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Abstract
Modern edge and mobile devices are equipped with powerful

computing resources. These are often organized as heterogeneous
multicores, featuring performance-asymmetric core clusters. This
raises the question on how to effectively execute the inference pass
of convolutional neural networks (CNN) on such devices. Existing
CNN implementations on edge devices leverage offline profiling
data to determine a better schedule for CNN applications. This
approach requires a time consuming phase of generating a perfor-
mance profile for each type of representative kernel on various core
configurations available on the device, coupled with a search space
exploration. We propose an online tuning technique which uti-
lizes compile time hints and online profiling data to generate high
throughput CNN pipelines. We explore core heterogeneity and com-
patible core-layer configurations through an online guided search.
Unlike exhaustive search, we adopt an evolutionary approach with
a guided starting point in order to find the solution. We show that
by pruning and navigating through the complex search space using
compile time hints, 79% of the tested configurations turn out to be
near-optimal candidates for a throughput maximizing pipeline on
NVIDIA Jetson TX2 platform.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Machine learning.
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1 Introduction
Over the last decade, convolutional neural networks (CNN) have

gained attention in many practical applications, such as image clas-
sification [1, 2] or natural language processing [3], among others.
The training of neural networks is usually performed in the cloud
while inference, which is a single forward pass of a neural net-
work, is now often being executed on edge and mobile devices
[4]. This is because offloading inference to the cloud often leads
to unpredictable delays that are not acceptable for time-stringent
IoT/mobile applications. Bringing streaming data analytics closer
to the source of data not only reduces latency but also eliminates
the communication cost [5, 6].

Modern edge devices are equipped with powerful and energy ef-
ficient compute resources which can be used to run CNNs on the de-
vice. This improves the real time performance of CNN applications
and eliminates risks of communication delays due to poor network
status [7]. Widely used DNN (Deep Neural Networks) frameworks
such as Tensorflow [8], caffe [9], Torch [10], or Theano [11] are
optimized for computing platforms with discrete GPUs coupled
with high performance CPU clusters. Compute intensive kernels
are optimized for GPUs while data preparation and communication
is handled by the cores of the computing platform. On the other
hand, the resource constraints of edge devices such as power, mem-
ory and compute capability are not directly addressed by existing
server-side CNN implementations [12]. The inference performance
on core clusters is comparable to GPUs in edge devices, therefore,
many vendors prefer to use CPU clusters for inference. In fact,
only 11% of Android smartphones contain a GPU which is at least
3x more powerful than the CPU cores [13]. Bringing inference to
edge devices, however, comes with a new set of challenges. For
instance, there is a wide diversity among SoCs for edge devices and
not a single representative SoC architecture can be used to target
for generalized optimizations [13, 14]. Many modern edge devices
feature a combination of heterogeneous execution units packed on
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the same chip, such as cores with different power-performance-
area characteristics but share the same Instruction Set Architecture
(ISA) [15]. Keeping the energy consumption in focus, some cores
are energy efficient but slow, while others are high performance
cores but consume more energy. Two examples are the NVIDIA
Jetson TX2 [16] and the Apple A14 [17]. The TX2 platform contains
a dual-core NVIDIA Denver 2 64-bit CPU and a quad-core ARM
A57 cluster.

The common parallelization strategy in the above mentioned
frameworks is a layer-wise data parallel implementation of CNNs
[18, 19]. Furthermore, certain DNN libraries such as NNPACK [20],
QNNPACK [21] and ARM-CL [22] provide CNN operations tai-
lored for CPUs on edge devices but implement the same execution
model i.e. layer-wise data parallelism. Since CNNs by nature consist
of a sequence of data parallel layers, existing frameworks exploit
the data level parallelism and apply optimizations at the level of
kernel and/or network model, such as loop fusion, vectorization,
compact image and weight representations, channel pruning and
quantization among others [5]. However, running data parallel im-
plementations on heterogeneous compute devices is challenging
as it requires to perform an asymmetric partitioning that depends
on the performance of each core. An alternative option is to run
independent frames on different sets of cores, but this has sev-
eral undesirable features: First, it results in variable latency across
frames and, second, frames complete out of order.

A preferable approach to scale CNN inference on streaming
data is to use model parallelism [23]. Consecutive CNN layers are
grouped into pipeline stages, thus multiple input units can be pro-
cessed at the same time by different pipeline stages, similar to
processing multiple video frames. This approach avoids reordering
and keeps inference latency similar across frames. Furthermore,
it reduces the total amount of weights that need to be loaded by
each core, which makes caches more effective. Frameworks exploit-
ing pipeline parallelism include PipeIt [24], which targets hetero-
geneous core clusters, and graphi [25], which targets many-core
platforms. These frameworks use offline analytical performance
models to build efficient pipeline stages since the problem space
becomes prohibitively complex with increased number of execution
units and number of layers.

