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DRAM Caches via Tag-Data Decoupling
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Abstract—In-package DRAM-based Last-Level-Caches (LLCs) that cache data in small chunks (i.e., blocks) are promising for improving
system performance due to their efficient main memory bandwidth utilization. However, in these high-capacity DRAM caches, managing
metadata (i.e., tags) at low cost is challenging. Storing the tags in SRAM has the advantage of quick tag access but is impractical due to
a large area overhead. Storing the tags in DRAM reduces the area overhead but incurs tag serialization latency for an associative LLC
design, which is inevitable for achieving high cache hit rate. To address the area and latency overhead problem, we propose a block-
based DRAM LLC design that decouples tag and data into two regions in DRAM. Our design stores the tags in a latency-optimized
DRAM region as the tags are accessed more often than the data. In contrast, we optimize the data region for area efficiency and map
spatially-adjacent cache blocks to the same DRAM row to exploit spatial locality. Our design mitigates the tag serialization latency of
existing associative DRAM LLCs via selective in-DRAM tag comparison, which overlaps the latency of tag and data accesses. This
efficiently enables LLC bypassing via a novel DRAM Absence Table (DAT) that not only provides fast LLC miss detection but also
reduces in-package bandwidth requirements. Our evaluation using SPEC2006 benchmarks shows that our tag-data decoupled LLC
improves system performance by 11.7% compared to a state-of-the-art direct-mapped LLC design and by 7.2% compared to an existing
associative LLC design.

Index Terms—Die-stacked DRAM Cache, Last Level Cache (LLC), direct mapped cache, associative cache, cache bypassing, metadata
management.
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1 INTRODUCTION

The latency gap between processor and memory has grown
exponentially during the past decade. The emergence of
multi- and many-core systems has further widened this
latency disparity, when cores contend for shared memory.
A well-known solution to bridge this latency gap is to
integrate multiple in-package DRAM layers on top of the
multi-core chip [1]–[5]. These DRAM layers can either be
employed as main memory [6], [7] or software managed
caches [5], [8]–[10] or LLC [11]–[23]. Employing in-package
DRAM as main memory or software managed caches re-
quires re-design of applications and system software; while
using it as a hardware managed cache requires no modifica-
tion to the software stack.

The data in a hardware managed DRAM LLC can be
allocated at a small granularity of 64 bytes (referred to as
block-based design) or at a large granularity of 1 KB/2 KB
(referred to as page-based design). Page-based LLCs leverage
spatial locality by caching large chunks of data in the DRAM
LLC but they suffer from over-fetching [5], [8]–[10]. Each
LLC fill requires transferring a complete page from the
off-package DRAM to the in-package LLC. For pages with
limited spatial locality, this results in significant waste of
both in-package and off-package bandwidth.
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Block-based LLCs overcome the limitations of page-
based LLCs by transferring a smaller amount of data (block
size) between in-package and off-package DRAMs. This,
however, demands managing a large amount of tag infor-
mation. Considering the conventional 64-byte block size, a
512 MB DRAM LLC requires approximately 48 MB of tag
storage. Storing the tags in SRAM ensures fast tag lookup
but is impractical due to large area and energy require-
ments [19]. State-of-the-art approaches thus store the tag
information alongside cache lines in the LLCs DRAM [11]–
[20].

Direct-mapped DRAM LLCs [12], [13] are optimized for
LLC hit latency at the expense of a high LLC miss rate.
In contrast, associative DRAM LLCs reduce the LLC miss
rate but suffer from high hit latency caused by the time
required to serially access tags and data. To mitigate this tag
serialization effect, previous works [14]–[17] have proposed
a small low-latency SRAM tag-cache, which provides fast
LLC tag lookup. However, these approaches demand high
in-package bandwidth to fetch the tags into the tag-cache af-
ter a tag-cache miss. For streaming applications, this results
in performance degradation.

The performance and bandwidth utilization of block-
based DRAM LLCs can be improved by bypassing the LLC
for dead cache lines, i.e., those lines that are not referenced
again until eviction. Approaches such as [13], [24] have
demonstrated that bypassing indeed alleviates the band-
width pressure by minimizing the number of unnecessary
cache fills. However, even with bypassing, the tag lookups
for LLC bypasses incur a large performance overhead and
deteriorates the LLC performance, particularly when the
number of LLC bypasses is significant.
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In this paper, we propose a tag-data decoupled cache design
for block-based DRAM LLCs. Our design reduces conflict
misses using a combination of associative caching and LLC
bypassing. It retains the benefits of associative LLCs while
overcoming their limitations by reducing the tag serializa-
tion effect, the number of tag lookups, and the in-package
traffic.

The tag-data decoupled cache design is based on four key
ideas. First, similar to [14], [16]–[18], [20], [24], the decoupled
design stores tags in the DRAM LLC. However, unlike
all previous approaches, it organizes the LLC into two
regions: tag region and data region. The tag region maintains
the metadata of the blocks stored in the data region. The
relevant rows of the tag and data regions can be activated
and accessed in parallel. The tag region is optimized for low
latency, by using smaller mat and row sizes compared to the
data region.

Second, the data region is optimized for spatial locality
by modifying the mapping of main memory blocks to
a cache set. Traditionally, spatial adjacent memory blocks
are mapped to different cache sets. In our proposal, mul-
tiple spatially-adjacent memory blocks (i.e., segments) are
mapped to the same cache set. Therefore, the hit/miss
information of all blocks belonging to the same segment can
be identified by a single set access. This optimization reduces
the number of set accesses which in turn reduces contention
in the data region.

Third, the decoupled design introduces a small DRAM
Absence Table (DAT) which stores the absence of the recently-
accessed LLC-bypassed super-segments. A super-segment
contains one or more segments which can be configured at
design time. This ensures that a future LLC block miss to the
same super-segment will be accurately detected by the DAT,
thus reducing the number of unnecessary LLC tag lookups.

Finally, we propose an efficient selective in-DRAM-tag-
comparison policy providing fast LLC tag lookup compared
to existing approaches that always perform in-DRAM-tag-
comparison [25]. The selective nature of our lookup reduces
contention in the tag region.

The major contributions of this paper are:

• A tag-data decoupled cache design that mitigates the tag
serialization latency by enabling concurrent accesses to
the tag and data regions.

• A latency-optimized design for the tag region via an
efficient selective in-DRAM-tag-comparison policy.

• A DRAM Absence Table (DAT) design that provides fast
and accurate detection of LLC misses, for blocks that
are likely to bypass the LLC in future.

• A novel mapping mechanism that reduces the number
of lookups in the tag and the data regions.

• A detailed design space analysis of the tag-data decou-
pled cache design to evaluate the impact of architectural
parameters on performance.

Our decoupled cache design provides better performance
(11.7% BEAR [13], 7.2% LAMOST [16], [20], 11% sector-
cache [22], 7.5% TIMBER [15], and 4.7% ACCORD [23]) com-
pared to state-of-the-art designs when an iso-area DRAM
LLC is employed.

