
Navigating Time and Energy Trade-offs in Reactive
Heterogeneous Systems

Shaokai Lin
UC Berkeley

Tassilo Tanneberger
TU Dresden

Jiahong Bi
TU Dresden

Guangyu Feng
UC Berkeley

Yimo Xu
UC Berkeley

Julian Robledo
TU Dresden

Robert Khasanov
TU Dresden

Jeronimo Castrillon
TU Dresden

Abstract—Reactive software poses challenging requirements:
deterministic execution with stringent timing constraints under
a tight energy budget. Meeting these requirements is particularly
hard when executing on the increasingly heterogeneous platforms
of today. In this paper, we integrate MOCASIN, a design space
exploration tool, into LINGUA FRANCA, a programming frame-
work for building deterministic and timed reactive software. We
show that this integration enables choosing a desired timing
and energy performance at design time. We demonstrate our
approach in satellite attitude control, consisting of periodic real-
time tasks and sporadic non-real-time tasks. The latter sporadic
tasks are coordinated using quasi-static schedules, computed by
MOCASIN, leading to less energy consumption compared to the
Linux scheduler under CPU frequency scaling governors such as
powersave, schedutil, and ondemand.

Index Terms—Design Space Exploration, Compiler, Quasi-
Static Scheduling, Concurrency, Energy Consumption

I. INTRODUCTION

Reactive cyber-physical systems (CPSs) have stringent real-
time constraints and other practical considerations, such as
energy, memory, heat, size, cost, etc., making them particularly
challenging to design. Barring other considerations, it is hard
to ensure that real-time constraints alone can be satisfied.
Thus, a designer typically resorts to a bottom-up design
flow, as noted by Henzinger and Kirsch [1], in which an
implementation is produced first based on intuition, then it
undergoes testing. If the timing behavior violates constraints,
the designer revises the implementation and tests it again. The
process repeats until no violations are observed. This bottom-
up process can be time-consuming and error-prone, since a
code change fixing one constraint might violate others. In
contrast, a top-down approach checks if such constraints can
be satisfied at design time, only if so, a correct-by-construction
implementation is then generated. This reduces the time to
market and ensure correctness of the design. Top-down ap-
proaches are widely adopted in the EDA domain, where a
circuit’s timing, area, and power can be predicted in the design
tool, making it feasible to coordinate billions of transistors
reliably. In the CPS domain, top-down approaches exist for
models such as SDF [2]. Yet, for emerging programming
models like LINGUA FRANCA (LF) [3], which facilitates the
design and implementation of deterministic, real-time, and
concurrent systems, providing top-down methods addressing

LF w/
WCETs

LF
Compiler MOCASIN

App. w/
Schedules

Extended LF Compiler

Fig. 1: Our proposed tool flow. Dashed boxes denote external
tools we build interfaces for. App. stands for application logic.

timing and energy remains an open problem. This work aims
to step towards solving this problem.

Energy consumption is an important dimension to consider,
as many mission-critical CPSs are powered by batteries. For
resource-constrained systems such as satellites, drones, and
sensor networks, new techniques for energy management
becomes ever more important due to recent trends of adopt-
ing heterogeneous multicores. Even for systems that are not
considered resource-constrained in the traditional view, such as
self-driving cars, energy management is increasingly a concern
due to the deployment of energy-hungry hardware, e.g., GPUs.

We make the following contributions in this work:
1) We extend the quasi-static scheduling approach of

the LINGUA FRANCA compiler [4] by exploring
performance-energy tradeoffs using MOCASIN. Our ex-
tension takes in an LF program with worst-case execu-
tion time (WCET) annotations, and outputs application
logic and quasi-static schedules mapping LF reactions to
a heterogeneous hardware platform, as shown in Fig. 1.

2) We present a case study on implementing a three-axis re-
action wheel controller, used for satellite attitude control.
We show that the sporadic non-real-time tasks coordi-
nated by quasi-static schedules, computed by MOCASIN,
yield less total energy consumption compared to the
Linux scheduler under CPU frequency scaling governors
such as powersave, schedutil, and ondemand.

