
Smoothing Disruption Across the Stack: Tales of
Memory, Heterogeneity, & Compilers

M. Niemier, Z. Enciso, M. Sharifi, X.S. Hu
University of Notre Dame

Notre Dame, IN USA
{mniemier, msharif1, zenciso, shu }@nd.edu

Ian O’Connor
Ećole Centrale de Lyon

Lyon, France
Ian.Oconnor@ec-lyon.fr

A. Graening, R. Sharma, P. Gupta
University of California at Los Angeles

Los Angeles, CA USA
{agraening, sravit, puneetg}@ucla.edu

J. Castrillon, J.P.C. Lima,
A.A. Khan, H. Farzaneh

TU Dresden
Dresden, Germany

{jeronimo.castrillon, joao.lima,
asif ali.khan, hamid.farzaneh}@tu-dresden.de

N. Afroze, A. Khan
Georgia Institute of Technology

Atlanta, GA USA
{nafroze, akhan40}@gatech.edu

Julien Ryckaert
IMEC

Leuven, Belgium
Julien.Ryckaert@imec.be

Abstract—Multiple research vectors represent possible paths to
improved energy and performance metrics at the application-level.
There are active efforts with respect to emerging logic devices,
new memory technologies, novel interconnects, and heterogeneous
integration architectures. Of great interest is quantifying the
potential impact of a given solution to prioritize research vectors
accordingly. In this paper, we discuss two efforts – one focused
on emerging memory technology, and another focused on het-
erogeneous integration technology – that speak to best practices
for, and needed contributions from the design automation (DA)
community to explore this vast design space. Furthermore, we
highlight new research efforts that aim to develop the novel
compiler abstractions and frameworks that are ultimately needed
to derive maximum value from new memory and/or heterogeneous
and monolithic integration architecture, and that can also play an
important role with respect to design space exploration efforts.

Index Terms—Compute-in-memory; associative memory; cross-
bar architectures; ferroelectric field effect transistors (FeFETs);
distance functions; heterogeneous integration; chiplet; pathfind-
ing; compilers

I. INTRODUCTION

There is growing interest in memory technology that can
(1) expand the memory hierarchy – e.g., serve as storage-class
memory between DRAM and SSDs [1], (2) increase storage
density given growing dataset sizes in artificial intelligence
(AI), privacy preserving computation (PPC) [2], etc., and (3)
enable in situ computation to reduce overheads associated with
data transfer [3] – e.g., in-memory computing (IMC) fabrics
including (a) computing at the periphery (CAP) that exploits
internal memory bandwidth to achieve parallelism/perform
Boolean operations [4], [5], (b) analog crossbar arrays for
highly parallel matrix-vector multiplies [6]–[8], and (c) content
addressable memories (CAMs) that perform parallel search
operations in the memory per an input query and a desired

This work was supported in part by (1) ASCENT, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program sponsored
by DARPA; (2) CHIMES and SUPREME, two of seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program sponsored by
DARPA; (3) the German Research Council (DFG) through the HetCIM project
(502388442) under the Priority Program on ‘Disruptive Memory Technologies’
(SPP 2377), and (4) the German Federal Ministry of Education and Research
(BMBF) within the project ScaDS.AI (BMBF 01IS18026A-D).

association/matching function [9]. Indeed, recent work suggests
there is great promise from denser memories and/or individual
IMC solutions for transformer networks [10]–[12], recommen-
dation systems [13], PPC [14], etc.

Simultaneously, there has been a rapid expansion with re-
spect to the capabilities/promise of heterogeneous and mono-
lithic integration architectures that aim to deliver solutions
with 1 billion transistors/mm2 at high energy efficiency. Said
systems will transcend horizontal/vertical scales, and offer the
potential for the integration of many diverse technologies owing
to monolithic 3D (M3D) tiers and chiplets. Increased con-
nectivity should positively impact computing, storage, sensing,
and communication alike. Heterogeneous integration (HI) rep-
resents another path toward improvements for compute density
and energy efficiency for application-level workloads such as
transformer networks [15], etc.

Ideally, application-level improvements would be achieved
with minimal “disruption” to existing architectures and fab-
rication process flows. Therefore, it is of great interest to
benchmark “deltas of improvement” that advances in either
memory and/or integration may promise with respect to latency,
energy, as well as the “fidelity” of the result produced (e.g.,
accuracy in AI workloads). As a representative example, Fig. 1
illustrates different architectural/memory-centric design points
that could be employed to accelerate a memory augmented neu-
ral network (MANN) [16] model. Peak accuracies for selected
design points are noted. Regions along each axis qualitatively
consider “disruption” from the state-of-the-art. Drawing from a
Sec. III case study, Fig. 1 illustrates potential savings in search
energy for the MANN workload when transitioning between
design points.

Per Fig. 1, when ferroelectric devices [17] are employed as
a binary or multi-bit random access memory (RAM), search
energy savings are negligible (Fig. 1- A). However, when
(larger) ferroelectric devices are used to implement a multi-
bit CAM (MCAM) that performs in-situ Euclidean distance
[18], energy savings are more substantial owing to reduced data
transfer (Fig. 1- B). However, devices are more scalable

RRAM xBar
n CNN,
hash, AM n
95.0%

CMOS
GPU n
32b FP
n 98.9%

CMOS GPU,
PCM xBar n
32b, 1b n
97.3%

CMOS GPU,
FeFET CAM
n 32b, 1b n
96.6%

CMOS GPU,
3b FeFET
MCAM n
32b, 3b n
98.0%

2D CMOS
(SRAM,

DRAM) n
Flash

Memory

Less disruption More disruption

Architecture
M

or
e

di
sr

up
tio

n
Le

ss
 d

is
ru

pt
io

n

3D CMOS
(SRAM,
DRAM)

STT-MRAM
n RRAM n

PCM
2D (silicon)

FeFET
Multi-level

RRAM,
Ferro, …

BEOL FeFET
n SOT-

MRAM n …

Ionic
memories

CPU n GPU n TPU n
FPGA n …

ASICs, Near Memory
Computing

Heterogeneous
solutions

{CPU, GPU, TPU,
FPGA} + X

Homogeneous IMC:
Computing at array
periphery n xBar n
CAMs, TCAMs, …

Heterogeneous IMC:
{CPU, GPU, TPU,

FPGA} + {CAP, xBar,
CAM, …}

CMOS GPU,
1b FeFET
RAM n 32b
FP n 98.9%

CMOS GPU,
2b FeFET
RAM n 32b
FP n 98.9%

1.1X energy reduction

10X energy reduction

Energy
savings

3X
device
size

reduction

2.5X device size reduction

Area
savings

Int
eg
rat
ion

Notation: hardware implementation,
technology used for accelerator n

precision of accelerators n accuracy

20 domain device feasible

50 domain device needed

150 domain device needed

A

B

C

D
C-i

C-ii

C-iii

Fig. 1. Architectural/technological solutions for a given workload; representa-
tive FOM (accuracy, search energy, device scaling) are illustrated. Interestingly,
for ferroelectric solutions, substantial energy savings are possible for search
operations even with larger device size requirements.

when used as conventional memory, as larger devices are
needed to achieve iso-accuracy when employed to implement
an MCAM (Fig. 1- C i-iii). Projected drops in accuracy for
RRAM-based solutions (Fig. 1- D) [19] might demand more
substantial improvements with respect to energy and latency
(or improvements in accuracy) to justify migration.

