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Domain-specific hybrid mapping for energy-efficient
baseband processing in wireless networks
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Advancing telecommunication standards continuously push for larger bandwidths, lower latencies, and faster

data rates. The receiver baseband unit not only has to deal with a huge number of users expecting connectivity

but also with a high workload heterogeneity. As a consequence of the required flexibility, baseband processing

has seen a trend towards software implementations in cloud Radio Access Networks (cRANs). The flexibility

gained from software implementation comes at the price of impoverished energy efficiency. This paper

addresses the trade-off between flexibility and efficiency by proposing a domain-specific hybrid mapping

algorithm. Hybrid mapping is an established approach from the model-based design of embedded systems that

allows us to retain flexibility while targeting heterogeneous hardware. Depending on the current workload, the

runtime system selects the most energy-efficient mapping configuration without violating timing constraints.

We leverage the structure of baseband processing, and refine the scheduling methodology, to enable efficient

mapping of 100s of tasks at the millisecond granularity, improving upon state-of-the-art hybrid approaches.

We validate our approach on an Odroid XU4 and virtual platforms with application-specific accelerators.

On different LTE workloads, our hybrid approach shows significant improvements both at design time and

at runtime. At design-time, mappings of similar quality to those obtained by state-of-the-art methods are

generated around four orders of magnitude faster. At runtime, multi-application schedules are computed

37.7 % faster than the state-of-the-art without compromising on the quality.
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1 INTRODUCTION
The rapid growth of mobile data demands on wireless networks represents a huge challenge for

traditional distributed radio access networks (RANs). Compared to its predecessor 4G LTE, the

fifth generation (5G) network is envisioned to support 1000× higher data traffic [4]. It introduces

new use cases that expand the variety of possible applications to be handled in a base band unit

(BBU). As the number of connected devices increases in the Internet of Things (IoT), data traffic
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will not only be generated by conventional mobile phones but a variety of devices with diverse

requirements. To support this workload heterogeneity, future networks require many more and

flexible BBUs, ranging from full-fledged stations to femtocells or even smart surfaces [40]. These

challenges are only expected to increase with upcoming telecommunication standards [34].

For multiple reasons, baseband processing has seen a trend towards software implementa-

tions. First, the introduction of cloud RANs (cRANs) [14] allowed an efficient resource allocation

in a shared centralized system. Then, virtualized RANs (vRANs) [46] enabled the move from

costly, COTS-based solutions to software-based ones, leveraging cRANs and the utilization of

programmable hardware. Software is more flexible, it permits implementing multiple standards

and variations, besides adapting better to heterogeneous, dynamic workloads. This allows cutting

down on development costs and a shorter time-to-market. A similar motivation led to a large body

of research on software defined radio (SDR) for handheld devices a decade ago [43]. Compared

to handhelds, the more dynamic and multi-user nature of BBUs makes cRAN considerably more

challenging.

The flexibility gained from moving to software implementations comes at a high price: (energy)

efficiency. Application Specific Integrated Circuits (ASICs) are orders of magnitude more efficient

at performing specific tasks compared to a general-purpose processor, especially for baseband

processing kernels [8]. They are, however, inflexible to changes in the standard. In addition to

this, virtualization and the diversity of target hardware makes it hard to specialize baseband

implementations in the context of a vRAN, so as to leverage hardware acceleration. Reconfigurable

hardware (e.g. FPGAs) is an alternative to ASICs that provides a better trade-off between flexibility

and efficiency, albeit one that is ill-suited to deal with the runtime changes of a heterogeneous

workload. Modern hardware-based approaches that exploit dynamic reconfigurability in FPGAs,

coarse-grained reconfigurable arrays (CRGAs) [21], or application-specific processors [35] address

these issues, targeting different points in the spectrum of flexibility and efficiency, further increasing

the hardware heterogeneity of systems. Programming these complex, heterogeneous systems

requires a structured approach to software/hardware co-design [1, 6, 49].

A well-studied class of structured approaches to hardware/software co-design is what is known

as model-based design [31]. In model-based design, the execution of the application is governed

by a well-defined Model of Computation (MoC). Using models of the hardware architecture and

the application, efficient execution of the application can be derived via design-space exploration.

There is plenty of research on model-based design for signal processing systems in general [19] and

for deeply specialized baseband processing systems [13, 36]. For dealing with dynamic behavior in

model-based design, we can use hybrid mappings, where multiple static mappings are generated at

compile-time and one is selected dynamically. It has been shown that hybrid mappings improve

the efficiency [22, 32, 47] and predictability [18] of the execution while enabling dynamic behavior.

In their full generality, domain-oblivious approaches for hybrid mapping of model-based appli-

cations have been developed and validated for comparatively smaller applications, consisting of a

couple of dozen of tasks, at most. In BBU design, in contrast, the processing for each user equipment

(UE) consists of several dozens of computational tasks. Scaling these methods accordingly requires

domain-specific improvements which leverage the structure of the application.

In this paper, we propose a domain-specific, model-based hybrid mapping approach for BBU

design, addressing the trade-off between flexibility and efficiency. Crucially, static mappings enable

both, generating code for software-only solutions, but also hardware-accelerated implementations.

With a hybrid approach, we can retain the flexibility. In particular, we show we can greatly improve

the scalability at design time w.r.t. existing methods (e.g., [17, 24, 29]) up to hundreds of tasks, using

knowledge from the structure of the problem (Section 3.2). We also reduce the runtime overhead

w.r.t. other hybrid solutions (e.g., [22, 27, 48]) by refining the scheduling methodology (Section 3.3).
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The main contribution of this paper is showing how hybrid mapping strategies are viable for flexible

and efficient executions of baseband processing. We work with a benchmark of an LTE base station

and extract a parameterized model of computation for baseband processing (Section 2). Given that

the number of parameters involved tends to increase with the upcoming standards, having this

parameterization will allow us to easily extend the model for newer protocols. We evaluate this on

a model validated on an Odroid XU4, extrapolating from real recorded LTE traces (Section 4).

2 BASEBAND PROCESSING
Baseband processing is a computationally demanding task, historically requiring considerable effort

by expert teams at telecommunication companies in hardware-software co-design. At the side of

the base station, for the uplink communication in LTE, incoming data is structured into multiple

blocks. These blocks, referred to as subframes, each corresponds to 1 ms in the time domain. Every

subframe consists of two adjacent slots lasting 0.5 ms each, and each slot contains 14 symbols. The

frequency domain is divided into sub-carriers spaced 15 kHz apart from each other. Data coming

in every subframe contains the information from up to 10 user equipments (UEs) received by the

antennas of the base station. Each UE transmits an integer number of physical resource blocks

(PRBs), where a PRB corresponds to the minimum possible amount of data allocated to a single UE,

or more precisely, one subframe in the time domain and 12 subcarriers in the frequency domain [2].

phase1 (𝜙1)
(𝜙1 [𝛾] = 1)

phase2 (𝜙2)
(𝜙2 [𝛾] = ant × lay)

phase3 (𝜙3)
(𝜙3 [𝛾] = sc)
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phase4 (𝜙4)
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(𝜙5 [𝛾] = sc × slt)

phase6 (𝜙6)
(𝜙6 [𝛾] = 1)

Fig. 1. Block diagram of a baseband receiver

A typical model of a baseband receiver is shown in Figure 1. The physical layer of the baseband

processing consists of a series of computational tasks grouped into phases 𝜙 . Such tasks are

used to reconstruct the data sent by the transmitter. They then pass it to the upper layers of

the communication stack. Typical tasks include a matched filter, fast Fourier transform (FFT),

windowing, inverse FFT (IFFT), antenna combining, combiner weights calculation, or soft symbol

demaping. These tasks exhibit a high runtime variation since their functionality is controlled by

multiple parameters, such as the number of UEs, the number of PRBs allocated to each of them, the

number of antennas (ant) at the base station, the modulation scheme, the number of concurrent

streams of data being sent by the UE, also known as layers (lay), the number of slots (slt) per

subframe, which is fixed to two in LTE, but is more variable in 5G, the number of subcarriers (sc)

per slot in the frequency domain and the number of symbols (sym) per slot in the time domain. This

parameterization is a key source of the flexibility of modern and upcoming wireless communication
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Performance estimation

Fig. 2. General hybrid mapping flow

standards. It is also a key factor driving the trend away from inflexible hardware and towards more

flexible software implementations.