TABLE 1
Comparisons of state-of-the-art row organizations for a 4 KB row size
Tset: Number of tag columns in an LLC set, Srow: Number of sets in an
LLC row,Trow: Number of tag columns in an LLC row, A: Associativity

Policy Tset Srow Trow A
LH-Cache [18], [19] 6 1 6 58
LAMOST [16], [17], [20] 1 8 8 7
ATCache [14] 2 4 8 14

…0 1 7

4KB	row	contains	8	cache	sets	with	7	way	associativity

Set-0 Set-1 Set-7

T1 L0 L1 L2 L3 L4 L5 L6

Tag-L0 Tag-L1 Tag-L2 Tag-L3 Tag-L4 Tag-L5 Tag-L6 Unused

64 Bytes64 Bytes

6 Bytes 22 Bytes

Fig. 1. Row organization of the baseline associative DRAM LLC (Row
size = 4 KB)

2 BACKGROUND

In this paper, we focus on the design of hardware-managed
high capacity block-based DRAM LLCs. Block-based LLCs
are categorized into direct-mapped [12], [13] and associa-
tive [11], [14], [16]–[20] designs. Both approaches store tags
and data in the same row of a DRAM bank.

2.1 Associative DRAM LLCs

Previous research studies have proposed many variants of
associative DRAM LLCs [14], [16]–[20]. Each DRAM row is
divided into Srow cache sets and Trow tag columns. Every
cache set is comprised of Tset tag columns and A cache lines.
An LLC hit requires access to the Tset tag columns before
accessing the corresponding cache line.

Table 1 shows the values of Srow, Tset, Trow and A of
existing LLC organizations for a 4 KB row size. We consider
LAMOST [20], an associative DRAM LLC, as baseline and
illustrate the details of its row organization in Fig. 1. Each
4 KB LLC row in the baseline design consists of 8 sets
(i.e. Srow = 8) where every set stores the tags of 7 cache
ways (i.e. A = 7) in a single tag column (i.e. Tset = 1).
To service an LLC hit, the tag column of the corresponding
set is read from the row buffer and checked for a hit/miss.
Subsequently, the cache line is accessed from the row buffer
whose location is identified by the tag match.

2.2 Baseline LLC with tag-cache and predictor

The baseline LLC aims at reducing the LLC miss rate via
associativity. However, this reduction comes at the expense
of increased LLC hit latency. To address this problem, re-
cent works employ a small low latency SRAM-based tag-
cache that keeps the tag columns of spatially adjacent LLC
sets [14]–[17]. Only recently accessed tag columns, not the
relevant cache lines, are maintained in the tag-cache. The
tag-cache provides fast lookup due to its small size and is
accessed before every LLC access. If the tag-cache hits, the
relevant tag column from tag-cache is accessed to identify
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Fig. 2. Row organization of direct-mapped DRAM LLC (a) BEAR [12],
[13] (b) TIMBER [15] for (Row size = 4 KB)

an LLC hit/miss. A hit in the tag-cache avoids accessing the
tag column from DRAM. As a result, requests that hit in
the tag-cache are served much faster than those that miss
in the tag-cache. On the contrary, a miss in the tag-cache
requires accessing the relevant tag column from the DRAM
LLC before accessing the requested cache line (for an LLC
hit). Subsequently, the adjacent tag columns (i.e. tags of the
adjacent LLC sets) are filled in the tag-cache. The tag-cache
exploits the fact that adjacent tag columns will most likely
be accessed in the near future.

Similar to [11] and [14], the baseline LLC employs a small
MAP-I predictor [12] having a one cycle latency. After a tag-
cache miss, the MAP-I predictor is consulted to predict an
LLC hit/miss. The off-package DRAM memory is accessed
in parallel to the in-package DRAM LLC if MAP-I predicts
an LLC miss. Otherwise, the off-package DRAM is accessed
only if an LLC miss is identified by the LLC tag. Similar
to [26], we bypass the tag-cache for the writeback accesses
due to their poor spatial locality.

2.3 Direct-mapped DRAM LLCs
Direct-mapped caches are employed to address the high
latency and bandwidth limitations of the associative de-
signs [12], [13], [15]. The direct-mapped BEAR [12], [13]
arranges tag and data side by side in a DRAM row to
constitute a single Tag and Data (TAD) entry, as shown in
Fig. 2(a). Compared to associative designs, direct-mapped
designs have smaller LLC hit latency because a single access
of the TAD entry is required from the row buffer instead
of isolated accesses for the tag and data. However, this
reduction in the hit latency comes at the expense of higher
LLC miss rate when compared to associative designs. The
direct-mapped TIMBER groups the tags of 56 cache sets into
8 tag columns [15]. The tags are accessed separately from the
data. The TIMBER design for a 4 KB row size is depicted in
Fig. 2(b) and it is is backed up by a tag-cache that stores the
tags of spatially adjacent cache sets.

2.4 Sector DRAM LLC
In sector DRAM LLC [22], the basic unit of cache allocation
is referred to as sector which is comprised of multiple
blocks. Fig. 3(a) shows a sector organization with 8 blocks
per sector. Each sector is associated with a tag (Sector-Tag)
to determine whether an entry is reserved for a particular
sector (i.e., sector hit) or not (sector miss). Each block bi of a
sector is provided with a presence bit Pi and thus only some

Fig. 3. (a) Sector organization with 8 blocks per sector (b) Row organiza-
tion of sector DRAM LLC (Row size = 4 KB and sector size = 512 Bytes)
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Fig. 4. High level view of our Decoupled Cache Design.

blocks of a sector need to be present in the LLC. Following a
sector hit, when a block bi of a particular sector S misses the
LLC (i.e., block miss), then Pi of S is set. If no entry for S
exists in the LLC (i.e., sector miss), a new entry is reserved
for S and only the presence bit of bi (i.e. Pi) is set.

Sector cache fetches data at block-level (i.e. 64 bytes) in
order to mitigate the excessive prefetching problem of page-
based LLCs [5], [8]–[10]. The work in [22] stores the sector
tags in the DRAM row along with the data and uses a tag
cache to hold the tags of recently accessed sectors. Fig. 3(b)
shows the row organization of a sector based DRAM LLC
assuming that the DRAM row size is 4 KB and the sector
size is 512 bytes. The sector organization in the figure
corresponds to an 8-way associative cache where the tags
of 8 sectors are stored in a separate tag column (highlighted
in green).

3 THE DECOUPLED CACHE DESIGN

A high level overview of the proposed decoupled cache design
is shown in Fig. 4. Similar to [11], [12], [14], we use the
MAP-I predictor from [12] and the tag-cache from [14],
[16], [17]. Proposed changes to realize our decoupled design
are highlighted in grey color which are explained in the
following subsections.

3.1 Decoupled tag region and data region
Fig. 5 shows the organization of the tag and data regions
in our decoupled cache design. The data region consists of
N × 4 data banks while the tag region consists of N tag
banks, where N refers to the number of bank groups. Each
bank, in both regions, consists of R logical rows. Each row
in the data region has 8 sets (i.e. Srow = 8). Each set is made
up of A cache lines. Each row of a tag bank is partitioned
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Fig. 5. Logical organization of the decoupled cache design

into 4 sub-rows where each sub-row stores the tags of
its corresponding rows in the data banks (from the same
bank group). The decoupled design provides the following
advantages compared to existing block-based associative
DRAM LLCs in general and the baseline LLC in specific.

Concurrent tag-data accesses: The requested rows of the
tag and the data region are activated in parallel after a tag-
cache miss. In contrast, the baseline architecture suffers from
increased tag serialization latency because it accesses the tag
column before accessing the cache line for a tag-cache miss
(cf. Fig. 10-b).

Latency optimized tag region: The tag region in the
decoupled design is accessed more frequently compared
to the data region. We exploit this insight and optimize it
for latency by employing smaller row and mat sizes (cf.
Table 2). Although smaller mat sizes consumes more area
due to increase in the number of sense amplifiers, the overall
impact on the area utilization is insignificant due to the
small size of the tag region.