Furthermore, in Fig. 1, area projections for ferroelectric do-
mains are captured as a function of the number of ferroelectric
domains that might comprise a device (see Sec. II-A). Any
IMC-like solution will also be comprised of peripheral circuitry
that must be included to realize a desired compute functionality,
and could have an out-sized impact on different FOM (i.e.,
peripherals may dominate area overhead, thereby minimizing
the potential impact of device scaling). One can envision similar
tradeoffs in an integration design space axis.

Finally, despite exciting breakthroughs with respect to mem-
ory/integration technologies, programming models are typically
low-level and specific to particular system implementations.
Developing novel compiler abstractions and frameworks
is essential to derive maximal value from this space, as
widespread adoption will be influenced by the software ecosys-
tem. As intelligent memory and integration technology are
highly heterogeneous, and may speak to targeted or more
general-purpose workloads, compiler abstractions/frameworks
that both enable device agnostic and device specific optimiza-
tions are needed. We must design hierarchical models that allow
for reasoning about computational primitives at the right level
of abstraction. Progressively refining abstractions in a compiler
framework will enable the identification of the most suitable
target for each primitive in a given application. Transformations
at different abstractions to optimize for individual memory and
integration technologies are needed. Device and architecture
models will both enable automatic compiler re-targetability, and
also allow for system-level design space exploration.

In this paper, we highlight the promise of, challenges for,
and pressing needs and interests for the memory technology
and heterogeneous integration themes introduced above. We

will discuss strategies, best practices, needs, and new engage-
ments needed from the design automation (DA) community to
complete roadmaps like the framework in Fig. 1. Of particular
interest is engagement with researchers at lower levels of the
stack – e.g., per the memory technology case study, ferroelectric
domain size will not only impact the “real estate” of a given
functional unit, but also application-level accuracy. We must
also move up the stack and feed information about expected
device behavior to compiler developers such that software-to-
hardware mappings can be considered in terms of (a) meeting
functional computational needs, and (b) delivering the nec-
essary fidelity required for a given task. Said activities will
identify optimal design investments for industry with respect to
deriving maximal near-term, mid-term, and long-term impacts
for application-level workloads of interest.

Our discussions are organized as follows. In Sec. II, we
briefly review relevant background related to the IMC- and
heterogeneous integration (HI)-centric case studies that moti-
vate this work. In Sec. III, we consider how associative mem-
ory (AM) technologies may be applied to efficiently address
AI-type workloads. CMOS solutions, as well as approaches
based on emerging technologies are considered. Of particular
interest are the prospects for reliably realizing said function-
ality with respect to advances in materials/device research,
as well as projections for FOM such as area/cost, energy
efficiency, compute fidelity, etc. In Sec. IV, HI solutions are
investigated with respect to both cost and performance in
the context of large language models (LLMs). Then, in Sec.
V, we discuss programmability challenges associated with
novel architectures, emphasizing the need for novel, high-level
programming frameworks that make systems accessible to non-
experts, and automatically enable device-aware, and device-
agnostic optimizations.

II. BACKGROUND

Given the IMC-focus of Secs. III and V, we highlight emerg-
ing memory technologies in Sec. II-A, and IMC architectural
solutions in Sec. II-B. Integration technology is briefly reviewed
in Sec. II-C.
A. Logic and Memory Technology

An IMC case study in Sec. III considers ferroelectric field
effect transistors (or FeFETs). The structure of an FeFET
resembles a MOSFET, except a layer of ferroelectric (FE) oxide
is deposited in the gate stack. Due to the coupling between the
FE and CMOS capacitances, the threshold (turn-on) voltage of a
device can be shifted. This effect can be used to (non-volatilely)
store information in the FeFET. FeFETs can store multiple
VTH levels through partial polarization switching of the FE
layer [8], [20], [21]. Si FeFETs require relatively high write
voltage pulses, may have limited write endurance, and large
read-after-write latencies. Achieving a suitable/reliable memory
window is challenging – e.g., per Fig. 2a, as devices scale, the
memory window may “collapse” [22]. Per Fig. 2b, 2-bit or
3-bit cells may be achievable (typically with write-and-verify
programming schemes), although some cell state overlap may
still exist (which may or may not be tolerable at the application-
level). Additionally, low voltage, high speed memory operations

2

-0.5 0.0 0.5 1.0 1.5

10-8

10-7

10-6

10-5

I D
 (A

)

VG (V)

240nmx60nm
40 devices State 000

State 001
State 010

State 011

State 100
State 101

State 110

State 111

State overlap with 3 bits

State
00

State
01

State
10

State
11

2 bits – no state overlap

(a) (b) 150 domain device

Fig. 2. (a) Memory window with scaled devices; (b) cell state overlap.

3

(b)

(a)

Stored value 𝑑! 𝑄,𝑀 = 	 '
"#$

%

𝑄" − 𝑀"
!

Aggregate conductance of N MCAM
cells via common ML

Low VTHHigh VTH

ML

SL SL

Low VTHHigh VTH

ML

SL SL

…

𝑸𝟏 − 𝑴𝟏
𝟐 𝑸𝟐 − 𝑴𝟐

𝟐

ML

Cell conductance “computes” 𝑄# − 𝑀#
$

SLN SLN

Match

Cell N
‘0’

‘0’
SL3 SL3

Mismatch

Cell 3
‘1’

‘0’
SL2 SL2

Match

Cell 2
‘1’

‘1’Query

Cell 1
‘0’

Match
line

SL1 SL1

Stored
information

Mismatch

‘1’

‘0’ ‘1’

AND of all match line values …

Mismatch
discharges
matchline

‘1’

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Exact
match

Best
match

Threshold
match

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Match
Mismatch

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Exact
match

Best
match

Threshold
match

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Match
Mismatch

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Basic concepts for Associate Memory Design

Fig. 1: Generic AM structure (4×8 array) based on the NOR
connection. An AM cell matches the input query when Cij =
qj (denoted by green), otherwise there is a mismatch with qj

(denoted by red). AM has two main functions: (i) write
(storing data into the AM cells, WLi is ‘1’ for writing the ith

word and data to be written is put on SLs) and (ii) search
(finding memory data that matches the search query, query
data is put on SLs and MLi indicates a match output).

Fig. 2: CAM cell designs: (a) 2Fe T/A/MCAM [2, 3, 5], (b) 3T1Fe MCAM [6], (c) 1T2Fe
ACAM [10], (d) 6T2R ACAM [7], (e) 2T flash MCAM [4], (f) 15T4MTJ TCAM [12].

SL/BL

SL/BL SL/BL

SLP SLS

Fig. 4: BE match operation of CAMs using FeFET MCAMs as an example. (a) ML
follows the RC discharge model. During search, the conductance of each cell is
determined by the distance function (e.g., SG or SE). The total conductance of the
ML is the sum of the conductance of all cells; (b) The CAM (MCAM in this example)
stores patterns on its rows. During parallel search, the total conductance of each
row reflects the similarity of the data on that row with the search input. The row
with the lowest conductance is the best match. Sensing circuits can detect the
discharge rate using voltage, current, or time which all reflect the conductance of
the row; (c) SPICE simulated waveforms of ML discharge for MCAM shown in (b).

ML

ML
ML

MLP

MLS

Table 1: Classification of AM based on the representation and
matching function. Match-line (MLi) functions are defined based
on input query (qj) and memory content (Cij).

