
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 1

ALPHA: A Novel Algorithm-Hardware Co-design
for Accelerating DNA Seed Location Filtering

Fazal Hameed , Asif Ali Khan, and Jeronimo Castrillon, Senior Member, IEEE

Abstract—Sequence alignment is a fundamental operation in genomic analysis where DNA fragments called reads are mapped to a
long reference DNA sequence. There exist a number of (in)exact alignment algorithms with varying sensitivity for both local and global
alignments, however, they are all computationally expensive. With the advent of high-throughput sequencing (HTS) technologies that
generate a mammoth amount of data, there is increased pressure on improving the performance and capacity of the analysis
algorithms in general and the mapping algorithms in particular. While many works focus on improving the performance of the aligner
themselves, recently it has been demonstrated that restricting the mapping space for input reads and filtering out mapping positions
that will result in a poor match can significantly improve the performance of the alignment operation. However, this is only true if it is
guaranteed that the filtering operation can be performed significantly faster. Otherwise, it can easily outweigh the benefits of the
aligner. To expedite this pre-alignment filtering, among others, the recently proposed GRIM-Filter uses highly-parallel
processing-in-memory operations benefiting from light-weight computational units on the logic-in-memory layer. However, the
significant amount of data transferring between the memory and logic-in-memory layers quickly becomes a performance and energy
bottleneck for the memory subsystem and ultimately for the overall system. By analyzing input genomes, we found that there are
unexpected data-reuse opportunities in the filtering operation. We propose an algorithm-hardware co-design that exploits the
data-reuse in the seed location filtering operation and, compared to the GRIM-Filter, cuts the number of memory accesses by 22-54%.
This reduction in memory accesses improves the overall performance and energy consumption by 19-44% and 21-49%, respectively.

Index Terms—Genome sequencing, seed location filtering, processing-in-memory, DNA sequence alignment.

F

1 INTRODUCTION

THE recent developments in second-generation and
third-generation sequencing technologies have enabled

the production of DNA sequence data in an unprecedented
volume and with extremely low cost. The Illumina NovaSeq
6000 sequencer, for instance, can produce up to 6 terabases
of data in less than two days, sequencing 20 billion reads
(i.e., DNA fragments of length 150 base-pairs each) and
costing only 1000$ per human gemone [1], [2]. This has
enabled the usage of these technologies in new domains
such as genome sequencing of new species, sequencing
of individual genomes, and single-cell sequencing, which
were previously either too costly or limited by technology.
In most of these applications, reads are typically mapped
and aligned to reference sequences or genomes to determine
similarities or differences between them.

Sequence alignment is a fundamental yet computation-
ally expensive operation in genome analysis. It starts from
read mapping where each read is checked for alignment with
one or more locations in the reference genome based on the
similarity between the read and the reference sequence at
that location. Subsequently, reads are aligned at the mapped
locations using compute-intensive dynamic-programming
based algorithms such as Smith-Waterman and Needleman-
Wunch [3], [4]. The innovations in sequencing platforms and
generation of a mammoth volume of data put tremendous

• The authors are with the Chair for Compiler Construction and the Center
for Advancing Electronics Dresden (cfaed) at Technische Universität
Dresden, 01069 Dresden, Germany.
E-mails: {fazal.hameed, asif ali.khan, jeronimo.castrillon}@tu-dresden.de

• F. Hameed is also affiliated with the institute of space technologies (IST),
Islamabad 44000, Pakistan.

Manuscript received July 2020; revised May 2021.

pressure on expediting the alignment operation. This ne-
cessitates further improvements in the algorithms and the
underlying architectures.

To accelerate the alignment operation, many recent ef-
forts have been ramped up towards algorithmic transfor-
mations, development of new algorithms, and architec-
tural improvements [2], [5], [6], [7], [8], [9]. At the same
time, promising developments have been reported in pre-
alignment filtering, an operation that efficiently determines if
a particular location in the reference genome would result
in a good or a poor match for a given read without actually
performing the alignment operation [10], [11], [12], [13].
A poor match indicates that the read and the selected
location in the reference genome will not match even after
alignment, hinting at skipping the complex alignment step.
This reduction in the number of candidate locations (up to
59% [11]) in the reference sequence for alignment operation
can significantly reduce the overall end-to-end alignment
time.

Several pre-alignment filters have been proposed of
late [10], [11], [12], [14], [15], [16], [17], [18], [19], [20]. While
most of these filter implementations are highly parallel and
compute-efficient, they require significantly high memory
bandwidth to classify candidate locations of the reference
genome into good and poor matches. The recently pro-
posed GRIM-Filter [13] hides this bottleneck by leveraging
the high memory bandwidth and processing-in-memory
capabilities of 3D-stacked memory architectures. Although
authors report considerable improvements in performance
and accuracy compared to the state-of-the-art, the GRIM-
Filter requires a large number of memory lookups. Our
analysis shows that the probability of repetitive tokens in

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 2

human genomes is up to 24-60%. We show that there is a
potential opportunity for this data reuse and propose a new
algorithm and an architectural extension that leverages this
to reduce the number of memory accesses and arithmetic
operations.

The major contributions of this paper are:
• An improved algorithm that, unlike GRIM-Filter, com-

pares only distinct tokens of the input reads to the refer-
ence genome. This results in considerable performance
improvement.

• We propose necessary changes to the underlying hard-
ware and introduce low overhead extensions. Con-
cretely, we use a preprocessing unit that scans input
reads for extracting tokens repetition information and
a small token count table that stores this information for
later processing.

• An efficient scheduling unit that processes the data-
reuse in a way to reduce the number of memory
lookups and arithmetic operations.

• A detailed design space analysis to evaluate the impact
of architectural parameters on the performance, energy
consumption, and hardware overhead.

Our design achieves simultaneous performance and energy
improvements of 19-44% and 21-49%, respectively, com-
pared to the baseline GRIM-Filter.

The paper is organized as follows. The background and
related work is briefed in Section 2 followed by motivation
in Section 3. In Section 4, the proposed algorithm-hardware
co-design of seed location filtering is elaborated. Experimen-
tal results and analysis are reported in Section 5 followed by
conclusion in Section 6.

2 BACKGROUND AND RELATED WORK

This section provides an overview of the sequence align-
ment operation and seed location filtering and explains the
implementation and functionality of the GRIM-Filter [13].

2.1 Sequence alignment

A genome is an organism’s entire set of DNA, covering all of
its genes. Genomic analysis extracts meaningful information
from an uncharacterized genome by analyzing its function
and structure. Sequence alignment or sequence mapping
is a fundamental operation in this analysis [14], [15], [16],
[17], [18], [19], [20]. The sequencing machine outputs the se-
quenced genome in millions of short DNA sequences called
reads. These reads carry no information about their actual
location in the genome. The sequence alignment operation
searches for and aligns these reads to their actual position
in a reference genome. Classical alignment algorithms based
on dynamic programming are prohibitively slow at aligning
typical genomes that range in the billions of bases. State-of-
the-art aligners use the seed-and-extend approach to tackle
this problem [2], [21], [22], [23], [24], [25], [26], [27].

The seed-and-extend alignment operation consists of
four steps: seed generation, seed mapping, seed extension,
and read alignment. A seed is a substring of a DNA read that
matches, exactly or near-exactly, to one or more locations in
the reference genome. In the first step, the aligner searches
for potential seeds in a read using different techniques. For

instance, k-mer seeds are generated by a sliding window
over a read [28], [29]. During the seed mapping, seeds
are mapped to their candidate locations in the reference
genome. In the seed extension step, the matched seeds are
extended to the right and left directions of the matched lo-
cations by taking into account constraints such as maximum
mismatches and length of insertion-deletion mutations. Af-
ter that, the read is aligned to the extended region around
the location of the seed using compute-intensive dynamic
programming based algorithms [3], [4]. Seed extension and
read alignment typically account for more than 30% of the
runtime in the genomic analysis [2], [30]. Therefore, seed
location filters (cf. Section 2.2) are employed to proactively
determine and skip seed locations in the reference genome
that would result in poor alignment, without actually per-
forming the complex seed extension and alignment opera-
tions.