Latency optimization for data region: A victim row
in the row buffer of the data region is clean most of the
time. As a result, it does not incur tWR latency for a
clean victim row. This penalty is only incurred for the tag
region which updates the tag columns after their eviction
from the tag-cache. However, the negative impact of tWR

in the tag region is less due to its smaller access latency.
In contrast, existing tag-data coupled LLC designs always
incur a latency penalty tWR even for clean cache lines.

Efficient utilization of the storage space: The decoupled
design eliminates the wastage of storage space in existing
block-based DRAM LLC designs. For instance, each 64-byte
tag column in the baseline LLC stores the tags of a cache
set as depicted in Fig. 1. Each cache line requires 6 bytes
for the tag information. Therefore, the 7 cache lines of a
set require 7 × 6 = 42 bytes for their tag entries leaving
22 bytes per tag column unused (cf. Fig. 1). For a 512 MB
LLC, a total of 22 MB is left unused (22 bytes / tag column
× 8 tag columns / row × 4096 rows / bank × 32 banks).

Likewise, other associative [18] and direct-mapped [12], [13]
designs (cf. Fig. 2) waste considerable amount of storage
space. Decoupling the tags from the data makes it possible
to use a smaller column size for the tag banks, considerably
reducing the space wastage. As an example, using a tag
column size of 42 bytes instead of 64 bytes will eliminate
this wastage.

3.1.1 Definitions and Design Space
This section introduces the terminology used in the fol-
lowing sections. Further, it elaborates on the important
parameters of the decoupled cache design.

• Block: A block is a group of contiguous bytes in main
memory.

• Segment: A segment consists of K spatial adjacent
blocks.

• Super-segment: A super-segment consists of T spatial
adjacent segments.

• Super-set: A super-set consists of T spatial adjacent
sets.

It is worth mentioning that T tag column accesses are
required to identify the LLC hit/miss information of all
blocks belonging to a super-segment. For elaboration, we
make the following assumptions about the design space.

• The block size is 64 bytes.
• The segment size is 256 bytes, corresponding to 4 (i.e.
K = 4) spatial adjacent blocks.

• The super-segment size is 1 KB, corresponding to 4
(i.e. T = 4) spatial adjacent segments and 16 spatial
adjacent blocks.

• The row size in the data region is 4 KB and it is
comprised of eight 512-byte sets.

• Each 512-byte set has 8-way associativity (i.e. A = 8).
For the purpose of explanation, a constant value of K , T ,

and A is considered. However, the concepts proposed in this
paper can be applied to other settings as well. Section 4.5
provides a detailed design space exploration by varying the
values of K and T . Similarly, the decoupled cache design is
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Fig. 6. DRAM Absence Table (DAT) organization

evaluated for 8-way (Section 4.4) and 6-way (Section 4.7)
caches as well.

3.2 DRAM Absence Table (DAT)

The decoupled design uses DAT to quickly identify the
LLC absence information. The DAT is organized as a set-
associative cache which stores the absence information of
super-segments as illustrated in Fig. 6. It maintains a single
bit to specify non-cacheable super-segments. The value of
non-cacheable bit is 1 if all blocks of a super-segment are
absent in the LLC. An in-DRAM tag lookup is avoided for
an LLC block miss that belongs to a non-cacheable super-
segment. Our decoupled cache design directly forwards this
request to the off-package DRAM and is never filled in the
in-package DRAM LLC. Leveraging the non-cacheable bit
of the super-segment, the number of in-DRAM tag lookups
for blocks that belong to the same super-segment is reduced.
The DRAM Access Table (DAT) provides coarse-granularity
miss information at super-segment level that requires access
to T tag columns. It is worth to mention that super-segment
is either equal to segment (i.e., T = 1) or greater than
segment (i.e., T >1). A DAT tracks the hit/miss information
of sets in DAT x ways in DAT recently accessed super-
segments that bypasses the LLC. The total memory covered
by DAT is sets in DAT x ways in DAT x super-segment-
size. The super-segment-size in bytes is equal to K x T x 64
assuming a 64-byte cache line size. This implies that the
size of a super-segment is configurable at design time by
choosing a suitable value of K and T . For sets in DAT
= 64, ways in DAT = 4, K = 4 and T = 4, the memory
covered by DAT is 256 KB. Note that only a limited number
of recently bypassed super-segments are maintained in the
small 1 KB DAT (cf. Section 3.6).

3.3 Segment Mapping

The in-package bandwidth can be effectively utilized for
useful data transfer if tag region accesses are reduced. This
can be achieved by reducing the number of tag-cache/DAT
misses. To this end, we modify the mapping of segments
to the tag columns of an LLC set. Fig. 7 shows this block
mapping for K = 4. For K = 1, this mapping is equivalent
to the existing block-based DRAM LLCs [12], [13], [18]–
[20]. With the new mapping, a single tag column access is
sufficient to identify the LLC hit/miss status of all K blocks
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Fig. 7. Segment mapping to the tag columns. K: Segment size

of the same segment. For instance, as depicted in Fig. 7, only
access to T2 is required to determine the hit or miss for all 4
blocks (i.e., B08 to B11) belonging to Segment2.

Varying the segment size (i.e. K) provides an interesting
trade-off between the tag-cache/DAT hit rate and the LLC
miss rate. A larger segment size implies a higher tag-
cache/DAT hit rate compared to a smaller segment size.
A large segment size leverages the spatial locality by map-
ping more blocks to the same tag column or set. However,
restricting all K blocks of the same segment to reside on
the same set may negatively affect the LLC miss rate. The
smallest segment size (i.e. K = 1) eliminates within-set
contention because spatially adjacent blocks are directed
to different LLC sets. This comes at the cost of reduced
tag-cache/DAT hit rate. The detailed trade-off analysis is
provided in section 4.5.1.

3.4 DRAM Bypass Policy

A miss fill refers to an operation that inserts a new block
in the cache after a cache miss [13]. If the newly inserted
block is not re-referenced before its eviction, it is referred
to as dead block. Inserting a dead block after a cache miss
is referred to as useless miss fill. Often, these useless miss
fills replace useful resident cache lines, i.e. those potentially
to be accessed in the near future. An efficient LLC bypass
scheme can improve the LLC performance by reducing the
number of useless miss fills [13], [24]. However, the LLC-
bypassed dead blocks still require in-DRAM tag lookups
for correction which unnecessarily consume bandwidth and
cause bank conflicts.

Based on their cache reuse behavior, applications are
classified into two categories, streaming applications and
cache-friendly applications [27]–[29]. Streaming applica-
tions generate significant number of useless miss fills. There-
fore, it is wise to bypass the DRAM LLC for such appli-
cations. Contrarily, majority of blocks belonging to cache-
friendly applications exhibit high temporal locality and are
frequently reused.

For LLC bypassing, set dueling [30] is used to dynam-
ically select between two insertion rates (1 and 1

32 ). For
each core, two sampling monitors are used to track the
miss statistics of NSs

64 super-sets. NSs refers to the total
number of super-sets in the DRAM LLC. The remaining
super-sets are referred to as follower super-sets. The sam-
pling monitors are highlighted with grey and blue colors in
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Fig. 8. The two sampling monitors employ insertion rates
of 1 and 1

32 respectively. A 10-bit saturating counter (green
box) is used to keep track of the misses in each sampling
monitor. The counter value is incremented (or decremented)
on a miss incurred in the grey (or blue) sampling monitor
respectively. The most significant bit (MSB) of the counter
decides the insertion rate for the follower super-sets. The
saturating counter calculates which of the two insertion
rates (i.e. 1 or 1

32 ) will reduce the DRAM LLC miss rate.
Similar to [13], [24], our DRAM bypass policy is based on the
tenet of selecting low insertion rate (e.g. 1

32 ) for streaming
applications and a high insertion rate (e.g. 1) for cache-
friendly applications. However, in contrast to the previous
policies, this paper proposes DRAM bypassing at the super-
segment level instead of the block level. Note that a super-
segment comprises 16 (i.e. K = 4 and T = 4) spatial
adjacent blocks (i.e. b0 to b15) and it is mapped to one of
the super-sets (see Fig. 7).