(a) Exact match (b) Best match

(c) Threshold match

VariationBE Match Operations with CAMs

Fig. 5: Vth distribution of 1500 simulated FeFET devices
considering two programming schemes: (i) single, same width
write pulse with different amplitudes for each Vth level, and (ii)
train of equal write pulses with a write-and-verify scheme.
Write-and-verify tightens the Vth distribution and avoids the
overlap between different levels. Large Vth variations can be
detrimental to MCAMs. All three EX/BE/TH MCAM searches
require a good distinction between different Vth levels for
correct operation.

(a)

(b)

(c)

Fig. 3: Different search functions: (a)
exact match: only those rows which
exactly match the input query are
indicated as match cases; (b) best
match: the row which has the
shortest distance from input query is
the best match; (c) threshold match:
those rows with a distance lower
than/equal to the threshold (Thr) are
indicated as match cases (Thr is 2 in
this example).

(d) (e) (f)

SL/BL

Cell Sensing (for one entire row)
(a) (b) (c)

SL/BL SL/BLSL0/BL0SL7/BL7

WL0

WL1

WL2

WL3

Exact
match

Best
match

Threshold
match

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Mismatch
Mismatch

Mismatch
Match
Match
Mismatch

Threshold matchExact match Best match

(c)

Fig. 3. (a) CAM functionality; (b) exact, best, threshold match; (c) approximate
quadratic conductance [18] associated with query/stored value comparison can
be used to approximate Euclidean distance.

with high write endurance have been demonstrated using BEOL
compatible FeFET devices by eliminating the defective inter-
layer between the FE and channel [23]. Reported FOM include
(1) 1.2V memory windows, (2) write latencies of 20 ns with
±2V write pulses, (3) read-after-write latencies of <200ns, (4)
write endurance cycles exceeding 5×1010, and (5) multi-bit/cell
programming capability. Analysis suggests that BEOL FeFETs
are promising for logic-compatible, high-performance on-chip
memories and multi-bit cells for IMC accelerators [24].

B. IMC Architectures
1) Associative Memories: In conventional memory, data is

retrieved from a given address. In a CAM, data is supplied
to memory and all entries that best match a provided query
can be returned. Per Fig. 3a, in a CAM, each bit of a query
is XNORed with the corresponding bit of every stored entry.
With a perfect match, the matchline (ML) does not discharge as
cell matches function as “open switches.” Mismatches function
as “closed switches” causing the ML to discharge. In a ternary
content addressable memory (TCAM), “don’t care” states can
be stored/searched, and cell-level comparisons are treated as a
match regardless of values. Search operations are performed
directly within the memory itself in O(1) time, eliminating
expensive data transfer to a compute unit.

We can classify AMs according to (1) the data representation
in a cell (binary, ternary, multi-bit, analog), and (2) the type
of match performed. Fig. 3c-inset shows the most compact
FeFET AM cell design that was originally proposed to ac-
complish exact match, best match, and threshold match TCAM
functions (Fig. 3b) based on Hamming distance. (Different
match types employ different sensing circuits [25].) The same
cell design can also function as a multi-bit CAM (MCAM)
that performs all of the aforementioned matching functions1.
This improves storage density and enables unique, in-memory
distance functions – e.g., approximations of Euclidean distance,
which has utility for machine learning, AI, bioinformatics, etc.
even given cell state overlap as in Fig. 2b. Per Fig. 3c, if a
multi-bit state is encoded via FeFET VTH values [18], as a
query deviates from the stored value (in either direction), cell
conductance increases quadratically, which mimics (Qi −Mi)

2

of a Euclidean squared distance function. (Euclidean squared
distance is a proxy for Euclidean distance [26] that is commonly
employed in machine learning algorithms.) By connecting
multiple MCAM cells to a common ML, we can also capture
elements of summation (d2(Qi,Mi) =

∑N
i=1 (Qi −Mi)

2).
2) Crossbar Architectures: In AI workloads, a ubiquitous

computation is the multiply and accumulate (MAC) operation
(e.g., y =

∑n
i=1 wixi) that multiplies weights by inputs.

Projections suggest that the energy to retrieve a weight for
a MAC operation from off-chip memory may be two orders
of magnitude higher than the integer MAC operation itself
[27], and co-locating weight data with logic for MACs is
appealing. With inputs represented as voltages on horizontal
rows, emerging devices (e.g., RRAM, FeFETs, PCM, etc.) can
serve as tunable resistors with multiple analog states, and the
results of MAC operations are captured by the summation of
currents from crosspoint connections in a given column.
C. Integration Technology

Chiplet-based systems including 2.5D (single layer of
chiplets on a substrate) [28] and 3D (dies stacked one on top
of the other) have an ever-increasing number of design options.
The integration substrate can be silicon or glass (achieving high
interconnect density at the expense of cost), a variety of organic
substrates (often cheaper but with lower interconnect density
and higher bonding pitch), or EMIB [29] which uses silicon
bridge dies embedded in organic substrates to possibly obtain
“the best of both worlds.” These different options can have
substantial impacts on cost and performance.

III. FEFET-BASED ASSOCIATIVE MEMORIES

We first examine the IMC case study introduced in Sec. I
in more detail. Of general interest is understanding what value
may be derived from technology-enabled IMC solutions – e.g.,
multi-bit FeFET random access memories (RAM) and/or multi-
bit FeFET memories with unique compute capabilities. Of

1The ability to use multi-state FeFETs for analog current domain computing
lies in being able to set the state of a finite number of polarization domains in
the ferroelectric material in a transistor’s gate stack. The number of domains
in a given state directly influences a device’s threshold voltage. As the number
of target states increases, more domains/larger device sizes are required to
mitigate stochasticity, device non-idealities, etc. in order to obtain sufficient
separation between states to achieve a desired application-level accuracy.

particular interest is identifying what benefits may be derived
from FeFET-centric solutions as compared to scaled CMOS
solutions – especially if larger FeFET devices are needed to
realize a given compute kernel with a technology-enabled IMC
approach. Said studies will quantify potential application-level
benefits (thereby “justifying” the potential value of a new
logic/memory device), and also help prioritize research at the
materials science/device-levels, such that technology evolves in
a way that affords maximum application-level impact.

A. MANN Background
For this study, we consider how emerging devices may be

used to support computations associated with MANNs [16].
Using an image classification task as an example, a MANN
can employ a traditional convolutional neural network (CNN)
as a controller that can identify N different classes of images.
However, instead of feeding output neuron values to a SoftMax
function to generate a probability distribution/classification, the
real-valued neuron outputs are instead stored in the network’s
memory. When a new inference operation is performed, a
real-valued output feature vector is generated, and is subse-
quently compared to all learned feature vectors via a distance
function (e.g., cosine or Euclidean distance). The query/class
combination with minimal distance can then represent the
inference/prediction made by the network. An advantage of
this approach is that – assuming a sufficiently large memory –
the existing network controller can be shown/learn new classes
post-training. An output feature vector (or vectors assuming
multiple instances of the same new class) is created, and
searched in subsequent inference operations.