2.2 Seed location filtering
The seed location filtering problem can be formulated as
follows: Given a query genome Q = {q0, q1, . . . , qm−1} (1
in Fig. 1) and a reference genome R = (r0, r1, ..., rn−1) (2),
determine and filter out candidate seed map locations that
would result in a poor match, without actually performing
the expensive alignment operation. Each qi and rj are short
segments of the query and reference genomes respectively
and are referred to as reads and bins. Each read and bin
is typically several hundred base-pair long. Each base pair
represents one of the four nucleotide bases, i.e., A, C, G, and
T. For instance, 3 in Fig. 1 shows an illustrating example of
qi in the query genome containing a sequence of base pairs.
The inputs to the seed location filter (4) are a read from the
query genome (qi) and a bit vector representing a bin from
the reference genome (rvj) (Fig. 2). The filter accumulates
the values in (rvj) and compares it to a predefined threshold
(cf. Fig. 3). If the accumulator value is greater than the
threshold, this implies that many tokens in the input read
qi are also present in the corresponding bin rj , the filter
forwards qi to the aligner to perform an alignment between
qi and rj (5). Otherwise, the alignment step is skipped.

q
0

AAAACTTTTTGCATGAGTATG CATACACACATAGCTG...
q

m-1
q

1 ... q
i ...

Query Genome Q1 Reference Genome R

4

2

3

r
0

r
n-1

r
1 ... r

i ...

5

q
i

r jv
=

 B
itv

ec
to

r

of
 r

j (F
ig

. 2
)

Perform filtering operation between q
i
 and r

j
(Fig. 3)

Align q
i
 with r

j
if the number of similar tokens is greater than a threshold

r
j

v

Fig. 1. Seed locating filtering between reads of the query genome and
bins of the reference genome

2.3 GRIM-Filter
GRIM-Filter is a recent algorithm for seed location filtering
which is optimized for a processing-in-memory architecture
(cf. Section 2.4). It divides each bin into tokens of size 5 base
pairs, ranging from AAAAA to TTTTT . For the reference
genome, the GRIM-Filter maintains a per-bin bitvector where
each bit (referred to as the presence bit) of the bit vector

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 3

ATACGTTTTCGGATGCA GAACCATAAAAAGACCAGTAGC...
Bin rj Bin rk

Tokens

AAAAA
AAAAC
AAAAG...

TTTTC
TTTTG
TTTTT

ATGCA...

0
0
1...

...

0
1
0

0

r
0

AAAAA
AAAAC
AAAAG...

TTTTC
TTTTG
TTTTT

ATGCA...

1
1
0...

...

1
0
0

1...

AAAAA
AAAAC
AAAAG...

TTTTC
TTTTG
TTTTT

ATGCA...

1
0
0...

...

0
0
0

0...

AAAAA
AAAAC
AAAAG...
TTTTC
TTTTG
TTTTT

ATGCA...

0
0
0...

...
1
1
0

0...

Le
n

gt
h

 =
 1

02
4

ATGCA

exists in r
j

ATGCA
does not

exists in r
k

Bitvector

for r
j

r
j

r
k

r
n-1

Row

Column

GGTAAAAACACAAGT... GGGAAAATCT...
v v v v

v

v

Fig. 2. Metadata organization of the GRIM-Filter where each bit at [Row, Column] specifies if a token (corresponding to a row) exists in the relevant
bin (indicated by the column) of the reference genome. Each column represents the metadata associated with a particular bin of the reference
genome. Token size is 5 in this figure.

indicates whether a particular token exists in a bin or
not, as shown in Fig. 2. The bit vectors of all bins in the
reference genome are created only once and are used to find
similarities between the reference and query genomes. Fig. 2
presents an illustrative example showing the bit vectors
associated with selected bins (i.e., r0, rj , rk, and rn−1) of
the reference genome. The bit vector of the bins rj and rk
is denoted as rvj and rvk respectively. The presence bit of
token ATGCA is set in rvj because this token is present in
rj . Similarly, the presence bit of token ATGCA is unset in
rvk as ATGCA does not exist in rk.

AAAAACTTTTGCATGAGTATG

q
i
(read)

1
1...

...

1
0
0

0

AAAAA
AAAAC

AAAAA
AAAAC...

TTTTC
TTTTG
TTTTT

AAACT...
AAACT

0AACTT

...

TTTTT
TTTTC...

+

...
r

j

v

1

2

3

Sum ≥
Threshod

4

Discard q
i

No

Align q
i
 with r

j

CATACACACATAGCTG...

Yes

5

6

b
ij
= 0

Fig. 3. Steps involved in the GRIM-Filter to determine a good or bad
match between a read of the query genome (qi) and a bin of the
reference genome (rj) for a token size = 5

For a given read (qi) of the query genome, the GRIM-
Filter examines whether this matches to a certain bin of
the reference genome (say rj) or not. To do this, it reads qi
token by token (1 in Fig. 3), and for each token, it accesses
the presence bit of the corresponding token in rvj (2). The
GRIM-Filter then sums all these presence bits together (3)
and compares the result with a predefined threshold (4).
If the accumulated sum is greater than the threshold, the
filter forwards this read to the alignment step to actually
map qi to rj (5). Otherwise, it skips aligning qi to rj (6)
and moves to the next bin. Only the rjs that share enough
tokens with a given qi pass the GRIM-Filter. By doing so,
the GRIM-Filter ensures that no rj that results in a correct

matching with qi is incorrectly rejected, thereby maintaining
a 0% false rejection.

M
em

or
y

la
ye

rs
subarray

0 ... subarray
nsa-1

Lo
gi

c
M

od
u

le
 L

1

Lo
g

ic
 M

od
u

le
 L

0
...

Lo
gi

c
M

od
ul

e
L M

-1

Scheduling
Unit

q
i

...

r 0 r 1

0
0

0
0

1

0
1

1
0

0

...
...

... ...
...

...
...

...

0
0

0
1

0
0

1
0

0 1

r 8
19

0

...

r 81
91

Row
0
: AAAAA

Row
1
: AAAAC...

Row
1022

:TTTTG

Row
1023

: TTTTT

...

Row
590

:GCATG

Token

Token

(Row
id
)

P
re

se
nc

e
bi

ts
 o

f R
o

w
5

90

(p
er

tin
en

t
to

 t
ok

en
 G

C
A

T
G

)

Row-Reg
0

B
in

 M
od

ul
e

B
0

B
in

 M
od

ul
e

B
1

...

B
in

 M
o

du
le

 B
8

19
1

R
o

w
p

re
se

n
ce

b
its

Logic layer v vv v

n
cols

/n
rows

: Number of columns/rows in a

subarray (Here n
cols

 = 8192, n
rows

 = 1024)
M: Number of logic modules
n

sa
: Number of subarrays

Accumulator (B
1
)

Comparator (B
1
)

Adder (B
1
)

Fig. 4. Processing-in-memory based GRIM-Filter architecture

2.4 PIM implementation of the GRIM-Filter
This subsection describes the implementation of the GRIM-
Filter using 3D-stacked memory architecture. Processing-in-
memory (PIM) is a novel concept that allows performing
computation inside the memory subsystem. By employing
small computation units inside the memory, PIM reduces
the amount of data that has to be moved from memory
to external processors, thereby improving the performance
and energy efficiency of computing systems. The GRIM-
Filter is a potential candidate to be implemented using PIM
due to its memory intensity as it requires simple operations
involving additions and comparisons (cf. Fig. 3). The PIM
implementation of the GRIM-Filter is illustrated in Fig. 4
and is realized using a 3D-stacked DRAM memory, consist-
ing of several memory layers and a single logic layer. The
memory layers are hierarchically decomposed into subar-
rays (i.e., subarray0 to subarraynsa−1), rows (i.e., row0 to
rownrows−1), and columns (i.e., col0 to colncols−1).

In Fig. 4, we assume that each subarray consists of
1024 rows (i.e., nrows = 1024). Each row corresponds to

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 4

a unique token i.e., AAAAA and TTTTT are mapped to
row0 and row1023 respectively. Each row is indexed by its
corresponding token and stores the presence bit information
of the same token for multiple bins/bitvectors (8192 in the
figure) of the reference genome. For instance, row590 of
subarray0 stores the presence bit of token GCATG relevant
to 8192 bins (i.e., r0 to r8191) of the reference genome.
As illustrated in the figure, the GRIM-Filter stores the bit
vectors of each bin of the reference genome in a separate
column. For instance, the bit vectors of bins r0 and r1 are
stored in the first and second column of subarray0.

