


SHERLOCK: Scheduling Efficient and Reliable 
Bulk Bitwise Operations in NVMs

Hamid Farzaneh¹, João Paulo C. de Lima¹², Ali Nezhadi Khelejani³, Asif 
Ali Khan¹, Mahta Mayahinia³, Mehdi Tahoori³ and Jeronimo Castrillon¹²

¹ Technical University of Dresden, ² ScaDS.AI, ³ Karlsruhe Institute of Technology



Cost-driven accelerators design 

Bill Dally, 

MICRO, 2019

Computation is almost for free

Abu Sebastian et al, Nature Nanotechnology, 2020



Analog dot-product engines Bulk-bitwise logic

• CIM alleviates the data movement bottleneck

• Memristive crossbars enable:

• Analog dot-product using DA/AD converters

• Bitwise operations (OR, AND and NOT) using custom sense amplifiers

L. Xie et al., Scouting Logic, ISVLSI'2017

SA SA SA

Memristor-based computing-in-memory (CIM)



Memristor-based computing-in-memory (CIM)

L. Xie et al., Scouting Logic, ISVLSI'2017

Scouting Logic



Reliability challenges of memristive CIM

• Decision failure probability

• HRS/LRS ratio

• Larger HRS/LRS, lower decision failure

• Technology-dependent parameter

• Number of inputs in logic operation

• More inputs, smaller sense margin (↑ decision failure)

• But also smaller standard deviation (↓ decision failure)



Sherlock at a glance

Lack of flexibility

- Row granularity

Performance-Reliability trade-off

- Multiple row activation

Mapping strategies for performance, energy and reliability

- Enable fine-grain control over operations

- Optimize data-flow graph mapping

P
ro

b
le

m
s

G
o

a
ls

R
e

s
u

lt
s

- Database, image processing and encryption algorithms

- Improves latency (∼10×), energy consumption (∼4.6×), and 

reliability (∼1.5×) compared to the SotA



Sherlock flow
MIMD representation

C/C++ code

- Multiple row activation

- Rotation, row clone and NOT operation

- Output can be written back as voltage input for the next operation

- Fine-grain selection of columns

row buffer 

with rotation

...



Problem statement with Bitweaving

Li and Patel, Bitweaving, SIGMOD'2013.



DFG Generation

Li and Patel, Bitweaving, SIGMOD'2013.



Map operands and operations



• Example
• Step 1: Priority
• Step 2: Map sequentially

• Pros
• Simple
• Extends SIMD parallelism

Pros of naive mapping



Cons of naive mapping

• DFGs may not fit into a single array

• Additional memory copies across 
columns are required in larger DFGs

• Resource utilization is poor 
when vector size < column size



Sherlock mapping

• Goal: Find K Clusters of operations for K columns of the memory



Clustering operation nodes

1) Assign priority values to OP nodes

2) Create initial cluster C

3) Start from the highest priority
• Add Q (highest priority) to C

• Add more nodes to C or create a new cluster 

based on different metrics



Clustering operation nodes

• 5 cases were identified

• Case 1:
• A node only has one predecessor
• If Cmaxsize > Clustersize:

• Node is added to the new cluster

• Else
• New cluster is created



Clustering operation nodes

• Case 2:
• Clusters are similar
• Dependency relation is similar
• (Clustersize + 1) < Cmaxsize

• Randomly assignment

• Case 3:
• Clusters are similar
• Dependency relation is different
• Put the node in the cluster with less 

difference in the priority: Critical path



Clustering operation nodes

• Case 4:
• The clusters are similar
• The dependency relation is different
• Put the node in the cluster with 

greater dependency

• Case 5:
• The clusters are different
• The dependency relation is similar
• Put the node in the smaller cluster
• Balance the load



• Generalizing for all cases

Clustering operation nodes

ρ is the priority value 

difference between d and q

α and β control the effect of 

cluster size and priority measure



Mapping clusters to memory

• The size of a cluster < Cmaxsize

• Two clusters can be merged

• To better utilize memory

• if (Cluster Asize + Cluster Bsize) < Cmaxsize

• Maximize dependency



Optimizing with many-row activation

• Include multiple row activation in the 
scheduling

• Merge the operations with multiple 
operands in the final clusters

• Requirements

• Operations are of the same type

• Operands are mapped to the same column



Latency and energy comparison

• Parameters to vary include technology (ReRAM, STT-MRAM), array size (512, 1024), and 
multi-row activation (2-operand only, >2 operands)

Higher is better



Impact of MRA on application reliability

• Reliability of Bitweaving output varying the allowed percentage of MRA (> 2 operands)

suitable for applications tolerating 

some result inaccuracy

Smaller 

HRS/LRS

Papp < 10-4

is highly reliable

1.3x

2.4x

1.5x

2.9x



Main takeaways

• Scouting logic to alleviate the memory wall issue

• Mapping larger applications on the target CIM is not straightforward

• More flexibility by a retargetable scheduler

• Latency (∼10×), energy consumption (∼4.6×), and reliability (∼1.5×) 

improvement compared to the SotA

• Sherlock aims to maximize the performance of CIM-logic



Thank you for listening
hamid.farzaneh@tu-dresden.de

joao.lima@tu-dresden.de




	Slide 1
	Slide 2: SHERLOCK: Scheduling Efficient and Reliable Bulk Bitwise Operations in NVMs
	Slide 3: Cost-driven accelerators design 
	Slide 4
	Slide 5: Memristor-based computing-in-memory (CIM)
	Slide 6: Reliability challenges of memristive CIM
	Slide 7: Sherlock at a glance
	Slide 8: Sherlock flow
	Slide 9: Problem statement with Bitweaving
	Slide 10: DFG Generation
	Slide 11: Map operands and operations 
	Slide 12: Pros of naive mapping 
	Slide 13: Cons of naive mapping
	Slide 14: Sherlock mapping 
	Slide 15: Clustering operation nodes 
	Slide 16: Clustering operation nodes 
	Slide 17: Clustering operation nodes 
	Slide 18: Clustering operation nodes 
	Slide 19: Clustering operation nodes 
	Slide 20: Mapping clusters to memory
	Slide 21: Optimizing with many-row activation
	Slide 22: Latency and energy comparison
	Slide 23: Impact of MRA on application reliability
	Slide 24: Main takeaways
	Slide 25: Thank you for listening
	Slide 26