One might employ GPUs, crossbar architectures, etc. to sup-
port matrix-vector multiplication operations that are typically
associated with a CNN. In initial MANN models [16], cosine
distance was typically performed to identify a best match –
which necessitates the transfer of all stored/learned classes from
memory to a GPU. (Data transfer overhead typically dominates
figures of merit such as energy and latency [25].) The ability to
perform matching functions in the memory itself is appealing
as data transfer overhead could be eliminated. However, CAM
matching functions were typically limited to Hamming distance
(real-valued CNN outputs were hashed to binary signatures
[25]), and swapping cosine distance for Hamming distance
often results in degraded accuracy [18]. However, network
outputs can also be quantized to N -bit numbers. Furthermore
this state can be stored in a multi-bit FeFET structure, which
in-turn can implement an MCAM structure capable of ap-
proximating Euclidean distance per Sec II-B. Existing work
suggests that 3-bit representations are sufficient for iso-accuracy
in hyperdimensional computing problems [18]; work discussed
below also suggests said structures can achieve iso-accuracy for
MANN workloads with 3-bit precision/some cell state overlap.

B. Initial Benchmarking
Fig. 4 captures how the number of ferroelectric domains,

the read/write scheme employed, and the memory modality
employed impact search energy for MANN workloads [30].
(We use SPICE and an FeFET Preisach model [31] to estimate

Energy savings from FeFET multi-bit CAMs () versus binary RAM () possible
at expense of area; FeFET MCAM 3.4X > Area,& 11.2X < energy vs. FeFET RAM.

Fig. 4. Initial Pareto frontier projections; area projections are a function of the
number of ferroelectric domains assumed for a device.

search energy for FeFET-based CAMs. Energy estimates con-
sider interconnect parasitics and peripheral energies extracted
from the layout.) Design space explorations (DSEs) suggest
larger (150 domain) devices are needed to estimate Euclidean
distance such that the application accuracy delivered by a
GPU can be matched (98.0%-98.3%). As devices scale, overlap
between cell states (Fig. 2b) is more likely, increasing the
likelihood of mis-programmed values/accuracy degradation. Of
course, FeFETs could also implement a compact RAM to
store MANN data, which affords the ability to realize scaled
devices. Per Fig. 4, an iso-accuracy Pareto frontier is formed
by (1) 1b ferroelectric RAM (highly scaled, 20 domains), (2) a
multi-bit ferroelecric RAM (2b/cell, 50 domains, but 50% re-
duction in the number of columns), and (3) the aforementioned
3b MCAM with in situ Euclidean distance (150 domains, but
reduced data transfer)2. In all instances, write-and-verify op-
erations were used [32], which would also increase write en-
ergy/latency. (4) If small accuracy degradations are acceptable,
more substantial area and energy savings are possible (purple
data points). An ultimate goal is iso-accuracy solutions, with the
energy/latency savings of IMC solutions, with scaled devices.

C. Layout-based Analysis
To construct a more accurate view of the MANN landscape,

we conducted a layout-based analysis that accounts for the
additional area overheads associated with writing data to Fe-
FET bitcells and performing search operations. We estimated
the MCAM macro area, assuming a 100-domain device (see
Footnote 3), by designing the entire macro in a commercial
65 nm process, and then scaling down the peripheral circuitry
to 5 nm. To perform scaling, we compare the SRAM bitcell
area for the commercial 65 nm process to the SRAM bitcell
area for the same foundry’s 5 nm process and divide our area
accordingly. We scaled the memory array itself to match 100-
domain bitcells assuming 10 nm2 per domain [33], [34] (as
this is essentially iso-accuracy with a 150 domain device—
98.09% versus 97.82%—and we aim to understand the impact

2For cases (1) and (2) the FeFET is simply used to store data that is sent
to a GPU for a distance function calculation; ignoring the potential impact of
endurance, etc. In the best case, this could reduce memory footprint – e.g.,
requiring one device in lieu of a 6T SRAM.

of peripherals/physical layouts on ultimately scaled solutions).
The MCAM macro has four main components: (1) the memory
array, (2) match-line (ML) drivers, (3) data-line (DL) drivers,
and (4) capture circuitry. Fig. 4 (inset) depicts the mirrored top
half of the MCAM macro, with relevant components labeled.

The ML and BL drivers decode a digital input that represents
which voltage (including a high-impedance state) to drive the
line to and subsequently charge or discharge the line. To enable
the write operation of the FeFET bitcells, both the ML and
DL drivers must support driving the line to VSS , VDD, and
an inhibit voltage VI . The inhibit voltage is essential to avoid
the unintentional writing of adjacent cells. Additionally, the DL
drivers must support a write voltage VW . The write voltage is
often significantly higher than the maximum tolerable voltage
for core FETs, so the switches that connect the DL to VW must
be made from thick-oxide FETs to prevent oxide breakdown. In
addition, the signal controlling the VW switch must be boosted
from the core voltage to the write voltage, lest the switch is not
fully turned on. This thick-oxide circuitry requires larger FETs
and PDK-mandated spacing, which increases the area footprint
of the DL drivers. If the inhibit voltages are also greater than the
maximum core voltage, both the ML and DL drivers will incur
similar/additional area penalties. The drive strength of the line
charging switches also impacts the area of the drivers. In this
study, we choose switches that can charge and discharge the
MLs and DLs sufficiently fast to support 400 MHz operation.

FeFET-based architectures typically assume a negative volt-
age erase scheme in which drivers apply negative voltage pulses
to the gate of a device to reset the polarization state [21].
However, negative voltages require reverse substrate biasing,
which may cause unwanted current flow through the p-n junc-
tion of the substrate. Also, each switch that drives a negative
voltage must also have a level shifter to convert the control
signal, which increases driver area and power. Finally, negative
voltage switches and their level shifters must be placed within
an isolated deep n-well, which imposes spacing requirements
between subsequent drivers and increases their effective area.
For this study, we chose to eschew negative voltages entirely
in favor of an array-wide macro erase, which biases the body
of all FeFET bitcells to a high voltage to erase all cells
simultaneously. Since this approach requires well contacts to
bias the deep n-well and extra spacing, it does impose a
small area overhead to the bitcell array and also limits write-
verify operation3. It is feasible to support column-wise or row-
wise erase—and thus more robust write-verify—but doing so
requires separate wells, which would decrease array density.
Preliminary estimates suggest an area increase of ∼2.4x for the
bitcell array itself, a ∼12% area increase for the ML drivers,

3As MANNs do not require frequent writes, this is acceptable as we
could begin with an erased memory and add data to it. That said, write-
verify approaches would need additional investigation, as with 100-150 domain
devices, between 3 and 5 ”reset” operations may be needed to set a desired
polarization state to represent a given 3b value [32], which may be prohibitive
given the erase scheme assumed here. In this work we intentionally assume a
“best case” scenario in terms of write energy, and area efficiency for the CAM
array itself to establish a ”floor” for the impact of drive circuitry and layouts.
We discuss impact on future materials/device research in Sec. III-D, and will
revisit the notion of write-verify operations in the context of accuracy, etc.

TCAM Array, Con't

Hardware/Software Co-Design Lab | 2023-10-02 9

Energy savings from FeFET 100 domain, multi-bit CAMs () versus 5 nm CMOS
SRAM () possible at expense of area n FeFET MCAM 5.2X > Area,& 8.1X <
energy vs. 5 nm CMOS SRAM solution n CMOS logic not included.

Energy savings from FeFET multi-bit CAMs () versus binary RAM () still possible
at expense of area n FeFET MCAM 1.5X > Area,& 9.8X < energy vs. FeFET RAM.

Fig. 5. Updated Pareto frontier projections.

and an overall area increase of ∼21% compared to the macro
erase approach we employ.

