
Diplomarbeit
zum Thema

Simulation of RISC-V based Systems in gem5

vorgelegt von Robert Sche�el
im Studiengang Informationssystemtechnik, Jg. 2012

geboren am 04.01.1994 in Görlitz

zur Erlangung des akademischen Grades eines

Diplomingenieurs
(Dipl.-Ing.)

Betreuer: Dipl.-Ing. Christian Menard
Dipl.-Ing. Gerald Hempel

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. Jeronimo Castrillon
Tag der Einreichung: 20.08.2018

Acknowledgements

I would like to thank my supervisors Christian Menard and Gerald Hempel for
their help and guideline. Their door was always open whenever I had a question
about my research or writing.

I would like to express my gratitude to Professor Castrillon for the opportunity
to write this thesis at the Chair for Compiler Construction.

I wish to acknowledge the help provided by CommSolid. The opportunity to
use their FPGA board enriched this thesis with a more detailed accuracy analysis.
My special thanks are extended to the sta� of CommSolid for providing me help
and consulted me during my work with the board and the collection of my data.

Simulation of RISC-V based Systems in gem5

The open and free instruction set RISC-V has properties ideal for building em-
bedded systems. In this domain, full system simulators, such as gem5, are used
for fast design space exploration. The absence of this type of simulators for the
RISC-V architecture limit its usability in academia. This thesis presents a solution
for closing this gap by introducing the implementation of the Full-System mode
in gem5 for the RISC-V architecture. Furthermore, the RISC-V Extension Parser
is introduced, o�ering the possibility to de�ne custom extensions. These imple-
mentations enable full system simulation of RISC-V based embedded systems
with arbitrary custom instructions and registers. Moreover, the accuracy of full
system simulation in gem5 is evaluated.

Tutor: Dipl.-Ing. Christian Menard
Dipl.-Ing. Gerald Hempel

Supervisor: Prof. Dr.-Ing. Jeronimo Castrillon
Day of Submission: 20.08.2018

DIPLOMA THESIS Author: Robert Sche�el

Contents

1 Introduction 1

2 Background 3
2.1 RISC-V . 3

2.1.1 Overview . 3
2.1.2 ISA Speci�cation . 3
2.1.3 RISC-V Ecosystem . 7
2.1.4 Comparison to other ISAs 8

2.2 The gem5 Simulator . 12
2.2.1 Overview . 12
2.2.2 Comparison to other Simulators 15
2.2.3 Calibration of gem5 Components 16

3 Motivation 19

4 Concept and Implementation 21
4.1 Use-cases for Embedded Applications 21

4.1.1 Communication via UART 21
4.1.2 Execution of Time-Controlled Tasks 22
4.1.3 Performance Increase through Additional Hardware . . 23

4.2 Requirements . 24
4.3 Extending Full-System Support in gem5 25

4.3.1 Enable Full-System mode 26
4.3.2 Support of Peripheral Devices 28
4.3.3 Support for Interrupts and Exceptions 31
4.3.4 32 Bit support . 37

4.4 Interface for Custom Extensions 40
4.4.1 The RISC-V Extension Parser 40
4.4.2 De�ning Custom Extensions 44
4.4.3 Parsing of the Extension Models 45
4.4.4 Implementation of the gem5 Plug-In 47
4.4.5 Generation of Toolchain Patches 54

5 Verification and Evaluation 59
5.1 Veri�cation of the Implementation 59

5.1.1 Veri�cation of the RISC-V Full-System Mode 59
5.1.2 Veri�cation of the RISC-V 32 Bit Mode 61
5.1.3 Veri�cation of the Custom Extension Parser 62

5.2 Accuracy Evaluation of gem5 . 62
5.2.1 Architectures of the RISC-V Systems 63
5.2.2 Approach for the Accuracy Evaluation 66
5.2.3 Calibration of the System Models 66
5.2.4 Benchmarks . 71
5.2.5 Analysing the HiFive1 Simulation Model 77
5.2.6 Discussion of the Benchmark Results 81

5.3 Accelaration of Algorithms Using the RISC-V Extension Parser . 82

6 Related Work 85
6.1 RISC-V . 85
6.2 gem5 . 87

7 Future Work 91
7.1 RISC-V Support in gem5 . 91

7.1.1 Evaluation of the Out-Of-Order CPU Model 91
7.1.2 Platform-Level Interrupt Controller 91
7.1.3 Physical Memory Protection 92
7.1.4 Support of Standard Extensions 92

7.2 Further Projects . 93
7.2.1 Automatic Generation of Peephole Optimisations 93
7.2.2 Heterogeneous Computing 94

8 Conclusion 95

References 97

List of Figures

2.1 Base instruction formats of the RISC-V user-level ISA. 4
2.2 Overview of the RISC-V software stack. 7
2.3 The simplest system, that is able to execute a binary. 14
2.4 Class diagram of the MinorCPU class and its functional units. . 16

4.1 Basic system with UART device. 22
4.2 Basic system with UART device and a CPU timer. 22
4.3 System with peripheral devices and custom extensions. 23
4.4 Inharitance structure of the di�erent system classes. 26
4.5 Sequence diagram of the initialisation of the system class and the

CPU class. 27
4.6 The simplest system, that is able to execute a binary. 28
4.7 The system de�nition in gem5 with a UART device connected to

a terminal. 29
4.8 The memory mapped mtime and mtimecmp registers. 29
4.9 Rudimentary class diagram of the TimerCPU class. 30
4.10 The system de�nition in gem5 with peripheral devices. 30
4.11 The mcause special register. 31
4.12 The mtvec special register. 31
4.13 First approach for implementing system calls in gem5. 32
4.14 Class inheritance for RISC-V faults. 33
4.15 Sequence diagram for executing a system call. 34
4.16 Relationship between the CPU class and the Interrupt class. . . 35
4.17 Procedure of posting an interrupt to the CPU until it �nally is

executed. 36
4.18 Sequence diagram for executing a return from interrupt. 37
4.19 The RISC-V custom extension parser in context of toolchain and

gem5. 41
4.20 The extension parser package and its project structure. 42
4.21 Class diagram of the extension parser. 43
4.22 Folder structure of the extension parser project within gem5. . . 43
4.23 Class diagram of the Parser class and its properties. 46

4.24 Sequence diagram of the parser processing information from
a given model to generate a class instance, that represents the
custom instruction. 47

4.25 Class diagram of the class Gem5 and its aggregations. 48
4.26 Gem5 components interacting with corresponding components

in the RISC-V custom extensions library. 49
4.27 Sequence diagram of the process of decoding a custom instruction

in gem5. 50
4.28 Class diagram the concept for memory mapped custom registers. 52
4.29 System de�nition in gem5 with memory mapped custom registers. 52
4.30 Class diagram the concept for index mapped custom registers. . 53
4.31 The RISCV custom extension plug-in. 55
4.32 Diagram of the class Compiler. 55
4.33 Sequence diagram showing the decoding and execution of a read

of a custom register. 56

5.1 Core complex of the RISC-V CPU on the SiFive HiFive1. 64
5.2 The system de�nition in gem5, that re�ects the SiFive HiFive1

board. 65
5.3 Cycle counts for the CommSolid Samara board. 69
5.4 Cycle counts using the instruction cache for the SiFive HiFive1

board. 70
5.5 Cycle counts for multiple cache line fetches. 72
5.6 Execution time for the Mandelbrot set benchmark on the Comm-

Solid Samara board and simulated in gem5. 74
5.7 Execution time for the matrix multiplication benchmark on the

CommSolid Samara board and simulated in gem5. 75
5.8 Execution time for the FFT benchmark on the CommSolid Samara

board and simulated in gem5. 76
5.9 Execution time for the matrix multiplication benchmark on the

SiFive HiFive1 board and simulated in gem5. 77
5.10 Execution time for the Mandelbrot set benchmark on the SiFive

