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Abstract—Recent works on 5G baseband processing systems
address the optimization of applications with different require-
ments of quality of service (QoS). The volume and heterogeneity
of applications that have to be processed on a base station are
growing and 5G introduces new use cases that push system
designers towards more flexible and adaptable approaches. To
investigate future network challenges of mobile communications,
a good methodology for the generation of realistic workloads,
that allows target optimizations of different traffic scenarios, is
required. In this paper, we study the variation of real traffic data
on multiple base stations and identify the main sources for the
high variation of the 5G workloads. We propose a methodology
for parameterizable workload generation for users with different
QoS requirements that enables optimization techniques in base-
band processing systems. We demonstrate the feasibility of our
approach based on a virtual base station using a heterogeneous
hardware model and various state-of-the-art mapping policies.

Index Terms—mobile traffic, baseband processing, 5G network

I. INTRODUCTION

With the increasing number of wireless devices, as well as

the wide range of applications they can offer, adaptivity in

upcoming telecommunication standards becomes essential to

accomplish optimized performance. The global data traffic is

expected to increase by a factor of 10,000 by 2030 [1], which

represents a significant impact on global energy consumption.

Additionally, the difference in network requirements needed

by different applications like remote medical surgery, virtual

and augmented reality (VAR) or low-complexity internet of

things (IoT) devices shows the need for flexible protocols that

support different latency, reliability and data rate values for

the different users. The 5G standard already provides three

different use cases, which are classified as enhanced mobile

broadband (eMBB), massive machine-type communications

(mMTC), and ultra-reliable and low-latency communications

(URLLC) [2]. However, the fast development of emerging

technologies and applications indicates that 5G will reach its

limits by 2030 [3]. Therefore, Wittig et al. [4] argue about

the need of a formal approach for modem design that in-

cludes well-defined semantics for adaptivity. Moreover, recent

research [5]–[7] has focused on developing adaptable baseband

processing systems, since they are a promising solution to cope

with the growing flexibility of the standards while providing

good energy efficiency.

The heterogeneity of the traffic loads on mobile base sta-

tions is defined not only by the specific use case (e.g., video or

sensor data) but also by the geographic location. Authors in [8]

show how the traffic volume changes accordingly with the

population density of 4 different area scenarios: dense urban,

urban, suburban and rural areas. For each of the area scenarios,

both the population and the base station density can vary

within a wide range, e.g. the population per base station ranges

from 490 to 2200 inhabitants. Communication in very crowded

areas can be limited by the cell capacity rather than the cell

range, opposite to what happens in rural areas. Similarly,

authors in [9] propose a clustering model, by analysing the

data traffic on base stations that share similar behaviour. For

example, the activity on a network placed near commercial

buildings will be reduced during the weekends, which is the

opposite case of public parks. The volatility of the mobile

traffic is also reflected in Figure 1, which shows the mean

traffic in Mbits of 23 base stations during a few minutes in

the same city. The different base stations present a significant

difference in the workloads that varies in a range of 0.25-

18.5 Mbits. Having a system that captures the heterogeneity of

the workloads and produces data traffic that includes detailed

information about every single user for a target area scenario

is a key enabler to explore optimization algorithms.

Fig. 1: Mean amount of data traffic on different base stations

during the same range of time.

Initiatives like the one in [10], where participants are

encouraged to design a neural network for fast recognition of
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modulation scheme classification on mobile workloads, make

use of the RadioML 2018.01A dataset [11] which contains

state-of-the-art schemes. In 5G, new modulation schemes

are needed to support large-scale heterogeneous traffic. An

overview of potential new modulation schemes for 5G is

presented in [12]. A methodology to automatically generate

new datasets that include futuristic scenarios for design space

exploration (DSE), would potentiate current ongoing research

on baseband optimization.

