESENTATIONS AND MODELS.

Ref ML program representation Model Acc
IR+ Structure Nodes Edges

[4] AST Seq C tokens next LSTM 0.79
AST Graph AST stmts ast GGNN 0.79

[5] AST Graph AST stmts ast, use-def GGNN 0.79
AST Graph AST stmts ast, use-def, cfg GGNN 0.79

[6] LLVM Seq LLVM tokens next LSTM 0.76
LLVM Graph LLVM IR control, use-def GGNN 0.75

[5] LLVM Graph LLVM IR control, use-def,
call GGNN 0.75

LLVM Graph LLVM IR,
Basic Blocks

control, use-def,
call, basic block GGNN 0.81

[7] LLVM Graph
LLVM IR,
variables,
constants

control, use-def,
call GGNN 0.70

device mapping optimization. Note that this evaluation shows
how we can construct and use multiple representations; it is
not meant as a conclusive comparison of their accuracies. In
particular, we evaluate on a single dataset split instead of k-
fold cross-validation as in the original works and report the
results of only one experiment execution.

For the evaluation, we use the dataset of [4], which consists
of 680 OpenCL kernels with their best device mappings as
prediction properties in the AMD variant. We split it into
a training and validation set. The training set, consisting of
90% of the kernels, is used to train the combinations of
representations and models for 1000 epochs each, using the
Adam optimization algorithm [14] with a learning rate of
0.001 and batches of 64 samples. We measure the accuracies of
the training and validation set after each epoch and report the
validation accuracy of the epoch that resulted in the best train-
ing accuracy. The results in Table I show that a LLVM graph
representation, augmented with Basic Block information yields
the highest accuracy in this particular setting. Finding this
representation was possible because of the convenient design
and exploration capabilities of ComPy-Learn. However, [5]
has shown that AST-based graph representations and LLVM
IR-based sequence representations are best suitable for other
datasets and tasks, making an exploration indispensable.

V. CONCLUSION

In this paper we presented ComPy-Learn, a toolbox for
designing ML-enabled compiler optimizations. Using ComPy-
Learn, we were easily able to explore multiple different com-
binations of representations and models, thereby reproducing
recently proposed representations and even beyond. Because of
its user-friendliness, modularity and extensibility, we believe
it to be an ideal starting point for tasks in this domain.

For future work, we hope that its open-source nature and
modular design permit to research compiler optimizations,
code representations, and models more easily. For our own
future work, we aim to extend ComPy-Learn with further code
representations, components for explaining features, and new
techniques for model optimization. Further code representa-
tions of existing work would allow for a more comprehensive
exploration. To investigate the learned features, we plan to

a) b)
c)

d)
e) f)

fn 0 (

return var 0

fn 0 (

; }

if (

return 1

var 0)

- 1

¡= 1

int

*

var 0

var 0

;

{

)

)

int

function

intType

CompoundStmt

IfStmt ReturnStmt

BinaryOperator ReturnStmt BinaryOperator

ImplicitCastExpr IntegerLiteral IntegerLiteral ImplicitCastExpr CallExpr

DeclRefExpr

DeclRefExpr ImplicitCastExpr BinaryOperator

DeclRefExpr ImplicitCastExpr IntegerLiteral

fnType DeclRefExpr

, 2

slt i32

%4 =

label %9

i32 @

0

...

%2 =

(i32

label %3

... ...

i1 %2br

%0

...

,

fn 0

1:

icmp

)

3:

...

,

define

i32

icmp

phi

br

phi

add

mul

icmp

phi

br

ret

function

icmp

br

i1

phi

phi

phii32

i32i32

ret

i32

add i32

mul

icmp

i32

i32

i32

br

i1

i32 i32

i32

i32

i32

function

icmp

i32

bb

br

phi

bb

bb phi

phi

add

mul

icmp

ret

br

Fig. 3. Example program in a selection of the supported representations: a) Syntax token sequence, b) AST-graph, augmented with use-def edges, c) LLVM
IR token sequence, d) LLVM IR Control- and Dataflow graph (CDFG), e) LLVM IR CDFG, augmented with call edges, variable and constant nodes. f) LLVM
IR CDFG, augmented with basic block nodes and their belongs-to and control-flow edges. AST edges in black, control-flow edges in green, data edges in
blue, call edges in yellow, basic-block edges in orange.

integrate explainability methods into the framework, enabling
insights about decision criteria and the discovery of patterns.