There are two limitations to offline solutions based on perfor-
mance prediction models. Firstly, the performance is modeled using
prediction models which only utilize workload and profiled execu-
tion time of representative kernels, as in PipeIt [24] andAUGUR [26].
These models do not take real-time performance degrading factors
into account, such as resource contention that occurs when multi-
ple tasks are scheduled to run in parallel. In fact, this discrepancy is
already reported by PipeIt [24] when comparing the pipeline config-
urations picked by the algorithm based on predicted execution time
versus actual execution time of the CNN layers. Hence, such offline
empirical prediction schemes can lead to choosing sub-optimal
configurations, resulting in performance loss. As platforms become
increasingly heterogeneous and hierarchical (i.e. more cache levels
and NUMA domains), shortcomings of analytical model are only ex-
pected to increase. Secondly, performance sampling and throughput
maximization need to be repeated whenever the platform config-
uration is changed, which requires additional efforts. An online
approach that relies on real-time performance measurements can

potentially eliminate both these limitations. The main challenge of
the online approach is the complex design space. To the best of our
knowledge, there is no online solution that can effectively prune
the design space and quickly converge to a near-optimal solution,
while adapting to the performance asymmetry present at runtime.

In this paper, we introduce an online tuning algorithm that uses
an evolutionary approach for design space exploration. In evolu-
tionary algorithms, the set of initial search configurations can have
a big impact on the quality of the final solution. In our work, we
utilize compile-time hints generated from CNN descriptors to accel-
erate the convergence of the algorithm. Network layer descriptors
are an effective source of information for determining the computa-
tional intensity of each layer. This approach has also been explored
by PipeIt [24], Graphi [25], AUGUR [26] and S. Minakova et al [18].
We leverage this information coupled with online performance pro-
filing to efficiently navigate the complex multidimensional design
space in order to find a near-optimal configuration point. Online
profiling enables the detection of performance issues such as con-
tention due to memory systems and inter-cluster communication
[27]. The goal of this work is to find a near-optimal throughput
maximizing pipeline configuration which defines layer distribu-
tion for pipeline stages and core assignment to each stage. If more
than one execution unit is assigned to a pipeline stage, we utilize
inherent data parallelism of the layers.

To demonstrate our approachwe introduce amulti-layer solution
with language, compiler and runtime support. For programmability,
we develop a simple tensor template language to implement CNNs
which generates compile time hints. The language is akin to many
other tensor languages used in machine learning frameworks. To
enable adaptive pipelines for CNNs, we exploit moldable tasks in
the state-of-the-art XiTAO task-based runtime [28]. In this setup,
the number of processors assigned cannot be changed while the
task is in execution, but it can be changed across tasks.

Our evaluation shows that the use of computational hints in-
creases the chances of finding near optimal solutions. For example,
provided an exhaustive search results with VGG16 CNN on TX2
platform, 79% of the configurations tested by our Pipe-search al-
gorithm are good candidates for a near-optimal case and the config-
uration suggested by Pipe-search is close to the one chosen by the
exhaustive exploration. We observe that Pipe-search converges 70×
faster than exhaustive search and 11× faster than random walk. We
also demonstrate that the solution explored by Pipe-search yields a
balanced pipeline for state of the art CNNs. This paper makes the
following contributions:

• We propose a tuning algorithm which leverages task mold-
ability and online performance measurement to find an opti-
mal configuration for throughput maximizing CNN pipelines
while adapting to performance asymmetries in the underly-
ing computing platform.
• We show how to use seeds to effectively shortcut the explo-
ration in a complex multi-dimensional design space.
• We demonstrate a multi-layer solution, integrating a tensor
template language interface to describe the CNN descriptors
and generate the seeds, and the XiTAO runtime to provide
low-overhead, locality-aware and moldable execution.
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The rest of the paper is organized in the following way: Section
2 discusses the essentials of CNNs and pipeline parallelism required
for establishing CNN pipelines for a heterogeneous computing
platform. Section 3 details the design challenges for CNN pipelines.
Section 4 provides details of the proposed approach along with
the discussion on proposed online tuning algorithm; Pipe-search.
Section 5 provides the implementation details of the framework.
Section 6 presents the evaluation of the proposed scheme. The
related work is discussed in Section 7. The work is concluded in
Section 8.

2 Background
To understand the foundation of CNN pipelines we first elaborate

the computational breakdown of CNNs in Section 2.1, then we
discuss the essentials of modeling CNN pipelines in Section 2.2.

2.1 Convolutional neural networks
The forward pass of CNNs mainly consists of convolutional and

fully-connected layers. The most time-consuming part of CNNs is
comprised of convolutional layers. There are a set of filters called
weights which are learned during the training phase. Weights are
convolved across the height, width and depth of the input tensor.
The main operation is a dot product between the weight tensor
and the local input region, which can be formulated as matrix-
multiplication. The computational complexity of convolutional lay-
ers is given by equation 1. Here, [𝐻,𝑊 ,𝐶] refer to height, width
and depth of the input tensor, respectively, and [𝑅, 𝑆, 𝐾] refer to
height, width and depth of convolutional kernel, respectively.