HiFive1 board and simulated in gem5. 78
5.11 Execution time for the FFT benchmark on the SiFive HiFive1

board and simulated in gem5. 78
5.12 Execution time for the FFT benchmark without the initialisation

phase on the SiFive HiFive1 board and simulated in gem5. . . . 81
5.13 Cycle counts of the FFT algorithm in c and accelerated with a

custom instruction. 83

List of Tables

2.1 RISC-V standard extensions that are not expected to be changed
in future editions of the user-level ISA. 5

2.2 RISC-V opcode map for RVG instructions. 5
2.3 Overview of the di�erent privilege levels in RISC-V, including

encodings and abbreviations. 6
2.4 Summary of several ISAs’ support for desirable architectural

features. 12
2.5 Overview of the supported architectures in gem5. 13

4.1 Overview of requirements on gem5 and the interface for custom
extensions. 25

5.1 Cycles per assembler instruction for the PicoRV32 core on the
CommSolid Samara board. 67

5.2 Calibrated latencies of the CommSolid system model components. 68
5.3 Cycles per assember instruction and mismatch to the PicoRV32

core. 69
5.4 Cycles per assember instruction and mismatch to the FE310-G000

core compared to the gem5 MinorCPU. 70
5.5 Cycles per assembler instruction and mismatch to the FE310-G000

core compared to the gem5 MinorCPU. 71
5.6 Calibrated latencies of the HiFive1 system model components. . 72
5.7 Execution time for the calculation of the Mandelbrot set for dif-

ferent pixel sizes. 73
5.8 Execution time for the calculation of the multiplication of matrices

of di�erent sizes. 74
5.9 Execution time for the FFT benchmark of di�erent sizes. 75
5.10 Execution time for the calculation of the multiplication of matrices

of di�erent sizes. 76
5.11 Execution time for the calculation of the Mandelbrot set for dif-

ferent pixel sizes. 77
5.12 Execution time for the FFT benchmark of di�erent sizes. 78
5.13 Consumed cycles for di�erent numbers of unconditional jumps. 80

5.14 Execution time for the FFT benchmark of di�erent sizes without
the initialisation phase. 80

List of Listings

2.1 Example de�nition of instructions in the gem5 decoder. 14

4.1 Class de�nition of the base class for all faults. 33
4.2 Add instruction de�nition for 64 bit architectures. 38
4.3 Generated class for the 64 bit add instructions. 38
4.4 Most important functions of the decoder class. 39
4.5 Choice of the right decoder depending on the architecture bit

�eld within the ExtMachInst. 40
4.6 Content of the con�guration �le for the extension parser. 43
4.7 Example de�nition of a custom instruction. 45
4.8 Example de�nition of custom registers. 45
4.9 Extract of the source �le custom_decoder.cc. 49
4.10 Generated timing object for a custom instruction. 51
4.11 Generated macros for read and write access to a custom register. 53
4.12 De�nition of a custom instruction using custom registers. 54
4.13 Include of the header for the generated RISC-V intrinsic instruc-

tions. 57

5.1 Wrapper for the add assembly instruction. 61
5.2 Test of the 32 bit add instruction. 62
5.3 Instruction sequence of the testcase producing high mismatches. 79
5.4 De�nition of the �xed-point multiply function used inside of the

FFT algorithm. 82

Abbreviations

AHB advanced high-performance bus

ALU arithmetic logic unit

API application programming interface

AST abstract syntax tree

CISC complex instruction set computing

CPU central processing unit

DSL domain-speci�c language

FFT fast Fourier transform

FS Full-System

GCC GNU Compiler Collection

glibc GNU C Library

IoT internet of things

ISA Instruction Set Architecture

M-mode machine-mode

MPSoC multi-processor system-on-chip

PLIC platform-level interrupt controller

PMP physical memory protection

RISC reduced instruction set computing

RTL register-transfer level

TTM Time-To-Market

SE Syscall-Emulation

SoC system-on-a-chip

TLB translation lookaside bu�er

UART universal asynchronous receiver-transmitter

U-mode user-mode

VP Virtual Prototype

1 Introduction

In today’s industry, companies have to deal with increasing complexity of hard-
ware and software architectures [21]. To decrease Time-To-Market (TTM), costs,
and e�orts, it is more e�cient to develop hardware and software concurrently
instead of sequentially. Therefore, Virtual Prototypes (VPs) are used to simulate
the exact behaviour of real hardware [57]. Whereas the industry o�ers SystemC
based CPU models, in academia open source simulation frameworks are needed.
A requirement on these frameworks is the possibility to evaluate a wide variety
of architectures and facilities including network communication and standard IO
devices [11]. These demands can be ful�lled with full system simulators [26]. Such
simulators are capable of simulating not only a central processing unit (CPU) and
memories, but also a whole system-on-a-chip (SoC) including peripheral devices.

A full system simulator already used in academia is the gem5 simulator [11].
This open and free project allows easy collaboration. Due to its di�erent simula-
tion modes, the support of many di�erent Instruction Set Architectures (ISAs),
and the simpleness of de�ning new system models, it is a useful tool for ar-
chitectural evaluations. Furthermore, this simulator o�ers the possibility to do
cycle-accurate simulations with feasible accuracy.

The open and free ISA RISC-V [83] is designed to solve problems in existing
architectures. It has a simple base instruction set and is designed extensible to
better integrate e�cient accelerators close to the core. Around the ISA itself, an
ecosystem containing a core generator [5], a hardware construction language [7],
a toolchain [13, 30], and simulators [9, 42, 72] has arisen. Due to these properties
and availability of open source tools, RISC-V is ideal for research purposes.

Currently, for simulating RISC-V based systems, two di�erent approaches
are available. The �rst is to use simulators in the RISC-V ecosystem. These
are instruction-accurate ISA simulators that lack full system capabilities. Cycle-
accurate simulations are possible with VHDL models mapped to FPGA for detailed
register-transfer level (RTL) simulation. However, the possibility for full system
simulation of RISC-V based systems is missing. Moreover, existing simulators
are not able to conveniently capture custom extensions de�ned by users.

This absence of full system simulators limits the possibilities of architectural
evaluations in research using this instruction set. Additionally, missing possibili-
ties to de�ne custom instructions and registers in simulation models prevents the

1

1 Introduction

usage of one of the key features of RISC-V. A solution to overcome this de�ciency
is presented in this work by extending the support for RISC-V in gem5 and en-
abling the full system simulation mode. Additionally, an interface is designed
making de�ned custom extensions available for use in simulation. This o�ers
researchers the possibility to use the advantages of the RISC-V ISA in full system
simulation for architectural evaluations.

This thesis is structured as follows. In Chapter 2 the ISA RISC-V and the
simulator gem5 are introduced and Chapter 3 motivates the bene�t of using both
together. In Chapter 4 use-cases for embedded systems are de�ned and from
them requirements on the implementation are derived. Additionally, the imple-
mentation of features needed to ful�l these requirements is described. Chapter 5
introduces the veri�cation of the implementation. Furthermore, an accuracy
evaluation of the gem5 simulators is described. Additionally, an example on accel-
erating algorithms by utilising the RISC-V Extension Parser is given. After that,
Chapter 6 presents relevant projects regarding RISC-V and gem5. In Chapter 7
ideas for future work based on the outcomes of this thesis are described. Finally,
Chapter 8 concludes this work.

2

2 Background

This chapter introduces the ISA RISC-V and the simulator gem5. Moreover,
related work is described highlighting the interest in both projects.

2.1 RISC-V

This section introduces the ISA RISC-V. It shortly explains the architecture itself as
well as available software tools. Also, a short comparison to similar architectures
is given explaining the advantage of using RISC-V.

2.1.1 Overview

RISC-V is an open and free ISA, that was introduced in 2010 by the University
of California, Berkeley. The name originates from the history of ISA projects,
whereas RISC-V is the �fth major reduced instruction set computing (RISC)
project of the university [83].

As the name implies, the design of the ISA is based on principles of RISC and
developed to �t the demands of nearly every computing device, from embed-
ded devices to desktop computers [4, 48, 83]. Therefore, RISC-V is designed
to be highly extensible and o�ers the possibility to extend the base instruction
set with already de�ned standard extensions, as well as user-de�ned custom
extensions [80].

Most important is the openness of the architecture, which enables competition
and innovation [3, 83] and allows RISC-V to be used in research as well as in the
industry [56]. For example Nvidia plans to use a RISC-V core on their GeForce
graphics card [85].

2.1.2 ISA Specification

This subsection will shortly introduce the architecture speci�cation itself. The
speci�cation is structured in two parts, the user-level ISA [80] and the privileged
architecture [81]. “The RISC-V Instruction Set Manual Volume I: User-Level
ISA” [80] explains the base instruction sets and standard extensions. The second
part, “The RISC-V Instruction Set Manual Volume II: Privileged Architecture” [81]

3

2 Background

discusses instructions that occur beyond user-level as well as the purpose of
machine registers and their behaviour at certain events. Where the user space
ISA is �xed, the privileged architecture is still a draft and applications have to
consider that some parts may change.

User-Level ISA

To be able to be used in both small, embedded devices and personal computers,
without being over-optimized for a special use-case, the architecture is modular
and highly extensible [83]. RISC-V supports both 32 Bit and 64 Bit address spaces,
where their base instruction sets di�er in the register width. Support for 128 Bit
architectures is in development [80].