II. BACKGROUND

The rise of the multi- and many-core era and the trend for
integrating an increasing amount of heterogeneous computing
resources, interconnects, and memories in a single multipro-
cessor system on a chip (MPSoC) has motivated the develop-
ment of a multitude of design space exploration (DSE) tools.



Extended LF Compiler

LF
Parser

AST
Builder

C
Generator

DAG
Generator

State Space
Explorer

Bytecode
Generator

MOCASIN

Other
Schedulers

Quasi-Static
Schedulers

Select
Scheduler

SDFG
Generator

D
A

G
s

SSDs w/
Guarded

Transitions

SDFGs

Pa
rt

iti
on

ed
G

ra
ph

s
Fig. 2: Overview of our extension based on [4]. Colored boxes
are our work.

DSE tools aim to increase software productivity by abstracting
hardware complexity and automating the process of mapping
software components to hardware components [5]. MOCASIN
is a recently proposed DSE framework [6], which provides
a comprehensive platform model that captures heterogeneous
hardware on a relatively high abstraction level, supports ap-
plications in various input formats and using SDF or Kahn
process network (KPN), implements various heuristics and
meta-heuristics known from the literature, and provide a high-
level simulator that allows to estimate the make span and
the energy consumption of a given application on the target
hardware when using a specific mapping.

LINGUA FRANCA, on the other hand, is a programming
framework, in which the user can define and compose reactive
components called reactors, i.e., stateful containers with event-
triggered message handlers called reactions written in target
languages including C, C++, Rust, Python, and TypeScript. In
this work, we use the C target. While by default LF uses a dy-
namic scheduler [3], this work builds on a recently introduced
quasi-static scheduling technique for LF [4]. Instead of using
an event queue to track new tasks at runtime, [4] computes a
program state space at compile time and generates a schedule
that quasi-statically encodes when tasks are launched. The
schedules are written using an instruction set for a virtual
machine called PRETVM.

III. DSE FOR LF BASED ON PRETVM

In this section, we present our end-to-end approach for
compiling an LF program into PRETVM bytecode while
enhancing the execution time and energy under the guidance
of a MOCASIN-based scheduler.

Key Assumptions: Our approach relies on several key
assumptions: (a) The chosen hardware is supported by MO-
CASIN. (b) The user has the ability to obtain estimates on
the WCETs of C functions. Most of the time, the estimates
could be obtained through direct measurements repeated for a

sufficient number of times. For certain platforms, it is possible
to use commercial-off-the-shelf timing analysis tools, such
as AbsInt [7]. We emphasize here that we treat these input
execution times as estimates, instead of the ground truth. This
is sufficient for proving the property that “the program can
provably meet the hard real-time constraints, given that the
estimates hold at runtime.” (c) The LF program under analysis
can be executed under LF’s fast mode, meaning that reactions
do not wait for physical time points to be released. (d) The
LF program only contains logically periodic tasks, i.e., driven
by LF timers (same assumption as in [4]).

A. Preparing Inputs

The user first prepares an LF program with worst-case
execution time information using the @wcet attribute. As an
example, Fig. 3 shows a reaction from our case study with a
@wcet annotation. Here, the @wcet annotation contains two
values since we target the Odroid-XU4, a platform using
Arm big.LITTLE architecture with two different types of CPU
cores. The first number represents the WCET of the reaction
on the LITTLE core (Cortex-A7) while the second number
represents the WCET on the big core (Cortex-A15). We plan
to support alternative input methods in the future, such as
loading WCETs from a configuration file.

1 @wcet("7797 nsec, 5294 nsec")
2 reaction(done_c1,done_c2,done_c3) -> start_out ,done_out {=
3 if (self->count >= self->num_files) {
4 lf_set_present(done_out);
5 } else {
6 lf_set_present(start_out);
7 }
8 =}

Fig. 3: Reaction with a @wcet annotation.