To estimate MCAM power, we extracted parasitic capac-
itance and resistance from our 65 nm design, measured the
power, and then scaled it to 5 nm. For FeFET RAM estimates,
we use the same driver circuitry, but assume 10-domain devices
(one-tenth of the memory array area, and line capacitance).
We estimated the CMOS SRAM area and power by using the
memory compiler for the same commercial 65 nm process, and
again scaled the results. We compiled for both fast and balanced
memory with the same capacity at different dimensions and
chose optimally-sized memory to build the Pareto frontier.

These estimations reinforce the conclusion that FeFET de-
vices can be Pareto-optimal compared to scaled CMOS when
used in novel modes. Comparing a 3b, 100-domain FeFET
MCAM to a 5 nm CMOS SRAM solution, the area of the
FeFET solution is ∼5X higher, while the energy required for
the FeFET solution is ∼8X lower4. However, scaled CMOS
can outperform FeFETs when the FeFETs are used as a drop-
in SRAM replacement, as the peripheral power and area domi-
nates. As technology scaling continues, the peripheral circuitry
can be made smaller, so it consumes less of the total macro area.
However, the size of the FeFET MCAM bitcell may ultimately
be limited by the number of domains needed to support its
operation, so the area of the FeFET MCAM bitcell itself might
increase relative to a scaled SRAM bitcell. Future work will
identify if there is an inflection point beyond which further
technology scaling favors a purely-SRAM solution. Finally, per
Sec. V, advances in compilers may influence how frequently
IMC solutions are employed in end-to-end workloads.

D. Future Research Directions
To close, we briefly discuss a subset of possible future

research directions/needs given the above context. As examples,
work presented in Sec. III-C considers layouts that facilitate
limited write-verify operations in an effort to mitigate adverse

4Again, in this example, the FeFET numbers are likely optimistic owing to
need for write-verify operations. However, CMOS projections are also likely
optimistic as no area for logic – i.e., to calculate cosine distance – is included.

area overheads. That said, as noted in Footnote 3, between 3-5
reset operations [32] may be required to properly set FeFET
polarization state given the device sizes considered here. We
subsequently revisited software-based simulations to estimate
the impact on accuracy assuming a write scheme that employed
a train of pulses (where cell state could be checked between
pulses) without any reset operations, and observed an accuracy
of 96.29% for the 20-way, 5-shot MANN problem studied
above (a reduction of ∼1.5%).

This suggests multiple research directions for future DSE
and benchmarking activities that must engage researchers from
across the design stack. As representative examples, assuming
no changes to technology are possible (e.g., device stochasticity
is not improved) we may re-target work at the algorithmic-level
in an effort to improve accuracy with lower precision solutions
(i.e., as in [35] from IBM). Alternatively, we can revisit efforts
with respect to layout and chip-design. Preliminary analysis
suggests that support for individual body biasing—each row
has a separate n-well to enable write/erase operations at the
cell-level—could be possible, although area will increase by
∼21%. The impact on energy, inhibit voltage schemes, etc.
would also need to be revisited to determine if the design
is still Pareto-optimal. Engagements with material scientists
and device engineers are also possible/necessary. In this re-
gard, the above case study suggests that some application-
level workloads do not demand frequent writes. Therefore,
while write voltage is an important design parameter, additional
application-level benefits may be derived from device size
scaling (i.e., to increase the number of domains while still
promoting scaling) and/or reduced switching stochasticity. As
such, we are developing a multi-pronged approach that will
leverage structural metrology and microscopy techniques such
as transmission electron microscopy (TEM), scanning trans-
mission electron microscopy (STEM) coupled with differential
phase contrast (DPC), high throughput 4D STEM techniques
with materials modelling in tandem with device, circuit, and
systems level studies.

IV. HETEROGENEOUS INTEGRATION (HI) FOR COMPUTE

We now consider a co-assessment of systems and technol-
ogy in terms of cost and performance. As machine learning
models such as Large Language Models (LLMs) are a primary
application driver for innovation in advanced compute, we
examine LLM applications on a multi-GPU setup. Below, we
introduce two modeling frameworks – for performance and cost
modeling – that may be employed. The chiplet cost model
is used to estimate the total fabrication+assembly cost of a
2.5D/3D heterogeneously integrated system, while the Deep-
Flow system-technology co-optimization framework is used
to estimate the application performance (LLM training) on
a heterogeneously-integrated multi-GPU-HBM 2.5D package.
The cost and performance modeling frameworks can be used
to analyze the effect of technological and algorithmic changes
on hardware cost and training time. In particular, we vary the
types/degrees of parallelism, the inter-node bandwidth, and the
IO/substrate configuration.

Fig. 6. Diagram of Cost Model Structure.

Fig. 7. Multi-package, multi-node hardware system assumed by DeepFlow.

A. Evaluating Cost of HI Systems

Our cost model is a custom Python tool based on tool-
ing work from [36] (available at https://github.com/nanocad-
lab/cost model chiplets.git). This tool allows us to describe
different technologies and systems for overarching evaluations,
and allows for the evaluation of the cost of arbitrary chiplet-
based systems that utilize 2.5D integration and 3D stacking.
The general format of the Python tool is shown in Fig.
6. We pass a physical system description file along with a
netlist to the system, and select from a collection of defined
parameters in library files for assembly technologies, IO cells,
layers/technology nodes, wafer processes, and test processes.
These parameters, as well as the system definition, are used to
construct a model of the system and compute parameters such
as area and power. These values can in-turn be used to compute
system cost.

Area is calculated based on the core area of the component
chips in addition to the area of any IO cells required to drive
the interconnects. Additionally, some additional area may be
required for fan-out if the area required for bumps is greater
than the area required by the core and IO cells. Substrate area
is determined by the area of stacked dies plus die spacing.

Individual die yield is calculated using a negative binomial
yield model. A 2.5D/3D stack yield assumes a known good die
coupled with an assembly yield model that takes the probability
of individual bonds failing, as well as the probability of die
misalignment.

The model allows for the definition of multiple technologies
with different yield and cost parameters. The connections also
include IO type definitions consisting of IO cell areas, IO reach,
number of wires per IO cell, etc. to fully define the system.

https://github.com/nanocad-lab/cost_model_chiplets.git
https://github.com/nanocad-lab/cost_model_chiplets.git

B. Evaluating Performance of HI Systems

DeepFlow [37] is a cross-stack analysis and pathfinding
framework for machine learning workloads. It addresses the
low hardware utilization of AI systems due to the inefficiencies
across layers of the compute stack [38]. DeepFlow can be
used as (1) a performance-modeling framework to predict
training time and core/memory utilization, and (2) a pathfinding
framework to optimize area, power, and perimeter.

The performance-modeling framework in DeepFlow esti-
mates training time through a two-step process. In the first
step, a parallelized machine learning compute graph is mapped
onto a hardware model constructed using technology, architec-
ture, and hardware resource allocation inputs. This hardware
model, which consists of a multi-node, multi-package network
connected to memory, is further detailed in Fig. 7. It then
uses event-driven simulation to estimate the total time taken
to perform inference.

DeepFlow can also be used as a pathfinding framework,
to determine the optimal set of area, power, and perimeter
parameters that minimize the total training time of an LLM
on a hardware system through a gradient descent approach by
treating it as a constrained black-box continuous optimization
problem. Prior work [37] has demonstrated the applicability of
DeepFlow in predicting the effect of technology scaling, high-
bandwidth memories, and parallelism strategies on execution
time, as well as the performance improvement provided by
increasing the number of nodes per package.