𝑊𝐶 = 𝐻 ×𝑊 ×𝐶 × 𝑅 × 𝑆 × 𝐾 (1)

Fully connected layers, in turn, appear towards the end of CNN
architectures. Each neuron is connected to all activations of the
previous layer. These layers contain a huge number of parameters
due to full connectivity resulting into dense computations and high
memory usage. Fully connected layers are the second most com-
putationally heavy category of layers in CNNs. The computational
complexity is given by equation 2. Here, 𝐹 refers to the number of
output categories.

𝑊𝑓 𝑐 = 𝐻 ×𝑊 ×𝐶 × 𝐹 (2)

Since there are various algorithms for implementing convolution,
the parameters we selected for representing computational intensity
are generic and have been used also in prior works for modeling
computational intensity [18, 24–26]. The intermediate pooling layer
is for downsampling the spatial size (height and width) of the
forwarded input tensor. There are no learned parameters in the
pooling layer, therefore computations are simple. We use input
tensor dimension as a computational weight for pooling layer.

2.2 Pipeline parallel implementation of CNNs
The computations in CNNs are orchestrated in the form of layers,

where the output of one layer is fed into the following layer. The
task graph of a CNN can be represented as a linear task chain where
the input of a task is the output of the previous task, thus creating
a dependency. CNN inference can be viewed as an application
which processes streaming input data on a persistent, chain-like
task graph. This task DAG can be split into sub-DAGs making a
pipeline stage, where a single node represents a layer.

A pipeline achieves highest efficiency when the execution time
of all pipeline stages is balanced, ie. all stages take almost the same
time to complete. In addition, the end-to-end latency should be
minimized. The latency gap between the pipeline stages is com-
monly referred to as the bubble [29]. The smaller the bubble size,
the higher will be the throughput. The performance of the pipeline
is defined by the slowest stage, also called the bottleneck. In con-
clusion, a high throughput CNN pipeline is the one in which the
bottleneck is smallest possible and the bubble size is also smallest.
Hence, the search goal is to find a layer distribution in a pipeline
such that it minimizes the latency of the bottleneck.

3 Problem Definition
On platforms like NVIDIA Jeston TX2, there are more than one

type of core clusters with different properties in terms of perfor-
mance and efficiency, a feature commonly called core asymme-
try [30]. On such devices, the performance of kernels varies from
one type of core cluster to another. Performance asymmetry can
also arise due to other reasons. For example, the OS power gover-
nor policy impacts DVFS settings, which by itself influences core
performance and can introduce asymmetry even on homogeneous
platforms. Figure 1 shows the execution time of the slowest stage
in a two-stage VGG16 pipeline, when tested with two different
governor settings on an NVIDIA Jetson TX2. The governor settings
are listed in Table 1, the terminology will be used int the rest of
the paper. Ten different configurations have been tested, sorted
by most balanced weight assignment to least balanced. The main
observation is that the best configuration is different depending on
the governor setting. This shows how core performance variations
impact the adding or dropping layers among stages. Hence, com-
putational hints are not enough to determine the optimal pipeline,
but as we will see, they can be used to achieve a balanced state in a
shorter period of time.

Given the CNN layers structure and variable performance of
the underlying computing platform, we can formally define the
problem of finding a near-optimal pipeline configuration. CNN
layers are characterized by the number of computations performed,
we refer to it as the weight associated with layers. The initial idea
is to divide the layers into pipeline stages such that the number of
computations are balanced. Note that the order of layers needs to be
preserved because CNNs have a chain-like dependency task-DAG.
In an ideal scenario, if there was no performance variation among
core clusters, an equal division of layers based on weights would
be the best configuration. However, in practice, due to effects such
as core asymmetry or resource contention, it is practically difficult
to find the best configuration by an analytical method based solely
on computational weights.

4 Framework overview
The proposed approach comprises two parts: 1) A Pre-Processing

to generate seed heuristics and 2) an Online Tuning (using the gen-
erated seeds) followed by pipelining. Figure 2 presents an overview
of both modules. The CNN network is implemented using a tensor
template language, described in Section 4.1 along with details on
designing and launching CNN pipelines as moldable tasks. The next
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Table 1: Governor settings of core clusters in NVIDIA Jetson
TX2 board. "Performance" refers to highest frequency set-
ting, while "Powersave" refers to the lowest frequency set-
ting

Governor Setting A57 Cluster Denver Cluster
1 Performance Performance
2 Performance Powersave
3 Powersave Performance
4 Powersave Powersave

[8,13][9,12][10,11][7,14][11,10][6,15][5,16][12,9][4,17][3,18]
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Figure 1: Execution time of the slowest stagewith top 10 con-
figurations generated based on computational hints, tested
on governor setting 2 and 3. [X,Y] represent X layers as-
signed to pipeline stage 1 and Y layers assigned to pipeline
stage 2.

step consists in generating a search space for the Pipe-search algo-
rithm. Section 4.3 describes how the search space is generated and
the criteria for selecting configurations. The online tuning phase
implements the Pipe-search algorithm which is explained in Section
4.4.