The following example is considered to illustrate our
proposed bypass, tag-cache fill and DAT fill policies. As-
sume that a block bk (0 < k < 15) from a particular
super-segment SSi is currently requested with a miss in
both the tag-cache and the DAT. If any block of the same
super-segment SSi is present in the LLC then the decoupled
cache performs the following. (a) bk is inserted into the LLC
(b) all tag columns belonging to the super-segment SSi

are filled into the tag-cache. However, if all blocks of the
super-segment SSi are absent in the LLC then the bypass
decision depends on the outcome of the DRAM bypass
policy. If the bypass policy decides to bypass the super-
segment SSi, then all future accesses to other blocks of the
same super-segment SSi are also bypassed. In that case, the
non-cacheable bit in DAT is set for the super-segment SSi.
If the outcome of the bypass policy is to insert the super-
segment SSi, then bk is inserted into the LLC and the T tag
columns are fetched into the tag-cache.

3.5 DRAM Control Flow

Fig. 9 shows the control flow of the decoupled design to
serve an LLC request. For every LLC request, the tag-cache
and the DAT are accessed to identify an LLC hit/miss. A
tag-cache hit precisely identifies an LLC hit/miss and does
not require an in-DRAM tag lookup. If a request hits in the
DAT, i.e. the non-cacheable bit of the super-segment is 1, it
is directly forwarded to the off-chip memory. In this case, in-
DRAM tag lookup is avoided because the requested block
is guaranteed to be absent in the LLC. A miss in both the
tag-cache and the DAT does not provide any clue about the
presence/absence of the block, thus requires an in-DRAM
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Fig. 9. DRAM LLC control flow with DAT and tag-cache

tag lookup to identify an LLC hit/miss. This needs access to
T = 4 tag columns of the tag region.

Managing bypassed blocks: To illustrate the signifi-
cance of the DAT in our architecture, let us consider a
sequence of 9 block accesses b7, b3, b4, b6, b8, b0, b12, b14,
b15 belonging to the super-segment SSi. It is assumed that
SSi currently misses the DAT, the tag-cache and the LLC. It
is further assumed that the DRAM bypass policy decides
to bypass SSi. For the existing LLC bypass policy [13],
the above sequence incurs nine in-DRAM tag lookups. In
contrast, our DRAM bypass policy requires a single in-
DRAM tag lookp as explained below. The outcome of the
DAT is a miss after accessing block b7. Since the bypass
policy decides to bypass SSi, block b7 bypasses the LLC.
The non-cacheable bit of SSi is set in the DAT because all
blocks of the SSi are currently absent in the LLC. For all
subsequent accesses to other blocks of the SSi (i.e. b3, b4,
b6, b8, b0, b12, b14, b15), the DAT precisely determines an
LLC miss without incurring any in-DRAM tag lookup. In
this case, the request is directly forwarded to the off-chip
memory.

Managing non-bypassed blocks: To illustrate the bene-
fits of the tag-cache in our proposal, it is assumed that the
blocks b6, b8, b12, b14, and b15 of the above sequence are
currently present in the LLC with a miss in both the DAT
and the tag-cache. In this scenario, an access to the block b7
of the super-segment SSi results in an LLC miss. However,
some blocks of the super-segment SSi are currently present
in the LLC which are identified by the 4 tag columns of
the tag region. The decoupled cache first performs an in-
DRAM tag lookup to identify hit/miss for the block b7.
Subsequently, all the tag columns are filled in the tag-cache
in burst mode. The remaining eight blocks (i.e. b3, b4, b6,
b8, b0, b12, b14, b15) then hit in the tag-cache, thus avoiding
in-DRAM tag lookups.

Our proposal provides quick identification of the LLC
hit/miss because:

• Cache-friendly applications significantly benefit from
high tag-cache hit rate due to reduced number of tag
region accesses.

• The DAT provides fast LLC miss detection for majority
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of accesses from streaming applications avoiding access
to both the tag region and the data region.

• The MAP-I predictor quickly forwards read requests to
the off-chip memory if it predicts an LLC miss.

3.5.1 Parallel tag-data access
Following the tag-cache and the DAT miss, the relevant
rows of the tag and data regions are accessed in parallel;
this happens only if the DRAM bypass policy decides to
insert the requested block in the LLC or the MAP-I predicts
an LLC hit. However, if the DRAM bypass policy decides
to bypass the requested block, then only the relevant row of
the tag region is accessed.

Let us consider the worst case scenario where the rel-
evant rows of both the tag and the data region are absent
in the row buffers. It is assumed that the requested block
is present in the LLC and its tag information is stored in
one of the tag column residing in the relevant row of the
tag region. Existing associative LLC designs read the tag
column and the cache line in a sequential fashion as shown
in Fig. 10(b). On the contrary, the decoupled design accesses
the relevant rows of the tag and the data regions in parallel
and overlaps their latencies as depicted in Fig. 10(c).

3.5.2 Selective in-DRAM-tag-comparison
State-of-the-art LLCs always perform an in-DRAM-tag-
comparison for each requested block (cf. Fig. 10d) which
incurs high latency due to an increased number accesses
to the DRAM banks storing tags [25]. To address this
problem, an in-DRAM-tag-comparison is performed only
after the tag-cache and the DAT miss. The in-DRAM-tag-
comparison needs to be performed on T tag columns (i.e.
T = 4). This comparison is divided into two parts, namely
super-segment tag and block tag comparisons, as depicted
in Fig. 11. As illustrated, the SS-Tag field of the memory
address identifies a particular super-segment and the Block-
Tag field identifies the block within that super-segment. A
super-segment miss implies that all blocks of that super-
segment do not reside in the LLC.

Our decoupled design only requires a single super-
segment tag comparison to update the non-cacheable bit
in the DAT for the bypassed super-segment as illustrated
in Fig. 10(a). Subsequent miss detection of blocks belonging
to the same super-segment will be identified by the low-
latency DAT. Note that there is no need to transfer T tag
columns via in-package channel to update an entry in the
DAT (cf. Fig. 10a). In contrast, these transfers are required to
update an entry in the tag-cache (Fig. 10c). This selective in-
DRAM-tag-comparison significantly reduces contention in
the tag region compared to [25]. Furthermore, the super-
segment miss detection obviates the need for the CAS
command in the tag region which is required to fetch the
tags in the tag-cache.

Similarly, a single in-DRAM-tag-comparison is required
to identify the hit/miss information for the blocks belonging
to a non-bypassed super-segment. It is worth to mention
that the tag-cache fill (tag region) is performed concurrently
with the cache line access (data region). As highlighted in
Fig. 10(c), the CAS (column access latency) of the tag and
data regions are overlapped.