B. Generate and Register Mappings

Fig. 2 shows the internals of the LF compiler with our
extension highlighted in blue. The compiler parses and trans-
forms the input program into an abstract syntax tree (AST).
A model of the LF program is created from the AST and fed
into a State Space Explorer, which simulates and represents the
program state space as a set of state space diagram (SSDs) [8].
The SSDs are further transformed into a set of Directed
Acyclic Graphs (DAGs), each corresponding to a phase of LF
execution (e.g., initialization, periodic, and shutdown phase).
The role of the quasi-static schedulers is to assign tasks to
workers by partitioning the DAGs [4].

In this work, we implement an SDFG generator, which
generates synchronous dataflow graphs (SDFGs) out of input
DAGs, by drawing an additional edge from the tail node of the
DAG to the head node. The generated SDFGs are then sent
to a quasi-static scheduler we implemented based on MO-
CASIN, within which MOCASIN invokes the pareto front
command on the SDFG for the periodic phase. MOCASIN
runs design space exploration (DSE) and outputs a mapping
file enumerating a list of candidate mappings between tasks
and CPU cores, which MOCASIN projects to yield the best
timing and energy performance. The user can choose from



the candidate mappings an ideal mapping, e.g., one projected
to consume the least energy, and register the mapping into
the original LF program using the mocasin-mapping target
property field.

C. Generate and Execute Schedules

Table I shows a subset of mappings that MOCASIN gener-
ated after design space exploration. In the generated file, each
mapping maps a task to a particular core, with execution time
and total energy estimated by MOCASIN.

Tasks Mapping 0 Mapping 1 Mapping 2

c1.reaction 1 Core 7 (A15) Core 6 (A15) Core 2 (A7)
c2.reaction 1 Core 6 (A15) Core 6 (A15) Core 2 (A7)
c3.reaction 1 Core 4 (A15) Core 5 (A15) Core 2 (A7)
d.reaction 2 Core 4 (A15) Core 4 (A15) Core 2 (A7)
d.reaction 3 Core 7 (A15) Core 4 (A15) Core 2 (A7)
d.reaction 4 Core 5 (A15) Core 4 (A15) Core 2 (A7)

Exec. time (s) 41.914 83.828 312.753
Total energy (J) 257.458 348.985 783.102

TABLE I: A subset of mappings for the periodic phase.

Once the selected mapping is registered back into the LF
program, the scheduler pools all tasks mapped to the same
CPU core into one partition for a worker. Then for each
worker, the LF compiler combines the worker’s workload
across different execution phases, forming a single quasi-static
schedule for the worker. From each quasi-static schedule, a
sequence of virtual instructions is generated for the worker [4].

As a result of compilation, LF generates programs and
useful utilities that come from the original inputs. Then the
user can pin different workers to the corresponding cores based
on the user-selected mapping. For example, if worker thread
m’s schedule contains tasks meant to be executed on Core n,
as suggested by MOCASIN, then the user should pin worker
thread m to Core n, which can be achieved on Linux by setting
CPU Affinity and using the cpuset infrastructure.

IV. CASE STUDY

A. Application

For our case study, we develop a realistic satellite attitude
control application in LF, which has two parts: the first is a
real-time reaction wheel controller based on [9]; the second
is a sporadic file compression service, which compresses data
files before they are sent back to earth. Each data file is further
assumed to have a maximum size. The source code is publicly
available on GitHub.1 In this case study, we only focus on the
file compression service.

The CompressFiles service consists of three Compressor
reactors that implement the primary compression logic. In
addition, there is a Director reactor that dispatches incom-
ing jobs to one of the three Compressor reactors. Within
the Director reactor, reactions 2 and 3 are of particular
interest. Reaction 2 collects all done signals from the three

1https://github.com/icyphy/satellite-attitude-control

CompressFiles

Director

1

2

3

4done_in

start_in

done_c1

done_c2

done_c3

done_out

start_out

begin_c1

begin_c2

begin_c3

Compressor
filename done

Compressor
filename done

Compressor
filename done

1 nsec

1 nsec

1 nsec

Fig. 4: LF diagram of the file compression service.