To carry out filtering between qi and rj , the GRIM-
Filter provides a bin module that operates on rvj . The bin
module is composed of an accumulator (initialized to zero),
an adder, and a comparator. The module scans each token
in qi and add the presence bits into the accumulator. Once
all the tokens in qi are exhausted, the comparator associated
with rj is used to compare the value of the accumulator with
a set threshold (cf. Fig. 3). If the value is greater than the
threshold, the read is forwarded to the aligner; otherwise, it
is dropped.

At a particular instance, the GRIM-Filter examines the
presence of a single token of qi in M × ncols bins of the
reference genome. The parameter ncols refers to the number
of columns in a subarray while M is the number of logic
modules (cf. Fig. 4). For the same token of qi, the GRIM-
Filter fetches M rows from M different subarrays in parallel
and load them in M row registers (i.e., Row-Reg0 to Row-
RegM−1). These M row registers store the presence bits
of M × ncols bins of the reference genome pertinent to
the same token. After the presence bits are loaded into M
row registers, the GRIM-Filter processes them in parallel
using M × ncols bin modules. For instance, in Fig. 4, the
bin module B1 adds the second bit of Row-Reg0 to its
accumulator.

Fig. 5 illustrates the sequence of token accesses (i.e.,
memory row) in the GRIM-Filter when comparing an input
qi read with 8192 bins of the reference genome (R). For the
sake of explanation, we assume that ncols = 8192, M = 1, and
the bit vectors of these 8192 bins (i.e., rv0 to rv8191) are stored
in subarray0. For the example qi read in Fig. 5, row0 (for
token AAAAA) of subarray0 is fetched at time t0 and loaded
into the row register of the logic module. Subsequently,
the 8192 presence bits in the row register are processed by
8192 bin modules in parallel and the relevant accumulators
are computed accordingly. Similarly, at time t1, row1 (for
token AAAAC) is fetched in the row register to examine the
presence of AAAAC in 8192 bins of R. When all tokens in
qi are exhausted, all the comparators associated with 8192
bin modules are used to compute the seed location filter
outcome of 8192 bins in R. The GRIM-Filter then moves
on to other subarrays and compares qi with a new set of
bins in R. When qi finishes comparing with all bins of R,
then the same sequence of operations are performed on the
remaining reads of the query genomes (i.e., qi+1, qi+2, ...,
qm−1).

3 DATA ACCESS ANALYSIS

This section presents a motivating example that shows how
the GRIM-Filter incurs a large number of memory accesses

AAAAACTTTTGCATGAGRead q
i
: TAGCTG...

Location 0 ...1 1
0

TACTAGCATGC

11
3

CTGTTGCATG

15
2

... ...
...

...

...
...
...

...

...

r 0 r 1

0
0

0
0

1

0
1

1
0

0
...

...
... ...

...
...

......

0
0

0
1

0
0

1
0

0 1

r 8
19

0

...

r 81
91

Row
0
: AAAAA

Row
1
: AAAAC...

Row
1022

:TTTTG

Row
1023

: TTTTT

...

Row
590

:GCATG

su
ba

rr
a

y ns
a

-1

t
0
 AAAAA

...

 t
1

AAAAC...

......

......

......

...

v vv v

T
im

e

su
ba

rr
a

y 0

 t
10

GCATG

 t
113

GCATG

 t
152

GCATG

Fig. 5. Memory row accesses required in the GRIM-Filter for different
tokens in an example qi read. M = 1 and ncols = 8192 in this figure

TABLE 1
Benchmark data obtained from the 1000 Genome Project [31].

Benchmark No. of reads Sample

ERR240726 1 / ERR240726 2 4031354 / 4389429 NA20753
ERR240727 1 / ERR240727 2 4082203 / 4013341 NA20754
ERR240728 1 / ERR240728 2 3894290 / 4013341 NA20759
ERR240729 1 / ERR240729 2 4013341 / 4082472 NA20761
ERR240730 1 / ERR240730 2 4082472 / 4082472 NA20766

FTP link to all benchmarks/samples sources1. Individual benchmark’s
details and data can be accessed at2 where id corresponds to the
sample numbers provided in the right-most column of the table.

which deteriorates both the performance and the energy
efficiency. As depicted in Fig. 5, at a certain time period,
the GRIM-Filter compares a read of the query genome (say
qi) to a subset of bins in the reference genome. For the sake
of explanation, we stick to the same illustrative example
(cf. Fig. 5) and consider the same assumptions made in
Section 2.4. For the example qi read from Fig. 5, the GRIM-
Filter loads row590 (for token GCATG) three times (i.e., at
time t10, t113, and t152) into the row register of the logic
module (cf. Fig. 4). After performing computation on the
row register of row590, the accumulators associated with bin
modules B0 and B8191 are incremented three times because
the presence bit of token GCATG is one in rv0 and rv8191.
We classify the row accesses into the following categories:
1) the first access to a row belonging to a particular token of
qi is referred to as compulsory access. For instance, the access
to row590 at time t10 for token GCATG is compulsory.
2) the following accesses to the same row are referred to
as redundant accesses because they could be avoided, as
explained in the next section. For the given example, the
accesses to row590 for token GCATG at time t113 and t152
are redundant.

By analyzing different query genomes (listed in Table 1),
we found that the majority of the reads exhibit a high
percentage of repeated tokens. Repeated tokens are tokens
that are accessed more than once in a given read. Fig. 6
shows the percentage of repeated tokens in reads of the
query genome ERR240730 2 in Table 1. The bars show the
overall percentage of the repeated tokens for each read
length, and the different colors indicate the breakdown for

1. http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
2. https://www.internationalgenome.org/data-portal/sample/id

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://www.internationalgenome.org/data-portal/sample/id

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 5

different count values, e.g., “2” shows the percentage of
times the tokens are repeated 2 times.

For evaluation, we took ten pair-end input genomes, ba-
sically the same as the GRIM-Filter, from the 1000 Genome
Project [32], available at [31]. Table 1 lists the benchmark
details that are relevant to this work. For additional infor-
mation on the dataset, e.g., Biosample ID, populations, sex,
cell line source, accession numbers, etc., we provide links to
their origins. By analyzing different query genomes (listed
in Table 1), we found that the majority of the reads exhibit
a high percentage of repeated tokens. Repeated tokens are
tokens that are accessed more than once in a given read.
Fig. 6 shows the percentage of repeated tokens in reads of
the query genome ERR240730 2 in Table 1. The bars show
the overall percentage of the repeated tokens for each read
length, and the different colors indicate the breakdown for
different count values, e.g., “2” shows the percentage of
times the tokens are repeated 2 times.

On average, for a 400 read size, the percentage of re-
peated tokens is 24.2%. As shown, this increases as we
increase the read size. As explained above, the GRIM-Filter
always fetches a row independent of whether it is a compul-
sory or a redundant row access. We exploit this repetition of
tokens in the query reads to completely eliminate redundant
row accesses as explained in the next section.

0

20

40

60

200 400 800 1200 1600
Read length

R
ep

ea
t (

%
)

2 3 4 5 >=6

Fig. 6. Percentage of repeated tokens across all reads of the query
genome ERR240730 2 in Table 1. Token size = 5 base pairs, and read
length is varied from 200 to 1600 base pairs in this figure.

4 THE ALPHA FILTER

This section introduces our proposed Architecture for Low-
Power and Hasty seed location filtering based on novel
Algorithm (ALPHA).

Memory Access Scheduler

Pre-alignment Filter Bitmask

Tokens of Read qi

Token Count Table

Logic-in-Memory Layer

Memory commands

Compulsory accesses

Filtering output

1

2

3

4

5

R
e

p
e

a
te

d
 f
o

r
q

i+
1
,
q

i+
2
,
…

,
q

m
-1

Memory

Compulsory accesses

Fig. 7. Sequence of operations in ALPHA filter.