3.6 Overhead Analysis

The tag-cache stores the tag information of the recently ac-
cessed super-sets. Every super-set comprises T tag columns
where every tag column is 48 bytes (6 × 8 = 48 bytes) for
an 8-way associative DRAM LLC, assuming 6 bytes for the
LLC tag (see Fig. 5). For T = 4, the storage requirement of
a single entry in the tag-cache is 196 bytes which comprises
(a) 192 bytes for storing four tag columns ( 48×4 = 192 ) (b)
22 bits for the super-segment tag (c) one valid bit to indicate
whether the super-segment is valid or not (d) one dirty bit to
indicate whether the tag columns need to be updated in the
tag region or not. A 4-way associative tag-cache is employed
with 64 sets. Therefore, the total storage requirement of the
tag-cache amounts to 49 KB (196 bytes/way × 4 ways/set
× 64 sets).

The DAT stores the absence information of the recently
bypassed super-segments. Every DAT entry needs 22 bits
for the super-segment tag, one bit each for the valid and
non-cacheable fields. Therefore, the size of each DAT entry
is 4 bytes. We employ a 4-way associative DAT with 64 sets.
Thus, the DAT requires a trivial additional overhead of 1 KB
(4 bytes/way × 4 ways/set × 64 sets = 1 KB) which is neg-
ligible compared to the storage overhead of the tag-cache. It
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TABLE 2
Comparisons of configuration parameters for the tag and data regions

employing 512 MB DRAM LLC

Parameters Tag Region Data Region
# banks 8 32
# Rows in a bank 4096 4096
# Mats in a bank 128 128
Mat Size 512 x 768 cells 1024 x 1024 cells
Row size 1536 Bytes 4096 Bytes
Total size 48 MB 512 MB
Total area 26.6 mm2 107.5 mm2

tRAS -tRCD-
tRP -tCAS -tWR

17 − 4.25 −
4.25 − 4.25 −
4.25− 4.25(ns)

24 − 6 − 6 − 6 −
6(ns)

TABLE 3
System Parameters Details

Core 3.2 GHz
Shared SRAM 8 MB, 8-way associativity, 5 nsec latency
Shared DRAM
LLC

4 channels, 4 KB row buffer, 512 MB, 32 banks,
128-bit channel width, 1.6 GHz bus frequency and
tRAS -tRCD-tRP -tCAS -tWR = 24 − 6 − 6 − 6 −
6(ns)

tag-cache 49 KB, 0.625 nsec latency [14], [16], [17]
Miss Predic-
tor

Map-I [12], 256 entries

Main Memory
(DRAM)

2 channels, 16 KB row buffer, 64-bit channel
width, 800 MHz bus frequency and tRAS -tRCD-
tRP -tCAS -tWR = 36− 9− 9− 9− 9(ns)

is pertinent to mention that the only additional overhead of
the decoupled cache is the DAT overhead (1 KB) because tag-
cache is already employed in state-of-the-art approaches.
The area overhead analysis is provided in Section 4.7.

4 EVALUATION

This section presents a comprehensive evaluation of the
decoupled cache by comparing it with state-of-the-art asso-
ciative [20], [25], [31] and direct-mapped [12] designs.

4.1 Experimental Setup
Table 3 presents the details of the system and memory pa-
rameters used in our evaluations. We use DRAMSpec [32] to
estimate the area and latency values of the tag and the data
regions. These values are presented in Table 2 and Table 3
respectively. The cycle-accurate NVMain simulator [33] is
extended to model our decoupled cache design [34]. Further,
the simulator trace-reader is modified to support multi-
program workloads. All experiments are performed by for-
warding transactions to the simulator from eight different
trace files which mimics an 8-core system. All simulations
are carried out in two switchable modes, namely non-
timing and timing mode. In the non-timing mode, 3 billion
instructions are simulated from each application to warm-
up shared-SRAM and shared-DRAM caches. Subsequently,
timing simulation is performed for 600 million instructions
per application to gather performance statistics.

In particular, the following evaluated configurations are
analyzed in detail:

1) DFC-INCLUSIVE: The recently proposed inclusive
cache hierarchy that fuses the tags of shared DRAM
cache with the tags of shared SRAM cache [31]. This
configuration benefits from the large cache line size.

TABLE 4
SPEC2006 Workloads—LLC intensive application (shared-SRAM

MPKI > 12) are highlighted in bold

Mix1 zeusmp, bzip2(2), cactusADM, sphinx3, xalancmbk, wrf,
GemsFDTD

Mix2 soplex, wrf(2), sphinx3, libquantum, bzip2, leslie3d(2)
Mix3 bzip2, cactusADM(2), mcf, xalancmbk, milc(2),

GemsFDTD
Mix4 Zeusmp, xalancmbk, sphinx3(2), milc, leslied3d,

bwaves(2)
Mix5 GemsFDTD, leslie3d, omnetpp, xalancmbk, bzip2, lbm,

libquantum, mcf
Mix6 cactusADM, Zeusmp, mcf, soplex, lbm(2), milc,

sphinx3
Mix7 omnetpp(2), bwaves, milc(2), gcc, zeusmp, wrf
Mix8 soplex(2), libquantum(2), lbm(2), mcf(2)

A 256-byte cache line is considered as it outperforms
configurations with other cache line sizes. A decoupled
tag-data design is assumed for this configuration with
8-way associativity.

2) BEAR: Direct-mapped cache (Section 2.3) with bypass
support as in [24] .

3) BASE-T$: Baseline LLC [20] as described in Section 2.2
with block-based bypass support as in [24]. We use a
segment size of 64 bytes (i.e. K = 1) and prefetch 4 tag
columns in the tag-cache [14], [16].

4) IDTC-A8: Existing 8-way LLC with K = 1 and by-
pass support as in [24]. This configuration always
performs in-DRAM-tag-comparison in the tag region
similar to [25]. A decoupled tag-data design is assumed
for this configuration.

5) DEC-A8: Our 8-way associative decoupled cache as de-
scribed in Section 3.1 with T = 4 and K = 4 (Sec-
tion 3.3), super-segment level bypassing (Section 3.4),
selective in-DRAM-tag-comparison (Section 3.5), and
tag-cache/DAT (Section 3.2) support.

For all listed configurations, the following assumptions are
made:

• The size of the DRAM LLC is 512 MB and the row
buffer size is 4 KB. The DRAM configuration param-
eters are presented in Table 2.

• The MAP-I predictor [12] is used to quickly predict an
LLC hit/miss.

• First ready first come first serve (FR-FCFS) schedul-
ing [35] is employed while request starvation is avoided
with a set threshold.

4.2 Application Classification

We use SPEC2006 benchmarks traces from [36]. The applica-
tions are classified into two categories namely LLC intensive
and LLC non-intensive based on the shared-SRAM misses
per thousand instructions (MPKI). The aforementioned con-
figurations are evaluated by executing 8 workloads from
the SPEC2006 benchmarks [37]. The workloads are con-
structed such that they represent a mix of LLC intensive
and non-intensive applications to ensure a comprehensive
evaluation. The details of the evaluated workloads are given
in Table 4 where the LLC intensive applications (having
shared-SRAM MPKI > 12) are highlighted in bold.



IEEE TRANSACTION ON COMPUTERS, VOL. XX, NO. X, OCT 2020 9

TABLE 5
Comparisons of different configurations in terms of associativity (A),

segment size (K), number of tag columns in a row (Trow), and number
of spatial adjacent blocks mapped to the same row

(Num SAB Row). Row size is assumed to be 4 KB.