Compressor reactors and determines whether processing can
be stopped, in which case the done out signal is set, oth-
erwise the start out signal is set. Reaction 3 reacts to the
start signal described above and pushes a new set of files to
be compressed to the Compressor reactors.

B. Experimental Setup

We run the experiments on the Hardkernel Odroid-XU4
platform featuring an Exynos 5422 big.LITTLE chip with four
Cortex-A15 (“big”) and four Cortex-A7 (“LITTLE”) cores.
The frequency ranges are set to 200MHz to 2.0GHz for
“big” cores, and 200MHz to 1.4GHz for “LITTLE” cores. We
measured the energy consumption of the Odroid-XU4 board
using ZES Zimmer LMG450 Power Analyzer connected to
DC input with an external readout rate of 20 Sa/s. The Linux
kernel version we use is 5.4.228-412.

The main method of controling the power consumption of a
CPU is frequency scaling, apart from shutting down individual
cores. Linux implements a concept called governors, which
implements different strategies for scaling the CPU frequency.
The relevant governors we evaluate are:

• Performance Sets the frequency to the highest possible.
• Powersave Sets the frequency to the lowest possible.
• Ondemand Scales the frequency based on the current load.
• Schedutil Scales the frequency based on the CPU uti-

lization info from the scheduler, and uses Energy Aware
Scheduling (EAS) to map tasks to cores to minimize
energy consumption on heterogeneous platforms.

C. Measurement Results

We perform five sets of experiments using the LF pro-
gram CompressFiles. The first experiment uses the quasi-
static scheduler with a task-to-core mapping computed by
MOCASIN, and the rest of the experiments use LF with the
default dynamic scheduler coupled with the Linux governors
introduced in Section IV-B, representing the common strate-
gies a regular Linux user would use to minimize energy.
For each configuration, the service compresses 15 CSV files,
and measurements were taken based on the average of one
hundred repeated program executions. In the first experiment,
MOCASIN explores the design space assuming constant CPU

https://github.com/icyphy/satellite-attitude-control


Fig. 5: Execution time and total energy measured.

frequencies; to satisfy this assumption, the performance
governor is used. In addition, we pin reactions to each type of
CPU core under a fixed frequency and use LF’s tracing utility
to collect the reactions’ core-specific WCET estimates.

Table I shows a subset of mappings generated by MOCASIN
in the first experiment. We choose to use mapping 0 as it is pro-
jected to consume a relatively small amount of energy among
all available mappings without compromising execution time.

Fig. 5 shows the measured execution time and total energy
from all five experiments. While the powersave governor
does exhibit the least power (in terms of wattage), since it
sets each CPU core to the minimum frequency (200 MHz), it
significantly prolongs the execution time (96.22 s) and, in fact,
yields the largest total energy consumption (214.3 J) among
the experiments. This result highlights the fact that saving
power is not the same as saving total energy.

The ondemand and schedutil governor (which uses EAS)
share similar execution times and total energy. They perform
better than powersave since they dynamically scale the CPU
frequencies based on the workload. The shorter execution
times result in less total energy consumed. MOCASIN and
performance turn out to have the best performance in the
end, since big cores are prioritized in both strategies, resulting
in two of the smallest execution times as well as total energy
consumed. This could seem counter-intuitive to regular users
who choose powersave or schedutil to conserve energy.

D. Discussion

While using big cores seems to minimize execution time and
total energy, the choice of cores depends on additional factors.
In the space domain, these factors include mission specifica-
tions, solar power charging rate, and battery size. Here, we
focus on the total (static + dynamic) energy consumption,
instead of the dynamic energy alone, on the assumption that the
hardware on the satellite enters a low-power or non-consuming
state after completing a computational task, rendering static
energy consumption negligible in this context. If the mission
restricts low-power mode, the performance governor (using
big cores) would not be ideal due to high static energy

consumption. A low solar power charging rate and small
battery may also make big cores impractical. In such cases,
trading execution time for power efficiency with LITTLE
cores might be better. A top-down design technique, such as
our proposed LF extension, could better handle such design
complexities as design space exploration could factor in these
constraints upfront. On the other hand, bottom-up approaches
could be error-prone, as we have seen with the powersave
case, and inefficient, as it often requires trials and errors.

