
STAMP-Rust: Language and Performance
Comparison to C on Transactional Benchmarks⋆

Felix Suchert[0000−0001−7011−9945] and Jeronimo Castrillon[0000−0002−5007−445X]

TU Dresden, Germany
{felix.suchert,jeronimo.castrillon}@tu-dresden.de

Abstract. Software Transactional Memory has been used as a synchro-
nization mechanism that is easier to use and compose than locking ones.
The mechanisms continued relevance in research and application design
motivates considerations regarding safer implementations than existing
C libraries. In this paper, we study the impact of the Rust programming
language on STM performance and code quality. To facilitate the com-
parison, we manually translated the STAMP benchmark suite to Rust
and also generated a version using a state-of-the-art C-to-Rust transpiler.
We find that, while idiomatic implementations using safe Rust are gen-
erally slower than both C and transpiled code, they guarantee memory
safety and improve code quality.

Keywords: Software Transactional Memory · Memory Safety · Paral-
lelism.

1 Introduction

Software Transactional Memory (STM) is a well-established method for synchro-
nizing access to shared state in parallel programs. With the advent of emerging
technologies such as Non-Volatile Memory (NVM) transactional operations on
memory have found new importance [13,5,30]. However, the original tl2 frame-
work [14] and many subsequent frameworks have been written in C. The language
itself has proven to be notoriously unsafe, requiring manual memory manage-
ment and regularly exposing pointers to developers.

Rust [4] is a system programming language that has been designed with
memory safety as one of its main goals. Its main selling point is the strong
type system based on Ownership types [8,9]. This ensures that any well-typed
program will not exhibit unsound behavior such as dangling pointers or data
races through aliased references. Prior work has shown that such a strict type
system can substantially simplify the specification and verification of system
software [2]. By now, Rust has become a well-established language that is used
in the development of systems applications like browser engines [1] and operat-
ing systems [24,25]. Rust’s versatility also makes it an appealing language for

⋆ This project is partially funded by the EU Horizon 2020 Programme under grant
agreement No 957269 (EVEREST).

2 F. Suchert et al.

GPU programming [20], writing HPC applications [10] and as source language
for accelerator programming [32]. In the context of transactional memory, the
recent rust-stm library [6] offers STM functionalities. In contrast to the rich
body of work on STM using C, there is, however, a lack of studies and bench-
marks that help understand the impact of the Rust programming model on STM
performance.

In this paper, we analyze the Stanford Transactional Applications for Multi-
Processing (STAMP) suite [11], a benchmark collection specifically tailored to-
wards Transactional Memory frameworks. Using accepted and recommended
programming practices, we re-implemented the STAMP applications, which were
originally developed in C/C++. We provide details on the challenges brought by
the ownership and borrowing semantics of Rust to ensure a safe re-implementation
of the benchmarks. The effort invested in creating safe implementations of the
applications allows us to gage the impact of the programming model on the
execution performance. To compare against plain unsafe implementations, we
use the c2rust transpiler [12] to automatically generate Rust implementations
directly from the original C applications. We discovered that Rust’s strict bor-
rowing semantics require the code to strictly adhere to using transactions for all
variable accesses. While this generally improved the code’s safety, it significantly
decreased performance compared to C and unsafe Rust implementations.

This paper makes the following contributions:

1. Building atop the STAMP benchmark suite (Section 2), we manually imple-
ment a Rust version for the benchmarks, STAMP-Rust (Section 3).

2. We provide a qualitative comparison between the manually translated code
and the code generated by c2rust (Section 4).

3. A performance evaluation of both Rust versions against the original C im-
plementation using the rust-stm framework (Section 5).

2 Background and Related Work

Transactional Memory (TM) [19] is a synchronization mechanism for parallel
programming. The key idea of this concept is to encapsulate sections of code
that should run in parallel while modifying a shared data structure in transac-
tions. During execution, each transaction keeps a log of all modifications and
accesses to shared data which are played back once the transaction completes.
From the outside, transaction blocks then seem to execute atomically, as all
changes related to a transaction are either committed at once, or not at all. The
latter case can occur when another transaction running in parallel is commit-
ted beforehand and has changed a shared variable that is also read or modified
by the current transaction. Such write conflicts are resolved by reexecuting the
transaction until it is successfully committed. This approach to synchronization
is often referred to as Optimistic Parallelism [22]. Several potentially conflict-
ing operations are scheduled in parallel under the assumption that conflicts are
rare enough that occasional repeated computations of single transactions will
not impact overall performance. These applications form their own sub-genre

STAMP-Rust 3

of parallelization problems and usually involve large data structures based on
pointers.

STM has been established more than 20 years ago. Since then, different
approaches have been taken to test the performance of the mechanism. However,
STAMP [11] has since prevailed and is still used today, more than 10 years after
its inception [34,5,27]. It improves over existing approaches like RSTMv3 [31]
and STMBench7 [17] by providing a wider variety of applications and better
portability. Other works have resorted using microbenchmarks [13,15], which
are not suitable as real-world examples. Additionally, the YCSB benchmark
suite [30] has been used as benchmark to test key-value stores; however, a similar
database-like application, i.e., vacation, is part of STAMP as well.

The rest of this section presents the STAMP benchmark suite and describes
the rust-stm framework used to implement the benchmarks in Rust.