Generating meaningful datasets is challenging since (i) it is

difficult to obtain access to real data from network operators

due to privacy reasons, and (ii) because of the high degree

of parameterization of baseband processing. The latter means

that deep insight into the algorithms is needed to automatically

generate meaningful parameter combinations depending on a

given network scenario. In this paper, we present a methodol-

ogy for the automatic generation of parameterizable workloads

for mobile networks. Our methodology allows describing new

traffic scenarios for the design and testing of new optimization

techniques for baseband processing. Moreover, we test the

generator by using an open-source framework for prototyping

of base stations and compare different scheduling policies with

changing traffic scenarios at runtime. We show how by tuning

the multiple parameters involved in mobile workloads we

can profile the power consumption of a baseband processing

system, providing a better benchmarking system for future

research on system-level optimizations.

II. WORKLOAD PARAMETERIZATION FOR 5G AND BEYOND

Radio access networks (RANs) have evolved over the years

to address the flexibility challenge in mobile communications.

Typically, a RAN architecture is a distributed system where

local base stations are composed of mainly two components, a

remote radio-head (RRH) in the front-end and a baseband unit

(BBU) performing signal processing [13]. The introduction

of cloud RANs (cRANs), where BBUs are placed into a

centralised pool of BBUs, enabled a more efficient utiliza-

tion of the resources by sharing the available BBUs among

the different RRHs [14]. Then, virtualized RANs (vRANs)

extended the flexibility and scalability by leveraging the use

of programmable general purpose architectures [15]. Moving

towards software-based solutions made it possible to reduce

time-to-market and optimise the overall energy consumption of

the wireless systems. However, given the advances in mobile

communications, the current systems are facing again an

increasing demand for more flexibility but more importantly,

for energy-efficient approaches. Baseband systems have to

evolve towards more adaptable solutions that address these

problems.

In LTE, baseband processing in the physical layer is one

of the most intensive tasks of the protocol. In uplink com-

munication, every user equipment (UE) that communicates to

an LTE base station is allocated with a frequency band that

ranges from 1.4 to 20 MHz [16]. The frequency is allocated

as a concatenation of physical resource blocks (PRBs). Every

PRB is formed by 12 subcarriers (SC) of 15 kHz. The total

bandwidth of a PRB is 180 kHz and the maximum number of

PRBs allocated to a single UE is 100. In the time domain, the

transmission is organized as a sequence of frames containing

data transmitted by up to 10 UEs. Every frame has a length of

10 ms and is composed of 10 subframes of length 1 ms. Every

subframe is divided into two slots of 0.5 ms each and each slot

consists of 7 OFDM symbols. One PRB is equivalent to one

subframe in the time domain. The amount of data carried on

each symbol depends on the used modulation scheme (MOD)

which is determined by the SNR of the transmission. A higher-

order modulation rate can provide a higher data transmission

rate. Moreover, baseband systems use multiple input multiple

output (MIMO) technologies to increase data rates. The MIMO

technique allows UEs to transmit information through multiple

spatial layers (LAYs) where multiple independent streams of

data are sent in order to increase the channel capacity [17].
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Fig. 2: Block diagram of a baseband receiver.

We use the LTE PHY benchmark [18] as a baseline ref-

erence to extract a dataflow model of an LTE application.

Figure 2 shows the dataflow graph of an LTE application for

a single UE in uplink communication. Typically, baseband

processing consists of computation kernels such as matched

filter, fast Fourier transform (FFT), windowing, inverse FFT

(IFFT), antenna combining, combiner weights calculation, and

soft symbol demaping. In the LTE standard, the runtime

characteristics of the kernels show already a high degree of

parameterization. Each of these kernels has multiple parallel

instances specified by the numbers in the figure. The paral-

lelization factor as well as the latency for the kernels are

defined by the number of allocated PRBs, the total number

of layers (LAY), the number of antennas (ANT), sub-carriers

(SC), symbols (SYM), and the modulation scheme (MOD).