Depending on the aforementioned parameters, the baseband processing chain for a single UE

within a subframe varies in terms of its runtime and computational structure. The parameters

control the degree of data parallelism for each phase 𝜙 , where all tasks of a phase have the same

degree of parallelism, indicated by 𝛾 in the figure. As mentioned before, parameters such as the

number of PRBs allocated to the UE and the modulation scheme, also control the computational

intensity of the task instances and, thus, the performance requirements. Each user in a subframe

may be served by a different dataflow graph. The degree of parameterization is already higher

in 5G, which operates at a higher bandwidth. In addition to the classical mobile communication

with enhanced mobile broadband (eMBB), 5G introduces new uses cases: massive machine-type

communications (mMTC), and ultra-reliable low-latency communications (URLCC) [51]. Every

UE request in an upcoming subframe has to be processed within a certain deadline, otherwise the

request is discarded. Different use cases have different deadlines, namely, 2.5ms for eMBB and

mMTC, and 0.5ms for URLCC. There is a clear increasing trend in upcoming standards for richer

parameterization and supported use cases.

For the work in this paper, we use the PHY benchmark [37], which features a structure similar

to that from Figure 1. The benchmark is an implementation of an LTE baseband processing system

and it is suitable for handling realistic LTE workloads. It captures the parallelism of LTE with a

configurable multi-threaded implementation.

3 HYBRID MAPPING FOR BASEBAND PROCESSING
Figure 2 gives an overview of hybrid mapping approaches in general, which can be divided into

a design-time and a runtime flow. At design time, mappings are generated using a design-space

exploration (DSE) technique. By leveragingmodels of the application and the target architecture, this

DSE step can pre-compute a set of energy-efficient mappings that allow the system constraints to be

met. These pre-computed mappings, sometimes also called operating points, approximate a set of

Pareto-optimal points in the multi-dimensional objective space of energy efficiency, execution time,

and resource utilization. These might be partial mappings, given as constraints [47] or complete

mappings, which are later to be transformed at runtime [18].

The runtime resource manager receives the set of (approximately) Pareto-optimal operating

points, which correspond to different mapping variants. When executing a new application at

runtime, it selects a (spatial) mapping variant based on the current system workload. The selected

variant is then adapted to the current systemworkload, either by finalizing themapping computation

from a partial mapping or by transforming a complete mapping to utilize the free resources in the

platform. This yields a mapping that can be executed in the system.
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In some approaches, the resource manager also generates a temporal schedule for the application.

It is worth noting that spatial mapping is a special case of the general scheduling problem, which

can also be described as a spatio-temporal mapping problem. It is common, as we do in this paper, to

split this problem into two sub-problems, the spatial mapping problem and the temporal schedule.

Our hybrid approach calculates both, based on statically generated (spatial) mappings.

In the following, we present our approach, including our novel domain-specific specializations.

The general problem formulation and runtime resource managing algorithm are based on the

formulation in [22]. We borrow some terminology from that work and explain here for context.

3.1 System model
In this section we introduce the input models: a platform model, an application model and a task

model. Based on these, we describe the different stages of the hybrid mapping methodology.

3.1.1 Platform model. For the platform model we assume a heterogeneous platform P that contains

a set of processing elements Θ. Each processing element 𝜃 ∈ Θ is of one of the𝑚 resource types

Ω = {Ω1, . . . ,Ω𝑚}, and 𝜔𝑖 denotes the number of resources of type Ω𝑖 . We thus denote the number

of resources of each type in the platform by P[ ®𝜔] = (𝜔1, . . . , 𝜔𝑚). Each processing element 𝜃

could represent either a regular processor core or an application-specific accelerator. Below, where

needed, we explicitly distinguish the general-purpose processor cores and the accelerators. The

crucial difference being that accelerators cannot execute arbitrary tasks, whereas regular cores can.
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Fig. 3. General task graph with a phase-sequential structure.

3.1.2 Application model. The platform executes jobs represented by a task graph with a phase-
sequential structure depicted in Figure 3. Each phase 𝜙 = 𝜙 ⟨Π, 𝛾⟩ contains the ordered set of tasks

𝜙 [Π] = (𝜋1, . . . , 𝜋 |𝜙 [Π] |), which are connected in sequential order, i.e., there is a communication

edge from 𝜋𝑖 to 𝜋𝑖+1, for 𝑖 ∈ {1, . . . , |𝜙 [Π] | − 1}. The whole phase could be data-level parallelized

with a parallelization factor 𝜙 [𝛾] and the tasks in each replica 𝜙 [Π𝑘 ] = (𝜋𝑘
1
, . . . , 𝜋𝑘|𝜙 [Π] |) do not

depend on tasks in other replicas of the same phase.

The phases 𝜙 ∈ Φ in the task graph are ordered sequentially: The final tasks of a phase 𝜙𝑖
are connected to all the replicas of the first task in the subsequent phase 𝜙𝑖+1, i.e., there is a

communication edge from 𝜙𝑖 [𝜋𝑘
′

|𝜙𝑖 [Π] |] to 𝜙𝑖+1 [𝜋
𝑘′′
1
] ∀𝑘 ′ ∈ {1, . . . , 𝜙𝑖 [𝛾]}, 𝑘 ′′ ∈ {1, . . . , 𝜙𝑖+1 [𝛾]}. A

task graph is defined as an ordered set of phases, i.e. 𝜆 = 𝜆®𝜂 ⟨Φ⟩, where ®𝜂 is the list of parameters. In

the case of the model presented in Section 2, we have (𝜂1, 𝜂2, 𝜂3, 𝜂4) = (PRBs,mod, lay, ant).

3.1.3 Task model. A task 𝜋 is annotated with energy-performance data ⟨®𝜏, ®𝜉⟩ (®𝜏 = (𝜏1, . . . , 𝜏𝑚),
®𝜉 = (𝜉1, . . . , 𝜉𝑚)), where 𝜋 [𝜏𝑖 ] and 𝜋 [𝜉𝑖 ] are the latency and the energy consumption of the task 𝜋

on Ω𝑖 . If the task cannot be executed on the particular resource type Ω𝑖 , then 𝜋 [𝜏𝑖 ] = 𝜋 [𝜉𝑖 ] = ⊥.
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Table 1. Summary of the notations used in this work.

Notation Comment

𝑋 ⟨. . .⟩ An object 𝑋 with the parameters.

𝑋 [•] Access to the parameter in the object 𝑋

P⟨Θ,Ω,Θ→ Ω⟩ A platform P with the resources Θ of the resource types Ω
𝜆 (PRBs,mod,lay) ⟨Φ⟩ An application 𝜆 with phases Φ
𝜙 ⟨Π, 𝛾⟩ A phase structure: an ordered set of tasks Π and a replication factor 𝛾

𝜙 [Π𝑘𝑖 ] The 𝑖-th process in the 𝑘-th replica of the phase 𝜙

𝜋 ⟨®𝜏, ®𝜉⟩ A task with latency 𝜏 and energy consumption 𝜉 for each resource type Ω

𝑐
𝑗

𝜆
⟨𝜇, 𝜏, 𝜉⟩ An operating point characterized by a mapping 𝜇, latency 𝜏 and energy 𝜉

Σ𝑡 A set of (non-finished) requests registered at the runtimemanager, including

the newly arrived requests at time 𝑡

𝜎 ⟨𝛼, 𝛿, 𝜆, 𝜌⟩ A request information: an application 𝜆, 𝛼 is arrival time, 𝛿 is deadline, 𝜌 is

a remaining progress ratio

𝜈 ⟨𝜎, 𝜆, 𝑐, 𝜇⟩ A finalized job configuration: a job 𝜎 , an application 𝜆, a configuration 𝑐 ,

the final mapping 𝜇

𝑀 , Δ𝑀 A multi-aplication mapping𝑀 and a time interval Δ𝑀 = [Δ𝑀 ,Δ𝑀 ) of the
mapping𝑀

𝐾 A schedule

3.2 Generation of operating points
As depicted in Figure 2, the hybrid mapper requires a set of Pareto-optimal operating points

generated at design time. In this section, we define what operating points are and introduce a fast

mapping generator based on load balancing, which exploits the phase-sequential structure of the

task graphs and targets both regular processing elements and accelerators.

3.2.1 Operating points. An operating point is characterized by the mapping 𝜇, the (worst-case)

latency 𝜏 and the energy consumption 𝜉 , i.e., 𝑐 = 𝑐
𝑗

𝜆
⟨𝜇, 𝜏, 𝜉⟩. We denote the set of resources used in

themapping 𝜇 by 𝜇 [Θ]. We assume that at each operating point 𝑐 the mappings 𝑐 [𝜇] are generated in
such way that all resources 𝑐 [𝜇] [Θ] (or simply 𝑐 [Θ]) process the workload with a constant progress

rate. Generated operating points are assumed to be Pareto-filtered, such that each operating point

is better than any other in at least one parameter, i.e., less number of cores of any particular type

®𝜔 , lower latency 𝜏 or energy consumption 𝜉 . Additionally, we assume the operating points also

to be filtered with the application requirements. Concretely, we assume that no operating points

violating the real-time constraints are considered. In total, for each application 𝜆, we generate 𝑁𝜆
operating points.