2.1 The STAMP Benchmark Suite

STAMP [11] is a benchmarking suite specifically tailored towards the needs of
TM applications. It consists of 8 real-world applications. The suite tries to cover
a wide spectrum of properties, such as varying transaction lengths, contention
and time spent in transactions. Additionally, all applications are taken from dif-
ferent application domains, such as engineering, machine learning and scientific
computation. For our comparison, we discuss the following benchmarks:

Labyrinth implements a path-finding algorithm in a three-dimensional maze,
a variation of Lee’s algorithm [23]. A set of paths is to be mapped in that
data structure based on a set of points provided as inputs. Paths between those
points are found using a breadth-first search. With STM, this is implemented by
guarding manipulations on the shared grid structure using a transaction. Hence,
when a conflicting path mapping occurs, the faster of both transactions may
commit while the second has to attempt to find another path.

Genome implements a whole-genome shotgun sequencing algorithm [29]. The
goal is the sequencing of a complete genome from a set of nucleotide sequences
provided as input. The algorithm first deduplicates the set of DNA segments
provided as input and then uses overlap matching with a decreasing overlap
size to stitch the genome sequence back together. On an abstract level, the core
workload of this benchmark is the construction of an acyclic graph from a set of
nodes by finding neighboring elements. Transactions are utilized here to guard
the forward and backward links of individual nodes (i.e., nucleotide sequences)
in that graph.

K-Means is a popular algorithm for cluster analysis in data mining and for
data classification. It partitions a set of n observations into k clusters [26]. A
list of observations and the desired number of clusters to sort the data into

4 F. Suchert et al.

are provided as inputs. The algorithm then iteratively assigns a cluster to each
observation and recomputes the cluster center from all assigned points. This
is repeated until a convergence threshold is passed. Transactions are used here
to guard access to the individual centroids, which are accessed as part of the
processing of each observation.

Intruder implements a signature-based network intrusion detection system. It
detects malicious activities and policy violations by inspecting live network traf-
fic. The application implemented as part of STAMP is based on design proposal
number five of Haagdorens et al. [18]. Due to the architecture of today’s net-
works, namely the maximum size of network packets, individual network flows
sometimes are split into multiple packets which may be transmitted and received
in any order. Hence, all incoming network packets are captured and reassembled
in parallel using a shared hashmap guarded by a transaction. The reassembled
flows are then processed by the signature detection pass, in which a simple pat-
tern matching is performed on the input.

Ssca2 implements kernel 1 from the Scalable Synthetic Compact Applications
2 [3]. It constructs a directed weighted multi-graph in parallel using adjacency
and auxiliary arrays. Nodes are added in parallel to the graph, whereby the
adjacency arrays are guarded by transactions to ensure safe parallel accesses.

Yada is Y et another Delaunay application and implements a Delaunay mesh
refinement. The algorithm modifies a mesh of triangles such that all interior
angles of the triangles are larger than a certain threshold. If a triangle violates
this criterion, it is merged with surrounding triangles and split into a set of new
triangles. These operations are performed in parallel and the replacement of the
formed cavity with new triangles is guarded by transactions.

2.2 Software Transactional Memory in Rust

The Rust implementation of STM used for our comparison is Rust-STM [6]. It
abstracts over the transactional synchronization aspects by providing a dedicated
type for transactional variables, TVar. The type encapsulates the variable to be

1 let val = TVar::new(42);

2 atomically(|trans| {

3 let mut x = val.read(trans)?;

4 x /= 2;

5 val.write(trans, x)?;

6 Ok(())

7 })

Listing 1: Working with Transactions in Rust-STM.

STAMP-Rust 5

protected and provides an interface to modify it during a transaction. Trans-
actions itself are implemented as functions that accept as argument a closure1

that forms the transaction. Listing 1 shows this function on line 2. Within that
closure, protected variabled may be accessed using a special transaction context
variable. All these access functions return a type that indicates whether the op-
eration is found to be in collision with another already-committed transaction.
The ? operator will enforce a retry on the transaction upon failure.

3 STAMP on Safe Rust

To facilitate a comparison between STM applications in Rust and C, we manually
implemented the whole STAMP benchmark suite2 in Rust and have published
it under the name STAMP-Rust3. During translation, we followed the recom-
mended coding practices put forth by Blandy et al. [7]. This section discusses
how using Rust as implementation language impacts program performance and
safety.

3.1 Type-Level Safety

The C-based tl2 library provides opt-in transaction semantics that can easily
be violated. Users are cautioned to not access shared data structures outside
of transactions as it can easily lead to data races. In Rust-STM, however, this
danger is alleviated by the type system. Sharing data between threads in Rust
is guarded by its trait system, which behaves similarly to interfaces in other
languages. A particular type T may only be safely shared between threads when
it implements the Sync trait. This property holds if and only if a read-only
reference &T of that type can be sent between threads safely. In other words,
there must not be any possibility for undefined behavior (which includes data
races) to occur if a reference to some data is shared among threads. Therefore,
data shared among threads may not be mutated as no mutable references can
be derived safely from an immutable one. A known workaround is to define a
type that implements so-called interior mutability. These types can safely mutate
their interior data even through a shared reference. A number of types in Rust’s
Standard Library implement this behavior and have been proven to be safe [21].

Rust-STM encapsulates transaction variables in a dedicated structure con-
structed from such types with interior mutability. Since the wrapped data is
not exposed, accessing it is only possible through methods implemented on the
container type. However, these methods require to be executed as part of a trans-
action. It is, therefore, impossible to circumvent Rust’s safeguards regarding data
sharing or to violate transaction semantics.

1 Closures in Rust are comparable to Lambda functions in other languages. They can
have arguments and capture variables from the outside context. The implications of
the latter are not relevant for this paper.