RISC-V is, as many other RISC architectures, a load-store architecture [29].
There, it is di�erentiated between instructions for arithmetic logic unit (ALU)
operations and memory accesses. The RISC principles lead to few instructions of
a �xed size that consume similar time in execution [77]. In the case of RISC-V,
the instructions are 32 Bit wide. Due to the similar execution time, pipelines can
be fully utilized and less structural and data hazards occur [10]. Also there are
only four core instruction formats, which can be seen in Figure 2.1.

funct7 rs2 rs1 funct3 rd opcodeR-type

31 25 24 20 19 15 14 12 11 7 6 0

I-type imm[11:0] rs1 funct3 rd opcode

31 20 19 15 14 12 11 7 6 0

S-type imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

31 25 24 20 19 15 14 12 11 7 6 0

U-type imm[31:12] rd opcode

31 12 11 7 6 0

Figure 2.1: Base instruction formats of the RISC-V user-level ISA (adapted from [80]).

The base instruction set is su�cient enough to implement a fully functional
general-purpose computer [83]. Aside of it, many standard extensions, such
as compressed instructions and integer multiplication, are speci�ed [80]. To
describe the actual implementation, each extension is encoded with a letter
and than described as "RV32IMC" or "RV64I". Table 2.1 gives an overview of
de�ned standard extensions and their encoding. If a computer has the extensions
"IMAFD", it can be also referred to as "G", which stands for "general purpose".

Especially in the embedded domain, applications run with limited clock fre-
quencies in order to save power. That leads to poor performance and computation

4

2.1 RISC-V

Table 2.1: RISC-V standard extensions that are not expected to be changed in future
editions of the user-level ISA.

Extension Description

M integer multiplication and division

A atomic instructions

F single-precision �oating point

D double-precision �oating point

Q quad-precision �oating point

C compressed instructions

intensive calculations often need to be supported by additional hardware [35, 45].
To address this issue, certain operation codes, where a user can de�ne custom
instructions are reserved in the ISA [80]. Table 2.2 shows these reserved opcodes.

Table 2.2: RISC-V opcode map for RVG instructions (adapted from [80]). In the high-
lighted �elds the operation codes for custom instructions can be seen.

inst[4:2] 000 001 010 011 100 101 110

inst[6:5]

00 LOAD LOAD-FP custom-0 MISC-MEM OP-IMM AUIPC OP-IMM-32

01 STORE STORE-FP custom-1 AMO OP LUI OP-32

10 MADD MSUB NMSUB NMADD OP-FP reserved custom-2/rv128

11 BRANCH JALR reserved JAL SYSTEM reserved custom-3/rv128

RISC-V has 32 general purpose registers x0-x31, where 31 of them are integer
registers and x0 contains a constant 0. Every register is as wide as the address
space of the implementation, for example 32 Bit for RV32I. Additionally, the
register pc holds the address of the current instruction [80].

Privileged Architecture

Every aspect of the ISA beyond user-level is described in the privileged instruction
set speci�cation, including functionalities to attach devices and run operating
systems. This part of the speci�cation is still a draft, hence sections of it may

5

2 Background

change. It is designed to be completely independent of the user-level ISA and is
speci�ed to support commonly used operating systems [81].

To ful�l the design goals of RISC-V the “The RISC-V Instruction Set Manual
Volume II: Privileged Architecture” has to support several types of systems. There-
fore, three di�erent privilege modes are de�ned: machine, supervisor and user.
Table 2.3 gives an overview about their abbreviations and encodings. The only
mandatory level for a RISC-V hardware platform is the machine level having the
highest privileges. Code running in machine-mode (M-mode) has access to the
registers of the machine itself and is therefore completely trusted [81]. Since the
machine level is the only mandatory privilege level, simple embedded systems
implementations might provide only M-mode. However, secure embedded sys-
tems, that intend to protect the system from untrusted user code, will at least
provide hardware with two privilege levels, user-mode (U-mode) and M-mode.
In such a scenario, the application code runs in a lower privilege level and only
traps are handled in machine-mode.

Table 2.3: Overview of the di�erent privilege levels in RISC-V, including encodings and
abbreviations.

Level Encoding Name Abbreviation

0 00 User/Application U

1 01 Supervisor S

2 10 reserved

3 11 Machine M

In the RISC-V architecture, a trap causes the transfer of control to a trap handler.
The cause of a trap can be synchronous or asynchronous. Synchronous traps
are called exceptions. These are associated with an instruction and therefore
occur synchronously to the program �ow [80]. On the other side, interrupts have
an asynchronous character, as they refer to external events forcing the current
RISC-V thread to an action. Such events could be a timer alarm [81]. For both,
interrupts and exceptions, the privileged architecture speci�cation de�nes, which
machine registers have to be altered and how the transfer of control happens. It
is also speci�ed, what actions have to be done, once the trap handler �nishes its
work.

Other aspects covered in the speci�cation are memory systems and memory
protection. Memory protection is useful for secure embedded systems, as they

6

2.1 RISC-V

may need to protect memory-mapped registers, machine mode code and data
from user access.

2.1.3 RISC-V Ecosystem

Although RISC-V is a new ISA, necessary software tools for design and devel-
opment of RISC-V based hardware and software are available. In terms of tool
support, a developer does not need to go without commonly used programs.

This subsection gives a general overview of the available software stack, as seen
in Figure 2.2, with some extended comments on compilers and implementations.

Applications

Distributions OpenEmbedded Gentoo BusyBox

Compilers Clang/LLVM GCC

System Libraries newlib glibc

OS Kernels Proxy Kernel Linux

Implementations Rocket Spike Angel QEMU

Figure 2.2: Overview of the RISC-V software stack (adapted from [43]).

Compiler Support

For development of software for RISC-V based systems, the two popular compil-
ers GNU Compiler Collection (GCC) and Clang/LLVM are available. Whereas
GCC supports all RISC-V ISA variants [19], Clang/LLVM only supports the base
instruction set for 32 Bit address mode [13]. Furthermore two standard libraries
can be used with GCC. The GNU C Library (glibc) is a full blown implementa-
tion of the C standard library and intended to use with the RISC-V Linux port.
Embedded systems use Newlib, the second available standard library [16]. The
RISC-V port of Clang/LLVM only targets Newlib [19].

Simulators and Emulators

The ecosystem contains two ISA simulators, Spike [72] and Angel [42], whereas
the latter is not under active development any more. Spike is the golden RISC-V
model [19]. It implements the latest versions of the user-level speci�cation and
privileged architecture, and can therefore be used as a reference when imple-
menting the RISC-V ISA. Spike models a core and a cache system and is capable

7

2 Background

of booting Linux. Besides ISA simulation, full system emulation is also possible
with QEMU. The ecoystem o�ers a port for this open source machine emulator
and virtualiser. QEMU translates system calls to instructions on the host system,
leading to fast simulations on instruction-level accuracy [68].

RISC-V Hardware

When implementing a RISC-V based system, sooner or later, the developer has
to build actual hardware. Due to its openness, one does not need to start from
scratch, but can use either core generation tools or reuse actual implementations
that are publicly available.

Having a look at the software stack in Figure 2.2, another RISC-V implemen-
tation is Rocket [5]. Rocket is an open source SoC generator developed at UC
Berkeley. It consists of di�erent generator libraries that can be used to design
custom SoCs. Among them, di�erent core generators o�er the possibility to build
multi-core RISC-V systems. Therefore, Rocket is, like the ISA itself, capable of
generating a wide variety of computer systems.

Actual RISC-V silicon is also available. The company SiFive o�ers multiple
products, including single chips, SoCs and whole development boards. Such
a commercially available development board is the SiFive HiFive1 [38]. The
architecture of this board is introduced later in Section 5.2.1, as it is used for
evaluating the accuracy of the gem5 simulator.

2.1.4 Comparison to other ISAs

When implementing a new hardware system, a developer faces the question,
which ISA the CPU should realize. Basically he can decide, whether he wants to
build a RISC or complex instruction set computing (CISC) architecture. CISC tries
to achieve a high performance with executing fewer instructions per program.
This approach leads to rather complex decoders, as they need to decode a lot of
di�erent instructions [63]. Therefore, RISC cores are preferred in the embedded
domain, due to their lower area consumption. Taking a look into the industry
provides evidence for this statement. Currently, about 99% of the microprocessors
implement RISC architectures [63].

This section compares RISC-V with other popular RISC ISAs. Advantages
against other ISAs will be highlighted. For comparison, the ISAs ARM, MIPS and
SPARC are analysed, as they are among the most popular and widely used RISC
architectures [23, 60].

8

2.1 RISC-V

ARM

The ISA ARM was developed in 1985 by the British company Acorn Computer [23].
Later, the name was changed to Advanced RISC Machines Ltd, which is now
ARM Ltd.. The most recent version is ARMv8 [2]. It was announced by ARM Ltd.
in 2011 and is a complete redesign of the previous version ARMv7 [83]. It adds
an optional 64 Bit architecture, referred to as AArch64, o�ering compatibility to
32 Bit architectures, known as AArch32. Moreover, it allows 32 Bit applications
to be run in 64 Bit operating systems. Currently, ARM processors are used in
mobile devices and automotive [60].