In the new global standard for mobile communication 5G

New Radio (NR), new sources of parameterization are intro-

duced. More specifically, three usage scenarios are defined

according to their quality of service (QoS) attributes. eMBB,

URLLC, and mMTC are intended to cover scenarios with

different requirements on throughput, reliability, latency, and

availability. This means also that different use cases are

assigned with different expected error ratios, adding some

constraints to the deadline within a user request has to be

processed. Moreover, 5G NR introduces spectrum flexibility

by supporting subcarrier spacing ranging from 15kHz up to
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240kHz depending on the frequency band. Which also means a

variable number of slots per subframe on the time domain [19].

This set of variables is a key source of the flexibility of modern

and upcoming wireless communication standards.

III. A FLEXIBLE TRAFFIC GENERATOR

Understanding the high heterogeneity of the network loads

on mobile base stations is a key enabler to explore optimiza-

tion techniques that target different traffic scenarios. Current

5G networks combine cells of multiple sizes (e.g., macrocells

or microcells) which feature different coverage and frequency

bands. A macrocell is usually deployed through large towers

placed outdoors to provide a wide range of coverage for

many users. Small cells, in turn, cover a smaller range and

are usually deployed indoors near where the connection is

required. Since nearly 80% of the mobile traffic is expected

from indoor connectivity [20], we focus on small base stations.

As detailed in Section II, the computational load generated

by every single user depends on multiple parameters. The

exact amount of traffic generated by a single user can be

calculated with the method presented in [21]. Since every

physical resource block contains 12 subcarriers with 7 OFDM

symbols and a duration of two slots of 0.5 milliseconds each,

it means that the number of bits per PRB per slot is equal

to 12x7 = 84. Moreover, given that the number of bits per

subcarrier is calculated as log2(M), where M is the QAM

order, the total traffic T generated by a single user can be

calculated as shown in Equation 1.

T = (num PRBs ∗ 12 ∗ 7 ∗ log2M ∗num slots)/1ms (1)

To be able to emulate realistic mobile workloads on a base

station by generating UE requests at every millisecond (i.e.,

at every subframe) as in a real system, the subframes should

contain detailed information about the parameters of every

single user. In order to do that we first describe the target

geographic location by leveraging existing models of mobile

traffic. Many traffic models have been proposed that capture

the waveform of the mean traffic volume during one day [9],

[22]. All of them show similar behaviour on the waveform with

the lowest point of activity around 5:00 a.m. and the highest

peak around 9:00 p.m. To define the area scenarios we took

the model proposed in [23] where the traffic is represented as

a superposition of sinusoidal waves. These models represent

the mean data traffic of the specified scenario. Our framework

adds noise to the underlying profile to create more realistic

scenarios. Figure 3 shows the generated waveforms for a

business district (BC) and a park area scenarios in an urban

region during a normal weekday, we set 12Mbits as the

highest traffic volume. We characterize the different scenarios

by modifying the parameters of the phase and amplitude of

the sinusoids. In the example, we added random variability

sampling from a normal distribution with a standard deviation

of 0.5.

The main challenge for a flexible workload generation to

test 5G baseband processing systems is to derive realistic

Fig. 3: Traffic model of a base station in a dense urban area.

frame traces based on high-level traffic profiles like the one

described above. To this end, we extract and leverage the

statistics of real-life use case dependent traces to generate

information at the subframe level. Figures 4 and 5, 6 show the

probability density functions (PDFs) for the number of active

users per subframe and the number of PRBs allocated per user

and the number of bits per symbol per user respectively. The

PDFs were calculated based on observations of real traffic data

extracted from a set of 24 base stations placed in a dense urban

area during a five-hour period. We use the extracted PDFs to

generate random values that will be used to parameterize the

generated UE requests.

Fig. 4: PDF of number of UEs per BS per subframe.

Currently, our dataset includes three basic modulation

schemes but can be easily extended to account for other

datasets. The work in [24] presents a 5G trace dataset collected

from a major Irish mobile operator. The dataset contains

throughput, channel and context information of two mobility

patterns across different applications. Among the provided

metrics, the dataset contains the values for Channel Quality

Indicator (CQI). The CQI is a parameter that encodes the state

of a channel and it can be used by the base station to select

a suitable modulation scheme for a given UE. State-of-the-art

modulation schemes include QPSK, 16QAM and 64QAM with
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Fig. 5: PDF of number of allocated PRBs per UE.