2 The code base for the original STAMP applications can be found on https://github.
com/robert-schmidtke/stm.

3 https://github.com/tud-ccc/stamp-rust

https://github.com/robert-schmidtke/stm
https://github.com/robert-schmidtke/stm
https://github.com/tud-ccc/stamp-rust

6 F. Suchert et al.

3.2 Composable Transactions

The strong typing of transaction variables further leads to better composability
of transactions. In the tl2 implementation, it is not transparently visible whether
a function needs to be executed in a transaction context or spawns one itself.
This can lead to problems when accidentally calling functions that expect to be
run in a transaction context or calling a function that creates a transaction from
an already-running transaction

Rust-STM addresses this problem in part by requiring a &mut Transaction

type for all its non-atomic transaction variable modifications. Therefore, func-
tions expecting to be run from a transaction context must accept such a type as
function argument, clearly indicating the required context. Nesting transaction
blocks, however, cannot be detected by the type system and, hence, will only
result in a runtime error.

3.3 The Overhead of Safety

Although Rust’s Ownership type system enforces transactional safety through-
out the program, it can also lead to computational overhead compared to tl2.
Every time a transaction variable is read, the reader receives a full copy of the
underlying data structure. This is necessary as the variable must retain owner-
ship of the data in case another transaction commits a change in the meantime.
Depending on the size of the data structure, this copying gives transactions a
substantial memory footprint besides internal data structures like logs. To by-
pass this copying, transactions can also receive an immutable pointer to the
current value of the transactions internal data4. However, this is only feasible
when the data will not be modified by a transaction.

The performance implication of this type safety becomes apparent in the
Labyrinth application. Here, when mapping a path through the maze, many fields
of the maze are read to determine the shortest path. A näıve implementation
would read all fields of the maze on the go. But this inevitably leads to duplicated
reads and a generally higher probability for the transaction to fail. Its read set
gets blown up by the many read accesses to fields that are not even part of
the final mapped path in the end. This is circumvented in both the C and the
Rust implementation by creating a local copy of the maze before attempting a
mapping. In Rust, we opted to use TVars read_atomic function to create the
copy, as shown in Listing 2. This incurs a high overhead, since each individual
cell in the maze is copied individually, but the TVar type does not offer more
efficient methods to access its contents.

In C, however, there are no safeguards regarding accesses to transaction
variables as there is no strict notion of such a type. Instead, the labyrinth im-
plementation of the original STAMP suite resorts to copying the data structure

4 This internally uses an atomically reference-counted pointer. When a new value is
written by another transaction, the TVars internal pointer is replaced, not changing
the contents of the shared pointer.

STAMP-Rust 7

1 type StmGrid = Vec<Vec<Vec<TVar<Field>>>>;

2 type Grid = Vec<Vec<Vec<Field>>>;

3

4 fn create_working_copy(grid: &StmGrid) -> Grid {

5 grid.iter()

6 .map(|y_grid| {

7 y_grid

8 .iter()

9 .map(|z_grid| z_grid.iter().map(|pt| pt.read_atomic()).collect())

10 .collect()

11 })

12 .collect()

13 }

Listing 2: Creating a local copy in Rust incurs a high overhead due to the
cumbersome data accesses.

as a whole using a single invocation of memcpy. This potentially brings increased
performance but violates the STM concurrency model. It has been shown that
such behavior increases the potential for deadlocks and memory races and is
often done to circumvent limitations of the concurrency model used [33].

In the ssca2 benchmark, we run into a similar problem: The C version uti-
lizes thread barriers to synchronize individual threads and switch between data-
parallel and transaction contexts. During transaction contexts, the adjacency
and auxiliary arrays are accessed and updated as part of a transaction. Outside
of that context, both arrays are frequently read by all threads to continue their
computations without any memory overhead. In Rust, we can only implement
a similar behavior by joining running threads periodically to update data struc-
tures before spawning new threads. This, of course, incurs additional overhead
but does not violate the transactional model.

3.4 The Complexity of Using Associative Arrays

Using more complex data structures from external libraries as part of a transac-
tion may quickly lead to a performance bottleneck in Rust due to data copying.
As a rule of thumb, transactional variables should always encapsulate as few data
as necessary to keep the memory footprint low. However, even using associative
arrays from the standard library, such as Hashsets, then poses a challenge, as
they offer no access to their intrinsics. As a result, these data types cannot be
accessed unsafely due to Rust’s type system, but also not efficiently out of the
box.

The C implementation circumvented that problem. Since Cs standard library
does not include such data types anyway, the authors of STAMP opted to write
their own transaction-aware associative arrays. A similar solution could be im-
plemented for Rust in the future, based on a suggested efficient algorithm by
Paznikov et al. [28].

8 F. Suchert et al.

4 Analysis of Automatically Generated Benchmarks

Since the advent of Rust and similar memory-safe languages, the question has
been raised whether or not its promises of safety could be leveraged automati-
cally for larger code bases written in C. As a result, transpilers have been imple-
mented that can translate C to Rust code. As part of our analysis of the STAMP
benchmark suite, we used c2rust [12] to automatically generate Rust code for
our selected benchmarks. In this section, we discuss the quality of the generated
code and why automatic transpiling can as of now not serve as a replacement
for manually translated Rust code.

The c2rust transpiler is built atop the clang compiler frontend and is de-
signed to process individual files adhering to the C99 standard. clang emits
the Abstract Syntax Tree (AST) of the input file, which is then transpiled and
emitted in the form of Rust code.

1 pub unsafe extern "C" fn router_solve(mut argPtr: *mut libc::c_void) {

2 let mut routerArgPtr: *mut router_solve_arg_t =

3 argPtr as *mut router_solve_arg_t;

4 let mut routerPtr: *mut router_t = (*routerArgPtr).routerPtr;

5 let mut mazePtr: *mut maze_t = (*routerArgPtr).mazePtr;

6 let mut myPathVectorPtr: *mut vector_t = Pvector_alloc(

7 1 as libc::c_int as libc::c_long,

8);

9 // ...