Configuration A K Trow Num SAB Row
(K × Trow)

DFC-INCLUSIVE 8 4 2 8
BEAR & TIMBER &
ACCORD (Fig. 2)

1 1 56 56

BASE-T$ (Fig. 1) 7 1 8 8
IDTC-A8$ 8 1 8 8
DEC-A8 (Fig. 5) 8 4 8 32
SectorCache (Fig. 3) 8 1 1 8

4.3 Discussion
The system performance is highly influenced by LLC miss
rate (lower is better) and LLC read hit latency (lower is
better). However, these metrics are affected in a conflicting
manner by two DRAM LLC parameters: associativity and
Num SAB Row. The Num SAB Row is defined as the
number of spatial adjacent blocks that are mapped to the
same DRAM row. Increasing the value of Num SAB Row
reduces the LLC read hit latency by improving the LLC
row buffer hit rate (higher is better) and the tag-cache hit
rate (higher is better). A high row buffer hit rate implies
that most of the LLC accesses will be directly accessed
from the row buffer, thereby avoiding the costly DRAM
array accesses. Likewise, a high tag-cache/DAT hit rate
indicates that most tag lookups will not require any ac-
cess to the DRAM LLC and will be serviced directly by
the tag-cache/DAT. A higher Num SAB Row exploits the
spatial locality by placing many consecutive spatial adja-
cent blocks to the same row buffer. However, increasing
Num SAB Row exacerbates the LLC miss rate due to
an increased within-row contention among spatial adja-
cent blocks. Table 5 shows the values of associativity and
Num SAB Row for all evaluated configurations.

4.4 Evaluation of DEC-A8
The evaluation results show that our architecture does im-
prove LLC miss rate and LLC read hit latency at the same
time. This improvement comes from high associativity (i.e.
A = 8), reduced cache contention, high tag-cache and row
buffer hit rates, parallel tag-data accesses, and selective in-
DRAM-tag-comparison. A detailed qualitative and quanti-
tative comparison with different configurations is presented
in the following.

4.4.1 Comparison with DFC-INCLUSIVE [31]
This section analyzes the impact of segment mapping, small
cache line size and LLC bypassing by comparing our DEC-
A8 and DFC-INCLUSIVE (without bypass support and us-
ing larger cache line size) configurations. On average, DEC-
A8 outperforms DFC-INCLUSIVE by 6.1% as depicted in
Fig. 12 due to the following reasons.

Impact of segment mapping: For the same 8-way
associativity, the Num SAB Row parameter for DFC-
INCLUSIVE is 8 while that of DEC-A8 is 32 (cf. Table 5).
As a result, our DEC-A8 experiences a higher row buffer hit
rate (41%) compared to DFC-INCLUSIVE (32.1%) as shown
in Fig. 15.

Impact of the cache line size: A larger cache line size
exploits the spatial locality by fetching multiple blocks at
once while only one block is requested. The use of a larger
cache line size (i.e. 256 bytes) in DFC-INCLUSIVE reduces
the LLC miss rate from 20.5% to 12.5% compared our DEC-
A8 (cache line size is 64-bytes). However, this miss rate
reduction comes at the cost of 17.1% increase in the off-
package latency (cf. Fig. 15) because multiple 64-byte blocks
must be transferred through a limited size memory channel.
This exacerbation in the off-package latency is primarily
caused by long queuing delay due to tansferring large data
through limited off-package bandwidth.

Impact of LLC bypassing: Another drawback of DFC-
INCLUSIVE is that it always fetches and inserts 256-byte
data into the LLC. This leads to inefficient bandwidth (both
in-package and off-package) and LLC storage utilization
for applications with low spatial locality. This deterioration
occurs because many pre-fetched dead blocks are not reused
later. In contrast, DEC-A8 bypasses the LLC for majority of
dead blocks that effectively utilize in-package bandwidth.

By using smaller cache line size and avoiding useless
prefetches, our DEC-A8 reduces the off-package latency by
17.1% via reduced bandwidth pressure. The LLC read hit
latency is reduced by 12.3% that is achieved via a higher row
buffer hit rate and LLC bypassing. The performance benefits
of DEC-A8 is not uniform across all workloads. For instance,
DFC-INCLUSIVE exhibits similar performance to DEC-A8
for Mix1 with reduced miss rate (cf. Fig. 13). This workload
under-utilizes in-package and off-package bandwidth due
to a lower miss rate and favours a large cache line size.
However, DFC-INCLUSIVE performs significantly worst
(i.e., Mix5 to Mix8) when the miss rate is higher due to
majority of dead block insertions which exacerbates both
in-package and off-package contention.

4.4.2 Comparison with BASE-T$ [20], [24]
This section compares two associative bypass-
supported configurations. These include our DEC-A8
(Num SAB Row = 32 and A = 8) and BASE-T$
(Num SAB Row = 8 and A = 7) configurations.
As mentioned before, increasing the Num SAB Row
parameter increases the LLC row buffer hit rate and tag-
cache hit rate. The average row buffer and tag-cache hit rates
of our DEC-A8 (i.e. 41% and 71.9% respectively) are higher
than that of the BASE-T$ (i.e. 28.6% and 41.2% respectively)
as demonstrated in Fig. 15 and Fig. 14 respectively. On
the downside, increasing the Num SAB Row parameter
increases the LLC miss rate due to increased within-row
contention. However, DEC-A8 alleviates this within-row
contention via high associativity (i.e. A = 8) compared to
BASE-T$ (i.e. A = 7) as depicted in Table 5. Therefore, our
DEC-A8 notices almost similar LLC miss rate compared to
BASE-T$.

As depicted in Fig. 12, our DEC-A8 outperforms BASE-
T$ by 11.6% due to significant reduction in the LLC read hit
latency (i.e. 27.2%). Following are the six major reasons for
this latency reduction. First, most tag lookups are satisfied
in the low latency tag-cache due to a high tag-cache hit rate.
The tag-cache hit rate is improved by using a larger seg-
ment size. In addition, the bypass supported decoupled cache
design directs requests from streaming applications to the
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DAT. Consequently, this reduces pressure on the tag-cache
and further improves its hit rate. Second, due to the higher
row buffer hit rate of our DEC-A8, more LLC accesses hit
in the row buffer. Third, our DEC-A8 grants parallel access
to both the tag and data regions which mitigates the tag
serialization latency compared to BASE-T$ (cf. Fig. 10c).

Fourth, bypassing requests in BASE-T$ require tag
lookups in the high latency combined tag-data region. In
contrast, these tag looks are serviced by the latency op-
timized tag region in our DEC-A8. Fifth, the selective in-
DRAM-tag-comparison requires minimal in-package band-
width to update an entry in the DAT (cf. Fig. 10a). In
contrast, BASE-T$ requires many cycles to transfer T tag
blocks in addition to column access latency (Fig. 10b). This
additional latency overhead is required to update an entry
in the tag-cache. Finally, our DEC-A8 saves tWR latency
for the data region in the scenario when the corresponding
row buffer of the data region is not modified. In contrast,
BASE-T$ incurs tWR penalty upon every row buffer eviction
because the tags and data are stored in the same LLC
row. The modified tag information needs to be updated
in the DRAM array upon every row buffer eviction which
obligates the extra tWR latency even if cache lines are not
modified.
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Fig. 15. LLC row buffer hit rate, hit latency and off-package read latency.
All results are averaged across all workloads

4.4.3 Comparison with IDTC-A8 [25]
This section quantitatively and qualitatively analyzes the
performance impact of selective in-DRAM-tag-comparion
along with tag-cache/DAT support. In contrast to our DEC-
A8, IDTC-A8 [25] employs a smaller segment size (i.e.,
K = 1) without a tag-cache/DAT support. Compared to
IDTC-A8, the performance improvement of our DEC-A8
translates to 7.5% due to following three reasons. First,
IDTC-A8 suffers from increased contention in the tag region
as it always necessitates in-DRAM-tag-comparison for all
requested blocks of a particular super-segment. This implies
that the number of in-DRAM-tag-comparisons is equal to
the number of block requests from the same super-segment.
In contrast, our DEC-A8 only requires a single in-DRAM-
tag-comparison. Second, the subsequent tag comparison of
the remaining requested blocks of the same super-segment
will be carried out in the low-latency tag-cache or DAT.
This further reduces the contention in the tag region. Finally,
our DEC-A8 provides higher row buffer rates compared to
IDTC-A8 due a high value of Num SAB Row parameter.