3.2.2 Fast mapping algorithm. We propose a fast mapping algorithm which exploits the phase-

sequential structure of the task graphs. As input, the algorithm takes the task graph with the

inherent structure information 𝜆⟨Φ⟩, the energy-performance data of each task 𝜋 ⟨®𝜏, ®𝜉⟩, the set
of the processor resources Θ and accelerators Θ̃. Mapping of the tasks to the resources is done

sequentially on each phase 𝜙 ∈ 𝜆[Φ]. The implementation of a single phase mapping is written in

Algorithm 1, and mainly consists of two steps: it maps to regular resources (lines 2-5), and then

remaps some of the tasks to the accelerators (lines 6-19). Along with the formal description, we
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Algorithm 1 Phased-Fast mapping algorithm.

Input: Phase structure 𝜙 , regular resources Θ, accelerators Θ̃
Output: Phase mapping 𝜇𝜙 : 𝜋 ↦→ 𝜃 , delay 𝜏𝜙 , energy 𝜉𝜙

// Calculate per-core the delay of all processes 𝑡 [𝜃 ], and initialize the total delay 𝑇 [𝜃 ]
1: for all 𝜃 ∈ Θ do 𝑡 [𝜃 ] = ∑

𝜋 ∈𝜙 [Π] 𝜋 [𝜏𝜃 ], 𝑇 [𝜃 ] = 0

// Perform load balancing on regular resources

2: for 𝑗 ← 1 to 𝜙 [𝛾] do
3: 𝜃 ∗ ← argmin𝜃 ∈Θ 𝑡 [𝜃 ] +𝑇 [𝜃 ]
4: 𝑇 [𝜃 ∗] ← 𝑇 [𝜃 ∗] + 𝑡 [𝜃 ∗]
5: for all 𝜋 ∈ 𝜙 [Π] do 𝜇𝜙 [𝜋 𝑗 ] ← 𝜃 ∗

// Re-balancing to accelerators

6: for all 𝜃 ∈ Θ̃ do
7: 𝑇 [𝜃 ] = 0

// Accelerator has no workload till the first data is available

8: for all 𝜋 ∈ 𝜙 [Π] do
9: if 𝜋 [𝜏𝜃 ] ≠ ⊥ then break
10: 𝑇 [𝜃 ] ← 𝑇 [𝜃 ] +min𝜃 ′∈Θ∪Θ̃\𝜃 𝜋 [𝜏𝜃 ′]
11: for all 𝜋 ∈ 𝜙 [Π] do
12: Θ̃𝜋 ← {𝜃 | 𝜃 ∈ Θ̃ ∧ 𝜋 [𝜏𝜃 ] ≠ ⊥}
13: if Θ̃𝜋 = ∅ then continue
14: for 𝑗 ← 1 to 𝜙 [𝛾] do
15: 𝜃 ′← argmax{𝜃 ∈Θ |∃𝑘,𝜇 [𝜋𝑘 ]=𝜃 }𝑇 [𝜃 ]
16: 𝜃 ′′← argmin𝜃 ∈Θ̃𝜋 𝑇 [𝜃 ]
17: if 𝑇 [𝜃 ′] − 𝜋 [𝜏𝜃 ′] < 𝑇 [𝜃 ′′] + 𝜋 [𝜏𝜃 ′′] then break
18: 𝜇𝜙 [𝜋 𝑗 ] ← 𝜃 ′′

19: 𝑇 [𝜃 ′] ← 𝑇 [𝜃 ′] − 𝜋 [𝜏𝜃 ′], 𝑇 [𝜃 ′′] ← 𝑇 [𝜃 ′′] + 𝜋 [𝜏𝜃 ′′]
// Calculate phase delay and energy

20: 𝜏𝜙 ← max𝜃 ∈Θ∪Θ̃𝑇 [𝜃 ]
21: 𝜉𝜙 ←

∑
𝜋 ∈𝜙 [Π], 𝑗 ∈{1,...,𝜙 [𝛾 ] } 𝜋 [𝜉𝜇𝜙 [𝜃 ]]

22: return 𝜇𝜙 , 𝜏𝜙 , 𝜉𝜙

also provide step-by-step visualization of the algorithm in Figure 4, in which we use the phase 2 of

the baseband receiver as the input model of the task graph phase (cf. Figure 1).

The sequence of tasks in a single replica of a single phase is independent of the sequences of

tasks in the other replicas of that phase (cf. Figure 3). For this reason, we map all tasks in the

same phase replica to a single regular resource. Therefore, at this stage, we consider the tasks in

the replica virtually fused and calculate the latency of the replica 𝑡 [𝜃 ] as the sum of the latencies

of its tasks (line 1). We initialize 𝑇 [𝜃 ] denoting the total latency of already mapped processes to

the resource 𝜃 . For each replica, we determine the resource 𝜃 , which would have the least total

latency after adding the replica to it, and maps the replica to it (lines 2-5). This heuristic attempts

to equalize the total latency across regular resources Θ.
Figure 4 illustrates the working of the algorithm for a target platform with three processing

elements, namely a big core 𝜃big, a little core 𝜃 little and an FFT/IFFT accelerator 𝜃fft. The sum of the

latencies on a big core is 20, and on a little core is 32 (the setup and the numbers are consistent with

the platforms we use in the evaluation in Section 4). First, the algorithm maps the whole line of
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mf1 ifft1 wind1 fft1

mf2 ifft2 wind2 fft2

mf3 ifft3 wind3 fft3

mf4 ifft4 wind4 fft4

mf5 ifft5 wind5 fft5

?  \ ? mf wind fft/ifft

?little 5 3 12

?big 4 2 7

?fft - - 3

(a) A phase structure with the
performance metadata of the
tasks.

? ?little ?big ?fft

T 0 20 0

(b) Mapping of the first
line of replicas to 𝜃big.

? ?little ?big ?fft

T 32 20 0

(c) Mapping of the sec-
ond line to 𝜃little.

? ?little ?big ?fft

T 64 60 4

(d) Mapping of the re-
maining replicas and
initializing 𝑇 [𝜃fft].

? ?little ?big ?fft

T 52 60 7

(e) The first ifft task
is moved from 𝜃little to
𝜃fft.

? ?little ?big ?fft

T 40 39 19

(f) Migrating the re-
maining ifft tasks to
the accelerator.

? ?little ?big ?fft

T 28 32 25

(g) Moving two ffts to
the accelerator. The al-
gorithm is finished.

Fig. 4. Step-by-step visualization of the fast mapping algorithm applied on a phase of the baseband receiver
onto a platform with three resources. The latency values on the resources are taken from measurements of
the LTE PHY benchmark on Odroid XU4, and the FFT kernel on Xilinx Ultra96 FPGA board (see Section 4).

replicas to the big resource since this decision minimizes the maximum delay after assignment (4b).

Similarly, the second line of replicas is assigned to the little resource (4c). After all replica lines are

distributed among the regular resources, the total delays on both resources are roughly equal (4d).

The algorithm then remaps some of the early mapped resources to the accelerators Θ̃. We

initialize 𝑇 [𝜃 ], 𝜃 ∈ Θ̃ with the minimum delay before the accelerator might receive the first task

replica to execute (lines 7-10). In our example, the minimum delay before the accelerator could

receive the first ifft task equals the minimum delay of mf, i.e. 4 (4d).
After the initialization, the algorithm performs task re-balancing. For an intuition behind the

lines 15-19, let us consider a single step of remapping of the single process 𝜋 to an accelerator. The

algorithm searches for the regular resource 𝜃 ′, which has the largest total latency, containing at least
one replica of the task 𝜋 . The remapping is performed if the total accelerator time does not exceed

the largest total latency of regular processes after migration (17). If there are many accelerators,

the algorithm maps the task to the accelerator with the least total latency 𝜃 ′′ (16). In Figure 4, the

first candidate for remapping is chosen from the little core, one with the largest 𝑇 [𝜃 ]. When the

task is moved, the values of 𝑇 [Θ] are update accordingly (4e). When all iffts are migrated (4f), the

algorithm continues loading the accelerator with ffts until the stop condition is reached: the total

delay of the accelerator should not exceed the total delay of the regular processors (4g).
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Finally, the total latency of the phase is calculated as the maximum of total latencies on each

resource (20), and the energy consumption is calculated as the sum of energy consumptions of each

tasks according to the resources they mapped to (21).