10 }

Listing 3: Beginning of the path-finding function from the Labyrinth application,
generated by an automatic transpiler.

Unfortunately, this literal translation of programs results in code that still is
more similar to C semantics than idiomatic Rust code. Listing 3 shows the code
for the entry point of the path-finding function in the Labyrinth application. It
has been declared as unsafe, as it internally mainly relies on the use of what Rust
calls “raw pointers”, pointers not guarded by the languages safety guarantees.
The existence of such pointers itself does not violate these guarantees; however,
dereferencing them does, which happens in lines 4 and 5. Also, the generated
code contains frequent uses of type casting, which is also unsafe. Previous work
has found that the inability to generate safe code is one of the key drawbacks
of these automatic approaches [16]. Additionally, automatically generated Rust
code makes no use of the more sophisticated features of the Rust language such
as struct member functions. This would require a deep understanding of the
code structure and meaning on part of the transpiler that is hard to achieve.

Since the source code for this transpilation used to be C code, which uses
manual memory management via malloc and free, this concept also surfaces in
Rust. This is especially problematic since most generated code operates outside

STAMP-Rust 9

of Rusts safety boundaries. As a result, it cannot be ruled out that double-frees
and other undefined behavior occur in the Rust code if the C sources already
contained such bugs.

As the transpilation happens file by file, all generated Rust files expose their
data types and functions using the extern "C" calling convention. This is also
shown in Listing 3 in line 1. This not only creates significant bloat in the code, but
it also means that all generated Rust functions communicate with one another
through C standard calling conventions.

As tl2 is used as an external library in the STAMP suite, our transpiled
STM code still relies on this library. We are thereby be forced to adhere to the
C framework’s general architecture or would need to restructure the code base
significantly to use Rust-STM.

All in all, the code generated by automatic tooling is in this case inferior to
a manual sound translation. The generated code needs extensive refactoring to
remove all occurrences of unsafe code. We, therefore, deemed a manual rewrite
as preferrable in our work as it allowed us to construct the applications from the
bottom up in an idiomatic way. The generated code is still useful to gage the
cost of switching to the Rust programming language.

5 Evaluation

To evaluate the performance of the different implementations of the STAMP
suite, we execute all benchmarks with varying configurations. We then compare
the resulting runtimes and speedups and classify both Rust approaches in terms
of their code quality.

5.1 Methodology

To run the benchmarks, we use input data sets originally put forward by Minh et
al. in their original work [11]. The paper describes three different input sizes for
each benchmark: ‘small’, ‘medium’ and ‘large’. Since the creation of the bench-
mark suite, numerous advancements in hardware have significantly increased
processor speeds. Hence, for most applications, the ‘small’ and ‘medium’ sized
inputs are ill-suited for a comparison. Most of these inputs are so small that the
applications terminate after significantly less than 100 milliseconds. In such a
small range, the measuring noise introduced by the operating system dominates
the results. We thus use the ‘large’ or ‘++’ data sets from the benchmark suite
for our measurements of k-means, labyrinth, ssca2 and genome. For intruder and
yada, we use the medium-sized input data set, as execution times of the STM
implementations were extremely long for the large input set. The k-means ap-
plication additionally provides a low-contention and high-contention input set
differing in the number of clusters to be computed.

Additionally, we made some changes to the k-means code. Originally, the
benchmark terminated either upon convergence or after 500 iterations. However,

10 F. Suchert et al.

due to variations in the floating point accuracy of the C and Rust implementa-
tions, both versions converge only after a wildly varying number of iterations.
For the large input data set, convergence was always reached at the latest be-
tween 150 and 200 iterations. For a meaningful comparison between the Rust
and C implementations, we hardcode the termination after 200 iterations.

As we pointed out in Section 4, automatically translated benchmarks also
use the tl2 library through a C interface. As a consequence, optimized non-
debug builds fail execution due to memory faults, which are probably caused
by API instabilities. For that reason, we conduct the rust-tl2 measurements
using debug builds only. Resulting speedups are still valid, as the baseline is also
measured from a debug build. For the runtime comparison, however, we exclude
the rust-tl2 measurement results to not distort the plot. Instead, we only show
the sequential execution time of the rust-tl2 applications to compare general
language overheads in runtimes.

We run all measurements on a workstation with an Intel Core i9-10900K
CPU, 32 GiB DDR4-2933 RAM and Ubuntu 22.04 LTS installed. All measure-
ments are repeated 30 times to minimize the effect of random jitter caused by
system processes.

To measure the speedup of STM applications, we run all measurements for 1,
2, 4, 8 and 16 threads. This limitation stems from the original C-based STAMP
implementation requiring the thread count to be a power of 2.

5.2 Performance Comparison

Figure 1 shows the mean speedups achieved by all three implementations com-
pared to their respective sequential baselines. Additionally, Figure 2 shows the
mean execution times of all configurations. We observe that the manually imple-
mented Rust version generally performs worse than the C implementation when
transactions are used more frequently.

For Labyrinth, the manually implemented Rust version only manages to
achieve half the speedup of the C implementation. This is mainly caused by
the high overheads induced by repeatedly cloning the grid data structure, as
outlined in Section 3.3. Almost 50 % of the total time spent inside transactions
is used for creating local copies of the maze. The C version circumvents that
by unsafely copying the memory of the grid to a new location, undetected by
any transaction. Rust-tl2 and c-tl2 are on par in terms of speedup. However,
Figure 2 reveals that the Rust version executes almost 50 % faster than the C
implementation. This hints at Rust in this case being generally more efficient,
which can also be seen in the other benchmarks.