DeepFlow enables a comparison of the effect size of the
different variables across different layers of the stack that
collectively influence total training time of AI workloads.
This enables cross-stack co-optimization, as it allows for the
identification of those factors that could improve training
time, and predicts/quantifies how changes impact improvement.
Additionally, when paired with the cost model discussed in
Sec. IV-A, we can quantify cost-benefit tradeoffs concerning
changes in parallelization and hardware.

C. A Large Language Model Accelerator Case Study

We have studied a system model that is representative of 4
NVIDIA V100 GPUs in a single package [39]. The GPUs have
4 connected high bandwidth memory (HBM) chips, each with
4GB DRAM. Within a package, GPUs are physically connected
in a grid, but the network employs a ring topology. As a training
model, we assumed a large LSTM-based language model with a
batch size of 16, a vocabulary size of 40000, 750 layers, a layer
size of 1024, and a sequence length of 1. Each cell contains 4
gates, 5 non-linear operations, and 8 addition operations.

To examine the impact of different substrates and IO types,
we evaluated the performance of said system assuming different
inter-GPU bandwidths within the 4-GPU package, where the
inter-package bandwidth is set at 50GB/s, and the inter-GPU
bandwidth within the package is varied. In general, increasing
bandwidth increases performance while increasing cost. In this
case, we used an AIB-style IO cell [40] based on a custom
reduced-size IO cell [41] to represent a parallel IO scheme, and
compared it to a UCIe standard style serial interface [42]. We

did this for both a low-pitched silicon substrate [28] [43] and
a larger-pitch organic substrate. Two different bonding pitches
for each substrate were studied.

One design option for silicon employs a parallel IO type at
a 10µm bump pitch [28]. Due to the wider pitch in an organic
substrate, this integration style/design option was not feasible
and could not be used between the GPUs at the higher pitch.
We also compared this design option to a less expensive, 45µm
bump pitch silicon integration approach using a UCIe advanced
style interconnect. For the results on an organic substrate, the
first bar in Fig. 9 is the baseline at a 110µm bonding pitch.
This design is expensive largely because of the large number
of connections required by the HBM2 in the GPU. In order
to investigate possible improvements, we considered a smaller
bonding pitch (55µm), as well as some modifications to the
HBM connection scheme. We considered (1) switching the
HBM interface to a serial interface chosen according to the
bandwidth requirements rather than the HBM spec parallel
interface, (2) a reduced width parallel interface (also based
on the application bandwidth requirements), and (3) a version
similar to the baseline case but that used IO cells with larger
reach to increase the valid region for placing bumps. This study
shows that even for high bandwidths, organic substrates can be
advantageous with well-chosen interconnect schemes.

Figure 10 shows how the normalized runtime of the large
language model on the GPU changes as we vary parallelism
strategy and intra-node bandwidth. The total number of GPUs
in all cases is 4, as the product of data parallelism and kernel
parallelism degree (dp and kp) is 4. Additionally, there is
only one package, so all parallelism-related communication
that takes place is intra-node. Higher data parallelism (and
lower kernel parallelism) and higher intra-node bandwidth
both lead to better runtime. However, the effect of changing
the parallelism strategy is much stronger than the effect of
increasing intra-node bandwidth. As a result, rather than in-
creasing bandwidth (which would increase hardware costs), a
simpler and more effective solution would be to increase data
parallelism (i.e., via software). The marginal benefit of extra
in-package bandwidth (and consequently any integration tech-
nology advancements) depends strongly on the nature of the
application and its parallelization strategy. This simple example
emphasizes the need for system-technology co-optimization
spanning the entire technology-hardware-software stack, as
well as for frameworks such as DeepFlow which enable such
co-optimizations with consistent modeling.

V. COMPILERS FOR HETEROGENEOUS IMC SYSTEMS

IMC systems excel in energy and performance efficiency
across various application domains. However, owing to limited
programming support, these benefits remain accessible only to
a few experts after exerting significant effort. As an example,
many memory technologies allow multi-state cell operation.
Effectively harnessing this capability requires reasoning about
device-specific compute primitives (e.g., matrix multiplication,
bulk bitwise, and search operations), device-favorable access
patterns, custom data types, and type conversions when map-
ping a kernel to an IMC system. Memory arrays may also

Fig. 8. Overview of DeepFlow; Relationship between microarchitectural inputs, performance prediction engine (CrossFlow), and optimization search engine.

Fig. 9. Cost of the Example System for Different Bonding Pitches and IO
Types. Costs normalized to 150GB/s inter GPU within package bandwidth,
organic substrate, serial IO protocol, and 110µm bump pitch with baseline
HBM configuration.

Fig. 10. Effect of Bandwidth and Parallelization Strategy on Training Time.
4 intra-node bandwidths studied: 150GB/s, 300GB/s, 600GB/s, and 1200GB/s;
three parallelism strategies for data parallelism (dp) and kernel parallelism (kp)
studied: 1/4, 2/2, and 4/1; time values normalized according to the slowest case,
which is dp/kp=1/4 and intra bandwidth=150 GB/s.

require row/column masking for fine-grain operations, which
opens up avenues for optimizing power consumption, memory
utilization, throughput and sharing peripheral resources.

Presently, most IMC systems are programmed using low-
level device libraries. The responsibility for deciding which ker-

nels to map, where to insert synchronization barriers, and which
domain/device-specific optimizations to apply ultimately lies
with the programmer. This hinders the widespread adoption of
these innovative architectures, even for domain/device experts,
as manually rewriting large applications and making intelligent
mapping/optimization decisions are non-trivial and error-prone.
The diversity of IMC devices and architectures poses challenges
for application portability and programming in heterogeneous
environments. Overcoming these obstacles requires developing
novel programming frameworks that take high-level (device-
agnostic) program descriptions and architectural specifications
as input, and automatically generate efficient code.

In isolated efforts, compiler stacks have been proposed to
automate the mapping of appropriate compute primitives to
memory devices, load balancing, and implementing technology-
specific optimizations. However, these efforts predominantly
focus on homogeneous architectures and are domain-specific
– e.g., graph processing [44], programmable logic [45] and
matrix multiplication [46] on memristive crossbars and tree-
based models on CAMs [47], [48]. Recently, we have worked
to develop CINM – a unified compilation framework that
targets reusability and extensibility across the compiler stack
for heterogeneous (non-)IMC architectures [49]. CINM is based
on the multi-level intermediate representation (MLIR) frame-
work that enables representing and transforming intermediate
representations (IR) at various abstraction levels (referred to as
dialects), catering to diverse application domains and hetero-
geneous hardware targets. Through progressive lowering of ab-
stractions, one can reason about low-level compute primitives,
their memory access patterns and optimizations for various
metrics at various abstraction levels.

As input, CINM [49] takes applications represented in high-
level (domain-specific) languages such as (a subset of) C,
PyTorch, linalg and Tensor Comprehensions. In
addition to IMC architectures, CINM also introduces abstrac-
tions for compute-near-memory (CNM) architectures. More

Fig. 11. A high-level overview of a compilation flow for CINM systems.

specifically, it introduces cnm and cim dialects to abstract
over functions and types that are common to CNM and IMC
devices, which are subsequently lowered to hardware targets
in their respective device dialects, as shown in the lowering
pipeline of Fig. 11a. As an example, C4CAM [50] introduces
a CAM-specific dialect (cam in the figure) which consumes
the cim abstraction and reuses most of the CINM pipeline.
C4CAM automatically maps applications like HDC, k-NN and
DNA read mapping by identifying code patterns of similarity
measures (e.g., dot-product, cosine, Euclidean and Hamming
distances) and lowers these operations to CAM searches.