4.1 Overview
Fig. 7 shows the sequence of operations in ALPHA filter.
Similar to the GRIM-Filter [13], ALPHA is implemented
as a processing-in-memory (PIM) architecture, providing
advantages over other seed location filters [10], [11], [12].
As mentioned in Section 3, a major drawback of the GRIM-
Filter is that it unnecessarily incurs a large number of redun-
dant memory accesses which deteriorates both performance
and energy efficiency. To eliminate the redundant memory
accesses, ALPHA makes algorithmic transformations to the
GRIM-Filter and changes the underlying architecture as
depicted in Fig. 8.

The ALPHA filtering commence with scanning the to-
kens of a read qi (1 in Fig. 7) followed by updating the
token repetition information (2) in a newly proposed Token
Count Table (TCT). ALPHA introduces a preprocessing unit
that extracts tokens repetitions (i.e., which ultimately trans-
late to row access information) from the reads of the query
genome (Section 4.2). In step 3 , the memory access sched-
uler avoids redundant memory accesses by only scheduling
compulsory accesses based on the repetition information
in the TCT. Section 4.3 describes the hardware support to
further reduce the number of memory accesses and enable
parallel processing of multiple reads of the query genome.
Once all compulsory rows are accessed (4) pertinent to
the tokens contained in a given read, ALPHA generates the
pre-alignment filter bitmask (5). This bitmask determines
the filtering outcome (i.e., a logical 1 for a potential match
and logical 0 for a mismatch based on the threshold) and
transmit it to the alignment step. It is worth mentioning
that the filtering outcome of ALPHA and the GRIM-Filter is
the same. However, compared to the GRIM-Filter, ALPHA
changes the way in which the data is accessed from the
memory and processed (details in Section 4.2). Similar to
the GRIM-Filter, ALPHA maintains a 0% false rejection
ensuring that no candidate location in R that results in a
correct matching with a particular read in Q is incorrectly
rejected by the filter.

4.2 Preprocessing of the query genome
The GRIM-Filter first scans the tokens of a read qi one by one
and then compares each token with all bins in R. In contrast,
ALPHA preprocesses all the tokens of qi and updates its
repetition information in the TCT before comparing them
with the bins in R.

Fig. 9 depicts the organization of the Token Count Table
(TCT), consisting of 2k columns. For illustration purposes, k
is set to 3 in Fig. 9. Each column in TCT stores the repetition
information of exactly one read of the query genome and
is identified by a dlog2(k)e + 1 bits qtag field. For a given
read of the query genome (say qi), each column entry of the
TCT is indexed with the tokens (i.e., ranges from AAAAA to
TTTTT) contained in qi. The column entry countri records
how many times the rth token appears in the read qi. The
TCT tracks the counts of the tokens relevant to few reads
(i.e., 2k) of the m total reads in the query genome (i.e.,
2k << m).

For each read/column in the TCT, the preprocessing
unit maintains two overhead bits named scancomplete and
processed (cf. Fig. 9). A column with a set scancomplete bit

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 6

Row-Reg0

B
in

 M
o

d
u

le
 B

0

B
in

 M
o

d
u

le
 B

1

...

B
in

 M
o

d
u

le
 B

8
1

9
1

ncols/nrows: Number of columns/rows in a

subarray (Here ncols = 8192, ncols = 1024)

M: Number of logic modules

nsa: Number of subarrays

Logic layer

L
o

g
ic

 M
o

d
u

le
 L

1

L
o

g
ic

 M
o

d
u

le
 L

0

...

L
o

g
ic

 M
o

d
u

le
 L

M
-1

S
c
h

e
d

u
lin

g
 U

n
itqi

...

r 0 r 1

0

0

0

0

1

0

1

1

0

0

...
...

...

...
...

...
...

...

0

0

0

1

0

0

1

0

0 1

r 8
1

9
0

...

r 8
1

9
1

Row0: AAAAA

Row1: AAAAC...

Row1022:TTTTG

Row1023: TTTTT

...

Row590:GCATG

Comparator

Adder

T
o

k
e

n
 (

R
o

w
id
)

R
o

w
-R

e
g

0

R
o

w
-R

e
g

1

R
o

w
-R

e
g

M
-1

Rowpresencebits

...

qi+1

qid, Rowid, Rowcount

qi+2

qi+3, qi+4, qi+5

Novel contributions

Different from GRIM-Filter

P
re

s
e

n
c
e

b
it
s
 o

f
R

o
w

5
9

0

(p
e

rt
in

e
n

t
to

 t
o

k
e

n
 G

C
A

T
G

)

T
o

k
e

n
 C

o
u

n
t
T

a
b

le

P
re

p
ro

c
e

s
s
in

g
 U

n
it

v vv v

M
e

m
o

ry
 l
a

y
e

rs ...subarray0 subarraynsa-1

Accumulator

 qi, qi+1 , qi+2

Fig. 8. A high-level overview of ALPHA highlighting our novel contributions

Row
1022

:TTTTG

Row
1023

:TTTTT

...

Row
590

:GCATG

0
2

0
2

3

0
0

0
0

7

0
1

0
0

6

...
...

...
... ...

...
...

...
...

...

... ...
0
0

0
0

0
0

4
0

0
2

0
0

0 4 0

Row
0
: AAAAA

Row
1
: AAAAC...

q i

q
i+

1

q
i+

5

q
i+

4

q
i+

3

q
i+

2

q
tag

Presence
count

 of token TTTTT in q
i

Partition
1

Partition
2

1 1 1 0 0 0processed

scancomplete 1 1 1 1 1 0

Fig. 9. Organization of the proposed Token Count Table (TCT) with 2k
columns. In the figure k = 3

indicates that the preprocessing unit has scanned all tokens
of the relevant read in the query genome, and the token
repetition information is updated in the TCT. The processed
bit shows whether the content of a column is consumed by
the filtering unit or not.

Similar to the GRIM-Filter, we process query genome on
a read-by-read basis. However, before performing the actual
filtering operation, we first preprocess each read to extract
the token repetition information. For a given read qi, the
preprocessing unit allocates a column in the TCT and clears
its associated processed and scancomplete bits. It then reads
qi token-wise and populates its corresponding TCT entry
with the token count. Once all tokens in qi are exhausted,
the scancomplete bit associated with qi is set. As for the
replacement of the previous contents, the preprocessing unit
only replaces a column in TCT if its contents are already
consumed by the filtering step. The processed bit, associated
with each column, provides this information.

For the example qi sequence in Fig. 5, the countri of
token GCATG is three after scanning all tokens in qi.
For comparison with the reference genome, our filtering

algorithm scans only distinct tokens in qi and adds their
corresponding token counts in the TCT. This means that for
qi, the row590 for token GCATG (cf. Fig. 8) is accessed only
once in ALPHA instead of thrice in the GRIM-Filter. In this
case, three is added to the accumulator of those bins in the
reference genome whose presence bit relevant to GCATG is
set. The processed bit of qi in the relevant column is set when
qi is compared with a subset of bins (i.e., M × ncols) selected
as candidate locations in the reference genome. This implies
that the column can now be allocated to a new unprocessed
read of the query genome.

The implementation of the preprocessing unit requires
a FIFO buffer and an adder. In the first step, the tokens
of a particular read are scanned token wise and stored in
the FIFO. The token at the head of the FIFO is used to
access a particular TCT entry with the relevant qtag field. An
adder is used to increment the value of that entry which is
stored back in the TCT. Parallel to the preprocessing unit, the
scheduling unit reads the count information of each token
from the TCT in a top-to-bottom way and only forwards that
row requests to the memory for which the corresponding
token entry has a non-zero value. It is worth mentioning
that the scheduling unit sends the data to memory only for
those reads which are preprocessed.