4.1 Tensor programming interface for
Pipe-search

The computational hints adopted by Pipe-search are derived
from network layer descriptors. To facilitate programmability, we
design a simple tensor template language embedded in C++ [31]
that is used to define the CNN layout. This could be added to any
other DNN descriptors based on NNEF or ONNX interoperability
standards. A sample program is shown in Figure 2. The network
descriptors are then analyzed to generate computational hints ac-
cording to Equations 1 and 2. Figure 2 depicts the conversion of a
CNN into a 2-staged pipeline on an arbitrary 4-core cluster. The
interface compiles down to a task DAG, where each layer is con-
verted into a moldable task. Using moldable tasks contributes to
our goals, as the online search for an optimal pipeline configuration
must be able to dynamically map tasks to resources (e.g. cores).

Conv1 = CONV(ip1, op1, W1);
Conv2 = CONV(Conv1, op2, W2);
....
nework.add(Conv1);
network.add(Conv2);
....
network.execute();

Core 0 Core 1 Core 2 Core 3

Layer
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Layer
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Layer m

Layer 1

Layer 2

Layer p

Pipeline stage 1 Pipeline stage 2

Layer  to pipeline assignment and
mapping to execution places

Network description in template
tensor language
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r 1
La

ye
r 2
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ye

r m

Moldable tasks

Network  design expressed in
tensor template language

Extract computational hints and
generate moldable tasks for

network layers

Generate configurations

Find Optimal Pipeline Configuration

Preprocessing

Online Tuning

Figure 2: Left: An overview of the proposed approach, Right:
Implementation of a CNN pipeline using the tensor tem-
plate language, a set of moldable tasks, and two pipeline
stages executing on a 4-core device.

4.2 Problem formalization
We now formally define the problem addressed by the Pipe-

search algorithm. Let 𝐿 be a set containing the weight correspond-
ing to each layer 𝐿 = {𝐿𝑊1, 𝐿𝑊1, .., 𝐿𝑊𝑀−1, 𝐿𝑊𝑀 }, where𝑀 is the
number of layers in the network. Let 𝑃𝑐 be a set defining a possible
pipeline configuration that groups layers into pipeline stages, i.e.
𝑃𝑐 = {𝑃0, 𝑃1, .., 𝑃𝑁 }, 𝑁 ≤ 𝐶 , such that 𝐶 is the number of avail-
able cores/threads in the system and a pipeline stage 𝑃𝑛 represents
number of layers assigned to a stage. Finally, let 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 be the
number of stages in a given 𝑃𝑐 (𝑃𝑆𝑐𝑜𝑢𝑛𝑡 ∈ {2, ..,𝐶}). The objective
of Pipe-search is to find 𝑃𝑐 that maximizes throughput (layers/s) by
minimizing the execution time of the slowest stage within a given
𝑃𝑐 .

4.3 Generation of the initial population
Our hypothesis is that an optimal pipeline configuration 𝑃𝑐 lies

near those with the most balanced weights. However, we do not
know in advance which 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 will yield an optimal configu-
ration. For example, for each possible 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 , we may have an
arrangement that results in nearly equal weights, but this does not
guarantee that all such arrangements will have an optimal solution
(e.g. due to core performance asymmetry). Therefore, we initially
generate all possible configurations for each 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 .
4.3.1 Selecting candidates for Pipe-search: Trying all possible con-
figurations is impractical since the number of search points in-
creases exponentially with the dimensionality of the search space.
Consider a network with 𝑀 layers, the search space consists of the
permutations of all possible 𝑃𝑐 and 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 and𝑀 . This is shown
in equation 4. Since we will not try all configurations during our
online tuning phase, we select a subset that is likely to be near
the optimal point. To validate our hypothesis on the importance
of balancing the weights, we consider the coefficient of variation
(CV) [32] as an indicator of the degree of weight balance. Hence, we
calculate CV of the weights distribution among the pipeline stages,
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given by Eq. 3. Higher CV means higher imbalance of weights
among pipeline stages, which may cause computational imbalance
among the pipeline stages. We order the configurations based by
the CV value. For each 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 , configurations are explored in an
increasing order of CV in Pipe-search. The first configuration in
the sorted list serves as a seed for a given 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 .

𝐶𝑉 =
𝜎 (𝑊 )
𝜇 (𝑊 ) (3)

Where𝑊 is the set of weights calculated for each pipeline stage
for a given 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 and layer distribution, 𝜎 stands for standard
deviation and 𝜇 stands for average.
The pre-processing step is applied once for each CNN architecture
for a specific set of 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 . Algorithm 1 lists the steps of generating
initial population. For each pipeline stage count, a set of layer
distribution is generated using Eq. 4.