The high-level compilation flows above facilitate program-
ming IMC systems and also optimize them. In addition to
standard parallelization and locality optimizations, CINM al-
lows rewriting non-IMC-friendly compute primitives into IMC-
amenable primitives (when possible), minimizing the num-
ber of writes to NVM cells (improving lifetime), reducing
power consumption, and improving resource utilization of
IMC arrays. To illustrate, consider the mapping of a k-NN
kernel using a Euclidean norm into a CAM-based accelera-
tor (Fig. 11b-f). The compilation stack takes the TorchScript
code (Fig. 11b) and lowers it to a high-level domain-specific
abstraction (Fig. 11c). The analysis passes at this abstrac-
tion determines that cim.norm and cim.topk represent
a similarity measure and can be rewritten as CAM primi-
tives as shown in Fig. 11d-e. Depending on the target CAM
type (i.e., multi-bit or ternary), queries and stored data must
undergo a bitwidth and/or dimensionality reduction to align
with the array size and cell precision. The automated flow
recognizes the need to incorporate additional operations, such
as locality-sensitive hashing (LSH) or quantization, to ensure
compatibility with TCAMs or MCAMs, respectively (Fig. 11d-
e). If the target CAM device supports selective search [51],
the compiler can generate code that selectively searches the
restricted sets of rows/columns, thus optimizing for perfor-
mance, energy consumption, or device utilization (Fig. 11f).
Synchronization primitives are used to restrict the maximum
number of sub-arrays activated concurrently, hence limiting the

power consumption at the cost of increased latency. In addition
to the abovementioned optimizations, CINM employs loop
interchange to minimize write operations, leading to improved
device lifetimes for memristive crossbars.

We believe that frameworks like CINM are badly needed
to tackle the programmability challenges of IMC architectures.
Today, CINM still relies on the programmer to decide whether
to offload program regions to a given IMC accelerator. Au-
tomating these decisions is non-trivial as it requires abstract
cost models and, moreover, optimizing for individual applica-
tion regions might not necessarily lead to an optimal imple-
mentation of the entire application. CINM is being extended
with sound support for custom number representations, using
the base2 dialect [52]. This will make it possible to safely
target different accelerators while exploring quantized, non-
standard number encodings and automatic bit-slicing (e.g. for
emerging associative processors [53]). As for cost modeling,
several simulation tools are available for estimating parameters
such as memory access time, area, leakage, and dynamic power
[54]. However, integrating these tools with CINM is currently
challenging. The integration not only extends evaluation time
due to expensive simulation processes but also faces limitations
in capturing device, architecture, and communication details,
such as stochasticity and non-idealities of memory devices, as
well as system-level interactions and communication.

In addition to automatically generating optimized code for
performance, power, and device utilization, existing compiler
frameworks like CINM can be extended to support DSEs,
allowing variation in architectural parameters without changing
the code. However, identifying the optimal mapping strategy for
heterogeneous systems, while considering diverse optimization
targets, remains a subject for future research. Since hetero-
geneity in future architectures is expected to increase, there
is a pressing need to develop cost models that account for
device-agnostic and device-specific optimizations and drive the
mapping of more complex applications without relying on
detailed and slower simulations.

REFERENCES

[1] K. Ishimaru, “Future of non-volatile memory -from storage to computing-
,” in IEEE Int. Electron Devices Meeting (IEDM), 2019, pp. 1.3.1–1.3.6.

[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–
178. [Online]. Available: http://doi.acm.org/10.1145/1536414.1536440

[3] S. Han et al., “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” in ISCA, ser. ISCA ’16, Piscataway, NJ, USA, 2016,
pp. 243–254. [Online]. Available: https://doi.org/10.1109/ISCA.2016.30

[4] A. Sebastian et al., “Temporal correlation detection using computational
phase-change memory,” Nature Comms., vol. 8, no. 1, p. 1115, 2017.

[5] Jain, S and Ranjan, A and Roy, K and Raghunathan, A, “Computing in
Memory With Spin-Transfer Torque Magnetic RAM,” IEEE Transactions
on VLSI, vol. 26, no. 3, pp. 470–483, Mar. 2018.

[6] H.-S. P. Wong et al., “Metal–oxide RRAM,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951–1970, 2012.

[7] G. W. Burr et al., “Neuromorphic computing using non-volatile memory,”
Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

[8] M. Jerry et al., “A ferroelectric field effect transistor based synaptic
weight cell,” J. of Phys. D: App. Phys., vol. 51, no. 43, p. 434001, 2018.

[9] X. S. Hu et al., “In-memory computing with associative memories: A
cross-layer perspective,” in 2021 IEEE International Electron Devices
Meeting (IEDM). IEEE, 2021, pp. 25–2.

[10] A. F. Laguna et al., “Hardware-software co-design of an in-memory
transformer network accelerator,” Frontiers in Electronics, vol. 3, p.
847069, 2022.

[11] S. Liu et al., “16.2 A 28nm 53.8TOPS/W 8b Sparse Transformer
Accelerator with In-Memory Butterfly Zero Skipper for Unstructured-
Pruned NN and CIM-Based Local-Attention-Reusable Engine,” in 2023
IEEE International Solid- State Circuits Conference, 2023, pp. 250–252.

[12] S. Sridharan et al., “X-former: In-memory acceleration of transformers,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 31, no. 08, pp. 1223–1233, aug 2023.

[13] M. Li et al., “Imars: An in-memory-computing architecture for recom-
mendation systems,” in DAC, 2022, pp. 463–468.

[14] H. Geng et al., “Privacy preserving in-memory computing engine,”
arXiv:2308.02648, 2023.

[15] W. Li et al., “H3datten: Heterogeneous 3-d integrated hybrid analog
and digital compute-in-memory accelerator for vision transformer self-
attention,” IEEE T. on Very Large Scale Integration (VLSI) Systems, 2023.

[16] A. Santoro et al., “Meta-learning with memory-augmented neural net-
works,” in ICML, 2016, pp. 1842–1850.

[17] S. Dünkel et al., “A FeFET based super-low-power ultra-fast embedded
NVM technology for 22nm FDSOI and beyond,” in 2017 IEEE Interna-
tional Electron Devices Meeting (IEDM), Dec. 2017, pp. 19.7.1–19.7.4.

[18] A. Kazemi et al., “Achieving software-equivalent accuracy for hyper-
dimensional computing with ferroelectric-based in-memory computing,”
Scientific Reports, vol. 12, no. 1, p. 19201, 2022.

[19] R. Mao et al., “Experimentally validated memristive memory augmented
neural network with efficient hashing and similarity search,” Nature
communications, vol. 13, no. 1, p. 6284, 2022.

[20] A. Kazemi et al., “A Hybrid FeMFET-CMOS Analog Synapse Circuit
for Neural Network Training and Inference,” in ISCAS, 2020, pp. 1–5.

[21] X. Yin et al., “FeCAM: A Universal Compact Digital and Analog Content
Addressable Memory Using Ferroelectric,” IEEE TED, vol. 67, no. 7, pp.
2785–2792, 2020.