Preprocess (scan) tokens of later k reads in Q (i.e., q
i+3

, q
i+4

, q
i+5

)

Compute relevant count in the TCT for later k reads in Q

Scheduling unit accesses Row
presencebits

 relevant to tokens of

earlier k reads in Q

having non-zero count in TCT

Tokens and its count information in earlier k reads of

Q (i.e., q
i
,q

i+1
,q

i+2
) are forwarded to Scheduling Unit

Process relevant rows and detect which earlier k reads in Q need
to be checked for alignment with a subset of bins in R

Ta
sk

1
Ta

sk
2

Fig. 10. Overlapping tasks (Task1 and Task2) in the improved ALPHA to
determine where k reads of the query genome Q needs to be checked
for alignment with a subset of bins in the reference genome R

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 7

4.3 Improved query genome processing

Memory accesses can be further reduced by processing mul-
tiple reads of the query genomes at the same time. To enable
this, ALPHA preprocesses the counts of the tokens relevant
to k reads of the query genome where 2k columns of TCT
are divided into two equal partitions. These partitions are
referred to as Partition1 and Partition2 in Fig. 9. While the
scheduling unit is busy in handling counts of one partition
belonging to earlier k reads of the query genome (i.e., qi,
qi+1, qi+2 for k = 3), the preprocessing unit computes the
counts of the later k reads (i.e., qi+3, qi+4, qi+5 for k =
3) stored in another partition. This implies that Partition1

stores the relevant counts of the tokens belonging to earlier
or later reads of the query genome at alternate time inter-
vals.

Fig. 10 shows the sequence of events in ALPHA. The
preprocessing unit computes the counts of one partition by
scanning all tokens of later k reads of the query sequence
(referred to as Task1 in Fig. 10). Once the counts of one par-
tition is computed (i.e., all scancomplete bits in that partition
are set), the scheduling unit performs necessary memory
operations on that partition (referred to as Task2 in Fig. 10).
As Task1 preprocesses the later reads of the query sequence,
Task2 performs necessary memory operations on the ear-
lier reads. Compared to Task1, Task2 is the performance
critical task as the latter accesses many rows storing bit
vectors of the reference genome. On the other hand, Task1 is
lightweight because it scans the tokens of the relevant bins
in the query sequence followed by updating the counts in
the small TCT.

In Task2, the scheduling unit only accesses the
Rowpresence bits of those tokens for which the token entry
in TCT has a non-zero value. In the example in Fig. 9 we as-
sume that the first, second and third column of the Partition1

contains the counts of the tokens relevant to three reads of
the query sequence namely qi, qi+1, and qi+2. As illustrated,
the tags of these reads are stored in the qtag field of the
respective column. We further assume that all tokens of the
aforementioned reads are scanned completely in Task1 (i.e.,
scancomplete bits are set for these bins). This implies that the
scheduling unit can now process the counts of Partition1.
As depicted in Fig. 9, the count of token GCATG is 3, 7,
and 6 for qi, qi+1, and qi+2 respectively. In this example,
the GRIM-Filter requires 16 (i.e., 3 + 7 + 6 = 16) accesses
to row590 while ALPHA with k = 1 requires 3 accesses. In
contrast, ALPHA with k = 3 only requires a single access
to row590. However, this reduction in the number of row
accesses for ALPHA with k = 3 comes at an additional cost.
The conventional GRIM-Filter requires a small bin module
(cf. Fig. 4) consisting of one accumulator, one adder and
one comparator. In contrast, ALPHA requires a total of k
accumulators to hold the accumulated sum of the matched
tokens of k reads of the query genome with a particular
bin of the reference genome (cf. Fig. 8 for k = 3). Therefore,
ALPHA requires additional k - 1 accumulators. It is worth
mentioning that the same adder and comparator is used in
a serial fashion by processing the counts of additional k - 1
reads of the query genome compared to the GRIM-Filter.

4.4 Overhead analysis

The Token Count Table (TCT) tracks the counts of the tokens
relevant to recently accessed 2k reads of the query genome.
The TCT comprises 1024 rows and 2k columns where the
storage requirement of each column is 1024 × dlog2(RL)e
bits where RL refers to the read length. In addition, the
storage overhead for the scancomplete and processed fields are
2k bits each. Also, the bits required for qtag field are 2k ×
dlog2(k)e + 1. For our experiments, we vary k from 1 to
4. So the total number of bits required for qtag adds up to
(2k× 3). Considering the above overheads, the total storage
requirement of the TCT amounts to k × 2.25 kB assuming
that each read consists of 400 base pairs.

The preprocessing unit requires a FIFO buffer to hold the
recently scanned tokens belonging to the query genome. For
a 32-entry buffer, the storage overhead amounts to 320 bits
(32 × 10-bit/token = 320 bits). In addition, a dlog2(RL)e
bit adder is required to update the relevant entry in the
TCT. As depicted in Fig. 8, ALPHA also requires k - 1
more accumulators in each bin module. Therefore, the total
number of additional accumulators in ALPHA are (k - 1)
× ncols × M . The parameter ncols refers to the number
of columns in a subarray while M is the number of logic
modules (cf. Fig. 8). The area overhead analysis of ALPHA
compared to the GRIM-Filter is provided in Section 5.4 (cf.
Table 3 and Fig. 15) considering the overhead of the TCT,
the preprocessing unit, and the bin modules.

5 EVALUATION

This section provides the details of the experimental
methodology and the simulation infrastructure that are used
for qualitative and quantitative comparison of the proposed
pre-alignment filtering solution with the GRIM-Filter [13].

5.1 Experimental Methodology

Table 1 lists the name and number of reads of each data set
with a read length of 100 base pairs. The longer reads are
generated by combining multiple short reads. For instance,
a read length with 800 base pairs is generated by combining
eight adjacent reads of 100 base pairs. The details of impor-
tant parameters of our pre-alignment filter (i.e., read and
token size) and the memory system used in our evaluations
are shown in Table 2. Our reference genome consists of
450 × 216 bins. The total memory requirement to store the
bit vectors of the reference genome for a token size of 5 is
450×216×45 bits. This results in a total memory footprint of
approximately 3.5GB which can be easily stored in today’s
3D-stacked memories [33], [34], [35], [36].

The energy and area numbers for the various compo-
nents on the logic-in-memory layer are estimated using
McPat [37] and CACTI [38] which are provided in Table 3.
All of our simulations model an HBM2 [34] memory system
with latency and energy numbers taken from [39] and are
listed in Table 4.

For comparison, we do not consider the time required to
generate the metadata of the reference genome because it is
a one-time process and is the same for both the GRIM-Filter
and ALPHA.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 8

We instead measure the performance of ALPHA and the
GRIM-Filter by comparing the actual time of the filtering
operation which include the following timing parameters:

1) tmemoryaccess: The memory access time required to
retrieve the bins of the reference genome and load them
in the row registers.

2) tpreprocessing : For ALPHA only, the time spent on pre-
processing, which includes the latency overheads of the
buffer, the TCT, and the adder.

3) tk: For ALPHA only, the additional latency overheads
when the adders and comparators are used in a serial
fashion in the bin module for k > 1.

4) tforward: The time spent by the logic-in-memory layer
to forward the result of the filtering operation to the
sequence alignment step.

To estimate the time spent on the filtering operation,
we used a trace-based simulation environment based on
NVMain [40], which faithfully models HBM2 [34] timing
parameters highlighted in Table 4, and the above-mentioned
timing parameters.

5.2 Result Overview

The comparison of ALPHA with the GRIM-Filter in terms
of runtime and overall energy consumption is shown in
Fig. 11 and Fig. 12 respectively. Our results clearly indi-
cate that each variant of ALPHA outperforms the GRIM-
Filter in terms of runtime and energy consumption. As
depicted, ALPHA reduces the average runtime by 19.3%,
30.8%, 38.6%, and 43.8% compared to the GRIM-Filter for
k = 1, k = 2, k = 3, and k = 4, respectively. Similarly,
the energy improvement translates to 21.1%, 33.6%, 42.7%,
and 49%, respectively. The runtime and energy benefits
primarily come from the reduction in number of DRAM
accesses. The energy breakdown in Fig. 12 shows that the
overall energy consumption is dominated by the energy
consumed by the DRAM and that the energy consumed
by the logic components, i.e., adders, accumulators, and
comparators, is less prominent. This figure also shows that
ALPHA introduces a very small overhead in terms of energy
consumption. As k increases, the overhead energy incurred
by ALPHA increases, but its impact on the overall energy
consumption is largely compensated by the reduction in the
energy consumed by the DRAM and the logic-in-memory
layer. A detailed energy breakdown of the DRAM and the
components on the logic-in-memory layer is presented in
the following subsection.