Both versions, 32 and 64 Bit, di�er quite sever in their speci�cation. The
32 Bit mode de�nes 16 32 Bit wide registers, where 12 of them are general
purpose registers. The added 64 Bit mode in ARMv8 de�nes 32 64 Bit wide
registers. AArch64 is fully compliant to the IEEE �oating point standard with its
NEON extension. Compressed instructions are supported in AArch32 but not
in AArch64 [23]. Also the privilege levels are complicated. The ISA de�nes two
di�erent base modes, user and privilege mode. The privilege mode is further
divided into system mode and exception mode. In system mode is in fact a
user mode with higher privileges and therefore more access rights. Under the
exception mode, �ve more modes are de�ned. The �rst is the supervisor mode that
is entered on reset or if a software interrupt instruction is executed. Second, the
abort mode is de�ned, handling memory access violations. The third mode is the
unde�ned mode handling unde�ned instructions. For occurrence of interrupts,
two further modes are de�ned, the interrupt mode and the fast interrupt mode.
The interrupt mode is entered if a normal interrupt occurs. On occurrence of high
priority interrupts the fast interrupt mode is entered. In each of the exception
modes, the registers have a di�erent meaning. Overall, this leads to 9 di�erent
modes with di�erent register conventions [60].

MIPS

The MIPS [34] architecture was introduced in 1982 by the University of Stanford
and heavily in�uenced by the IBM 801 minicomputer [83]. The architecture
was originally designed to support personal computers. Later, MIPS processors
were used in gaming consoles such as Nintendo 64, Sony’s PlayStation and
PlayStation2 [36]. Today, the architecture is mainly used in embedded systems
and MIPS based chips are among the most shipped architectures [23, 63]. MIPS is a
proprietary instruction set, as the architecture is developed by MIPS Technologies.
They had a patent on misaligned load and store instructions. Although the patent

9

2 Background

is already expired [33], the architectures remains a trademark of Imagination
Technologies and compatibility to the architecture cannot be claimed without
their permission [83].

MIPS has 32 32 Bit wide registers, where the register $0 is hard-wired to
zero. Additionally, the architecture provides two special registers, HI and LO,
which are used by the integer multiplication and division instructions. These
instructions run asynchronously, allowing them to be executed separately from
and concurrently with other instructions [23]. MIPS supports only two operating
modes, kernel and user mode. To kernel mode is switched at power up and on
occurrence of an interrupt or exception. The user mode has lower privileges than
kernel mode and it prevents di�erent users from interfering with one another [60].
For �oating-point operations MIPS intends to use a separate coprocessor, which
complicates single-chip designs [83].

SPARC

SPARC [39] was developed by Sun Microsystems and �rst released in 1987. Its
design was strongly in�uenced by the projects RISC-I [64] and RISC-II [44],
proposed by the University of Berkeley [83]. The architecture’s �rst 32 Bit
implementation was used in Sun’s Sun-4 workstation and server system. Later,
�eld of application moved towards server systems and SPARC is considered as
a high performance architecture for systems that rely on high throughput [60].
SPARC is completely open, free and non-proprietary.

The main di�erence of the SPARC architecture compared with others is its
register �le model. Unlike in MIPS, ARM and RISC-V the model is not �at but is
an overlapping register window, which is arranged in a circular bu�er [23]. In
the SPARC architecture 37 32 Bit wide registers are available and divided into
four groups. Similar to MIPS, SPARC has two di�erent privilege levels, namely
user and supervisor mode. The instruction set of the architecture is rather simple
and includes 90 instructions. Hardware support for �oating-point computation
adds another 50 instructions.

Comparison

The criteria used for the comparison consider typical requirements on ISAs in
general and in context of embedded systems according to Waterman [83]. An
open and free instruction set gives academia and industry the opportunity to
evaluate designs without paying license fees. Furthermore, support for 32 Bit
and 64 Bit wide addresses allows more �exible processor designs. Compressed

10

2.1 RISC-V

instructions and a separate privileged ISA are features used in embedded devices.
In a domain requiring for small designs in order to save costs, the code size can
be reduced with compressed instructions. Additional gates can be saved by not
being forced to support privileged architecture speci�cations. A last criterion is
the hardware support for the IEEE standard for �oating-point arithmetic, which
leads to more performance while processing �oating-point values.

An overview of the compared architectures and the criteria is shown in Ta-
ble 2.4. All selected ISAs support both, 32 Bit and 64 Bit address widths. The
RISC-V ISA is the only architecture ful�lling all chosen criteria. RISC-V and
SPARC are the only two open source ISAs. Of all compared ISAs, RISC-V is the
only architecture that has a separate privileged architecture speci�cation. This
feature o�ers �exibility to adapt the ISA to its speci�c use-case. For example, in
small embedded systems no privilege levels have to be implemented, therefore
a lot of special registers can be saved. In contrast, the privileged architecture
is implemented when designing a system used as general purpose computer
running di�erent applications that are not trustworthy. Both examples are still
conform to the RISC-V base instruction set.

A drawback of the RISC-V ISA is the unreleased architectural speci�cation.
Although most parts of it are unlikely to change, current implementations need
to be aware that changes might happen. Another problem is the poor support of
custom extensions in the toolchain. It is possible to add new assembly instructions,
but this requires patching of �les deep inside the project. The missing support in
the toolchain exacerbates working with one of the key features of the architecture,
its extensibility.

In conclusion, without RISC-V a computer architect has to evaluate the needed
features carefully. Consequently he chooses the ISA o�ering the most desired fea-
tures. The introduction of RISC-V supersedes this evaluation as RISC-V supports
all these features. Moreover it is free and open, allowing to explore its features
complimentary.

11

2 Background

Table 2.4: Summary of several ISAs’ support for desirable architectural features.

ARM MIPS RISC-V SPARC

Free and Open X X

32 Bit and 64 Bit X X X X

Compressed Instructions X X X

Separate Privileged ISA X

IEEE 754-2008 X X

2.2 The gem5 Simulator

This section gives an introduction to gem5 in general, introduce the usage of the
simulator and explain its ISA parser, a crucial part of the system. Also, a more
detailed comparison to other simulation frameworks is given. After that, related
work regarding calibration of simulators is introduced.

2.2.1 Overview

The open source system simulator gem5 [11] originates from M5 [12] and GEMS
[55]. M5 focuses on network simulation, whereas GEMS is a timing simulator for
multiprocessor systems. Gem5 merges the aspects of both of its predecessors to
enable computer-system architecture research. It is not only used in academia,
but in industry, i.e. ARM and AMD use gem5 internally and contribute to the
project. It supports many di�erent ISAs, which are varyingly strong supported
and maintained, as seen in Table 2.5.

Gem5 o�ers two di�erent modes, the Syscall-Emulation (SE) mode and the
Full-System (FS) mode. Within the SE mode, every system call gets translated
to its equivalent on the host system. This call is executed by the host and the
answer is then taken as response. In SE mode the behaviour of a binary can be
investigated, that is run on a system of a speci�c architecture. Due to translation
to a system call of the host system, this mode is faster but not as accurate as the
FS mode. Thereby, a full system model with many di�erent components, such as
caches, interrupts and I/O devices, is simulated. Furthermore, the execution of
the operating system is simulated and unmodi�ed binaries can be executed. [11,
59]

The simulator o�ers di�erent models for CPUs and memory with di�erent
levels of detail and complexity. Each CPU, as well as every other component, is

12

2.2 The gem5 Simulator

Table 2.5: Overview of the supported architectures in gem5.

ISA Level of ISA support Full-system OS support

Alpha high Linux

ARM high Linux, BSD, Android

MIPS low none

Power low none

RISC-V medium none

SPARC low none

x86 medium Linux, BSD

implemented independently from an ISA. That allows the use of nearly every
component in every ISA [11, 59].

Usage of gem5

To use gem5, two things are required. First, a binary of the simulator is needed.
This binary is compiled speci�cally for one ISA, which is RISC-V in our case.
Second. the de�nition of a system is required. A system de�nition describes of
which parts the SoC consists and how they are connected [11].

The most basic system, on which a binary can be run, is displayed in Figure 2.3.
It only contains a CPU and a memory block. Both are connected via a memory
bus, that allows communication. As this simple system uses no caches, the ports
for data and instruction cache are directly connected to the bus.

The functionality of the simulator is implemented in c++. Functions describing
the behaviour of the components are de�ned. Furthermore, the simulator provides
a con�guration interface. Components used to build a system can be con�gured
in python. Therefore, every con�gurable object provides a c++ implementation
and a python de�nition. Concluding, parameters and speci�cations are de�ned
in the python class and the description of the whole system is done in a python
script [59].