4.5 Design Space Exploration

This section provides a detailed design space exploration,
of the decoupled cache, by varying the segment and super-
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TABLE 6
Impact of the segment size on parameter Num SAB Row

Segment Size (K) Num SAB Row = K × Trow

1 8
2 16
4 32
8 64

0%

30%

60%

90%

Row buffer
hit rate

Tag-Cache/DAT
hit rate

LLC miss rate Read hit
latency

(normalized)

HM-IPC
(normalized)

Av
er

ag
e

K=1 K=2 K=4 K=8

1.
00

1.
02

5
1.

03
5

1.
03

0

Fig. 16. Impact of the varying segment sizes on various performance
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segment sizes and observing their impact on various metrics
and parameters. For the rest of this section, the LLC row
buffer hit rate refers to the row buffer hit rate of the data
region.

4.5.1 Varying the segment size

Fig. 16 highlights the impact of the segment size on the LLC
row buffer hit rate, tag-cache/DAT hit rate, LLC miss rate,
LLC read hit latency and the overall LLC performance. For
brevity, the segment size is varied from 64 (i.e. K = 1) to
512 bytes (i.e. K = 8) while T is fixed. It is assumed that the
super-segment consists of T = 4 spatially adjacent segments.
It is observed that varying the segment size directly influ-
ences the row buffer/tag-cache hit rate because it affects the
Num SAB Row parameter, as shown in Table 6.

As depicted in Fig. 16, increasing the segment size
(K) proportionately increases the row buffer and the tag-
cache/DAT hit rates. As a result, the average LLC read hit
latency is reduced (cf. Fig. 16). On the downside, a larger
value of K negatively effects the LLC miss rate (Fig. 16).
Increasing K from 1 to 8 increases the miss rate from 18.2%
to 23.1%. We can see that configuration with K = 1 is opti-
mized for LLC miss rate at the cost of considerably increased
LLC read hit latency. Likewise, K = 8 is optimized for LLC
read hit latency at the expense of worsened LLC miss rate.
Our evaluation results show that K = 4 strikes a good
balance between LLC read hit latency and miss rate and
provide better results. Compared to the miss rate optimized
K = 1, it incurs a mild increase (from 18.2% to 20.5%) in the
LLC miss rate but achieves a significant 12% reduction in
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Fig. 17. Impact of the varying super-segment size on various perfor-
mance metrics (K = 4)

the LLC read hit latency. Compared to the latency optimized
K = 8, it incurs 6.5% increase in the LLC read hit latency
but achieves a noticeable reduction in LLC miss rate (i.e.
from 23.1% to 20.5%).

4.5.2 Varying the super-segment size
This section presents the impact of varying the super-
segment size on various performance metrics and overall
performance. For all experiments, a 256 bytes segment size
(i.e. K = 4) is assumed and the super-segment size is varied
from 256 (i.e. T = 1) to 2048 bytes (i.e. T = 8).

The evaluation results presented in Fig. 17 show that
increasing the super-segment size (i.e. T ) increases the tag-
cache/DAT hit rate. This is due to the fact that more tag
columns are fetched after the tag-cache miss (Section 3.1.1).
As a result, the number of in-DRAM-tag-comparisons are
reduced for a larger T via a high tag-cache hit rate. How-
ever, a larger T implies fetching more tag columns after a
tag-cache miss which may inflate the LLC read hit latency
via increased bus latency. Thus, there is a trade-off between
the number of in-DRAM-tag-comparisons (reduces with in-
creasing T ) and the number of tag column fetches (increases
with increasing T ) after a tag-cache miss. While T = 1
design reduces the number of tag columns fetches compared
to T = 8, it exacerbates the tag-cache/DAT hit rate. The
T = 8 design significantly improves the tag-cache/DAT hit
rate but worsens the average LLC read hit latency due to
8 tag columns fetches. Simulation results reveal that T = 4
design rescinds the increased tag column fetch effect via
higher tag-cache/DAT hit rate and yields better LLC read
hit latency.
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Fig. 18. Impact of individual contribution on performance. IDTC repre-
sents the decoupled tag-data configuration with selective in-DRAM-tag
comparison for T=4.

4.6 Overall performance
Fig. 18 shows that how each individual policy contributes
towards the performance improvement of our DEC-A8
configuration compared to BASE-T$. The decoupled tag-
data design achieves 6% performance speedup compared
to BASE-T$ via parallel access, selective in-DRAM-tag-
comparison, and latency-optimized tag region. Applying
intelligent segment mapping (i.e. setting K to 4) adds an-
other 3.5% performance speedup which is achieved via an
improved row buffer and tag-cache hit rates without signifi-
cantly degrading LLC miss rate. Using our DAT provides
2.1% further speedup via reduced in-package bandwidth
usage and a higher tag-cache/DAT hit rate.

4.7 Iso-area comparison
Recall from Section 4.4.2 that our 8-way associative DEC-
A8 (48 MB tag region and 512 MB data region) outperforms
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TABLE 7
Comparisons of configuration parameters for the tag and data regions

employing 384 MB DRAM LLC

Parameters Tag-Region-ISO Data-Region-
ISO

# banks 8 32
# Rows in a bank 4096 4096
# Mats in a bank 128 128
Mat Size 512 x 576 1024 x 768
Row size 1152 Bytes 3072 Bytes
Total size 36 MB 384 MB
Total area 20.9 mm2 84.7 mm2

tRAS -tRCD-
tRP -tCAS -tWR

16 − 4 − 4 − 4 −
4− 4(ns)

22 − 5.5 − 5.5 −
5.5− 5.5(ns)
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Fig. 19. Performance comparison of the iso-area decoupled cache
(DEC-A6-ISO) with DEC-A8 and BASE-T$

7-way associative BASE-T$ (512 MB storing tags and data
in the same region) by 11.6%. However, this performance
improvement comes at the expense of 24.7% area increase
(see Fig. 19). This additional area is required for the 48 MB
tag region (cf. Table 2). To stay within the same area budget,
we evaluate an iso-area decoupled design namely DEC-A6-
ISO (K = 4 and T = 4). Our 6-way associative DEC-A6-ISO
employs a 384 MB data region and a 36 MB tag region. Due
to lower associativity and higher K , the DRAM LLC miss
rate jumps from 21% (in BASE-T$) to 26% (in our DEC-A6-
ISO). However, this miss rate increase is compensated by a
significant 33.5% reduction in the LLC read hit latency (see
Fig. 19). The reason of the LLC read hit latency improvement
in our decoupled design compared to BASE-T$ is already
discussed in Section 4.4.2. Compared to our larger-area
DEC-A8, our DEC-A6-ISO degrades the performance by
4.3% due to increase in the LLC miss rate. Please note that
the latency parameters of both the tag and data regions of
DEC-A6-ISO (Table 7) are reduced compared to the larger
area DEC-A8 (Table 2).