5.3 Energy breakdown

For different variants of ALPHA and the GRIM-Filter, we
breakdown the energy consumption of the DRAM and the
components on the logic-in-memory layer, as shown in
Fig. 13 and Fig. 14 respectively. Fig. 13 highlights that with
an increasing value of k, the DRAM dynamic energy as well
as background energy is substantially reduced. This is due
to the fact that the probability of the occurrence of repeated
tokens is high when more reads of the query genome are an-
alyzed. The increase in repeated tokens reduces the number
of DRAM accesses which result in a reduction in dynamic
energy while the background energy gain is due to shorter

TABLE 2
Parameters details of the data set and memory

Parameter Value

Token size 5 base pairs
Read size 400 base pairs

Number of bins in the reference genome 450 x 216 bins
Memory size 4GB

Number of logic modules (M) 4
Number of memory banks 64 banks

Number of subarrays in a memory bank 64
Number of subarrays 64 x 64 = 4096

Number of columns in a subarray (ncols) 8192 bits
Number of rows in a subarray (nrows) 1024

TABLE 3
Energy and area for different logical components estimated from [37],

[38].

Component Energy (Dyn) Power (Leak) Area [µm2]

Adder 7.62 [fJ]? 18.0 [nW]? 0.65/bit
Comparator 5.12 [fJ]? 12.2 [nW]? 0.49/bit
Accumulator 10.80 [fJ]? 21.5 [nW]? 0.70/bit

Buffer (32 entries) 2.175 [pJ] 0.5332 [mW] 588
Row-Reg 4.84 [pJ] 2.16 [mW] 5419

TCT (k = 1) 6.93 [pJ] 1.70 [mW] 14916
TCT (k = 2) 10.37 [pJ] 2.61 [mW] 23563
TCT (k = 3) 14.81 [pJ] 4.17 [mW] 41763
TCT (k = 4) 25.70 [pJ] 6.44 [mW] 69230

?Energy/power consumption per bit.

runtime. The overhead energy incurred by ALPHA includes
the leakage energy of the additional accumulators, the over-
all energy consumption of the Token Count Table (TCT)
and the preprocessing unit (cf. Section 4.4 for overhead
analysis). The energy breakdown in Figure 14 indicates that
the overhead energy linearly increases with an increasing
value of k. However, this increase in the overhead energy
is largely offset by the drop in the dynamic and the leakage
energy of the logic module. The decrease in the dynamic
energy of the logic module with an increasing k is due to the
fact that less number of additions are required in ALPHA
compared to the GRIM-Filter (cf. Section 4.3).

5.4 Area breakdown
Although increasing the value of k reduces the runtime and
energy consumption of ALPHA compared to the GRIM-
Filter, this improvement comes at the cost of additional area
overhead (i.e., extra accumulators in the logic-in-memory
layer, preprocessing unit and the TCT) as depicted in Fig. 15.
For larger k, the area overhead becomes more significant on

TABLE 4
HBM2 DRAM energy and latency taken from [39]

Operation Value

Activation and precharge 909 [pJ]
Access energy 1.17 [pJ]/bit

I/O energy 0.80 [pJ]/bit
Background power 27.5 [mW]

tRC -tRCD-tRP -tRAS -tCL 45-16-16-29-16 [ns]
tRRD-tWR-tFAW -tWTRl-tWTRs 2-16-12-8-3 [ns]

tCCDL
-ttCCDS

-tBURST 4-2-2 [ns]

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 9

ERR24
07

26
_1

ERR24
07

26
_2

ERR24
07

27
_1

ERR24
07

27
_2

ERR24
07

28
_1

ERR24
07

28
_2

ERR24
07

29
_1

ERR24
07

29
_2

ERR24
07

30
_1

ERR24
07

30
_2

av
er

ag
e

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

k
=

 1
k

=
 2

k
=

 3
k

=
 4

0.00

0.25

0.50

0.75

1.00

R
un

tim
e

(n
or

m
al

iz
ed

)

Memory access latency Overhead (alpha)

Fig. 11. Runtime comparison of ALPHA with the GRIM-Filter. All results are normalized to the GRIM-Filter.

0.00

0.25

0.50

0.75

1.00

GRIMM k = 1 k = 2 k = 3 k = 4

E
ne

rg
y

co
ns

um
pt

io
n

(n
or

m
al

iz
ed

)

DRAM Energy Logic Energy Overhead Energy (ALPHA)

Fig. 12. Overall energy breakdown

0.00

0.25

0.50

0.75

1.00

GRIMM k = 1 k = 2 k = 3 k = 4

D
R

A
M

 E
ne

rg
y

(n
or

m
al

iz
ed

)

ACT−PRE Access/IO Background

Fig. 13. DRAM energy breakdown

the logic-in-memory layer. For k = 4, the area of the logic-
in-memory layer nearly doubles compared to the GRIM-
Filter. For 3D-stacked memories, the logic-in-memory layer
has the same area footprint as the memory layers for
manufacturing reasons [41]. Therefore, the logic-in-memory
layer introduces unused area that can easily accommodate
the extra overhead of ALPHA. Similarly, the latency and
energy overhead of the extra logic on the logic-in-memory
layer increases with increasing the value of k. Despite this
increase in the overheads for a larger k, the overall runtime

0.00

0.25

0.50

0.75

1.00

GRIMM k = 1 k = 2 k = 3 k = 4

E
ne

rg
y

(n
or

m
al

iz
ed

)

DynE (Logic Module) LeakE (Logic Module)

LeakE (overhead accumulators) DynE (Preprocessing unit + TCT)

LeakE (Preprocessing unit + TCT)

Fig. 14. Energy breakdown of the components on the logic-in-memory
layer

0.0

0.5

1.0

1.5

2.0

2.5

GRIMM k = 1 k = 2 k = 3 k = 4

A
re

a
(n

or
m

al
iz

ed
)

Logic Module Overhead Accumulators Preprocessing Unit + TCT

Fig. 15. Area breakdown of the components on the logic-in-memory
layer

and energy consumption decreases compared to a smaller
k (cf. Fig. 11 and Fig. 12). It is worth mentioning that k
= 1 introduces very small area overhead compared to the
GRIM-Filter. For k = 1, the preprocessing unit and the TCT
occupy an additional 2.75% of area.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 10

0.00

0.25

0.50

0.75

1.00

200 400 600 800
Read length

La
te

nc
y

(n
or

m
al

iz
ed

)

k = 1 k = 2 k = 3 k = 4

Fig. 16. Runtime for different read lengths averaged over all data sets
listed in Table 1. All results are normalized to the GRIM-Filter.

0.00

0.25

0.50

0.75

1.00

200 400 600 800
Read length

E
ne

rg
y

(n
or

m
al

iz
ed

)

k = 1 k = 2 k = 3 k = 4

Fig. 17. Energy consumption for different read lengths averaged over all
data sets listed in Table 1. All results are normalized to the GRIM-Filter.

5.5 Sensitivity to read length
Sequencing technologies produce read lengths in the range
of 100 to several million base pairs [42], [43]. It is predicted
that read lengths greater than 100,000 basepairs will be
required not only to generate high quality genome assem-
blies but also to detect and resolve structural variation [44].
In order to determine the impact of read length on the
overall runtime and energy consumption, we carried out
some experiments by sweeping the read length from 200 to
800. Fig. 16 and Fig. 17 show how varying the read length
affects the normalized runtime and energy consumption,
respectively. These results indicate that ALPHA consistently
outperforms the GRIM-Filter for all ranges of read lengths.
As the probability of the occurrence of repeated tokens is
high for the longer read lengths compared to the shorter
ones, ALPHA provides significant improvements in both
performance as well as energy consumption for the longer
reads, while the benefits are less prominent for shorter
reads.