𝐿 = {1, 2, 3, ...𝑀}, 𝑃 = {2, 3, ....𝐶}

𝑆𝑐 = ∀𝑝 ∈ 𝑃, 𝐶 (𝐿, 𝑝), if
∑

𝐶 (𝐿, 𝑝) = 𝑀
𝑆 = ∀𝑠 ∈ 𝑆𝑐 , 𝑃 (𝑠, 𝑠𝑚𝑎𝑥 )
where, 𝐶 = Combinations 𝑎𝑛𝑑 𝑃 = Permutations

(4)

4.4 Pipe-search Algorithm
Pipe-search requires three inputs: the sorted configurations (𝑆),

the maximum number of stages (𝐶) and a tunable 𝛼 parameter,
which serves as an upper limit for the number of points to explore
around a particular configuration.

To explain the algorithm we consider the following example.
We want to run a network that consists of 7 layers with a weight
distribution of𝑊 = {1, 4, 8, 4, 8, 8, 4} (normalized to the smallest
value) on a 4-core platform. Possible values for 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 are {2, 3, 4}.
Pipe-search has two phases of exploration. The first phase (Lines 2 -
14) tests at least 𝛼 search points around the seeds for each value
of 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 . The global minimum, which is the configuration that
minimizes the execution time of the slowest stage, is updated and
saved in 𝑆𝑚𝑖𝑛 during exploration. For each 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 value we test
the top 𝛼 configurations from 𝑆 (Lines 3 - 13). If any configuration
results in a better performance than 𝑆𝑚𝑖𝑛 , the global minimum is
updated and the confidence variable 𝛾 is reset (Lines 9 - 10). The
purpose of 𝛼 is to limit the exploration around the found minimum.
Note that 𝑆𝑚𝑖𝑛 is initialized to the seed that yields the best perfor-
mance among all seeds. Although the exploration phase is limited
by 𝛼 , the number of search points per 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 can vary if the global
minimum is updated. After phase one, the algorithm is able to find
the 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 value around which the optimal solution lies. At this
stage, Pipe-search has managed to reduce the dimensionality of the
search space by 1. The second phase (depicted by Lines 16 - 28) ex-
plores the configurations that have the number of stages (𝑃𝑆𝑐𝑜𝑢𝑛𝑡 )
that achieves the best performance during the start-up phase. The
extent of exploration is still controlled by 𝛼 , which is the accepted
limit at which the algorithm ceases to attempt further search points
after a new minimum is found. In the best case, one of the seeds
could be the optimal solution. Hence, the total number of trials is a
function of 𝛼 and the size of 𝐶 (Eq. 5).

𝑡𝑟𝑖𝑎𝑙𝑠 = 𝛼 (𝑃𝑆𝑐𝑜𝑢𝑛𝑡𝑀𝑎𝑥 + 1) (5)

Algorithm 1 Generate Configurations
Require: 𝐿,𝐶
1: for 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 in [2..𝐶] do
2: 𝑝𝑐 ← layer_distributions(𝑃𝑆𝑐𝑜𝑢𝑛𝑡 , 𝐿)
3: for 𝑐 in 𝑝𝑐 do
4: 𝐶𝑉 ← calculate_CV(𝑐)
5: end for
6: (𝑝𝑐 ,𝐶𝑉 ) ← sort(𝐶𝑉 )
7: 𝑆 [𝑝] ← 𝑝𝑐 , add first k samples in Samples, about dimension
8: end for
9: return 𝑆 , initial population

Algorithm 2 Pipe-search
Require: 𝑆,𝐶, 𝛼
1: 𝑆𝑚𝑖𝑛 = 𝑆 [0], seed which yielded minimum execution time for

slowest stage.
2: for 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 in [2..𝐶] do
3: 𝑝 ← 𝑃𝑆𝑐𝑜𝑢𝑛𝑡
4: 𝑐 ← 0
5: while 𝛾 < 𝛼 do
6: 𝑡 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑆 [𝑝] [𝑐]) , execute network using configura-

tion s
7: 𝑇𝑠 ← 𝑚𝑎𝑥 (𝑡) , Time of slowest stage corresponding to

configuration 𝑆 [𝑝] [𝑐]
8: if 𝑇𝑠 > 𝑇𝑠 [𝑆𝑚𝑖𝑛] then
9: 𝛾 + +
10: else
11: 𝑆𝑚𝑖𝑛 ← 𝑆 [𝑝] [𝑐], found a new minimum
12: 𝛾 ← 0
13: end if
14: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑝] ← 𝑐 + +;
15: end while
16: end for
17: 𝑝 ← 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 (𝑆𝑚𝑖𝑛)
18: 𝑐 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑝]
19: 𝛾 ← 0
20: while 𝛾 <𝛼 do
21: 𝑡 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 (𝑆 [𝑝] [𝑐])
22: 𝑇𝑠 ←𝑚𝑎𝑥 (𝑡)
23: if 𝑇𝑠 > 𝑇𝑠 [[𝑆𝑚𝑖𝑛] then
24: 𝛾 + +
25: else
26: 𝑆𝑚𝑖𝑛 ← 𝑆 [𝑝] [𝑐], found a new minimum
27: 𝛾 ← 0
28: end if
29: 𝑐 + +
30: end while
31: return 𝑆𝑚𝑖𝑛