Fig. 6: PDF of number of transmitted bits per symbol per user.

a bit rate of 2, 4 and 6 bits/symbol respectively. We classify

the traces in the dataset according to their CQI as shown in

Table I, which is based on the SNR-CQI Mapping for 5G

Network proposed in [25]. Figure 7 shows the resulting PDF of

the modulation schemes for the Irish mobile operator dataset.

The distribution of the PDF follows an ascending order for

the QPSK, 16QAM and 64QAM modulation schemes, which

is the opposite behaviour of our dataset.

TABLE I: CQI mapping.

CQI Region Modulation scheme
CQI ≤ 6 QPSK
6 < CQI ≤ 9 16QAM
9 < CQI ≤ 15 64QAM

To generate detailed subframe information at a given target

hour of the day, our framework has to generate a set of UE

requests that collectively add up around the desired traffic

predicted by the model. For that, we generate a subframe with

a random number of UE requests according to the probability

density function (PDF) of each of the parameters. Based on

the models in Figures 4–6, our framework then generates

time-dependent traces to follow observed base-station profiles.

Figure 8 shows the result of generating random subframes to

follow the model of the business district with the modulation

Fig. 7: PDF of number of transmitted bits per symbol per user.

scheme PDF in Figure 6, by tuning the PDF of the number

of active users per subframe for every millisecond during a

normal day. The presented methodology is flexible and can be

easily extended to include new datasets and new parameters

introduced in 5G or in upcoming standards. The real mobile

traces, together with the extracted PDFs cannot be published

due to privacy reasons. However, the traffic generator is

open sourcei and includes approximated probabilities for the

different parameters that allow the user to generate realistic

data.

Fig. 8: Generated traffic controlling the number of active users

per subframe.

IV. USE CASE

In this section, we demonstrate how the traffic generator can

be used to evaluate state-of-the-art frameworks for optimizing

baseband processing systems. In particular, we reproduce the

results of a state-of-the-art framework, originally evaluated

only on three concrete load scenarios. We show how our

ihttps://github.com/tud-ccc/mobile-traces
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traffic generator can be used for a more extensive and realistic

evaluation, at different times of the day.

A. Experimental setup

We use an open-source virtual prototype of a base station,

which is a plugin for Mocasin [26]. Mocasin is a framework

for rapid prototyping that provides support for a wide range

of models of computation, allows to describe customized

hardware architectures and includes many scheduling algo-

rithms for fast design space exploration. The plugin describes

a virtual heterogeneous hardware platform made of multiple

Exynos 5422 chips with a big.LITTLE architecture connected

through a hierarchical memory model. Every Exynos contains

four ARM Cortex-A15 and four ARM Cortex-A7 cores, with

frequencies of 1.8 GHz and 1.5 GHz respectively. The tool

describes also an FFT hardware accelerator that is integrated

to the platform.

We use the dataflow model provided by the Mocasin plugin

for mobile applications, which was described in Section II and

apply different scheduling strategies under different traffic sce-

narios. We use the presented methodology, in order to generate

and evaluate 2 different temporal traffic scenarios. To generate

the workload we set the same geographic location conditions

used in Section III for the business district and generate

subframes for 2 different modulation scheme distributions, one

based on Figure 6, which will be referred to as PDF1, and

the other one based on Figure 7, which will be referred to

as PDF2. We evaluate the performance of the prototype and

the impact of using two different scheduling policies. More

specifically, we compare the behaviour of the system with

a standard work-stealing algorithm and a recently proposed

domain-specific hybrid mapping for wireless networks. The

description of the Mocasin plugin and the hybrid scheduling

can be found in [27].

B. Evaluation

We use the generated subframes, with the detailed infor-

mation of the UE requests, and pass them as input to the

simulator to generate a profile of the power consumption of

the system. Figure 9 shows the power consumption of a base

station placed in a business district during a normal weekday.