In Genome, we observe a similar pattern of Rust-STM underperforming in
comparison to the C version. While the speedup increase is generally there,
it is offset by a factor two from the other implementations. This can directly
be attributed to Genome’s internal use of complex associative arrays, namely
HashMaps and HashSets. As pointed out in Section 3.4, the C version (and
therefore the transpiled Rust version, too) implements its own transaction-ready
hash-based data structures. The Rust-STM library does not come with such

STAMP-Rust 11

ssca2 kmeans−high kmeans−low

labyrinth genome intruder yada

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

0

1

2

3

0.00

0.25

0.50

0.75

1.00

0.0

2.5

5.0

7.5

10.0

0

2

4

6

0

2

4

6

8

0

1

2

3

4

5

0.0

0.5

1.0

1.5

data parallel cores

sp
ee

du
p

rust−stm rust−tl2 c−tl2

Fig. 1. Speedups of different benchmark implementations over their respective sequen-
tial implementations for a varying number of threads.

data structures and therefore has to resort to constructing a HashSet alternative
using Standard Library methods. We implemented a transaction-aware HashSet
and HashMap that internally uses a fixed number of buckets, each containing
a HashSet or HashMap protected by a transaction variable. The performance
then decreases because this is significantly less efficient than constructing such
a type from scratch. Future work should re-evaluate these benchmarks with a
data structure leveraging more efficient implementation approaches [28].

The Intruder benchmark reveals the same performance issue in Rust-STM.
However, the Rust-STM implementation manages to overtake all other imple-
mentations when using more threads. This indicates that the transaction over-
head for HashSets can indeed be offset in some cases by the use of more threads,
although speedups still do not exceed 1.0 for this benchmark.

Yada’s Rust-STM implementation indeed performs significantly worse than
the two competing versions. Here, HashMaps and HashSets are used very promi-
nently to store the mesh’s triangles and depict neighborhood relations between
different elements. Thus, every modification of the graph requires the copying
and writing back of one or multiple buckets of our self-implemented Hash data
structure. While this is slightly more efficient than having a single HashMap
that is modified every transaction, it still incurs a huge overhead compared to
specialized data structures.

12 F. Suchert et al.

ssca2 kmeans−high kmeans−low

labyrinth genome intruder yada

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

0

1000

2000

3000

4000

5000

0

100

200

0

5000

10000

15000

0

3000

6000

9000

0

5000

10000

0

10000

20000

30000

40000

50000

0

10000

20000

30000

40000

data parallel cores

ru
nt

im
e

rust−stm rust−tl2 c−tl2

Fig. 2. Runtimes of the different benchmark implementations and their respective se-
quential implementations. The horizontal lines indicate the sequential execution time
for comparison. Runtime data for parallel rust-tl2 executions has been omitted as no
data could be obtained for non-debug builds.

In ssca2, the performance difference is rooted in more fundamental differences
between C an Rust, however. As outlined in Section 3.3, this benchmark has var-
ious synchronization points at which execution switches between transactional
and data-parallel computing. Furthermore, data structures are frequently writ-
ten to in parallel without synchronization, heavily imparting any safety guaran-
tees. In Rust, neither of both is safely doable as the type system strictly prohibits
both unguarded accesses to transactional variables and shared mutability. Con-
sequently, the Rust-STM implementation has to terminate threaded execution
to synchronize after data-parallel sections. This added computational overhead
is clearly visible both in the speedup and even more clearly in the running time of
the benchmark. Rust-tl2 and c-tl2 however, are both on par in terms of speedup.

For k-means, both Rust versions outperform the C implementation. While
the Rust-STM version executes generally slower than the C version, the Rust-
tl2 implementation terminates significantly faster. Therefore, the speedup can
be attributed to the Rust runtime’s more efficient handling of contention and
more radical vectorization of numerical computations.

STAMP-Rust 13

5.3 Qualitative Analysis

Despite the performance problems Rust-STM shows in some of the benchmarks,
it improves significantly on the safety of the applications. On the other hand, the
C implementation, which in and of itself already lacks any safety guarantees, has
chosen to trade further safety aspects by violating the STM concurrency model.
A small percentage of benchmark runs for the C-version STAMP applications
were aborted due to faulty memory management. Rusts cleaner approach to
memory management rules out such behavior.

While the automatically-transpiled code generally performed better than the
native C implementation, it combines several negative aspects in terms of code
quality. The generated code itself is non-idiomatic as discussed in Section 4, while
it still contains all the possibly undefined behavior of unsafe Rust code. Hence,
understanding the source code is challenging, which makes it even harder to
spot potential bugs. The manual implementation, on the other hand, leverages
Rust’s type system fully and provides better readability and maintainability:
Transactions are clearly encapsulated into atomically blocks; and functions
requiring to be run inside a transaction context are marked as such by their
signature.

6 Conclusion

Motivated by STMs continued presence in both research and application devel-
opment, we analyze how the performance of the mechanism is impacted by us-
ing the type-safe Rust language for implementation. We implement the STAMP
benchmark suite in Rust (STAMP-Rust) and find that the existing C implemen-
tation regularly performs unsafe memory operations and violates the STM con-
currency model. Hence, Rust-STM implementations of STAMP benchmarks are
up to 50 % slower than their C implementations in transaction-intensive bench-
marks. On the other hand, automatically generated, unsafe Rust code regularly
outperforms the C equivalents, hinting at Rust being generally more efficient.
We think that our safe re-implementations of the prominent STAMP suite along
with the presentation of our design rationale can serve as baseline for further
research on STM applications using the Rust programming model. We leave it
as future work to explore more efficient implementations leveraging fine-granular
transactions on complex data structures, such as genome and intruder.