5 Implementation
This section describes how Pipe-search can be implemented on

a task parallel runtime by using the XiTAO runtime [33] as a case
study. We then conclude with a description of the experimental
setup for the evaluation of the proposed scheme.
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Table 2: Description of symbols used in Pipe-search algo-
rithm

Symbols Description
𝐿 Weights per layer, derived from computational

hints.
𝑃𝑆𝑐𝑜𝑢𝑛𝑡 pipeline stage count
𝐶 maximum number of pipeline stages
𝐶𝑉 Co-efficient of variation of weights distribution

of a given pipeline configuration. Calculated by 3
𝑆 A data structure that contains all configuration

sorted by the corresponding CV value.
𝑇𝑠 Execution time of the slowest stage
𝑆𝑚𝑖𝑛 pipeline configuration with least 𝑇𝑠
𝛼 The confidence on found 𝑆𝑚𝑖𝑛 , this parameter is

tunable

5.1 Moldable pipelines using XiTAO
XiTAO [33] is a runtime for executingmixed-mode computations

in which the individual tasks of a task-DAG are themselves parallel
computations. These parallel computations are usually data-parallel,
but any sort of parallel structure is possible. XiTAO supports the
aforementioned task moldability, that is, the ability to assign n
tasks to m resources (n-to-m mapping). Such decision can be made
dynamically. This includes the choice of the task width, which is
the number of resources (e.g. cores or threads) to assign to a certain
task, and the location (place) where to execute the task [28]. Thus,
dynamically selecting the task’s location and width facilitates the
online tuning of pipeline stage configurations. To accomplish this,
each layer is encapsulated into a task. We further define dependen-
cies between XiTAO tasks to create pipeline stages. Hence, a single
pipeline stage consists of a task-DAG, in which all layers(tasks)
share the same location and width. While handling the dependen-
cies across the stages, the runtime executes multiple task-DAGs in
parallel (one DAG per pipeline stage). This enables pipeline par-
allel execution, (Figure 2 also depicts the XiTAO task-DAGS for
two staged pipeline). The task-DAGs are adjusted according to
given pipeline configuration during online tuning phase. Note that
we do not execute layers in pipeline fashion during tuning phase,
the pipeline is launched once a configuration is selected by the
Pipe-search algorithm.

5.2 Testbed
For evaluation, we use an NVIDIA Jetson TX2 development

board, featuring a dual-core NVIDIA Denver 2 64-bit CPU, a quad-
core ARM A57 Complex (each with 2 MB L2 cache) and an NVIDIA
Pascal Architecture GPU with 256 CUDA cores. Both the Denver 2
and the A57 cores implement the ARMv8 64-bit instruction set and
are cache coherent. For the purpose of this work, we consider only
the two ARMv8 cores, and leave GPU scheduling as future work.

5.3 Benchmarks
This work is mainly focused on inference pass of CNN net-

works. Our framework does not use any neural network library,
instead, we implemented our own library which is compatible with
underlying XiTAO runtime. To evaluate the contribution of this

work, we ported both, widely used CNNs and synthetic neural net-
works. Among widely used networks, we implemented VGG16 [34],
AlexNet [35] and ResNet50 [36]. VGG16 is composed of 21 layers,
out which 16 are compute intensive. AlexNet is composed of 11
layers, out which 8 are compute intensive. ResNet50 is comprised of
52 layers, out of which 50 are compute-intensive. We designed syn-
thetic networks which not only represent usual CNNs but consists
of interesting weight distributions particularly to stress test the
capabilities of the Pipe-search algorithm. The synthetic networks
are further discussed in section 6.3.

6 Experiments
This section evaluates the impact of the different components

that constitue Pipe-search. We start by studying the convergence
speed and the quality of the explored configurations in Section 6.1.
Section 6.2 evaluates the importance of using computational hints
in Pipe-search. Section 6.3 demonstrates the capability of Pipe-search
in adapting to various levels of core heterogeneity while searching
for a balanced pipeline configuration. It calibrates the capability of
Pipe-search in the situation when optimal configuration is farther
away from the seeds. we study the overall impact of using the
online tuning in Pipe-search versus using only the pre-processed
seeds (offline), in the presence of performance asymmetry due to
cluster-level DVFS settings.