V. CONCLUSION

In this work, we extend the quasi-static scheduling tech-
nique for LF with support for interfacing with MOCASIN,
which enables DSE for a subset of LF programs on het-
erogeneous platforms and generating schedules that encode
user-specified trade-offs between execution time and total
energy consumption. The case study shows that our approach
effectively conserves total energy consumption compared to
alternatives using Linux frequency scaling governors.

ACKNOWLEDGMENT

This work was supported by the German BMBF programme
“Souverän. Digital. Vernetzt.” (6G-life, grant 16KISK001K)
and E4C (grant 16ME0426K), the EU Horizon Europe Pro-
gramme under grant agreement No 101135183 (MYRTUS),
the National Science Foundation (NSF), award #CNS-2233769
(Consistency vs. Availability in Cyber-Physical Systems).

The authors also thank Linh Thi Xuan Phan, Martin Schoe-
berl, and anonymous reviewers for their feedback and sugges-
tions, which help improve this work.

REFERENCES

[1] T. A. Henzinger and C. M. Kirsch, “The embedded machine: Predictable,
portable realtime code,” in International Conference on Programming
Language Design and Implementation (PLDI). ACM Press, 2002,
Conference Proceedings, pp. 315–326.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings
of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[3] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a lingua
franca for deterministic concurrent systems,” ACM Trans. Embed. Com-
put. Syst., vol. 20, no. 4, may 2021.

[4] S. Lin, E. Jellum, M. Theile, T. Tanneberger, B. Sun, C. Jerad, R. Xu,
G. Feng, C. Menard, M. Lohstroh, J. Castrillon, S. Seshia, and E. Lee,
“PretVM: Predictable, Efficient Virtual Machine for Real-Time Concur-
rency,” 2024.

[5] J. Castrillon Mazo and R. Leupers, Programming Heterogeneous MP-
SoCs: Tool Flows to Close the Software Productivity Gap. Springer,
2014.

[6] C. Menard, A. Goens, G. Hempel, R. Khasanov, J. Robledo, F. Teweleitt,
and J. Castrillon, “Mocasin—rapid prototyping of rapid prototyping tools:
A framework for exploring new approaches in mapping software to
heterogeneous multi-cores,” in Proceedings of the 2021 Drone Systems
Engineering and Rapid Simulation and Performance Evaluation: Methods
and Tools Proceedings, ser. DroneSE and RAPIDO ’21, 2021.

[7] “The industry standard for static timing analysis.” [Online]. Available:
https://www.absint.com/ait/index.htm

[8] S. Lin, Y. A. Manerkar, M. Lohstroh, E. Polgreen, S.-J. Yu, C. Jerad,
E. A. Lee, and S. A. Seshia, “Towards building verifiable cps using lingua
franca,” ACM Transactions on Embedded Computing Systems, vol. 22,
no. 5s, pp. 1–24, 2023.

[9] J. Cardoso, C. Chanel, P. Chauvin, A. Hostallier, J. Lamaison,
A. Mascarenas-Gonzales, E. Metral, and L. Alloza, “Lab on the real-time
control of reaction wheel,” 2022, unpublished lab exercise for the course
1MAE803: Real-time Control of Aerospace Systems, M.Sc in Aerospace
Engineering, ISAE-SUPAERO.

https://www.absint.com/ait/index.htm

	Introduction
	Background
	DSE for LF based on PretVM
	Preparing Inputs
	Generate and Register Mappings
	Generate and Execute Schedules

	Case Study
	Application
	Experimental Setup
	Measurement Results
	Discussion

	Conclusion
	References