Once all phase mappings 𝜇𝜙 have been computed, the final mapping is constructed 𝜇 ← ⋃
𝜙 ∈Φ 𝜇𝜙 ,

with the total latency and energy calculated as: • ← ∑
𝜙 ∈Φ •𝜙 .

Note that the algorithm attempts to distribute the resources over the tasks in each phase evenly,

so the platform will process the workload on each generated mapping with an approximately

constant progress rate. This property of the generated mappings increases the predictability at the

runtime scheduling in case of compelled job migrations.

3.2.3 On generating Pareto-optimal operating points. Algorithm 1 describes the generation of a

single operating point. To generate the (Pareto-optimal) set of points, we run the algorithm for

many different subsets of the cores Θ, in which we vary the amount of cores of each particular

type ®𝜔 . In this work, we generate the operating points for all

∏
Ω𝑖 ∈Ω (𝜔𝑖 + 1) − 1 combinations

of processing resources. The runtime manager supplied with fine-grained operating points may

generate more optimal schedules. However, if the platform size is too large, this strategy will lead to

an extremely large amount of operating points, which, in turn, has a direct impact on the overhead

of runtime selection. To reduce the runtime overhead, some heuristics could be applied.

3.2.4 Limitations. Algorithm 1 has a couple of limitations. First, the algorithm does not consider

the communication delays, which was an intentional choice for the sake of simplicity. Second, the

algorithm assumes that the platform has a regular power model, i.e., the dynamic power usage

of the cores is constant, and thus the energy consumption of tasks mapped to the specific core is

proportional to latency. As a result, the mappings generated by this algorithm are not guaranteed

to be Pareto-optimal, but as we will see in the evaluation in Section 4, they nevertheless result in

good mappings.

3.3 Schedule generation
As depicted in Figure 2, the (Pareto-optimal) operating points generated at design-time are supplied

to the Resource Manager (RM). At runtime, the RM receives requests to execute new jobs. The RM

attempts to schedule them along with other currently running jobs. The successfully scheduled

requests are then accepted, and a new schedule is generated. In this section, we define the model of

requests, the schedule, and describe our scheduling algorithm for energy-efficient schedules.

3.3.1 Resource manager activations and request model. At every subframe in which new requests to

process UEs arrive, the RM is activated to schedule these requests along with previously admitted

UEs. The RM might accept all incoming requests, or only a subset of them. The successfully

scheduled requests are accepted, and corresponding jobs are dispatched to the system. We denote

by Σ𝑡 ′ a set of requests that includes the newly arrived requests at time 𝑡 ′ along with previously

admitted requests, which were not finished by 𝑡 = 𝑡 ′. For a given job
1 𝜎 ∈ Σ𝑡 ′ , 𝜎 [𝛼] denotes the

arrival time, 𝜎 [𝛿] the (absolute) deadline, 𝜎 [𝜆] the task graph, including the associated parameters

prbs,mod, lay, ant, and 𝜎 [𝜌] ∈ [0, 1] the remaining progress ratio of the job, i.e., 𝜎 = 𝜎 ⟨𝛼, 𝛿, 𝜆, 𝜌⟩.

3.3.2 Spatio-temporal schedule model. Given a set of requests Σ𝑡 ′ , the RM attempts to find a spatio-

temporal schedule 𝐾 , which is defined as a list of multi-application mappings𝑀 applied during con-

secutive time segments (cf. Figure 2):𝐾 = {𝑀𝑖×Δ𝑀𝑖
} (0 ≤ 𝑖 < 𝑁 ), where 𝑁 is a number of segments,

Δ𝑀 = [Δ𝑀 ,Δ𝑀 ) is a time interval of the mapping𝑀 , Δ𝑀0
= 𝑡 ′ and Δ𝑀𝑖

= Δ𝑀𝑖+1 , 0 ≤ 𝑖 < 𝑁 − 1. Each
multi-application mapping𝑀 contains selected job configurations 𝜈 = 𝜈 ⟨𝜎, 𝜆, 𝑐, 𝜇⟩, which express

1
For simplicity, in the math notation we use the terms “jobs” and “requests” interchangeably.
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that the job 𝜎 associated with the task graph 𝜆 runs with the mapping 𝜇, which is associated with

the operating point 𝑐 , i.e. ∃ 𝑗, 𝑐 ≡ 𝑐 𝑗
𝜆
. The final mapping is equivalent to the one specified in the

operating point, i.e 𝜈 [𝜇] � 𝑐 [𝜇], the amount of the used cores of each particular type is equal, i.e.

𝜈 [𝜇] [ ®𝜔], or simply 𝜈 [ ®𝜔] = 𝑐 [ ®𝜔].
Note that this formulation of schedule allows jobs to be remapped from one configuration to

another across different segments in the schedule.

3.3.3 Optimization problem. The goal of this work is to generate energy-efficient schedules which

do not violate the UE demands. Using the notation introduced above, we can now leverage the

state-of-the-art runtime selection formulation from [22]:

minimize

∑︁
𝑀 ∈𝐾

∑︁
𝜈∈𝑀

𝜈 [𝑐] [𝜉] |Δ𝑀 |
𝜈 [𝑐] [𝜏] (1a)

subject to

∑︁
𝜈∈𝑀

𝜈 [𝑐] [ ®𝜔] ≤ P[ ®𝜔], ∀𝑀 ∈ 𝐾 (1b)

𝜈 [𝜇] � 𝜈 [𝑐] [𝜇], ∀𝜈 ∈ 𝑀 (1c)

𝜈1 [𝜎] ≠ 𝜈2 [𝜎], ∀𝜈1, 𝜈2 ∈ 𝑀,𝜈1 ≠ 𝜈2 (1d)∑︁
𝑀 ∈𝐾
𝜈∈𝑀
𝜈 [𝜎 ]=𝜎

|Δ𝑀 |
𝜈 [𝑐] [𝜏] = 𝜎 [𝜌], ∀𝜎 ∈ Σ (1e)

max

𝑀 ∈𝐾
𝜈∈𝑀
𝜈 [𝜎 ]=𝜎

Δ𝑀 ≤ 𝜎 [𝛿], ∀𝜎 ∈ Σ. (1f)

Constraint (1b) ensures that the resources required for mapping in the segment𝑀 do not exceed the

available resources per type P[ ®𝜔]. Constraint (1c) describes that the final mapping 𝜇 is equivalent to

the one specified in the operating point 𝑐 [𝜇], but is not necessarily equal to it (variant transformation

in Figure 2). Equation (1d) specifies that at each mapping segment at most one job mapping relates

to each request 𝜎 . Constraint (1e) expresses that each job will run until the end. Finally, each job

must finish the execution before the deadline (1f). If there is a feasible solution to this problem, the

RM admits the request and changes the schedule accordingly. Otherwise, the request is rejected.

3.3.4 Joint scheduling algorithm. To solve the optimization problem, we propose a novel algorithm

that extends on the MMKP-MDF algorithm from [22]. In MMKP-MDF, the RM performs the

schedulability test for each new request individually, leading to multiple reschedules of jobs that

have been already accepted. This considerably increases the runtime overhead, which is critical

for baseband processing. We address the identified issues and propose a modified version of the

algorithm called MMKP-MDF-Joint.
Similar to [22], we consider the resource types as knapsacks with certain capacities, and the

job configurations 𝑐 as items with certain weights. Weights are defined as the required processing

time to finish the job multiplied by the required number of resources of corresponding type, i.e.

𝑐 [𝜏] × 𝑐 [ ®𝜃 ], while the capacities ®𝐽 express the available processing time per each resource type.

Each job forms a group of items, in which exactly one item must be chosen. After negating the

energy values of each item, the optimization goal becomes to maximize the overall (negative) value

which can be expressed as a multiple-choice multi-dimensional knapsack problem (MMKP) [25].

Algorithm 2 describes our modified algorithm.
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Algorithm 2MMKP-MDF-Joint mapping heuristic.