6.1 Quality of solution and convergence of
Pipe-search

The search space for a CNN with 𝑀 layers on a platform with
{2, 3, ..,𝐶 −1,𝐶} possible 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 values is represented by Equation
4. The size and dimension of the search space grow exponentially
with increased number of layers and 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 . We, therefore, design
an experiment for a rather small search space to compare exhaustive
search and Pipe-search algorithm. This is done to understand the
convergence and quality of the solutions found by Pipe-search. We
use 4 cores from our testing platform to run VGG16 with 𝐿𝑚𝑎𝑥 = 21
and 𝑃 = {2, 3, 4} under governor setting 1 (Table 1). The exhaustive
search algorithm prunes 1970 pipeline configurations compared
to 34 in the case of Pipe-search. The results from Pipe-search are
reported in Table 3. Only 2% of the total search space points are
visited by Pipe-search. For the sake of higher expectancy of finding
an optimal configuration, we set 𝛼 = 10. Pipe-search successfully
found the best configuration in much less number of trials. We
further investigate the quality of pipeline configurations tested by
Pipe-search. Table 4 shows that 79% configurations lie in the best
range (1s - 1.5s) of high throughput pipeline configuration. We
further observe that non of the trials from Pipe-search lie in the
lowest throughput region visited by the exhaustive search (2.0s -
5.0s). Pipe-search favors the high-throughput configurations during
the search because it prioritizes those with the least CV values.
This speeds up convergence to an optimal solution and reduces the
number of steps of the search to a factor of Equation 5, which is a
70x reduction in convergence time in this case.

6.2 Impact of using computational hints
Pipe-search traverses the possible pipeline stage lengths. For

example, if 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 ∈ {2, 3, 4}, then the different configurations
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Table 3: Comparison between exhaustive search and Pipe-
search using Vgg16 on NVIDIA Jetson TX2

Algorithm Trials Opt. Conf. Seed
Pipe-search 38 [7,4,10] [6,5,10]

Exhaustive Search 1970 [7,4,10] N/A

Table 4: Distribution of all pipeline configuration based on
throughput for VGG16 on 4 cores.

Algorithm 1.0 - 1.5 (sec) 1.5 - 2.0 (sec) 2.0 - 5.0 (sec)
Pipe-search 79% 21% 0%

Exhaustive Search 11% 18.3% 70.7%

Table 5: Tuning time and throughput(frames/sec) of pipe
searchwith andwithout hints, compared to Random search.

With hints Without hints Random
Throughput [f/s] 1.2 0.6 0.9
Training time [s] 0.1 0.1 1.1

pertaining to each 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 are explored starting from the respec-
tive seeds. The seeds are calculated based on the best CV value of
weights for each configuration with 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 stages, and are pro-
vided as input to Pipe-search algorithm. We investigate the impact
of using computational hints by executing the algorithm with and
without the knowledge of weight based seeds. In random walk, we
set the stopping condition to a throughput value (0.9 frames/s) to
reduce search time. Also, in Pipe-search (no hints), we just balance
the number of layers per pipeline stage. Results are shown in Ta-
ble 5. The training time in both Pipe-search variants is 90% less
than random walk. However, we observe that the throughput of
the resulting pipeline configuration with Pipe-search is 50% better
than the version with no computational hints.

6.3 Impact of performance asymmetry on the
solution and convergence

Our testing platform can be configured in four different governor
settings which can determine the performance of the two clusters.
The configurations are listed in Table 1. Note that the cases with
clusters on different frequency levels are the most performance
asymmetric. Hence, each setting exhibits a different level of hetero-
geneity in the platform. This means that a pipeline configuration
that is effective in one governor setting cannot be as effective in
another. Table 6 shows the optimal configurations reached by Pipe-
search for the VGG16 network under different governor settings.
We observe that not only does asymmetry affect layer partitioning,
but it also impacts the 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 . This shows that Pipe-search tends to
adapt to the heterogeneity while finding the optimal configuration.
Section 6.4 discusses the quality of the found optimal in more detail.

Now we compare the number of convergence steps (rank) and
the solutions in the case of symmetric and asymmetric governor
settings (1 and 3) using synthetic networks. The synthetic networks
have 1 or 2 perfect seeds (𝐶𝑉 ≈ 0) with different stage counts. The
weight distribution of these synthetic networks are listed in Table 7.

Table 6: VGG-16 executed with different governor settings

Governor Setting Opt. Conf Ranks Throughput
1 [6,5,10] 1 1.22 Frames/s
2 [5,16] 7 0.36 Frames/s
3 [9,12] 2 0.21 Frames/s
4 [7,4,10] 3 0.17 Frames/s

Figure 3: Pipe-search exploration timeline for Synth2 under
governor setting 3

Note that we consider only convolutional layers for these networks
in order to be the representative of state of the art CNNs.We observe
that in different governor settings, different optimal configurations
were selected away from seed, and in some cases, with different
stage counts (𝑃𝑆𝑐𝑜𝑢𝑛𝑡 ) from the perfect seeds. The rank represents
the location of the solution in the search space sorted by CV values.
In the case of governor setting 3, there is high asymmetry in the
core performance so a configuration with higher rank is selected,
which means that, unlike the symmetric case, a higher CV value can
be selected in such cases. Therefore, Pipe-search adapts to both low
and high performance asymmetry. Figure 3 shows the exploration
timeline of Pipe-search for “Synth 2” under governor setting 3. Each
point represents execution time of slowest stage achieved by the
configuration tested by Pipe-search. We observe that the optimal
configuration lies in 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 = 3. The algorithm walks through all
𝑃𝑆𝑐𝑜𝑢𝑛𝑡 , and later on focuses the search on 𝑃𝑆𝑐𝑜𝑢𝑛𝑡 = 3 region. The
exploration seizes after reaching a confidence limit of 𝛼 = 15.