[22] A. I. Khan et al., “The future of ferroelectric field-effect transistor
technology,” Nature Electronics, vol. 3, no. 10, pp. 588–597, 2020.

[23] S. Dutta et al., “Logic compatible high-performance ferroelectric transis-
tor memory,” IEEE EDL, vol. 43, no. 3, pp. 382–385, 2022.

[24] S. Dutta et al., “Lifelong Learning with Monolithic 3D Ferroelectric
Ternary Content-Addressable Memory,” in IEEE International Electron
Devices Meeting (IEDM). IEEE, 2021, pp. 17–1.

[25] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-
shot learning,” Nature Electronics, vol. 2, no. 11, pp. 521–529, 2019.

[26] Q. Kuang and L. Zhao, “A practical gpu based knn algorithm,” in
Proceedings. The 2009 International Symposium on Computer Science
and Computational Technology (ISCSCI 2009). Citeseer, 2009, p. 151.

[27] S. Han et al., “EIE: efficient inference engine on compressed deep neural
network,” in ISCA, 2016, pp. 243–254.

[28] S. Pal et al., “Designing a 2048-Chiplet, 14336-Core Waferscale Pro-
cessor,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
Dec. 2021, pp. 1183–1188, iSSN: 0738-100X.

[29] R. Mahajan et al., “Embedded Multi-die Interconnect Bridge (EMIB) –
A High Density, High Bandwidth Packaging Interconnect,” in 2016 IEEE
66th Electronic Components and Technology Conference (ECTC), May
2016, pp. 557–565.

[30] A. F. Laguna et al., “Invited paper: Algorithm co-design for few-shot
learning at the edge,” in International Conference on Computer Aided
Design (ICCAD) (to appear), 2023.

[31] K. Ni et al., “A circuit compatible accurate compact model for
ferroelectric-FETs,” in 2018 IEEE Symposium on VLSI Technology.
IEEE, 2018, pp. 131–132.

[32] M. M. Sharifi et al., “Application-driven design exploration for dense fer-
roelectric embedded non-volatile memories,” in International Symposium
on Low Power Electronics and Design (ISLPED), 2021, pp. 1–6.

[33] H. Mulaosmanovic et al., “Ferroelectric transistors with asymmetric
double gate for memory window exceeding 12 V and disturb-free read,”
Nanoscale, vol. 13, no. 38, pp. 16 258–16 266, 2021.

[34] E. D. Grimley et al., “Atomic structure of domain and interphase
boundaries in ferroelectric HfO2,” Advanced Materials Interfaces, vol. 5,
no. 5, p. 1701258, 2018.

[35] G. Karunaratne et al., “Robust high-dimensional memory-augmented
neural networks,” Nature communications, vol. 12, no. 1, p. 2468, 2021.

[36] A. Graening et al., “Chiplets: How small is too small?” in 2023 60th
ACM/IEEE Design Automation Conference (DAC), 2023, pp. 1–6.

[37] N. Ardalani et al., “Deepflow: A cross-stack pathfinding framework for
distributed ai systems,” ACM Trans. Des. Autom. Electron. Syst., dec
2023. [Online]. Available: https://doi.org/10.1145/3635867

[38] Z. Jia et al., “Beyond data and model parallelism for deep neural
networks.” Proceedings of Machine Learning and Systems, vol. 1, pp.
1–13, 2019.

[39] NVIDIA, “Nvidia Tesla V100 GPU Architecture, The World’s Most
Advanced Data Center GPU,” 2017.

[40] D. Kehlet, “Accelerating Innovation Through a Standard Chiplet Inter-
face,” Intel White Paper.

[41] S. Pal et al., “I/O Architecture, Substrate Design, and Bonding Process
for a Heterogeneous Dielet-Assembly based Waferscale Processor,” in
Electronic Components and Technology Conference, 2021, pp. 298–303.

[42] D. Das Sharma et al., “Universal Chiplet Interconnect Express (UCIe):
An Open Industry Standard for Innovations With Chiplets at Package
Level,” IEEE Transactions on Components, Packaging and Manufactur-
ing Technology, vol. 12, no. 9, pp. 1423–1431, Sep. 2022.

[43] S. Jangam et al., “Latency, Bandwidth and Power Benefits of the Super-
CHIPS Integration Scheme,” in 2017 IEEE 67th Electronic Components
and Technology Conference (ECTC). IEEE, May 2017, pp. 86–94.

[44] Y. Huang et al., “A heterogeneous PIM hardware-software co-design for
energy-efficient graph processing,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2020, pp. 684–695.

[45] S. Frerix et al., “Comprime: A compiler for parallel and scalable
reram-based in-memory computing,” in 2019 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), 2019, pp. 1–6.

[46] A. Siemieniuk et al., “OCC: An automated end-to-end machine learning
optimizing compiler for computing-in-memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 41, no. 6, pp. 1674–1686, Aug. 2021.

[47] G. Pedretti et al., “X-TIME: An in-memory engine for accelerating
machine learning on tabular data with CAMs,” arXiv:2304.01285, 2023.

[48] M. Rakka et al., “Dt2cam: A decision tree to content addressable memory
framework,” IEEE Transactions on Emerging Topics in Computing, 2023.

[49] A. A. Khan et al., “CINM (Cinnamon): A Compilation Infrastructure
for Heterogeneous Compute In-Memory and Compute Near-Memory
Paradigms,” 2023. [Online]. Available: https://arxiv.org/abs/2301.07486

[50] H. Farzaneh et al., “C4cam: A compiler for cam-based in-memory
accelerators,” 2023. [Online]. Available: https://arxiv.org/abs/2309.06418

[51] C. A. Zukowski and S.-Y. Wang, “Use of selective precharge for low-
power content-addressable memories,” in 1997 IEEE Intl. Symp. on
Circuits and Systems (ISCAS), vol. 3. IEEE, 1997, pp. 1788–1791.

[52] K. F. A. Friebel et al., “BASE2: An IR for binary numeral types,”
in 13th International Symposium on Highly-Efficient Accelerators and
Reconfigurable Technologies (HEART 2023), ser. HEART2023, 2023,
pp. 19–26. [Online]. Available: https://doi.org/10.1145/3597031.3597048

[53] J. P. C. de Lima et al., “Full-stack optimization for cam-only dnn
inference,” in Proceedings of the 2024 Design, Automation and Test in
Europe Conference (DATE), ser. DATE’24. IEEE, Mar. 2024, pp. 1–6.

[54] M. Niemier et al., “Cross layer design for the predictive assessment of
technology-enabled architectures,” in 2023 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2023, pp. 1–10.

http://doi.acm.org/10.1145/1536414.1536440
https://doi.org/10.1109/ISCA.2016.30
https://doi.org/10.1145/3635867
https://arxiv.org/abs/2301.07486
https://arxiv.org/abs/2309.06418
https://doi.org/10.1145/3597031.3597048

	Introduction
	Background
	Logic and Memory Technology
	IMC Architectures
	Associative Memories
	Crossbar Architectures

	Integration Technology

	FeFET-based Associative Memories
	MANN Background
	Initial Benchmarking
	Layout-based Analysis
	Future Research Directions

	Heterogeneous Integration (HI) for Compute
	Evaluating Cost of HI Systems
	Evaluating Performance of HI Systems
	A Large Language Model Accelerator Case Study

	Compilers for heterogeneous IMC systems
	References