Input: Set of jobs Σ𝑡 , platform ®Θ, application table 𝑐𝜆 , current schedule 𝐾
′

Output: Schedule 𝐾

1:
®𝐽 ← ®Θ ×max(𝜎 [𝛿] − 𝑡 | 𝜎 ∈ Σ𝑡 ), 𝐾 ← 𝐾 ′

2: for all 𝜎 ∈ Σ𝑡 do
3: 𝑗𝑐 [𝜎] ← ⊥
4: if ∃𝑀 ′ ∈ 𝐾 ′, 𝜈 ′ ∈ 𝑀 ′ : 𝜈 ′[𝜎] = 𝜎 then 𝑗𝑐 [𝜎] = 𝜈 ′[𝑐]
5: while ∃𝜎 ∈ Σ𝑡 : 𝑗𝑐 [𝜎] = ⊥ do
6: 𝜎∗, 𝑐𝑙 ← NextJobMDF(Σ𝑡 , 𝑗𝑐, ®𝐽 , 𝑐𝜆)
7: while 𝑗𝑐 [𝜎∗] = ⊥ do
8: if |𝑐𝑙 | = 0 then 𝑗𝑐 [𝜎∗] ← 𝑐∅ continue
9: 𝑐∗ ← argmin𝑐∈𝑐𝑙 {𝑐 [𝜉]}
10: 𝑗𝑐∗ ← 𝑗𝑐 , 𝑗𝑐∗ [𝜎∗] ← 𝑐∗

11: 𝐾∗ ← ScheduleJobs(Σ𝑡 , 𝑗𝑐
∗, ®Θ, 𝑐)

12: if 𝐾∗ ≠ ∅ then
13: 𝑗𝑐 ← 𝑗𝑐∗, 𝐾 ← 𝐾∗

14:
®𝐽 ← ®𝐽 − 𝑐∗ [ ®𝜃 ] × 𝑐∗ [𝜏] × 𝜎∗ [𝜌]

15: else
16: 𝑐𝑙 ← 𝑐𝑙 \ 𝑐∗
17: return 𝐾

At each activation of the RM, the containers ®𝐽 are initialized with the overall processing time per

resource type limited by the largest job deadline (the time scope of the analysis), the schedule 𝐾 is

initialized with the current schedule 𝐾 ′ (line 1). In Line 4, the algorithm analyzes the previously

generated schedule 𝐾 ′ and extracts the selected job configurations. All newly arrived jobs are

mapped in the main loop (5), the order is determined with the function NextJobMDF, which along

with the next job to map 𝜎∗ returns a list of filtered configurations 𝑐𝑙 for 𝜎∗ (6). The job 𝜎∗ is
determined by the heuristic “Maximum Difference First” (MDF) described in [22]. The filtered

configurations include only those items which can meet deadlines and fit the containers ®𝐽 . In Lines 7-
16, the algorithm iterates over the configurations in non-decreasing order of energy consumption.

It then attempts to schedule the job 𝜎∗ with already mapped jobs in ScheduleJobs similar as in [22].

Once the job is successfully scheduled, its configuration and a new schedule is saved, and the

containers ®𝐽 are updated (lines 13-14). If no feasible schedule was found, the algorithm marks the

job with a “zero” configuration 𝑗∅ and the corresponding request is rejected (8). Unlike MMKP-MDF,

our algorithm does not stop here and continues scheduling the remaining jobs.

As mentioned in Section 3.2, the scheduling overhead and the quality of generated solutions

depend on the amount (and granularity) of supplied operating points. In case of the presented

algorithm, the scheduling overhead grows linearly with the number of operating points.

3.3.5 Discussion on the voltage-frequency scaling. While our algorithm aims to generate energy-

efficient schedules, one could notice that we do not consider the voltage-frequency scaling of the

system, which theoretically may let us achieve further energy reductions. However, building the

hybrid approach which interplays with these two components is not straightforward. Suppose

several cores are included in the same frequency domain (e.g., as in Odroid XU4), the RM has

to determine the proper frequency of all CPUs in the domain. Once frequencies are selected,

there should be a reliable way to assess the energy-performance estimations to keep predictability
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Table 2. Frequency and power characteristics of the platform cores.

Paremeter CORTEX-A7 CORTEX-A15 FFT Accelerator

Frequency 1500MHz 1800MHz 300MHz

Idle power 140.3mW 214.8mW —

Dynamic power 320.2mW 1319.6mW 62.5mW

acceptable. Oneway of addressing it would be generating operating points across multiple frequency

values. But this strategy will dramatically increase the number of operating points. Moreover, this

amount increases exponentially with the number of frequency domains. Onnebrink et al. [28]

proposed a pruning algorithm to generate the Pareto-optimal values across the spatial and frequency

components. However, to the best of our knowledge, there are no hybrid methods that interplay

both components at runtime and apply it to task-parallel real-time applications.

4 EVALUATION
In this section, we evaluate our approach on a virtual prototype. This virtual prototype includes a

virtual platform, an application model of the workload in an LTE physical layer uplink receiver,

and an implementation of the hybrid mapping strategy described in the previous section. We create

and validate this prototype based on measurements obtained from executions of realistic LTE

workloads, as we will describe in more detail in the following. Based on this virtual prototype, we

run simulations to compare our hybrid strategy with other state-of-the-art strategies. Due to the

nature of a virtual prototype, we can easily extrapolate from the real platform we used for our

measurements and evaluate our strategy on a wider range of virtual platforms, simply by adding

more cores or accelerators.

4.1 Platform setup
We use the recent open-source Mocasin [26] prototyping tool to create and simulate our virtual

prototype. With this framework, we can define virtual platforms and simulate the execution of the

workloads in an LTE uplink receiver while using various mapping and scheduling strategies.

Our platform model is based on the Hardkernel Odroid XU4 board featuring a heterogeneous

Exynos 5422 big.LITTLE chip with four ARM Cortex-A15 and four ARM Cortex-A7 cores, fixed

at frequencies of 1.8 GHz and 1.5GHz respectively [33]. This platform surely does not provide

sufficient computational power to meet the high demands of general LTE base stations. Indeed, the

LTE benchmark implementation could not process a single UE with more than 63 PRBs (and any

modulation scheme) within the 2.5ms deadline. Nevertheless, it is a readily available heterogeneous

platform that we can extrapolate from. Moreover, the Odroid XU4 platform has already been used

for power-efficient realizations of LTE femtocells [9].

For power modeling, we assume that each processor core executes in one of the two modes, run

and idle [52]
2
. The tasks are assumed to be executed only in the run mode. If the core does not

execute the task, it is put into the idle mode. At each of these two power modes, the processor core

consumes either a run power 𝑃run or an idle power 𝑃idle. To calculate the energy consumption of

the tasks (Section 3.2), we use the dynamic component of the power, defined as 𝑃dyn = 𝑃run − 𝑃idle.
We also report the dynamic energy consumption of the platform, defined as the sum of the dynamic

energy of the executed tasks.

2
Zeng et al [52] include a third power mode, inactive. Due to the fine granularity of the workload, processor cores are

assumed to be never put in this mode [15].
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In order to obtain a power model of Odroid XU4, we measured its power consumption using

the ZES Zimmer LMG450 Power Analyzer connected to DC input with an external readout rate

of 20 Samples/s. To obtain the dynamic power consumption of the individual cores, we run CPU

stressors from the stress-ng tool3 on different subsets of the platform’s cores and measured power

consumption with the power meter. For the idle power of the cores, we use numbers from the

model that is shipped with SLX Tool Suite as part of its commercial platform models. To take

into account the power consumption of other components of the platform, we add an extra static

power of around 763.3mW, which is calculated as the difference of the average measured power

consumption of the platform in the idle state and the idle power consumption of the processor

cores. Table 2 shows the frequency and power model of each core in the platform.

Based on the data for individual cores, we extrapolate from the original Odroid platform and

create virtual platforms with a larger number of cores. In our experiments, we use up to 8 cores of

each type. To explore how the availability of specific accelerators influences our mapping strategy,

we also created a virtual FFT accelerator that we can optionally add to the platform (up to two

instances in our experiments). To calibrate the accelerator model, we measure the performance

and power characteristics of an FFT implementation in a Xilinx Ultra96 FPGA board (see Table 2).

Due to the large overestimation of the idle power consumption of the FPGA, we only report the

dynamic energy consumption in our experiments.

4.2 Reference methodologies
We evaluate both the design time and the runtime phases of our proposed hybrid approach by

comparing them to reference methods proposed in the literature.

4.2.1 Design Space Exploration. At design-time, we evaluate the generation of the Pareto-optimal

operating points w.r.t. design-time overhead and quality of the points. Our design-time approach

described in Section 3.2 is referred to as Phased-Fast. We compare this to state-of-the-art mapping

heuristics, like a multi-objective evolutionary algorithm, similar to the one from the Sesame

framework [17], which we denote by genetic. Similarly, we use a simulated annealing heuristic
based on [29] and a tabu search one based on the one described in [24]. Finally, we also compare

with a simple but fast load-balancing heuristic based on a static version of the Linux CFS scheduler,

denoted as static cfs. These static approaches are compared in Section 4.5.