The gem5 Decoder

The decoder is a crucial part of gem5, where ISA independent CPU models
meet ISA speci�c binary instructions. To achieve this independence, all CPU

13

2 Background

MemBus

CPU

Memory

memctrl.port

cpu.icache_port cpu.dcache_port

Figure 2.3: The simplest system, that is able to execute a binary.

1 decode OPCODE {
2 0 : add ({ { Rc = Ra + Rb ; } }) ;
3 1 : sub ({ { Rc = Ra − Rb ; } }) ;
4 }

Listing 2.1: Example de�nition of instructions in the gem5 decoder.

implementations inherit from a base class. In the implementation of opcodes,
virtual functions of the base class are overwritten [11].

For de�ning ISAs, gem5 provides a domain-speci�c language (DSL) allowing to
overwrite the mentioned virtual functions. When compiling, the ISA description
language is parsed and translated to proper c++ code. An example de�nition of
two instructions in this DSL can be seen in Listing 2.1. There, the semantics of
an add and a sub instruction are described. It also shows how the decode tree is
built. With the keyword decode, de�ned bit �elds can be observed. Depending on
its value, further decoding is done or instructions are assigned. In this example
case, decoding the �eld OPCODE is enough to determine, whether add or sub
needs to be executed.

For every instruction de�ned with the ISA DSL, a c++ class is generated pro-
viding certain functions. Most important to mention is the execute() method,
which de�nes the behaviour of the ISA instruction. The code generation of these
classes and methods can be controlled with formats. They describe the code
that is omitted when parsing the ISA description. These formats are then used
in the decode section, where a decode tree is built. There, the a�liation of an
operational code to an instruction is de�ned. Furthermore, the format of an
instruction is set, which as a consequence describes the omitted c++ code for
this instruction. Basically from the decode tree a switch statement is generated,

14

2.2 The gem5 Simulator

that decodes the binary code, �nds the proper instruction to every opcode and
creates a new class object, that corresponds to this instruction. Then, its execute()
method can be called, that leads to the realisation of the RISC-V instruction [11].

2.2.2 Comparison to other Simulators

As seen in Table 2.5, gem5 o�ers basic support for RISC-V. Currently, RISC-V
binaries can only be simulated with the SE mode, which is faster, but lacks
accuracy. Additional work needs to be done in order to simulate unmodi�ed
binaries on RISC-V based systems in gem5. This subsection compares other
simulators to gem5, highlighting the advantages of the latter. It shows, why gem5
was chosen as simulator, although porting of the FS mode to RISC-V means e�ort.

One of the �rst full-system simulators was SimpleScalar [14]. This open source
project was initially designed to simulate MIPS architectures. Later versions
enabled functional and timing accurate simulation of ARM and Alpha systems
[25]. Compared to gem5, no RISC-V support is available and therefore, this
simulator is not used for this project, as the e�ort to implement the ISA support
is to high.

Later on, focus moved towards the ISA x86. Several simulators where released,
that support only the speci�c CISC architecture [53, 62, 86]. Even though some
of them where cycle-accurate [53, 86] their restrictions regarding the simulated
architecture limit their wide use in research.

OVPsim [41] is a full-system simulator, which is freely available for non
commercial use and marketed by Imperas. It o�ers support for many di�erent
architectures, for example ARC, ARM, MIPS and RISC-V. Through its public
application programming interfaces (APIs), users can create own processor and
platform models, and contribute them to the community. OVPsim o�ers di�erent
models for RISC-V processors as well, by implementing di�erent bit widths and
standard extensions. This simulator models an instruction-accurate processor,
which is not as accurate as cycle-accurate simulation. Compared to gem5, which
o�ers cycle-accurate full-system simulation, this is a disadvantage. Though, this
simulator has feasible RISC-V support, the lack of cycle-accurate simulations is
disadvantageous in comparison to gem5.

SystemC [40] is an IEEE standard that extends c++ with macros and classes.
There is a lack of free, accurate and realistic SystemC models for modern CPUs [57].
However, existing models are shipped as binary libraries, which prevents them
from being modi�ed. Therefore, SystemC is not used as simulation framework
for this thesis.

As seen in Section 2.1.3, the RISC-V ecosystem already provides simulators.

15

2 Background

The Spike simulator only models a core and a cache system and is therefore only
feasible for simulation of RISC-V binaries. On the other hand, QEMU provides full-
system support. The disadvantage of QEMU is, that it translates every instruction
of the guest CPU to an instruction of the host CPU. This leads to simulations
with less details as in gem5. Furthermore, parameters of system parts and devices
can not be con�gured conveniently as in gem5.

2.2.3 Calibration of gem5 Components

To be more �exible and achieve more accurate simulation results, most gem5
components can be con�gured and calibrated. These con�gurations can be
done in the python script of the system de�nition. Via python bindings, these
parameters are given to the c++ world, where the functionality is implemented.
This mechanism o�ers the possibility to recon�gure system parameters without
recompilation. Examples for parameters that can be con�gured is the frequency of
the system, the latency of buses, memories and caches. Furthermore the latencies
of IO devices can be con�gured.

Figure 2.4: Class diagram of the MinorCPU class and its functional units.

The in-order pipelined CPU model in gem5 can be con�gured as well. This
CPU has four pipeline stages and therefore di�ers from the classical textbook
�ve stage pipeline [73]. The stages are called fetch1, fetch2, decode and execute,
whereas the execute stage implements the functionality for instruction issue,
execution and write back. For each of the stages, parameters like latency of the
stage and data width can be con�gured. Most interesting for this work are the
parameters of the execute stage. Therein, functional units de�ne how many cycles
the execution of an instruction lasts and how big the latency until an operation
of the same operation class can be issued again. To provide a more detailed
con�guration of the timings of instructions, functional units can have multiple

16

2.2 The gem5 Simulator

functional unit timing objects. In these objects, extra commit latencies can be
de�ned [73].

A class diagram illustrating this structure can be seen in Figure 2.4. The
MinorCPU has a pool of functional units. These again have a pool of functional
unit timings. Therein, masks and matches can be de�ned to specify these timings
for one single instruction of the ISA. Those masks and matches can be de�ned in
the python script of the system de�nition and do not need to be set at compile
time.

17

3 Motivation

Due to its properties, such as its openness and extensibility, RISC-V [83] is
of high interest in academia. Researchers can download the speci�cation and
evaluate architectural designs without paying any license fees. The modularity
and extensibility of RISC-V allows convenient adaptation to speci�c use-cases of
the system.

For better and faster evaluations of architectures, ISA simulators are needed,
being able to simulate the ISA of interest. As described earlier in Section 2.1.3,
simulators for RISC-V are already available. But there is a lack of full system
simulators, especially when it comes to open source frameworks. Currently,
RISC-V based systems can not be simulated with feasible accuracy in reasonable
speed. Researchers must choose between RTL-level simulation on FPGA boards
and instruction-level ISA simulation. RTL-level simulation is slow but highly
accurate, whereas ISA simulators deliver their results faster but their accuracy is
limited on instruction-level.

Additionally, none of the available simulators o�ers the possibility to conve-
niently de�ne arbitrary custom extensions for simulated systems. In conclusion,
the academia is forced to use older ISAs for the evaluation of complex systems
due to this absence. Another possibility is to rely on rather inaccurate simulation
results. However, the advantages and the full potential of RISC-V can not be
exploited in architectural research at the moment.

The open and free gem5 simulator [11] is a simulation framework o�ering a
full system simulation mode. As described in Section 2.2.1, the modular design
decouples ISAs from simulation models. With that approach, devices, such as
CPUs and memories, can be used independent of the underlying ISA. Moreover,
gem5 already has basic support for RISC-V by the availability of the Syscall-
Emulation mode. Therefore, the ISA decoder is already implemented.

With extending this support and enabling the Full-System mode, this thesis
closes the gap between RTL-level and instruction-level simulation of RISC-V
based systems. Furthermore, due to the design of gem5, existing simulation
models can be reused. Additionally, this work minds the extensibility of RISC-V
as one of its key features. It makes convenient de�nition of custom extensions for
the RISC-V ISA possible. The usage of these extensions in software and simulation
of customized systems is enabled. With that, more expressive virtual prototypes

19

3 Motivation

can be implemented and the full potential of the RISC-V ISA can be exploited.
To delimit this work, goals are de�ned of which systems shall be simulated

in gem5. As currently no support for full system simulation of RISC-V based
systems in gem5 exists, the starting point is simulating very basic systems. The
most basic system that can be build with the RISC-V ISA is an embedded system.
Since these systems have a dedicated task within a larger system they have severe
constraints regarding size, memory and energy consumption for the purpose of
saving costs [74]. In consequence the hardware and the software of these systems
is reduced in complexity and optimized for a dedicated function. The reduced
complexity of both, software and hardware, makes embedded system ideal to
implement full system support for RISC-V based systems in gem5.