The parameterization of the users alternates between PDF1
and PDF2 during different periods of the day in order to

analyze the behaviour of the system when the quality of the

channel presents some pattern variability. The waveform of

the power consumption follows the waveform of the data

traffic as expected. Although the peak of the input traffic is

placed in the period of time 18:00-24:00 hours, the period

with more power consumption is between 12:00-18:00, which

means that in general, the system shows a better performance

for a workload with the PDF2 distribution for the modulation

schemes. Moreover, the domain-specific scheduling algorithm

allows higher power saving compared to the work-stealing

algorithm in all the traffic scenarios. A similar analysis was

carried out for the number of dropped packages, i.e. every time

a UE request misses the deadline within it has to be processed,

the request gets discarded. In this case, no significant im-

provement was displayed by any of the scheduling algorithms,

which means that the domain-specific hybrid mapping allows

reducing overall power consumption while ensuring a similar

QoS. In this case, we consider the variation in only one of the

parameters, but changing different parameters during different

periods of the day will potentially reveal more opportunities

for the optimization of baseband processing systems.

Fig. 9: Base station power consumption.

V. RELATED WORK

The application of predictive analysis is becoming popular

in many research areas. Interest in forecasting mobile traffic on

LTE cells is essential for the efficiency of the design of future

cellular networks. The works in [8], [9], [23] describe traffic

models that take into account the spatio-temporal characteris-

tics of traffic from multiple base stations. Cells with similar

behaviours are grouped in order to build accurate models

that capture the variability of mobile networks. Moreover,

the authors in [22] present traffic forecasting by using the

fbProphet algorithm developed by Facebook. While the models

are of high quality, they alone cannot be used to generate

realistic baseband traces at the subframe level. Nevertheless,

they can be seen as orthogonal to our method since they can

be used as input to desired target traffic.

Mobile base station traffic patterns have been investigated

for understanding the various parameters involved in cellular

networks. The work in [28] presents an analysis of real traffic

data in order to understand usage patterns of LTE networks.

They propose a methodology to derive a characterization for

the spatio-temporal variation of the LTE traffic. Ding et al. [29]

study the capability requirements on connection density and

user data rate in order to design base stations with different

network capabilities. The authors in [30] target prediction-

driven resource allocation for mobile networks. They analyze

LTE control channel information to propose an optimization

framework that encompasses different forecasting solutions.

These works profile different aspects of mobile communica-

tion, however, they are not flexible enough to explore different

patterns on each of the involved communication parameters.
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VI. CONCLUSION

In this paper, we present a methodology for the genera-

tion of parameterizable workloads for mobile networks. The

methodology is flexible and allows to describe multiple spatio-

temporal mobile traffic scenarios to investigate on optimization

techniques for baseband processing systems. We use the traffic

generator to reproduce and extend an evaluation of a state-of-

the-art framework as a demonstration. Our work can be used

to generate new datasets based on previously known traffic

behaviours, but also makes it possible to explore speculative

scenarios in order to predict the performance of the systems

in presence of anomalous patterns or futuristic use cases like

new modulation schemes or frequency band allocation.
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[18] M. Själander, S. A. McKee, P. Brauer, D. Engdal, and A. Vajda,
“An lte uplink receiver phy benchmark and subframe-based power
management,” in 2012 IEEE International Symposium on Performance
Analysis of Systems & Software, pp. 25–34, 2012.

[19] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The Next Generation
Wireless Access Technology. USA: Academic Press, Inc., 1st ed., 2018.

[20] J. Rendon Schneir, A. Ajibulu, K. Konstantinou, J. Bradford, G. Zim-
mermann, H. Droste, and R. Canto, “A business case for 5g mobile
broadband in a dense urban area,” Telecommunications Policy, vol. 43,
no. 7, p. 101813, 2019.

[21] P. K. Rekhi, M. Luthra, S. Malik, and R. Atri, “Throughput calculation
for lte tdd and fdd systems,” White paper, 12 2012.
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