4.2.2 Runtime scheduling. As a baseline, we consider the Work-Stealing scheduler that resembles

the behavior of the scheduler used in the PHY benchmark [37]—an open-source implementation of

the LTE uplink receiver workload. The scheduler maintains task queues for each general-purpose

resource and assigns all tasks collected from a newly arriving UE to a single queue. Per resource,

a worker thread executes tasks from its task queue until the queue is empty. When the queue is

empty, the worker thread steals tasks from other queues. Accelerators do not have an associated

queue and always steal tasks of a specific type (e.g., FFT) from the work queues assigned to the

general-purpose resources.

Along with our MMKP-MDF-Joint algorithm, we evaluate two other similar hybrid approaches. To

evaluate the impact of the modifications introduced in our algorithm (cf. Section 3.3), we compared

to the original MMKP-MDF method introduced in [22].

We further compare to the MMKP-LR hybrid approach, which uses the Lagrangian relaxation

described in [48] to solve theMMKP problem. Internally, it uses a subgradient method (limited to 100

iterations) and iteratively maps applications in the increasing order of the minimum configuration

costs. Since the algorithm does not reuse the previously generated schedules, we implemented it in

3
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
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Table 3. Characteristics of LTE traffic traces used for our evaluation. Traces trace1-trace4 are the real LTE
traffic traces, while trace0 is constructed by removing heavy UEs.

Trace Number

of UEs

Non-empty

subframes

Average

PRBs

Max. PRBs in

subframe

trace0 587 543 10.96 48

trace1 688 603 17.21 100

trace2 1473 1197 24.67 100

trace3 1577 1342 31.95 100

trace4 2091 1736 54.83 100

a way that multiple requests coming in the same subframe are scheduled in an iterative manner

(similar to MMKP-MDF). We evaluate the runtime phase of all hybrid approaches in Sections 4.6

and 4.7. In these evaluations, we fixed the algorithm at design time to Phased-Fast.

4.3 Workload model
The workload in our virtual prototype is modeled as a dataflow graph similar to the one shown in

Figure 3. We obtained this graph by analyzing the PHY benchmark [37]—an open-source implemen-

tation of the LTE uplink receiver workload. Each instance of the graph represents the workload for

processing one UE. The precise size and structure of the graph depend on the parameters of the

specific UE (e.g. number of PRBs, number of layers, and modulation scheme). By measuring the

execution time of each computational kernel in the PHY benchmark on Odroid XU4 for all possible

parameter combinations, we created a detailed model indicating the expected execution time of

each task in the task graph 𝜋 [𝜏𝜃 ]. Given a power model of the platform, we calculate the dynamic

energy of the task on the resource type Ω as 𝜋 [𝜉Ω] = 𝑃dyn · 𝜋 [𝜏Ω].
During a simulation run, instances of the graphs are created on the fly based on a workload

trace detailing the UEs to process in each sub-frame. The graphs are then mapped to the available

computational resources, and the execution of the workload is simulated. The number of UEs,

as well as their parameters, may change significantly between sub-frames in the workload trace.

This setup thus allows to explore the dynamic behavior in telecommunication applications and

analyzing the performance of various mapping and scheduling strategies.

In order to perform our simulation for realistic workloads, we use LTE traffic traces recorded

from real base stations. Every trace records the workload processed by a specific base station during

a period of time as a list subframes. The subframes are made up of a set of UEs requests with their

corresponding parameters: the number of PRBs, the modulation scheme, and the number of layers.

These traces were obtained in a five-hour period spread over 15 days and feature real data with

over 1.2 million Radio Network Temporary Identifiers (RNTIs) from different base stations [10].

For our simulations we used the first 5000 subframes of four different base stations with varying

levels of activity. Additionally, we constructed a trace in which all evaluated approaches reach an

almost-perfect success rate, i.e. all UEs were accepted and finished within the deadline (trace0). The
goal of this trace is to separate the energy savings obtained from rejecting UEs from those gained

from more efficient resource utilization. To construct this trace, we used trace1 and removed the

UEs with a large number of PRBs. This resulted in a trace where the maximum number of PRBs in

a subframe is always below 50. The main characteristics of the traces are summarized in Table 3.

In all used traces, the numbers of antennas and layers are fixed to 4. Due to this, all UEs have the

same number of tasks, namely 150 (cf. Figure 1).
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4.4 Virtual prototype validation
In order to validate our virtual prototype, we compared the simulated energy consumption and

execution time with real measurements obtained by running the PHY benchmark on Odroid XU4.

In our simulation, we used a platform configuration with four little and four big cores as well as

the Work-Stealing scheduler in order to accurately resemble the behavior of the PHY benchmark

on the real Odroid XU4.

For the validation, instead of the real traces used later for evaluating the approach, we used 40

pseudo-random LTE traces with different workloads. We generated a varied set of traces, with

lengths ranging from 100 to 1000 subframes. The parameterization of the subframes also varies

from trace to trace, some of them are based on real LTE traces, while the rest were parameterized

by following a random approach. A random number of a maximum of 10 UEs is created for every

subframe, with each UE having a small number of PRBs for the first traces, we then progressively

increase the number of PRBs for the successive traces. In this way, we generated traces with different

processing intensity demands. The actual PHY benchmark does not interrupt the processing of

UEs that missed their deadline, which we also accounted for in the simulation.

Our simulation is deterministic, while the execution on the actual platform is not. As it cannot

account for the non-determinism, our simulation aims to model the average behavior of the platform.

For this reason, for each constructed trace, wemeasured the execution time and energy consumption

on Odroid XU4 10 different times and recorded the average. We then simulated the LTE uplink

receiver processing in our virtual prototype and compared it to the average performance in the

real platform.
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Fig. 5. Validation of our LTE prototype. Every point represents the simulated and its corresponding average
measured execution time and energy (over 10 measurements) for a random workload.

Figure 5 presents the results of this validation, showing a dot for each trace. The blue lines

represent an ideal correlation between measured and simulated values. The red line corresponds to

a linear regression over the observations. In terms of fidelity, the data features a high Spearman’s

correlation of 𝜌execution time = 0.999 and 𝜌energy = 0.972. This indicates that we can reliably compare

the effects of various mapping strategies in Mocasin since a lower estimated simulation time also

indicates better performance in the real platform.

4.5 Generation and estimation of operating points
As discussed in Section 3.2, we generate (approximately Pareto-optimal) operating points for all

valid combinations of processor resources in the platform. For example, for Odroid XU4, we generate

24 operating points, and for the virtual platform with the accelerators, 72 points are generated.

These operating points are saved internally as an array, with each element representing a single

task in the task graph, and the value is a number ([1.. |Ω |]) representing the processor resource.
For example, assuming compact encoding on the Odroid XU4 (3 bit per value), this array would
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Fig. 6. Validation of our estimation of execution time and energy consumption on Odroid XU4.

require 450 bits, or 57 bytes, plus 8 bytes for the energy-performance metadata. The whole set of

operating points would thus require 1560 bytes.

Apart from the mapping generation, Algorithm 1 also estimates the latency and energy of each

generated mapping. In this section, we evaluate our proposed method in two aspects. First, we

validate the estimated latency and energy values against the simulation. Second, we compare

our algorithm with the aforementioned approaches w.r.t. generation overhead and quality of the

operating points.

4.5.1 Energy-performance data validation. To validate the estimations of energy and performance

characteristics of the generated operating points, we compare them with the corresponding values

obtained in simulations using Mocasin. Using Algorithm 1, we generated in total 12000 operating

points: 24 operating points for 500 different types of UEs, in which we varied the number of PRBs

and the modulation scheme. Figure 6 show the validation points on Odroid XU4. The plots only

include the points for which the simulated time does not exceed the highest deadline for processing

a UE, namely 2.5ms. Once again, the blue line corresponds to the perfect correlation and the red line

to the result of linear regression. As seen in the figures, the values obtained in the fast estimation

have high accuracy. The energy estimations are almost ideal, whereas for execution times the plot

show slightly higher dispersion, which is explained by the lacked of modeling of communication

delays.

Since the runtime resource manager relies on the exact values of execution times, we attempt

to find optimal effective execution times after the estimation. For that we express the effective

execution time as the linear function of the estimated time: 𝑡eff = 𝑎 · 𝑡est + 𝑏. Then we simulate

the runtime resource manager on a sample trace with different values of 𝑎 and 𝑏 and choose the

values that minimize the number of UE rejections and deadline misses. Figure 6 shows the effective

time with the green lines, which goes right at the top edge of the validation points. This means the

formula for effective execution time overestimates the actual execution times only slightly, which,

in turn, improves the predictability at runtime.

4.5.2 Comparison with the state-of-the-art mapping methods. We now compare our Phased-Fast
heuristic with the other static mapping methodologies mentioned in Section 4.2. To this end, we

execute the different mapping algorithms to find static mappings for UEs with multiple different

workloads, ranging between 5 and 100 PRBs. For each of these UEs, we execute the five differ-

ent static mapping heuristics, Phased-Fast, genetic, tabu search, simulated annealing and
static cfs.