In conclusion, the goal of this thesis is to enable full system simulation for
RISC-V based embedded systems in gem5. An interface is designed, allowing the
de�nition of custom extensions and makes them available for usage in RISC-V
based software and in simulation. Besides the actual implementation of missing
features, the functional correctness is veri�ed. The accuracy of gem5 is evaluated
by comparing the simulation to real hardware.

20

4 Concept and Implementation

This chapter �rst introduces use-cases for embedded applications. From that
requirements are derived for features, that the gem5 simulator must support
in order to simulate systems with these use-cases. After that concepts and
implementation of the features is described.

4.1 Use-cases for Embedded Applications

As the goal is to have a working full system simulator for RISC-V based embedded
systems. As shortly mentioned in Chapter 3, embedded systems are build and
highly optimized for one speci�c function within a larger system. Hence, their
architecture di�er quite strong. To delimit the range of system architectures
that gem5 shall be able to simulate, typical use-cases for embedded systems are
introduced. These use-cases lead to features, that the simulator shall support.

To �nd intersections in a vast domain, that covers many di�erent systems,
de�nitions of Zöbel [88] and Fan [27] are taken as reference. From that, use-cases
are derived, that are introduced hereinafter. To every use-case, an appropriate
system is modelled. Taken together, a de�nition of a system arises, which gem5
shall be able to simulate.

4.1.1 Communication via UART

Embedded systems rely on the communication with the outside world to either
retrieve or distribute information. Commonly, communication partners are other
systems and a dedicated peripheral device is needed [27].

To solve this problem, the most basic system that can be seen in Figure 2.3
is enriched with a universal asynchronous receiver-transmitter (UART) module.
UART enables asynchronous data transmission over wire and establishes a serial
connection. While transmitting, the module receives data by the CPU in the
form of whole words. It adds start and stop bits and creates a serial bit stream.
The receiving UART device reverts the operations and recreates the parallel data
packet [28].

A system, that re�ects this use-case can be seen in �gure 4.1. Besides the CPU
and the memory, a UART device needs to be attached to the bus. In order to

21

4 Concept and Implementation

MemBus

CPU

Memory UART

Figure 4.1: Basic system with UART device.

communicate, the CPU has to access the UART module at its address.

4.1.2 Execution of Time-Controlled Tasks

Very crucial parts of embedded systems are timers. These are used by CPUs to
measure elapsed time. Another use-case is to time the execution of tasks. For
example embedded systems, and other systems as well, want to prevent busy
waiting. Instead of polling the whole time, going to sleep and poll at certain
points in time is much more e�cient, as it saves a lot of energy. This use-case
would not be possible without timers, as the alarm is used as a wake-up event.
That means, that a CPU timer has to be added to the system, which can be seen
in �gure 4.2.

MemBus

CPU CPU Timer

Memory UART

Figure 4.2: Basic system with UART device and a CPU timer.

With this periphery device comes the need for the system to handle interrupts.
If a timer is set and the alarm goes o�, the current execution of the application is
interrupted. After handling the cause of the alarm, the interrupted program is

22

4.1 Use-cases for Embedded Applications

restored and continued.

4.1.3 Performance Increase through Additional Hardware

Embedded systems often have strict constraints regarding energy consumption
to ensure long-lasting battery life [51]. To achieve this, CPUs run with a slow
clock speed, which leads to low computational performance.

The low throughput of the processor leads to long execution times when
processing complex algorithms To approach this problem, bottle necks are often
accelerated with additional hardware [54, 71]. Custom Instructions are used to
group logical operations and run them directly on hardware instead of executing
them in the ALU. Custom Registers are used to prevent intermediate values from
being wrote back into memory.

In contrast to Shao et al. [71] who assumed additional hardware to be a separate
unit on the core with its own memory, in this thesis additional instructions are
assumed to be a functional unit in the CPU. Custom register are also within
the CPU and additional to the general purpose registers de�ned in the RISC-V
architecture speci�cation [80, 81]. This �ts in the modular concept of RISC-V and
is similar to the approach of Mach et al. [54].

A system, that re�ects this scenarios is shown in �gure 4.3. The CPU has access
to custom registers and custom instructions. Binaries, that run on the system can
call these instructions with assembly instructions and can also access additional
registers.

MemBus

Custom Registers

Custom Instructions

CPU

CPU Timer

Memory UART

Figure 4.3: System with peripheral devices and custom extensions.

23

4 Concept and Implementation

The system sketched in �gure 4.3 covers all the devices and modules needed by
the use-cases. It serves as a de�nition of a system gem5 shall be able to simulate.

4.2 Requirements

In this section, the just presented use-cases are analysed to derive requirements
of which features gem5 must support. These features than lead to tasks of
implementations that needs to be done in order to ful�l the requirements.

With the use-cases the de�nition of an embedded system was made, that shall
be simulated in the Full-System mode in gem5. As described in section 2.2.1, this
mode is the most accurate of the modes gem5 o�ers. Moreover, it allows the
simulation of an unmodi�ed binary and is therefore well-suited for architectural
evaluation and virtual prototyping. Currently, the FS mode is not supported for
the RISC-V ISA, as seen in table 2.5 [11]. Therefore, the �rst requirement is to
make this mode available and enable the simulation of a rudimentary binary.

With taking a look at the use-cases, one requirement is to be able to simulate
systems, that uses UART and timer devices. Therefore it is required, that objects
are implemented in gem5, that re�ect the behaviour of the corresponding periph-
eral device. More precise, a UART and a timer device is needed, that can be added
in the de�nition of the system that shall be simulated.

The implementation of the timer object leads to another feature, that gem5 must
support. Similar to real timers, the timer object can be accessed by applications
and an alarm can be set. When the set alarm goes o�, the timer object posts
an interrupt to the CPU. The simulator must be able to handle these interrupts
and take the same actions as real hardware. Currently, no support for interrupts
and exceptions is available in the implementation of the RISC-V ISA in gem5.
Therefore, the simulation of the use-case in Section 4.1.2 requires implementation
of it.

The last use-case in Section 4.1 describes, how embedded systems gain perfor-
mance through custom hardware instructions and registers. This requires that
custom extensions can be de�ned and convenient working with them is possible.
Therefore, an interface is de�ned where users can add make these de�nitions.
To be able to simulate custom hardware, gem5 must be extended. Furthermore,
the RISC-V toolchain also needs to be altered to enable convenient usage of the
de�ned extensions in RISC-V binaries. Therefore, it comes clear, that behind
the requirement of simulating custom instructions and registers requirements
emerge, that concern more than just gem5.

As stated earlier, full-system simulation is used for architectural evaluation and

24

4.3 Extending Full-System Support in gem5

Table 4.1: Overview of requirements on gem5 and the interface for custom extensions.

Extending gem5 Interface for Custom Extensions

Full-System Mode for RISC-V De�nition of Custom Extensions

UART and timer devices Parsing and Information Retrieval

Support for Interrupts and Exceptions Automatically extend gem5

RV32IMC Support Patch RISC-V Toolchain

virtual prototyping. To be able to use simulation for this purposes, a requirement
is a good accuracy of the simulation. To evaluate the accuracy of the simulation
of RISC-V based systems in gem5 a comparison to real hardware is done. For this
purpose, two RISC-V boards are available. These platforms are 32 bit architectures,
which is also more common in embedded systems. Therefore, these systems also
have to be supported in gem5. The goal is to support the rv32imc mode in gem5
to do an accuracy evaluation by comparing the simulation to real hardware.

To summarise the requirements on the simulation framework, Table 4.1 gives
an overview. In the left column all tasks are listed, that require implementations
in gem5. This regards the Full-System mode for RISC-V, the availability of UART
and timer devices. The RISC-V ISA implementation in gem5 needs to support
interrupts and exceptions and furthermore it needs to support the simulation
of 32 bit architectures. In the right column of Table 4.1 the requirements on
the interface for custom extensions are listed. There, it must be possible to
conveniently de�ne new instructions and registers. These de�nitions needs to
be parsed and information for further actions needs to be retrieved. Finally,
the RISC-V toolchain and the gem5 simulator needs to be extended using the
retrieved information.

In the following concepts and implementation of the just described require-
ments are introduced.

4.3 Extending Full-System Support in gem5

This section is structured as follows. First, the enabling of the RISC-V FS mode
in gem5 is described. Then, comments on peripheral devices, namely Timer and
UART, are made. After that, the concept and implementation of exceptions and
interrupt support is described. In the end, enabling of 32 Bit mode is introduced.