4.8 Iso-area comparison with state-of-the-art

This section provides a detailed comparison of DEC-A6-ISO
with the following related works:

1) SectorCache: An 8-way sector cache [22] with 512
bytes sector and 64 byte block (Section 2.4 and Fig. 3)
equipped with a tag-cache. A single entry of the tag-
cache stores the tags of recently accessed 8 sectors.

2) TIMBER: A direct-mapped TIMBER design [15]
equipped with a tag-cache (Section 2.3 and Fig. 2b). For
this design, it is assumed that 4 tag columns (i.e. T = 4
and 28 tags) are fetched to update a tag-cache entry
following a tag-cache miss.

3) ACCORD-A4: The recent ACCORD design [23] with
4-way associativity.

All of the aforementioned configurations implement LLC
bypassing. Fig. 20 shows that DEC-A6-ISO outperforms Sec-
torCache, TIMBER, and ACCORD by 11%, 7.5%, and 4.7%
respectively. Our DEC-A6-ISO provides the following two
latency optimizations which are lacking in these designs.
First, Compared to them, our DEC-A6-ISO does not incur
tWR latency for the data region in the scenario when the
victim row buffer of the data region is not modified. Sec-
ond, our design provides support for selective in-DRAM-
tag-comparison and parallel tag-data accesses. In addition,
DEC-A6-ISO outperforms all designs in terms of miss rate
as explained in the following.

The main advantage of DEC-A6-ISO compared to TIM-
BER is that it reduces the LLC miss rate from 33% to 26%
due to high associativity (Fig. 20). Each 4 tag column in
TIMBER stores the tags of 28 spatial adjacent direct-mapped
sets. Therefore, a tag-cache entry in TIMBER provides the
hit/miss information of 28 spatial adjacent direct-mapped
sets. The TIMBER maps 56 consecutive memory blocks to
the same DRAM row (i.e. Num SAB Row = 56; Table 5)
which provides significantly high tag-cache hit rate (i.e.
78%) compared to DEC-A6-ISO (70%; Num SAB Row =
32) as shown in Fig. 14. For the same reason, the row buffer
hit rate of TIMBER is also high compared to DEC-A6-ISO
(Fig. 20). The latency benefits of a high row buffer and tag-
cache hit rate is largely compensated by aforementioned
latency optimizations. Therefore, the latency of TIMBER
is slightly better compared to DEC-A6-ISO as depicted in
Fig. 20.

The row organization of ACCORD [23] is similar to
BEAR (Fig. 2a) with the exception that ACCORD imple-
ments an A-way associativity by combining A TAD en-
tries to constitute a cache set. Note that a tag-cache is not
employed for ACCORD-A4 because updating an entry in
the tag-cache will require 28 column fetches. ACCORD-
A4 steers a cache line to at-most 2-ways to reduce the
miss cost of a tag lookup in a 4-way LLC. In addition,
ACCORD-A4 applies an intelligent way prediction among
2-ways to reduce the number of tag lookups in case of
an LLC hit. ACCORD-A4 outperforms BEAR in terms of
miss rate at the cost of slight increase in the hit latency.
However, restricting cache lines to 2-ways in ACCORD-A4
causes more conflict misses compared to our DEC-A6-ISO
(cf. Fig. 20). In addition, ACCORD-A4 always requires a
tag lookup for each LLC-bypassed block in the combined
tag-data region. In contrast, for a tag-cache or DAT hit,
our DEC-A6-ISO does not require any access to either the
tag or the data regions for the LLC-bypassed block. These
factors along with the aforementioned latency optimizations
provide a latency reduction of 5.9% compared to ACCORD-
A4.

The SectorCache employs a large sector size (i.e., 512
bytes) to reduce the overhead of the tag storage and to im-
prove the tag-cache hit rate. A segment size of 512 bytes (i.e.,
K = 8) and a single tag column per row (i.e., Trow) implies
that Num SAB Row = K x Trow = 8 for SectorCache. In
addition to latency optimizations described above, DEC-A6-
ISO also experiences a high row buffer hit rate (cf. Fig. 20)
and tag-cache hit rate (cf. Fig. 14) compared to SectorCache.
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This is due to a high value Num SAB Row parameter for
DEC-A6-ISO (cf. Table 5). As a result, DEC-A6-ISO reduces
the latency by 25% compared to SectorCache (cf. Fig. 20).
Another disadvantage of the sector cache organization is
that it suffers from inefficient resource allocation due to
internal fragmentation. This is because it reserves the space
for the entire sector, while some of the blocks belonging to
a sector may not be referenced before the sector gets evicted
from the LLC. Therefore, SectorCache in Fig. 3 incurs a
higher DRAM cache miss rate (cf. Fig. 20) compared to DEC-
A6-ISO. The simultaneous improvement in LLC read hit
latency and miss rate results in performance improvement
of 11% compared to SectorCache as shown in Fig. 20.

4.9 Impact of latency assumptions
We further evaluate the aforementioned DRAM designs
under the following latency assumptions:

1) Iso-latency: The latency of on-chip DRAM cache is
similar to that of off-chip memory as assumed in [12],
[13].

2) Medium-latency: The off-chip memory is assumed to
be 1.5x slower compared to on-chip DRAM cache as
depicted in Table 3.

3) High-latency: The off-chip memory is 4x slower com-
pared to on-chip DRAM cache as assumed in [23].

In all cases, the bandwidth of on-chip DRAM is assumed
to be 8x higher than that of off-chip memory. Previous
results (cf. Figs 12 to 20) correspond to the medium-latency
scenario. Fig. 21 shows the performance of all designs
under different latency assumptions. As shown, under the
Iso-latency assumption, the performance improvement of
DEC-A6-ISO is less prominent compared to TIMBER and
ACCORD-A4 because the applications benefit more from
lower LLC read hit latency and are not affected severely
by LLC miss rate. Therefore, the miss rate improvement of
DEC-A6-ISO has less impact on the overall performance.

In contrast, under the High-latency assumption, DEC-A6-
ISO shows greater speedup because ACCORD and, in par-
ticular, TIMBER access high-latency off-chip memory more
frequently. In this scenario, the performance of applications
severely depends on the LLC miss rate. DEC-A6-ISO out-
performs all designs under all latency assumptions since it
provides simultaneous reduction in the read hit latency and
LLC miss rate.

5 CONCLUSIONS

This paper presents a tag-data decoupled cache design that not
only optimizes LLC read hit latency compared to contempo-
rary associative designs but also ensures the LLC miss rate
benefits of associativity compared to existing direct-mapped
designs. The proposed decoupled design diminishes the
LLC read hit latency using a combination of techniques.
First, it enables concurrent access to the tag and data re-
gions, hence reduces the tag serialization latency. Second, it
directs bypass accesses to the latency optimized tag region
which obviates access to the high latency data region. Third,
it provides improved row buffer and tag-cache/DAT hit
rates which is achieved by judicious selection of the segment
and super-segment sizes. Fourth, the selective in-DRAM-
tag-comparison reduces contention in the tag region. Fi-
nally, the DRAM bypass policy reduces LLC contention
by reducing the number of dead line fills. We evaluate
our decoupled design for various SPEC2006 benchmarks
and compare the results with state-of-the-art approaches.
We show that our iso-area decoupled cache design improves
the average performance by 11.7% and 7.2% respectively
compared to existing associative and direct-mapped DRAM
LLC designs.
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