We evaluate the heuristics in terms of three measures: (i) the exploration time, which corresponds

to the execution time of the mapping algorithm itself and thus to the design-time overhead, (ii)

the mapping runtime, which is the execution time of the UE in the simulation, and measures the
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Fig. 7. Comparison of multiple static mapping algorithms relative to our Phased-Fast heuristic as baseline.
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Fig. 8. Successfully executed UEs and energy efficiency on Odroid XU4.

quality of the mapping, and (iii), the mapping energy consumption, which is a different measure of

quality in this multi-objective setting. For all three of these metrics, a lower value is better.

Figure 7 shows the comparison of the static mapping heuristics, using our Phased-Fast method

as baseline (indicated by the dotted line). This way, we can also uniformly compare the different

workloads of the UEs. In terms of exploration time, Phased-Fast is the fastest of the heuristics,
taking just 0.36 s in median. Out of the other heuristics, only static cfs is not a meta-heuristic,

i.e., it does not iteratively evaluate mappings. Consequently, it is the only one that is comparatively

fast (in median only about 0.5% slower than Phased-Fast).
In terms of mapping quality, only the simulated annealing heuristic produces results com-

parable to our domain-specific static mapping heuristic. While our mappings result to be slightly

faster, they also consume slightly more energy. Overall, the mapping quality of the two heuristics

is comparable, yet significantly better than all the other state-of-the-art heuristics for this concrete

problem. The only heuristic producing comparable results is around 4 orders of magnitude slower

than our method. Due to the huge parameter space of UEs and the enormous number of tasks in

the task graphs, it is important to have fast mapping heuristics, even at design time.

4.6 Energy-efficient runtime mapping
Apart from energy consumption, we are interested in two additional metrics, namely, the percentage

of UEs executed successfully within the real-time constraints, and the resource utilization, measured

as the resources required in a virtual platform to achieve a given concrete performance. We divide

this section into two parts: First, we evaluate all methods on the two fixed platforms, namely

Odroid XU4 and the virtual platform with the accelerators. Then we vary the platform sizes to also

evaluate the resource utilization.

4.6.1 Evaluation on fixed platforms. Figure 8 shows the evaluation of the different LTE traces

(cf. Table 3) on Odroid XU4. On the left, it shows the percentage of UEs executed successfully
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Fig. 9. Successfully executed UEs and energy efficiency on a virtual platform with accelerators.

within the real-time deadline. In general, all the three hybrid approaches show better success

rates than the Work-Stealing scheduler on the real LTE traces. The difference becomes more

notorious for higher intensity of the workload, where our approach reaches 29.8 % better success

rate on the most intensive trace4 compared to Work-Stealing. Compared to the other hybrid

schedulers, MMKP-MDF-Joint behaves slightly better on 3 out of 4 real LTE traces. The differences

are mostly negligible, however. In terms of energy efficiency, all hybrid approaches are also on

par and show better energy-efficiency than the baseline: the dynamic energy savings of schedules

generated with our joint algorithm varies from 54.1 % to 78.7 % on the real LTE traces compared to

the work-stealing scheduling. On the other hand, the differences with respect to the other hybrid

approaches is at most 3.2 % for the most intensive workload. A dynamic energy saving of 32.7 % for

trace0 shows the high potential of hybrid approaches that, compared to the baseline, save energy

only by selecting energy-efficient configurations at runtime. In addition, the hybrid approaches

can save further energy for intensive workloads, by not executing rejected requests.

Similarly to the previous plots, the total energy savings reported in the right plot of Figure 8,

behave almost identically for all the three hybrid approaches, with negligible differences. Depending

on the workload intensity, our approach saves between 4.9 % and 38.5 % on all traces with respect

to the Work-Stealing algorithm. While total energy savings are more interesting to engineers,

dynamic energy savings show the potential of this approach on the platforms with better energy

proportionality.

As seen in Figure 9, the results on the virtual platform which augments Odroid XU4 with FFT

accelerators are very similar to ones obtained on the platform without accelerators. In general, all

hybrid approaches are on par both in terms of successfully executed UEs and energy-efficiency.

Compared to the baseline, our approach schedules 4.3 % less requests on the lightest real trace,

trace1. On all other traces, MMKP-MDF-Joint shows a better Quality of Service (QoS) with a

maximum improvement of 24.6 %. Our also algorithm reduces the dynamic energy consumption by

an amount between 43.5 % and 75.5 %. Since we do not have a good static model for the accelerators,

we do not report the total energy savings for this virtual platform.

4.6.2 Varying the amount of resources. The success rates of real traces reported in Figures 8 and 9

are unacceptably low for any production-level base station. Even increasing the number of cores in

a virtual platform, the Cortex-A7 and Cortex-A15 cores executing the PHY bench implementation

are not fast enough to deal with all individual workloads on time. Indeed, both Odroid XU4 and

the PHY bench implementation are ill-suited for production-level baseband processing, even for

today’s LTE requirements. These values serve as a proof-of-concept evaluation to extrapolate to

the higher demands of future technologies.

In a real base station, the QoS requirements stipulate a minimal success rate that should be met.

As such, comparing the success rate of the approaches is not as conclusive. To alleviate this, we
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Fig. 10. Relative dynamic energy consumption and resource utilization of the hybrid mapping approach while
controlling for the success rate.

controlled for the success rate. Using our virtual platform, we increased the number of Cortex-A7

and Cortex-A15 on each of the traces, improving the success rates for all the strategies. We then

compared the approaches on different virtual platforms, matching the instances that achieved the

same success rates with the baseline (up to a difference of 2%). This yielded 112 distinct points,

grouped in pairs, each achieving the same performance with a different number of resources (cores)

and different energy consumption values. Equating the performance this way, we compared the

relative energy consumption of the baseband using each of the approaches, as well as the total

number of processing elements (including accelerators)
4
. Note that we only compared virtual

platforms with accelerators to other virtual platforms with accelerators, and similarly those without

accelerators only against other configurations without them. Mixing between the two groups is

not very meaningful.

Figure 10 shows the relative energy consumption and resource utilization of the hybrid mapping

algorithms, compared to the Work-Stealing scheduler (which is the baseline of 1). Our dynamic

mapping algorithm MMKP-MDF-Joint achieves a median dynamic energy consumption that is only

35.2 % of the energy consumption of thework-stealing scheduler. These gains in energy consumption

are achieved with comparable amounts of resources: the median relative resource utilization is

82 % of the resource utilization of the work-stealing scheduler. In other words, in the median case,

our hybrid mapper achieved the same performance than a dynamic work-stealing scheduler, with

slightly lower hardware requirements, while only consuming around a third of the dynamic energy.

Beyond the concrete heuristics, this paper’s main concern is to analyze the feasibility of hybrid

methodologies for baseband processing. However, the performance of our proposed heuristics in

comparison to other state-of-the-art hybrid approaches is still worth comparing. Compared to

ours, the two other approaches MMKP-LR and MMKP-MDF both achieved about a percentage point less

dynamic energy consumption, while using 11 and 1 percentage points more relative resources in the

median. The differences in terms of performance are negligible, especially considering the trade-off

between energy consumption and resource utilization. The main advantage to these approaches

comes in terms of the runtime overhead, which we will continue to evaluate in Section 4.7.

It is worth nothing that by resource utilization we do not mean the dynamic resource utilization,

i.e. the core utilization at runtime. Instead, as explained above, we mean the hardware required in

the virtual platform to achieve a given (equal) success rate for a given trace. Both when designing

hardware, as well as when assigning resources e.g. in a load balancer in a cRAN environment, the

important metric is how many PEs should be included in or assigned to the system.

Due to the absence of the static energy model for the accelerators, we exclude these from the

values for the total energy consumption. These values are shown in Figure 11, only for the virtual

4
Whenever two instances of the same scheduling approach on the same trace had the same success rate, we chose the one

with the minimal resource utilization/energy consumption.
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Fig. 11. Relative total energy consumption of the hybrid mapping approach while controlling for the success
rate on the virtual platforms without accelerators.
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Fig. 12. Average scheduling overhead per RM activation on Odroid XU4.

platforms without accelerators. In this case, the reduction is less radical, with a median relative

total energy consumption of 74.1 %. It is nevertheless a significant reduction.

4.7 Runtime overhead analysis
We have seen how greatly the hybrid approaches can improve the energy efficiency of baseband

processing. However, the more complex scheduling decisions also incur a scheduling overhead. In

this section we analyze the runtime overhead of all three hybrid solutions.