Acknowledgements

The authors would like to thank Sebastian Ertel for his valuable input.

References

1. Anderson, B., Bergstrom, L., Goregaokar, M., Matthews, J., McAllister, K., Mof-
fitt, J., Sapin, S.: Engineering the servo web browser engine using Rust. In: Proceed-
ings of the 38th International Conference on Software Engineering Companion. pp.

14 F. Suchert et al.

81–89. ACM, Austin Texas (May 2016). https://doi.org/10.1145/2889160.2889229,
https://dl.acm.org/doi/10.1145/2889160.2889229

2. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for
modular specification and verification. Proceedings of the ACM on Program-
ming Languages 3(OOPSLA), 1–30 (Oct 2019). https://doi.org/10.1145/3360573,
https://dl.acm.org/doi/10.1145/3360573

3. Bader, D.A., Madduri, K.: Design and Implementation of the HPCS Graph Anal-
ysis Benchmark on Symmetric Multiprocessors. In: Hutchison, D., Kanade, T.,
Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O.,
Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi,
M.Y., Weikum, G., Bader, D.A., Parashar, M., Sridhar, V., Prasanna, V.K. (eds.)
High Performance Computing – HiPC 2005, vol. 3769, pp. 465–476. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/11602569 -
48, http://link.springer.com/10.1007/11602569 48, series Title: Lecture Notes in
Computer Science

4. Balasubramanian, A., Baranowski, M.S., Burtsev, A., Panda, A., Rakamarić, Z.,
Ryzhyk, L.: System Programming in Rust: Beyond Safety. In: Proceedings of the
16th Workshop on Hot Topics in Operating Systems. pp. 156–161. ACM, Whistler
BC Canada (May 2017). https://doi.org/10.1145/3102980.3103006, https://dl.
acm.org/doi/10.1145/3102980.3103006

5. Beadle, H.A., Cai, W., Wen, H., Scott, M.L.: Nonblocking Persistent Software
Transactional Memory. In: 2020 IEEE 27th International Conference on High Per-
formance Computing, Data, and Analytics (HiPC). pp. 283–293. IEEE, Pune, India
(Dec 2020). https://doi.org/10.1109/HiPC50609.2020.00042, https://ieeexplore.
ieee.org/document/9406709/

6. Bergmann, G.: Software Transactional Memory (Aug 2022), https://github.com/
Marthog/rust-stm, original-date: 2015-09-15T14:45:14Z

7. Blandy, J., Orendorff, J.: Programming Rust: fast, safe systems develop-
ment. O’Reilly Media, Sebastopol, California, first edition edn. (2017), oCLC:
on1019128949

8. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming:
preventing data races and deadlocks. In: Proceedings of the 17th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and
applications - OOPSLA ’02. p. 211. ACM Press, Seattle, Washington, USA
(2002). https://doi.org/10.1145/582419.582440, http://portal.acm.org/citation.
cfm?doid=582419.582440

9. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership types for
safe region-based memory management in real-time Java. In: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design
and implementation - PLDI ’03. p. 324. ACM Press, San Diego, Califor-
nia, USA (2003). https://doi.org/10.1145/781131.781168, http://portal.acm.org/
citation.cfm?doid=781131.781168

10. Bychkov, A., Nikolskiy, V.: Rust Language for Supercomputing Applications. In:
Voevodin, V., Sobolev, S. (eds.) Supercomputing, vol. 1510, pp. 391–403. Springer
International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-92864-
3 30, https://link.springer.com/10.1007/978-3-030-92864-3 30, series Title: Com-
munications in Computer and Information Science

11. Chi Cao Minh, JaeWoong Chung, Kozyrakis, C., Olukotun, K.: STAMP: Stan-
ford Transactional Applications for Multi-Processing. In: 2008 IEEE International
Symposium on Workload Characterization. pp. 35–46. IEEE, Seattle, WA, USA

https://doi.org/10.1145/2889160.2889229
https://dl.acm.org/doi/10.1145/2889160.2889229
https://doi.org/10.1145/3360573
https://dl.acm.org/doi/10.1145/3360573
https://doi.org/10.1007/11602569_48
https://doi.org/10.1007/11602569_48
http://link.springer.com/10.1007/11602569_48
https://doi.org/10.1145/3102980.3103006
https://dl.acm.org/doi/10.1145/3102980.3103006
https://dl.acm.org/doi/10.1145/3102980.3103006
https://doi.org/10.1109/HiPC50609.2020.00042
https://ieeexplore.ieee.org/document/9406709/
https://ieeexplore.ieee.org/document/9406709/
https://github.com/Marthog/rust-stm
https://github.com/Marthog/rust-stm
https://doi.org/10.1145/582419.582440
http://portal.acm.org/citation.cfm?doid=582419.582440
http://portal.acm.org/citation.cfm?doid=582419.582440
https://doi.org/10.1145/781131.781168
http://portal.acm.org/citation.cfm?doid=781131.781168
http://portal.acm.org/citation.cfm?doid=781131.781168
https://doi.org/10.1007/978-3-030-92864-3_30
https://doi.org/10.1007/978-3-030-92864-3_30
https://link.springer.com/10.1007/978-3-030-92864-3_30

STAMP-Rust 15

(Oct 2008). https://doi.org/10.1109/IISWC.2008.4636089, http://ieeexplore.ieee.
org/document/4636089/

12. Contributors, C.: C2Rust (Aug 2022), https://github.com/immunant/c2rust,
original-date: 2018-04-20T00:05:50Z

13. Correia, A., Felber, P., Ramalhete, P.: Romulus: Efficient Algorithms for Persis-
tent Transactional Memory. In: Proceedings of the 30th on Symposium on Paral-
lelism in Algorithms and Architectures. pp. 271–282. ACM, Vienna Austria (Jul
2018). https://doi.org/10.1145/3210377.3210392, https://dl.acm.org/doi/10.1145/
3210377.3210392