For the previously reported results, ALPHA is tested
on the benchmarks with short read lengths (i.e., 200 to
800 base pairs), which are the same benchmarks used
in the evaluation of the GRIM-filter. This allows a direct
comparison of the approaches. To highlight the benefits
of ALPHA for the longer read lengths, we tested ALPHA
on a genome with around 12K base pairs. Specifically,
we used “m54238 180901 011437.Q20”3. As expected, the
longer reads result in a considerably higher percentage of

3. https://github.com/genome-in-a-bottle/giab data indexes/
blob/master/AshkenazimTrio/sequence.index.AJtrio PacBio CCS
15kb 10022018.HG002

token repetition. On average, the tokens repetition in each
read is around 92%, compared to around (14%, 24%, 40%,
52%, 61%) for read lengths of (200, 400, 800, 1200 and 1600)
respectively. Therefore, we expect proportional benefits in
the latency and the energy results for the longer reads
compared to the shorter ones.

6 CONCLUSIONS

This paper presents an efficient algorithm-hardware co-
design of a pre-alignment filter that outperforms the state-
of-the-art GRIM-Filter in terms of energy and runtime. We
propose a low overhead preprocessing unit that scans the
input reads to find repetitive tokens and their count in an
input genome. Our analysis of 10 human genomes showed
that input reads most often have repetitive tokens. We ex-
ploit this fact to reduce the number of memory accesses and
arithmetic operations in the filtering process. For a given
token that is repeated n times, the GRIM-Filter requires n
memory accesses and n increment operations, while our
proposed approach requires single memory access and a sin-
gle add operation, thanks to the token count table that stores
the repetition information. This significant reduction in the
number of memory accesses and the number of arithmetic
operations improves the runtime and energy consumption
of the pre-alignment filter by an average of 19-44% and 21-
49%, respectively. Note that these improvements are on top
of the end-to-end read mapping improvement reported by
the GRIM-Filter, i.e., 1.81− 3.65×.

We believe the energy consumption of ALPHA can be
further reduced by replacing the power-hungry DRAM
with emerging memory technologies such as the racetrack
memory [45]. However, since these technologies have their
limitations, appropriate changes are required to the ALPHA
architecture to address them. We are planning to explore
this from different perspectives in future research, aiming at
further reducing energy consumption.

ACKNOWLEDGMENTS

This work was partially funded by the German Research
Council (DFG) through the DART-HMS project HA 9123/1-
1 (project number 437232907) and the TraceSymm project
CA 1602/4-1 (project number 366764507).

REFERENCES

[1] Illumina Inc., “Hiseq XTM series of sequencing systems,”
https://emea.illumina.com/content/dam/illumina-marketing/
documents/products/datasheets/datasheet-hiseq-x-ten.pdf,
accessed: 2020-06-19.

[2] M. Vasimuddin, S. Misra, H. Li, and S. Aluru, “Efficient
architecture-aware acceleration of bwa-mem for multicore sys-
tems,” 2019, pp. 314–324.

[3] T. F. Smith and M. S. Waterman, “Identification of Common
Molecular Sub sequences,” Journal of Molecular Biology, vol. 147,
no. 1, pp. 195–197, March 1981.

[4] S. B. Needleman and C. D. Wunsch, “A General Method Applica-
ble to the Search for Similarities in the Amino Acid Sequence of
Two Proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443 –
453, 1970.

[5] H. Li, “Minimap and miniasm: fast mapping and de novo assem-
bly for noisy long sequences,” Bioinformatics, vol. 32, no. 14, pp.
2103–2110, 2016.

[6] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, no. 18, pp. 3094–3100, 05 2018.

https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_PacBio_CCS_15kb_10022018.HG002
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_PacBio_CCS_15kb_10022018.HG002
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_PacBio_CCS_15kb_10022018.HG002
https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-hiseq-x-ten.pdf
https://emea.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/datasheet-hiseq-x-ten.pdf

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 11

[7] C. Jain, S. Misra, H. Zhang, A. Dilthey, and S. Aluru, “Accelerating
sequence alignment to graphs,” in 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2019, pp. 451–461.

[8] N. Ahmed, J. Lévy, S. Ren, H. Mushtaq, K. Bertels, and Z. Al-Ars,
“Gasal2: a gpu accelerated sequence alignment library for high-
throughput ngs data,” BMC Bioinformatics, vol. 20, 2019.

[9] Y. Turakhia, K. Zheng, G. Bejerano, and W. Dally, “Darwin: A
hardware-acceleration framework for genomic sequence align-
ment,” bioRxiv, 2017.

[10] M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: a New Hardware Architecture for Accelerating Pre-
alignment in DNA Short Read Mapping,” Bioinformatics, vol. 33,
no. 21, pp. 3355–3363, 2017.

[11] H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan,
“Accelerating Read Mapping with FastHASH,” BMC Genomics,
vol. 14, no. S1, 2013.

[12] H. Xin, S. Nahar, R. Zhu, J. Emmons, G. Pekhimenko, C. Kingsford,
C. Alkan, and O. Mutlu, “Optimal Seed Solver: Optimizing Seed
Selection in Read Mapping,” Bioinformatics, vol. 32, no. 11, pp.
1632–1642, 2016.

[13] J. Kim, D. Senol Cali, H. Xin, D. Lee, S. Ghose, M. Alser, H. Hassan,
O. Ergin, C. Alkan, and O. Mutlu, “GRIM-Filter: Fast Seed Loca-
tion Filtering in DNA Read Mapping using Processing-in-memory
Technologies,” BMC Genomics, vol. 19, no. 2, 2018.

[14] A. Nag, C. N. Ramachandra, R. Balasubramonian, R. Stutsman,
E. Giacomin, H. Kambalasubramanyam, and P.-E. Gaillardon,
“GenCache: Leveraging In-Cache Operators for Efficient Sequence
Alignment,” in Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, ser. MICRO ’52, 2019, p.
334346.

[15] S. Banerjee, M. El-Hadedy, J. Lim, Z. Kalbarczyk, D. Chen,
S. Lumetta, and R. Iyer, “ASAP: Accelerated Short-Read Align-
ment on Programmable Hardware,” IEEE Transactions on Comput-
ers, vol. 68, no. 3, p. 331346, Mar. 2019.

[16] M. Alser, T. Shahroodi, J. Gmez-Luna, C. Alkan, and O. Mutlu,
“Sneakysnake: a fast and accurate universal genome pre-
alignment filter for cpus, gpus and fpgas,” Bioinformatics, 12 2020.

[17] P. Chen, C. Wang, X. Li, and X. Zhou, “Accelerating the next
Generation Long Read Mapping with the FPGA-Based System,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 11, no. 5, p. 840852, Sep. 2014.

[18] D. Cali, G. Kalsion, Z. Bingöl, C. Firtina, L. Subramanian, J. Kim,
R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand,
A. Nori, A. Scibisz, S. Subramoney, C. Alkan, S. Ghose, and
O. Mutlu, “Genasm: A high-performance, low-power approximate
string matching acceleration framework for genome sequence
analysis,” in Proceedings - 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2020, ser. Proceedings of
the Annual International Symposium on Microarchitecture, MI-
CRO, October 2020, pp. 951–966.

[19] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “GenAx: A Genome Sequencing Accelera-
tor,” in Proceedings of the 45th Annual International Symposium on
Computer Architecture, ser. ISCA ’18, 2018, p. 6982.

[20] M. Alser, Z. Bingöl, D. S. Cali, J. S. Kim, S. Ghose, C. Alkan, and
O. Mutlu, “Accelerating genome analysis: A primer on an ongoing
journey,” IEEE Micro, vol. 40, no. 5, pp. 65–75, 2020.

[21] D. Kim, J. Paggi, C. Park, C. Bennett, and S. Salzberg, “Graph-
based Genome Alignment and Genotyping with HISAT2 and
HISAT-genotype,” Nature Biotechnology, vol. 37, no. 8, pp. 907–915,
8 2019.

[22] F. Hach, I. Sarrafi, F. Hormozdiari, C. Alkan, E. Eichler, and
C. Sahinalp, “Mrsfast-ultra: A compact, snp-aware mapper for
high performance sequencing applications,” Nucleic acids research,
vol. 42, no. W1, pp. W494–W500, 05 2014.

[23] A. Ahmadi, A. Behm, N. Honnalli, C. Li, L. Weng, and X. Xie,
“Hobbes: optimized gram-based methods for efficient read align-
ment,” Nucleic Acids Research, vol. 40, no. 6, 2012.