ACKNOWLEDGMENTS

This work was funded in part by the German Federal
Ministry of Education and Research (BMBF) within the
project ScaDS AI (BMBF 01IS18026B), the German Research
Council (DFG) through the TraceSymm project CA 1602/4-1
and the Studienstiftung des deutschen Volkes. We thank the
Center for Information Services and HPC (ZIH) at TU Dresden
for providing computation resources.

REFERENCES

[1] Z. Wang and M. O’Boyle, “Machine learning in compiler optimization,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1879–1901, 2018.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[4] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-end
deep learning of optimization heuristics,” in PACT, ACM, 2017.

[5] A. Brauckmann, A. Goens, S. Ertel, and J. Castrillon, “Compiler-based
graph representations for deep learning models of code,” in Proceedings
of the 29th International Conference on Compiler Construction, pp. 201–
211, 2020.

[6] F. Barchi, G. Urgese, E. Macii, and A. Acquaviva, “Code mapping in
heterogeneous platforms using deep learning and llvm-ir,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, IEEE, 2019.

[7] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather,
“Programl: Graph-based deep learning for program optimization and
analysis,” arXiv preprint arXiv:2003.10536, 2020.

[8] W. De Mulder, S. Bethard, and M.-F. Moens, “A survey on the appli-
cation of recurrent neural networks to statistical language modeling,”
Computer Speech & Language, vol. 30, no. 1, pp. 61–98, 2015.

[9] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[10] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[11] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

[12] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv:1511.05493, 2015.

class CDFGCallConstantBBVisitor(Visitor):
def __init__(self):

Visitor.__init__(self)
self.G = nx.MultiDiGraph()

def visit(self, v):
if isinstance(v, llvm.graph.Function):
self.functions[v.name] = v
self.G.add_node(v, attr=('function'))
self.G.add_edge(v, v.entryInstr,

attr=('call'))
for arg in v.args:
self.G.add_node(arg, attr=(arg.type))

if isinstance(v, llvm.graph.BasicBlock):
self.G.add_node(v, attr=('bb'))
for instr in v.instructions:

self.G.add_edge(instr, v, attr=('bb'))
for succ in v.successors:

self.G.add_edge(v, succ, attr=('bb'))

instr_prev = v.instructions[0]
for instr in v.instructions[1:]:
self.G.add_edge(instr_prev, instr,

attr=('cfg'))
instr_prev = instr

for succ in v.successors:
self.G.add_edge(v.instructions[-1],

succ.instructions[0],
attr=('cfg'))

if isinstance(v, llvm.graph.Instruction):
self.G.add_node(v, attr=(v.opcode))

if v.opcode == 'ret':
self.G.add_edge(v, v.function,

attr=('call'))
if v.opcode == 'call':
called = self.functions[v.callTarget]
self.G.add_edge(v, called.entryInstr,

attr=('call'))
for exit in called.exitInstr:
self.G.add_edge(exit, v, attr=('call'))

for op in v.operands:
if isinstance(op, llvm.graph.Arg) or

isinstance(op, llvm.graph.Constant):
self.G.add_node(op, attr=(op.type))
self.G.add_edge(op, v, attr=('data'))

elif isinstance(op,
llvm.graph.Instruction):

self.G.add_node((v, op), attr=(op.type))
self.G.add_edge(op, (v, op),

attr=('data'))
self.G.add_edge((v, op), v,

attr=('data'))

.Listing 2: Visitor used to construct LLVM IR graph represen-
tations. Overlay colors correspond to edge colors in Figure 3.

[13] D. Grewe, Z. Wang, and M. F. O’Boyle, “Portable mapping of data
parallel programs to opencl for heterogeneous systems,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pp. 1–10, IEEE, 2013.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