25

4 Concept and Implementation

4.3.1 Enable Full-System mode

Enabling FS support gives the opportunity to enrich the de�ned system with
peripheral devices including UART and timers. As currently gem5 supports the
RISC-V ISA only in SE mode, the �rst step is to achieve the simulation of a very
rudimentary bare-metal application.

To simulate a system in gem5 a system con�guration script is required, as
described in section 2.2.1. In this script a system object needs to be created
containing all system-level information. Furthermore, devices including memo-
ries and peripherals can only be added to such a system object. For the RISC-V
ISA two system de�nitions exists, the classes RiscvSystem and RiscvLinuxSystem.
Both classes have currently no functionality implemented and are only stubs.

The missing functionality to initialise a system needs to be implemented in
order to enable the Full-System mode. Thereby, the possibility shall be obtained,
to have support for other types of systems, like Linux, too. As the class RiscvLin-
uxSystem inherits from the RiscvSystem class, functionality that is only valid for
bare-metal speci�c systems cannot be implemented there. Therefore, a new class
BareMetalSystem is introduced, that inherits from the RiscvSystem class. The class
structure for this concept is shown in Figure 4.4. Similar to the LinuxRiscvSystem
the BareMetalRiscvSystem describes a type of a system. Functionality needed
to instantiate this system type and is only valid for this type of system is im-
plemented there. Further functionality that all RISC-V system types have in
common are implemented in the RiscvSystem class. With checking of the system
type, complex implementations including address translation in the translation
lookaside bu�er (TLB) can be skipped for bare-metal systems. Also, developers
can implement desired features without in�uencing bare-metal systems, when
implementing the support for other systems.

System RiscvSystem

LinuxRiscvSystem

BareMetalRiscvSystem

Figure 4.4: Inharitance structure of the di�erent system classes.

Having de�ned a system, its components need to be initialised during the
starting phase of the simulation. Therefore, a python script instantiates all com-
ponents, that are de�ned in the con�guration �le. The sequence diagram in
Figure 4.5 gives a rough overview about the processes during the system ini-

26

4.3 Extending Full-System Support in gem5

tialisation. Important for the description of the implementation are the system
object and the CPU object. Hence, the sequence diagram only considers calls by
the python script to these classes. The �rst task of the script is to instantiate all
objects, that are de�ned in the system con�guration script. After that it calls the
init() method and the initState() of each of them. Within the method init() of the
CPU class an ISA the function initCPU() is called. This function has the task to
take actions hardware would do on a reset according to the corresponding ISA
speci�cation. As described earlier, the RISC-V system classes are only stubs as
well as the RISC-V speci�c initCPU() method. Therefore, these functions have to
be implemented to enable the start-up of a RISC-V FS simulation.

The function initCPU() is implemented according to the description in the
privileged architecture speci�cation [81]. During the method initState(), the
binary, that is executed on the simulated system, is loaded into the simulated
memory. This includes clearing all interrupts and set the program counter to a
implementation de�ned reset vector. It has to be mentioned that interrupts are
currently not supported at all. However, appropriate functions for clearing them
are called to keep the implementation consistent for later changes.

simulate.py

CPU

System

initState()

init()

startupCPU()

initCPU()

Figure 4.5: Sequence diagram of the initialisation of the system class and the CPU class.

With these implementations, a simple binary containing start-up code and

27

4 Concept and Implementation

a rudimentary main application can be executed and simulated. This can be
done on a most basic system, as shown in Figure 4.6. With that, rudimentary FS
support for RISC-V is enabled.

MemBus

CPU

Memory

memctrl.port

cpu.icache_port cpu.dcache_port

Figure 4.6: The simplest system, that is able to execute a binary.

4.3.2 Support of Peripheral Devices

The second requirement on the gem5 simulator is to support peripheral devices.
In the following, usage of the UART device and concept and implementation of a
timer device are described.

UART

Implementations for UART devices already exists in gem5. Therefore, it is only
necessary to add this device to the system and connect the ports. This leads to a
memory mapped UART register, that can be accessed by writing data directly to
the con�gured address.

Gem5 o�ers an implementation of a terminal, that can be used as communi-
cation partner for the UART device. This terminal is connected to a telnet port.
With that, it can be accessed from outside of the simulation with establishing
a telnet connection from a local console to a certain port. This way, characters
send via UART to the terminal can be read by a user.

The resulting system de�nition for gem5 to simulate can be seen in Figure 4.7.
The UART device is connected to the memory bus, so it shares the same access
delays. With the possibility to send characters, an example of communicating
with the outside world was implemented. With that, simulation of the use-case
presented in Section 4.1.1 is possible.

28

4.3 Extending Full-System Support in gem5

MemBus

CPU

Memory UART Terminal

memctrl.port

cpu.icache_port cpu.dcache_port

uart.pio

Figure 4.7: The system de�nition in gem5 with a UART device connected to a terminal.

Timer

Besides other system wide timers, the privileged architecture speci�cation [81]
de�nes a CPU timer, which is only accessible by the corresponding CPU. This
timer has two memory mapped registers, namelymtime andmtimecmp, which are
64 Bit wide, as seen in Figure 4.8. The register mtime is a real-time counter, that
runs at constant speed. To compare the time with a value the register mtimecmp
is used. A timer interrupt is posted, if the value in mtime is equal or greater than
the value in the mtimecmp register. [81]

mtime

63 0

mtimecmp

63 0

Figure 4.8: The memory mapped mtime and mtimecmp registers, as in [81].

A device is implemented that models memory mapped registers. For that, the
abstract class PioDevice is used as base class from which the implementation
inherits. This class o�ers templates for read() and write() functions and attributes
for a start address and an address range to which the device shall respond. The
gem5 framework automatically assigns memory accesses within address range
to the read() and write() methods of the corresponding object. To re�ect the
a�liation to one speci�c CPU, the device class gets a pointer to its belonging
CPU. With this approach, the timer device can post an interrupt directly to
the CPU once the alarm goes o�. This set-up modelled in UML can be seen in
Figure 4.9.

To model the behaviour of a timer according to the speci�cation, an interrupt

29

4 Concept and Implementation

CPUTimerCPU

PioDevice

Figure 4.9: Rudimentary class diagram of the TimerCPU class.

needs to be posted when the mtime register and the mtimecmp register have the
same value. Establishing a check every cycle would be ine�cient, as it would
slow down the simulation. Instead, an event is scheduled for the time when the
registers mtimecmp and mtime would have the same value. For that purpose,
gem5 o�ers an event manager that is inherited by the CPU-Timer object implicitly.
In the scheduled function an interrupt is posted to the CPU indicating a timer
alert.

MemBus

TimerBus

CPU Model CPU Timer

Memory UART Terminal

memctrl.port

cpu.icache_port cpu.dcache_port timer_cpu.pio

uart.pio

Figure 4.10: The system de�nition in gem5 with peripheral devices.

These implementations enable the simulation of the execution of time-controlled
tasks. With the system in Figure 4.10, an application has the possibility to set
up a timer, that posts an interrupt to the CPU, if the alarm goes o�. A separate
bus, the TimerBus, is used because the timer device can only be connected to the
system using its PIO port. Furthermore, with a separate bus access latencies can
be adjusted and the timer does not have to share the same bus latency with the
connected memory and UART device.

30

4.3 Extending Full-System Support in gem5

4.3.3 Support for Interrupts and Exceptions

One requirement for full system simulation of embedded system in gem5 is the
support for interrupts and exceptions. Currently, there is no support for neither
of them implemented. In the following, the phrases exceptions and interrupts
are used according to the RISC-V manual [80]. Interrupts occur asynchronously
to the program �ow, while exceptions are associated with an instruction. On
occurrence of both, control is given to a trap handler.

This subsection shows the implementation of support for exceptions, interrupts
and the return from a trap handler in gem5. This enables the usage of the CPU-
Timer in simulation.

Exceptions

Support for exceptions is needed as the access of the timer registers shall only be
possible in machine mode, according to the privileged architecture speci�cation.
Therefore, user mode applications have to make a request to the supporting exe-
cution environment. This is done with a system call, which is the ecall instruction
in RISC-V. Furthermore, on occurrence of an exception, its exact cause is written
to the mcause register. After that, the privilege level is changed and the current
program counter is saved. Than, the next instruction set to the address of the
trap vector, which is speci�ed in the mtvec register. The bit �elds of the mcause
and mtvec registers can be seen in Figure 4.11 and Figure 4.12.

Exception Code

XLEN-2 0

Interrupt

XLEN-1

Figure 4.11: The mcause special register, as in [81].

Base

XLEN-1 2

Mode

1 0

Figure 4.12: The mtvec special register, as in [81].

Currently, gem5 is able to decode the ecall instruction, but functionality is
completely missing. That means, the alternations to special registers have to be
implemented. For that, two di�erent approaches are possible, which are explained
in the following.