Figure 12 presents the average scheduling time per RM activation on Odroid XU4 for all the

hybrid approaches. These values are not comparable with the execution times of the benchmark,

they are measured on our prototype implementation written in Python 3 using Mocasin [26], which

runs on a system with a 3.40GHz Intel Core i7-6700 CPU and 32Gb RAM. The relative execution

times between the heuristics, however, are comparable, since they are all implemented in this

framework.

As seen in the figure, the scheduling overhead of MMKP-MDF and MMKP-MDF-Joint is drastically

smaller than that of MMKP-LR, they behave at least 99.5 % better for all evaluated LTE traces.

Comparing MMKP-MDF-based approaches, we see that our proposed solution requires less scheduling

time. Moreover, the speedup increases with the workload intensity, from 20.8 % on the lightest

trace0 till 37.7 % on the heaviest trace4. This result highlights the positive impact of our proposed

modifications to the scheduling algorithm.

While our algorithm is ahead of other hybrid approaches, the absolute values of the schedul-

ing overhead are not acceptable for a real implementation of the runtime resource manager. As

mentioned above, our current prototype is executed with the Python interpreter, causing a large

overhead. We expect that a real scheduler written efficiently in a low-level programming language

could execute 10 − 200× faster
5
.

5
This expectation is based on the performance evaluation of other benchmarks: https://benchmarksgame-team.pages.

debian.net/benchmarksgame/fastest/gpp-python3.html. While this is not a scientifically rigorous comparison, it serves as a

guidance for the order of magnitude of improvement we could reasonably expect.
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5 RELATEDWORK
Modern communication standards are changing the system architecture of base stations. cRAN

architectures have been proposed for 5G, where distributed remote radio-heads (RRHs) with

incorporated antennas preprocess incoming streams before forwarding them to a centralized pool

of BBUs [3]. These architectures are enabled by Network Function Virtualization (NFV) [7], which

allows the control plane to dynamically activate BBUs according to the network traffic demands.

Our novel mapping approach is an orthogonal key enabling methodology that allows more efficient

utilization of BBUs for future communication standards.

The need for flexibility has motivated plenty of research on programmable platforms for baseband

processing. Early works successfully deployed BBU-side LTE baseband processing onto general

purpose processors (GPPs), using single instruction multiple data (SIMD) and function look-up

tables for reduced latency [20], as well as multi-threading [50]. The latter uses static mappings,

so it cannot adapt to dynamic changes in the workload. The open-source baseband processing

implementation PHY bench [37] utilizes a work-stealing task scheduler to evenly distribute the

current workload on the available GPPs at run time. However, as we have shown in this paper,

such a purely dynamic approach does not benefit from the trade-offs a heterogeneous architecture

provides. A hybrid strategy can better exploit knowledge about the platform and, for instance, use

trade-offs to achieve better energy efficiency.

For a small cell base station, the authors in [38] proposed a heterogeneous multi-processor

platform SoC, with integrated hardware accelerators and application specific instruction-set pro-

cessors (ASIPs). For resource management, the authors use a task graph and describe a mapping

approach that incurs high power consumption. More recent approaches introduce an array-based

multi-core architecture for baseband processing [44, 45], paired with a mapping methodology

based on dataflow models. However, the mapping methodologies are tied to the specific hardware

architecture and cannot be easily extended to support heterogeneous platforms. Although the

baseband application contains certain irregularities potentially leading to divergent control, authors

in [23] proposed a novel algorithm that is well-suited to a GPU cluster.

Researchers have also leveraged low-power techniques such as dynamic voltage frequency scaling

(DVFS) and power gating in multi-cores to further improve the efficiency of programmable BBUs,

e.g., for an Odroid XU3 in [9] and the TILEPro64 platform in [37]. As discussed in Section 3.3, power

management techniques can further improve the energy efficiency achieved by our approach.

The interplay between such techniques and our domain-specific hybrid mapping algorithm is

an important direction for future work. In this paper, we adapted a more generic model-based

methodology for resource management in baseband processing that can be applied to different

platforms. In the future, such a methodology can enable moving computation across virtualized

BBUs.

There is plenty of work on generic model-based mapping methodologies [11]. For example,

SystemCoDesigner [19] maps the discrete-event model in SystemC to design digital signal pro-

cessing systems. Similarly, flows like Sesame [30], DOL [41], MAPS [12] or SDF
3
[39] use models

like Kahn Process Networks or Synchronous Dataflow (SDF) for model-based design in embedded

systems. These approaches are foremost static, with a focus on design-space exploration (DSE)

at compile-time [17, 24, 29] to derive efficient mappings of computation and data to hardware

resources.

In the last decade, the focus on DSE shifted to more dynamic methods, such as [5, 32, 47],

which combine this static DSE with run-time decisions in hybrid approaches. The focus of these

approaches is generally performance or resource utilization, although in many cases, the general

formulations as optimization problems permit optimizing for energy consumption as well. Authors
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in [16, 22, 42] specifically target energy efficiency, achieving better results than general problem

formulations, at the cost of generality. To better cater for baseband processing applications, our

work in this paper further specializes the methodology for computational graphs such as the ones

described in Section 2.

Most of the model-based approaches mentioned above were designed and validated on applica-

tions with modest model sizes, which seldom exceed a couple of dozen dataflow tasks or actors.

Computations in baseband processing, on the other hand, can quickly exceed many hundreds of

tasks when processing multiple UEs in parallel. We do not propose a novel general hybrid mapping

approach, but instead show how we can specialize existing approaches to the task of baseband

processing, leveraging the structure of the application to handle the large application sizes and

refining the scheduling strategy. To the best of our knowledge, no previous work has combined the

advantages of hybrid approaches with domain knowledge specific to baseband processing. This

allows us to be more flexible than hardware solutions and more efficient than purely dynamic

software solutions.

6 CONCLUSION
The demands for performance and flexibility of baseband processing rise with changing telecom-

munication standards. We require novel methods to mitigate the increase in energy consumption

associated with the rise in requirements. In this paper we have investigated hybrid mapping method-

ologies from model-based design for baseband processing. In particular, we have shown they are a

viable avenue to address the upcoming demands of flexibility and high energy efficiency.

Hybrid mappings allow us to combine specialized and heterogeneous hardware with highly

efficient software-based implementations and flexibility at runtime. Our domain-specific approach

leverages the particular computational structure of the task graphs, as well as refines the scheduling

methodology, allowing it to scale to the domain of baseband processing. Indeed, the performed

evaluations highlight significant improvements in different aspects. At design time, our fast mapping

algorithm generates mappings that have a similar quality to those obtained by the state-of-the-

art simulated annealing algorithm, but those mappings were generated almost four orders of

magnitude faster. At runtime, our evaluation on multiple virtual platforms showed the potential

energy savings that structured hybrid approaches could bring over traditional software scheduling.

In a median execution, with the same performance using the same hardware resources, all explored

hybrid approaches, including ours, were on par and consumed about a third of the dynamic

energy, compared to a work-stealing software scheduler. Compared against the other existing

hybrid methods, our proposed solution also shows a significant reduction, up to 37.7 %, on runtime

overhead against the fastest state-of-the-art MMKP-MDF solution. As shown in the evaluation, the

models in our virtual platforms were validated on an Odroid XU4, showing extremely high fidelity.

This means that the improvements observed in simulations are likely to translate directly to

improvements in silicon.

This work serves as a proof-of-concept, showing the potential of hybrid approaches to baseband

processing. Several limitations ought to be addressed in future work to show the viability without

reservations. The PHY Bench benchmark is based on the less dynamic LTE standard, and as

an academic benchmark, it does not boast the same level of optimization as a production-level

implementation would. Moreover, the Odroid XU4 board is not well-suited as a BBU to deal with

the high demands of 5G and beyond. Future work should test hybrid approaches like ours on more

demanding benchmarks for newer standards and higher-performing platforms.

On the side of the hybrid mapping and scheduling strategies, many opportunities remain open

for further research. For example, the Pareto point selection can be pruned further at compile-

time, with more sophisticated heuristics to preserve only a handful of relevant mappings. This
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will also reduce the runtime overhead. More importantly, the presented here approach still has

a potential for a further energy reduction by interplaying with the voltage-frequency scaling.

In future work, we plan to better understand and push the limits of our approach. While these

limitations are important, they do not cancel out the usefulness of hybrid mappings. If the approach

ceases providing a net improvement at some threshold, a simple fall-back mechanism can be used to

ensure we can still reap the benefits before reaching that threshold. This should ultimately still lead

to significant improvements in energy consumption, which are crucial in today’s and tomorrow’s

energy-constrained world.
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