[24] C. Alkan, J. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci,
F. Hormozdiari, J. Kitzman, C. Baker, M. Malig, O. Mutlu, C. Sahi-
nalp, R. Gibbs, and E. Eichler, “Personalized Copy Number and
Segmental Duplication Maps using Next-generation Sequencing,”
Nature genetics, vol. 41, no. 10, pp. 1061–1067, October 2009.

[25] S. Rumble, P. Lacroute, A. Dalca, M. Fiume, A. Sidow, and
B. Michael, “SHRiMP: Accurate Mapping of Short Color-space
Reads,” PLoS Computational Biology, vol. 5, no. 5, 2009.

[26] F. Hormozdiari, F. Hach, C. Sahinalp, E. Eichler, and C. Alkan,
“Sensitive and Fast Mapping of Di-base Encoded Reads,” Bioinfor-
matics, vol. 27, no. 14, pp. 1915–1921, 05 2011.

[27] D. Weese, A.-K. Emde, T. Rausch, A. Döring, and K. Reinert,
“RazerS – Fast Read Mapping with Sensitivity Control.” Genome
research, vol. 19, no. 9, pp. 1646–1654, 2009.

[28] K. Brinda, M. Sykulski, and G. Kucherov, “Spaced Seeds Improve
k-mer-based Metagenomic Classification,” Bioinformatics, vol. 31,
no. 22, pp. 3584–3592, 07 2015.

[29] S. Girotto, M. Comin, and C. Pizzi, “Efficient Computation of
Spaced Seed Hashing with Block Indexing,” BMC Bioinformatics,
vol. 19, 11 2018.

[30] G. Auwera, M. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-
Moonshine, T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks,
K. Garimella, D. Altshuler, S. Gabriel, and M. DePristo, “From
fastq data to high-confidence variant calls: The genome analysis
toolkit best practices pipeline,” Current protocols in bioinformatics,
vol. 11, pp. 11.10.1–11.10.33, 10 2013.

[31] “Igsr: The international genome sample resource,” https://www.
internationalgenome.org/, accessed: 2020-06-19.

[32] D. Altshuler, G. Abecasis, D. Bentley, A. Chakravarti, A. Clark,
P. Donnelly, E. Eichler, P. Flicek, S. Gabriel, R. Gibbs, E. Green,
M. Hurles, B. Knoppers, J. Korbel, E. Lander, C. Lee, H. Lehrach,
E. Mardis, and G. Consortium, “An integrated map of genetic
variation from 1,092 human genomes,” Nature, vol. 491, pp. 56–
65, 11 2012.

[33] C. Weis, M. Jung, and N. Wehn, “3d stacked dram memories,” in
Handbook of 3D Integration: Design, Test, and Thermal Management,
P. D. Franzon, E. J. Marinissen, and M. S. Bakir, Eds., 2016, vol. 4,
ch. 8.

[34] J. Kim and Y. Kim, “HBM: Memory Solution for Bandwidth-
hungry Processors,” in 2014 IEEE Hot Chips 26 Symposium (HCS),
Aug 2014, pp. 1–24.

[35] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H.
Kim, D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J.
Kim, J. Lee, K. W. Park, B. Chung, and S. Hong, “25.2 a 1.2v 8gb
8-channel 128gb/s high-bandwidth memory (hbm) stacked dram
with effective microbump i/o test methods using 29nm process
and tsv,” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2014, pp. 432–433.

[36] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee:
Bandwidth-efficient DRAM Caching via Software/Hardware Co-
operation,” in Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2017, pp. 1–14.

[37] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,”
in Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, 2009, pp. 469–480.

[38] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Opti-
mizing nuca organizations and wiring alternatives for large caches
with cacti 6.0,” in 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), 2007, pp. 3–14.

[39] M. O’Connor, N. Chatterjee, D. Lee, J. Wilson, A. Agrawal, S. W.
Keckler, and W. J. Dally, “Fine-Grained DRAM: Energy-Efficient
DRAM for Extreme Bandwidth Systems,” in Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 41–54.

[40] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,”
IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, July
2015.

[41] G. Loh, “A Register-file Approach for Row Buffer Caches in Die-
stacked DRAMs,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, 2011, pp. 351–361.

[42] S. Jünemann, F. Sedlazeck, K. Prior, A. Albersmeier, U. John,
J. Kalinowski, A. Mellmann, A. Goesmann, A. von Haeseler,
J. Stoye, and D. Harmsen, “Updating Benchtop Sequencing Per-
formance Comparison,” Nature Biotechnology, vol. 31, pp. 294–296,
04 2013.

[43] M. Quail, M. Smith, P. Coupland, T. Otto, S. Harris, T. Connor,
A. Bertoni, H. Swerdlow, and Y. Gu, “A Tale of Three Next
Generation Sequencing Platforms: Comparison of Ion Torrent, Pa-
cific Biosciences and Illumina MiSeq sequencers,” BMC genomics,
vol. 13, p. 341, 07 2012.

[44] M. Chaisson, R. Wilson, and E. Eichler, “Genetic Variation and the

https://www.internationalgenome.org/
https://www.internationalgenome.org/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. X, SEPTEMBER 2021 12

De Novo Assembly of Human Genomes,” Nature Reviews. Genetics,
vol. 16, no. 11, pp. 627–640, 10 2015.

[45] R. Bläsing, A. A. Khan, P. C. Filippou, C. Garg, F. Hameed,
J. Castrillon, and S. S. Parkin, “Magnetic racetrack memory: From
physics to the cusp of applications within a decade,” Proceedings
of the IEEE, vol. 108, no. 8, pp. 1303–1321, 2020.

Fazal Hameed Fazal Hameed received his
Ph.D. (Dr.-Ing.) degree in computer science from
the Karlsruhe Institute of Technology (KIT), Karl-
sruhe, Germany, in 2015. He joined the chair for
Compiler Construction at the TU Dresden (Dres-
den, Germany) as Post-doctoral researcher in
March 2016. Before, he worked on a similar
position at the Chair of Dependable and Nano
Computing (CDNC) Karlsruhe Institute of Tech-
nology (KIT), Germany. He is currently affiliated
with Institute of Space Technology, Islamabad,

Pakistan. He mainly works in the architecture group with a focus on
memories. Mr. Hameed was a recipient of the CODES+ISSS 2013
Best Paper Nomination for his work on DRAM cache management in
multicore systems. He has served as an External Reviewer for major
conferences in embedded systems and computer architecture.

Asif Ali Khan Asif Ali Khan is currently pursuing
his Ph.D. at the Chair for Compiler Construc-
tion in the Computer Science Department of the
TU Dresden, Germany. His research interests
include Computer architecture, heterogeneous
memories, and compiler support for the mem-
ory system. Currently, Asif’s research mainly
focuses on exploring the emerging nonvolatile
memory technologies in the memory subsys-
tems and their optimizations for various metrics.

Jeronimo Castrillon Jeronimo Castrillon is a
professor in the Department of Computer Sci-
ence at the TU Dresden, where he is also af-
filiated with the Center for Advancing Electronics
Dresden (CfAED). He is the head of the Chair
for Compiler Construction, with research focus
on methodologies, languages, tools and algo-
rithms for programming complex computing sys-
tems. He received the Electronics Engineering
degree from the Pontificia Bolivariana University
in Colombia in 2004, the master degree from the

ALaRI Institute in Switzerland in 2006 and the Ph.D. degree (Dr.-Ing.)
with honors from the RWTH Aachen University in Germany in 2013.
Prof. Castrillon served in the executive committee of the ACM “Future of
Computing Academy” from 2017 to 2019.

	Introduction
	Background and related work
	Sequence alignment
	Seed location filtering
	GRIM-Filter
	PIM implementation of the GRIM-Filter

	Data access analysis
	The ALPHA Filter
	Overview
	Preprocessing of the query genome
	Improved query genome processing
	Overhead analysis

	Evaluation
	Experimental Methodology
	Result Overview
	Energy breakdown
	Area breakdown
	Sensitivity to read length

	Conclusions
	References
	Biographies
	Fazal Hameed
	Asif Ali Khan
	Jeronimo Castrillon