6.4 Pipe-search on common CNN networks
In this study, we aim at showing the effectiveness of adopting

the dynamic online approach (using Pipe-search) compared to only
using computational hints. To investigate this, we execute ResNet,
AlexNet and VGG16 under governor setting 3 as this entails the
highest level of performance asymmetry between the core clus-
ters of TX2. We use 2 Denver cores on “highperformance” and 2
A57 cores on “powersave” mode (at lowest frequency). Pipe-search
concludes that a pipeline of two stages would yield higher through-
put based on the online search. This is because of the fact that for
𝑃𝑆𝑐𝑜𝑢𝑛𝑡 = 3 or 4, the pipeline stages will be mapped across the core
cluster which causes performance degradation due to inter-cluster
communication overhead. Figure 4 shows the execution time of two
pipeline stages when tested using seeds from preprocessing stage
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Table 7: Pipe-search exploration for synthetic networks

Network Design Governor setting 1 Governor setting 2
Networks layers Weight distributions Best seed CV Optimal Rank CV Optimal Rank CV
Synth 1 7 {1,4,8,4,8,8,4} [3,2,2] 3.8 [4,1,1,1] 6 51.4 [5,1,1] 10 73.8
Synth 2 15 {1,9,4,8,5,4,8,5,7,1,1,1,4,8,22} [8,7] or [4,4,6,1] 0 [4,7,4] 8 18.5 [8,6,1] 22 35
Synth 3 13 {1,9,4,8,20,2,22,3,4,8,7,11,11} [4,2,1,4,2] 0 [3,1,2,1,4,2] 9 29.8 [7,4,2] 22 56.5
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Figure 4: Percentage execution time of CNN pipelines with
seeds and optimal configurations

compared to the optimal configuration. It is evident form the results
that the offline approach produces unbalanced configurations espe-
cially during high performance asymmetry but with exploration,
Pipe-search is able to find a configuration which balances out the
execution time for two pipeline stages. In these experiments, we
have used 𝛼 in the range of [3, 15].

7 Related Work
Common neural network frameworks such as TenserFlow [8],

Caffe [9] and ARMCL [22] provide efficient implementation of
CNNs by leveraging, for example, optimized GEMMs and fused
and vectorized MAC (Multiply and Accumulate) operations, among
others. These implementations do not provide platform specific
optimizations, especially when edge devices are considered as com-
puting platforms for CNN inference. It is shown in literature that the
most suitable implementation for CNN inference on edge devices
is a task-based parallel implementation [18, 24]. Therefore, devel-
opers need to extend the existing frameworks to enable task level
parallelism to exploit the benefits of the heterogeneous computing
environments present in edge devices. Efforts have been made for
CNN inference on edge devices as well. Minakova et al. [18] convert
CNN models into Synchronous DataFlow (SDF) model to represent
computational and communication cost of CNN layers. Annotated
SDF models are then used by a genetic algorithm to find a mapping
of tasks on embedded CPUs and GPUs. The main focus of their
work is to balance the workload among the cores and GPUs in the
embedded system utilizing task and data level parallelism. Their
approach suggests to assign the heaviest SDF node to the core that
accompanies the GPU so that dense layers can exploit data level par-
allelism while assigning the rest of the nodes to the remaining cores
in order to balance the workload. The heterogeneity of embedded
CPUs is not explicitly highlighted in this approach. Additionally,
the SDF to core mapping is agnostic to dynamic system changes (e.g.
DVFS). To construct a balanced pipeline targeting heterogeneous
computing platforms, we require the performance estimation of

each type of core. Two closely related works that propose a predic-
tion model to provide an estimation of CNN performance on a given
architecture are AUGUR [26] and Pipe-It [24]. AUGUR is a tool that
provides performance prediction of CNNs on CPUs and GPUs using
CNN layer descriptors. Pipe-It also utilizes CNN layer descriptors
and a regression model to approximate the performance of different
types of cores in an embedded device. The prediction model in [24]
is an enhanced version of AUGUR’s prediction model [26], which
greatly reduces the prediction error. The average prediction error
reported by the authors is 13% on big cores and 11% on little cores
in a big.LITTLE architecture. Since the prediction error leads to a
throughput degradation in a pipeline, it is desirable to eliminate
the effects caused by prediction error. This shows that scheduling
decisions taken from prediction models may lead to performance
degradation, therefore, we propose an online tuning approach that
can reduce the chances of choosing the wrong layer to pipeline
stage distribution.

8 Conclusion
This paper presents a novel online tuning approach for through-

put maximizing CNN inference pipelines that adapts to perfor-
mance asymmetry in core clusters. We leverage compile-time hints
to generate seeds for faster design space exploration via our novel
evolutionary algorithm called Pipe-search. We evaluate Pipe-search
on a set of three state of the art CNNs and three synthetic CNNs.
Our results show that our approach effectively prunes the design
space, and that guided navigation results in faster convergence
making it a feasible approach for processing streaming data on
edge devices.
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