14. Dice, D., Shalev, O., Shavit, N.: Transactional Locking II. In: Hutchison, D.,
Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor,
M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos,
D., Tygar, D., Vardi, M.Y., Weikum, G., Dolev, S. (eds.) Distributed Com-
puting, vol. 4167, pp. 194–208. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006). https://doi.org/10.1007/11864219 14, http://link.springer.com/10.1007/
11864219 14, series Title: Lecture Notes in Computer Science

15. Dragojević, A., Harris, T.: STM in the small: trading generality for perfor-
mance in software transactional memory. In: Proceedings of the 7th ACM eu-
ropean conference on Computer Systems - EuroSys ’12. p. 1. ACM Press, Bern,
Switzerland (2012). https://doi.org/10.1145/2168836.2168838, http://dl.acm.org/
citation.cfm?doid=2168836.2168838

16. Emre, M., Schroeder, R., Dewey, K., Hardekopf, B.: Translating C to safer Rust.
Proceedings of the ACM on Programming Languages 5(OOPSLA), 1–29 (Oct
2021). https://doi.org/10.1145/3485498, https://dl.acm.org/doi/10.1145/3485498

17. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A Benchmark for Software
Transactional Memory (2006), http://infoscience.epfl.ch/record/89706

18. Haagdorens, B., Vermeiren, T., Goossens, M.: Improving the Performance of
Signature-Based Network Intrusion Detection Sensors by Multi-threading. In:
Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell,
J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Ter-
zopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Lim, C.H., Yung, M. (eds.)
Information Security Applications, vol. 3325, pp. 188–203. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31815-6 -
16, http://link.springer.com/10.1007/978-3-540-31815-6 16, series Title: Lecture
Notes in Computer Science

19. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th annual international symposium on
Computer architecture - ISCA ’93. pp. 289–300. ACM Press, San Diego, California,
United States (1993). https://doi.org/10.1145/165123.165164, http://portal.acm.
org/citation.cfm?doid=165123.165164

20. Holk, E., Pathirage, M., Chauhan, A., Lumsdaine, A., Matsakis, N.D.: GPU Pro-
gramming in Rust: Implementing High-Level Abstractions in a Systems-Level
Language. In: 2013 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum. pp. 315–324. IEEE, Cambridge, MA,
USA (May 2013). https://doi.org/10.1109/IPDPSW.2013.173, http://ieeexplore.
ieee.org/document/6650903/

21. Jung, R., Jourdan, J.H., Krebbers, R., Dreyer, D.: RustBelt: securing the founda-
tions of the Rust programming language. Proceedings of the ACM on Program-
ming Languages 2(POPL), 1–34 (Jan 2018). https://doi.org/10.1145/3158154,
https://dl.acm.org/doi/10.1145/3158154

https://doi.org/10.1109/IISWC.2008.4636089
http://ieeexplore.ieee.org/document/4636089/
http://ieeexplore.ieee.org/document/4636089/
https://github.com/immunant/c2rust
https://doi.org/10.1145/3210377.3210392
https://dl.acm.org/doi/10.1145/3210377.3210392
https://dl.acm.org/doi/10.1145/3210377.3210392
https://doi.org/10.1007/11864219_14
http://link.springer.com/10.1007/11864219_14
http://link.springer.com/10.1007/11864219_14
https://doi.org/10.1145/2168836.2168838
http://dl.acm.org/citation.cfm?doid=2168836.2168838
http://dl.acm.org/citation.cfm?doid=2168836.2168838
https://doi.org/10.1145/3485498
https://dl.acm.org/doi/10.1145/3485498
http://infoscience.epfl.ch/record/89706
https://doi.org/10.1007/978-3-540-31815-6_16
https://doi.org/10.1007/978-3-540-31815-6_16
http://link.springer.com/10.1007/978-3-540-31815-6_16
https://doi.org/10.1145/165123.165164
http://portal.acm.org/citation.cfm?doid=165123.165164
http://portal.acm.org/citation.cfm?doid=165123.165164
https://doi.org/10.1109/IPDPSW.2013.173
http://ieeexplore.ieee.org/document/6650903/
http://ieeexplore.ieee.org/document/6650903/
https://doi.org/10.1145/3158154
https://dl.acm.org/doi/10.1145/3158154

16 F. Suchert et al.

22. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew,
L.P.: Optimistic parallelism requires abstractions. In: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and imple-
mentation - PLDI ’07. p. 211. ACM Press, San Diego, California, USA
(2007). https://doi.org/10.1145/1250734.1250759, http://portal.acm.org/citation.
cfm?doid=1250734.1250759

23. Lee, C.Y.: An Algorithm for Path Connections and Its Applications.
IEEE Transactions on Electronic Computers EC-10(3), 346–365 (Sep
1961). https://doi.org/10.1109/TEC.1961.5219222, http://ieeexplore.ieee.org/
document/5219222/

24. Levy, A., Andersen, M.P., Campbell, B., Culler, D., Dutta, P., Ghena, B.,
Levis, P., Pannuto, P.: Ownership is theft: experiences building an embed-
ded OS in rust. In: Proceedings of the 8th Workshop on Programming Lan-
guages and Operating Systems. pp. 21–26. ACM, Monterey California (Oct
2015). https://doi.org/10.1145/2818302.2818306, https://dl.acm.org/doi/10.1145/
2818302.2818306

25. Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., Levis, P.:
The Case for Writing a Kernel in Rust. In: Proceedings of the 8th
Asia-Pacific Workshop on Systems. pp. 1–7. ACM, Mumbai India (Sep
2017). https://doi.org/10.1145/3124680.3124717, https://dl.acm.org/doi/10.1145/
3124680.3124717

26. Macqueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability.
pp. 281–297 (1967)

27. Pasqualin, D.P., Diener, M., Du Bois, A.R., Pilla, M.L.: Online Sharing-
Aware Thread Mapping in Software Transactional Memory. In: 2020 IEEE
32nd International Symposium on Computer Architecture and High Per-
formance Computing (SBAC-PAD). pp. 35–42. IEEE, Porto, Portugal (Sep
2020). https://doi.org/10.1109/SBAC-PAD49847.2020.00016, https://ieeexplore.
ieee.org/document/9235046/

28. Paznikov, A., Smirnov, V., Omelnichenko, A.: Towards Efficient Implementation
of Concurrent Hash Tables and Search Trees Based on Software Transactional
Memory. In: 2019 International Multi-Conference on Industrial Engineering and
Modern Technologies (FarEastCon). pp. 1–5. IEEE, Vladivostok, Russia (Oct
2019). https://doi.org/10.1109/FarEastCon.2019.8934131, https://ieeexplore.ieee.
org/document/8934131/

29. Pop, M., Salzberg, S., Shumway, M.: Genome sequence assem-
bly: algorithms and issues. Computer 35(7), 47–54 (Jul 2002).
https://doi.org/10.1109/MC.2002.1016901, http://ieeexplore.ieee.org/document/
1016901/

30. Ramalhete, P., Correia, A., Felber, P.: Efficient algorithms for persistent trans-
actional memory. In: Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. pp. 1–15. ACM, Virtual Event
Republic of Korea (Feb 2021). https://doi.org/10.1145/3437801.3441586, https:
//dl.acm.org/doi/10.1145/3437801.3441586

31. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Transactions and pri-
vatization in Delaunay triangulation. In: Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing - PODC ’07. p. 336. ACM
Press, Portland, Oregon, USA (2007). https://doi.org/10.1145/1281100.1281160,
http://dl.acm.org/citation.cfm?doid=1281100.1281160

https://doi.org/10.1145/1250734.1250759
http://portal.acm.org/citation.cfm?doid=1250734.1250759
http://portal.acm.org/citation.cfm?doid=1250734.1250759
https://doi.org/10.1109/TEC.1961.5219222
http://ieeexplore.ieee.org/document/5219222/
http://ieeexplore.ieee.org/document/5219222/
https://doi.org/10.1145/2818302.2818306
https://dl.acm.org/doi/10.1145/2818302.2818306
https://dl.acm.org/doi/10.1145/2818302.2818306
https://doi.org/10.1145/3124680.3124717
https://dl.acm.org/doi/10.1145/3124680.3124717
https://dl.acm.org/doi/10.1145/3124680.3124717
https://doi.org/10.1109/SBAC-PAD49847.2020.00016
https://ieeexplore.ieee.org/document/9235046/
https://ieeexplore.ieee.org/document/9235046/
https://doi.org/10.1109/FarEastCon.2019.8934131
https://ieeexplore.ieee.org/document/8934131/
https://ieeexplore.ieee.org/document/8934131/
https://doi.org/10.1109/MC.2002.1016901
http://ieeexplore.ieee.org/document/1016901/
http://ieeexplore.ieee.org/document/1016901/
https://doi.org/10.1145/3437801.3441586
https://dl.acm.org/doi/10.1145/3437801.3441586
https://dl.acm.org/doi/10.1145/3437801.3441586
https://doi.org/10.1145/1281100.1281160
http://dl.acm.org/citation.cfm?doid=1281100.1281160

STAMP-Rust 17

32. Takano, K., Oda, T., Kohata, M.: Design of a DSL for Converting Rust Pro-
gramming Language into RTL. In: Barolli, L., Okada, Y., Amato, F. (eds.) Ad-
vances in Internet, Data and Web Technologies, vol. 47, pp. 342–350. Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-39746-
3 36, http://link.springer.com/10.1007/978-3-030-39746-3 36, series Title: Lecture
Notes on Data Engineering and Communications Technologies

33. Tasharofi, S., Dinges, P., Johnson, R.E.: Why Do Scala Developers Mix the Ac-
tor Model with other Concurrency Models? In: Hutchison, D., Kanade, T., Kit-
tler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O.,
Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi,
M.Y., Weikum, G., Castagna, G. (eds.) ECOOP 2013 – Object-Oriented Program-
ming, vol. 7920, pp. 302–326. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39038-8 13, http://link.springer.com/10.1007/
978-3-642-39038-8 13, series Title: Lecture Notes in Computer Science

34. Xu, Y., Izraelevitz, J., Swanson, S.: Clobber-NVM: log less, re-execute more. In:
Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 346–359. ACM, Virtual
USA (Apr 2021). https://doi.org/10.1145/3445814.3446730, https://dl.acm.org/
doi/10.1145/3445814.3446730

https://doi.org/10.1007/978-3-030-39746-3_36
https://doi.org/10.1007/978-3-030-39746-3_36
http://link.springer.com/10.1007/978-3-030-39746-3_36
https://doi.org/10.1007/978-3-642-39038-8_13
http://link.springer.com/10.1007/978-3-642-39038-8_13
http://link.springer.com/10.1007/978-3-642-39038-8_13
https://doi.org/10.1145/3445814.3446730
https://dl.acm.org/doi/10.1145/3445814.3446730
https://dl.acm.org/doi/10.1145/3445814.3446730

	STAMP-Rust: Language and Performance Comparison to C on Transactional Benchmarks