The �rst approach directly describes the changes in the functional description
of the ecall instruction and system call is interpreted by the CPU like every other

31

4 Concept and Implementation

instruction. A sequence diagram for this approach can be seen in Figure 4.13.
When decoded the bit stream as a ecall instruction, the CPU executes its func-
tionality. With that, all actions, that needs to be done on a system call, are
processed.

Figure 4.13: First approach for implementing system calls in gem5.

The disadvantage of this concept is, that this implementation is directly as-
sociated with the ecall instruction, which generates only one speci�c type of
exception. In the RISC-V ISA all kinds of traps require nearly the same actions on
special registers. The only di�erence is the exact cause. Gathering these actions
can save code duplicates and with implementing system call exceptions, other
exceptions become available as well.

The mechanism in gem5, that o�ers the possibility to join common code for
traps, is the concept of faults. Having again a look at Figure 4.13 it can be seen,
that the execute() function has a return value of type FaultBase. The de�nition of
this class is shown in Listing 4.1. It shows that every fault has to implement an
invoke() method, which is called by the CPU, if an instruction returned a fault.
Having a closer look at the de�nition of the invoke() function, it can be seen, that
one of the arguments is of type ThreadContext. This class provides an interface
for accessing a state inside a CPU, including reading and writing special registers
and altering the program counter. With that possibilities, the invoke() method
provides the necessary functionality, to map the RISC-V speci�cation to gem5.

Faults are used whithin the second approach to implement a common base
class for all traps. There, common code for altering the special registers is shared
among all kind of traps. Taking the class FaultBase as a base, the resulting class
diagram can be seen in Figure 4.14. Functionality for altering the program counter
and special registers is implemented in the class RiscvFault. The exact cause of

32

4.3 Extending Full-System Support in gem5

1 c l a s s F a u l t B a s e
2 {
3 public :
4 v i r tua l const char ∗ name () const = 0 ;
5 v i r tua l void invoke (ThreadContext ∗ t c , const

S t a t i c I n s t P t r & i n s t =
6 S t a t i c I n s t : : n u l l S t a t i c I n s t P t r) ;
7 } ;

Listing 4.1: Class de�nition of the base class for all faults.

the trap is than determined by the instantiated class, for example SyscallFault.

InterruptFaultIllegalInstFaultSyscallFault

RiscvFault

FaultBase

Figure 4.14: Class inheritance for RISC-V faults.

A sequence diagram that illustrates the second approach is shown in Figure 4.15.
It starts with the decoding of the ecall instruction and the decoder returns a
pointer to the CPU to the just decoded instruction. The execute() method, that
every instruction in gem5 has, is now called. This time, this method implements
no functionality at all, but a SyscallFault is instantiated and returned to the CPU.
Then the CPU invokes this fault, which leads to the described actions. After
that, the program counter points to the trap vector and execution of the program
continues there.

For implementation of support for exceptions in gem5 the second approach is
chosen. This approach o�ers the possibility to reuse code when implementing
support for interrupts. Furthermore, it is conform to the implementation of
exception support for other ISAs in the gem5 project.

Interrupts

In the following the concept and implementation for the support of asynchronous
traps in gem5 is described.

33

4 Concept and Implementation

CPU

SyscallFault

Ecall

Decoder

InstPtr

decode()

invoke()

Fault

execute()

Figure 4.15: Sequence diagram for executing a system call.

The key class for interrupt support in gem5 is the interrupt controller, that every
CPU model has. This controller is ISA dependent and o�ers necessary functions
to get the information about a new interrupt and let the CPU know about it.
The relationship between the CPU and the interrupts controller is expressed
in Figure 4.16. In this class diagram can be seen, that the interrupt controller
is a class named Interrupts Also pictured are the most important functions of
this class. With the function post() the CPU can inform the controller that an
interrupt occurred and needs to be stored. Every simulated cycle, the CPU checks
with the method checkInterrupts(), if in the meantime an interrupt was posted.
If so, it asks the interrupt controller with the function getInterrupt() to return
the actual interrupt. Therein, the controller has the task to select the highest
prioritised interrupt, if concurrent interrupts are pending. A closer look into the
class diagram in Figure 4.16 tells, that this function returns a fault. So this concept
of an interrupt controller in gem5 matches perfectly with the approach to model
all traps as faults. After that, the method updateIntrInfo() is called, where machine
registers are updated. Currently, the interrupt controller in the RISC-V ISA is
just a stub. Therefore, enabling interrupt support requires the implementation of
the functionality.

34

4.3 Extending Full-System Support in gem5

Figure 4.16: Relationship between the CPU class and the Interrupt class.

The implementation of the functionality of the interrupt controller is now de-
scribed by reference to the procedure of processing an interrupt generated by the
CPU-Timer. The procedure of the generation of an interrupt in gem5 can be seen
in the sequence diagram in Figure 4.16. The timer alarm goes o� asynchronously,
which causes the CPU-Timer to call the postInterrupt() method of the CPU. Hence,
the core immediately calls the post() method of the interrupt controller. This
method just stores the occurring interrupt locally. At the beginning of the next
simulated tick, the CPU checks, if in the meantime an interrupt was posted, what
happened indeed. This is done with the function checkInterrupts(). Therein, the
interrupt controller checks, if the previously posted interrupt is masked or not.
Therefore, the special registers mstatus and mie are analysed to see if interrupts
are globally and locally enabled. For this example, it is assumed, that both checks
are true, so that the checkInterrupts() function returns also true. Thus, the CPU
asks for the speci�c interrupt and expects a fault type, as described in Listing 4.1
as answer. An InterruptFault is generated, that holds the exact interrupt reason.
After this whole process, the CPU now has a pointer to a class, that represents
the interrupt. Next, the special register mip, that holds information about all
pending interrupts, must be updated. This is done in the function updateIntrInfo().
After that, the InterruptFault can be invoked by the CPU. This leads to the same
actions as if an exception occurs. That means, that the privilege level is changed
to machine mode, the register mcause is updated with the reason of the interrupt
and the program counter is set to the trap vector.

Concluding, this implementations o�ers the possibility for the CPU-Timer to
post an interrupt to the CPU. This causes the interruption of the current program
�ow and the system is set to the trap vector, where the interrupt is handled.

Return from a Trap

To return from a trap, RISC-V de�nes three instructions, generally referred to
as xret. Depending on the privilege level mret, sret or uret are used to restore
the program state as it was before the occurrence of the trap. This instruction is

35

4 Concept and Implementation

Figure 4.17: Procedure of posting an interrupt to the CPU until it �nally is executed.

usually used at the end of the trap handler of RISC-V kernels. In the following,
implementation of the xret instructions is described.

Currently, the RISC-V decoder in gem5 is able to decode mret, sret and uret
instructions. However, they lack all functionality and have to be implemented.

The mechanism used to implement the xret instructions is the possibility to
alter the CPU state within classes representing instructions. The alternations
to special registers are implemented according to the privileged architecture
speci�cation of RISC-V. This includes the enabling of interrupts, the change of
the privilege level to user mode and setting to the program counter stored by
occurrence of the trap.

A sequence diagram of the decoding and execution of an xret instruction can
be seen in Figure 4.18. When decoding the instruction, the decoder creates an
instance of the class representing the instructions. A pointer to this instance is
returned to the CPU, which then calls the execute() method of this class. Therein,
the just described alternations to the special registers are done.

Having implementations for the xret instructions in place, gem5 is now able
to simulate a CPU-Timer. It is possible to access the memory mapped timer
registers from a user application with system calls. If the timer alarm goes o�,

36

4.3 Extending Full-System Support in gem5

CPU

xret

Decoder

InstPtr

decode()

NoFault

execute()

Figure 4.18: Sequence diagram for executing a return from interrupt.

an interrupt is posted by gem5 to the simulated CPU. Thereby, the current
program �ow is interrupted and the program counter is saved. After handling
the interrupt, the xret instructions makes it possible to continue execution on
the saved program counter. Simulation of a system according to the use-case
presented in Section 4.1.2 is now possible.

4.3.4 32 Bit support

The last requirement for the gem5 simulator is the possibility to simulate 32
Bit systems. Currently, gem5 only supports 64 Bit architectures. Therefore, the
register widths, instruction semantics and operational codes are all �t for the 64
Bit speci�cation of the RISC-V ISA.

Though most of the instructions do the same, supporting the 32 bit mode in
gem5 requires a second decoder tree. To reason the need for this, the de�nition of
the 64bit add instruction, which can be seen in Listing 4.2, is taken as an example.
Important in the instruction de�nition in Listing 4.2 is the operand type _sd for
the output register Rd and the input registers Rs1 and Rs2. The operand type
de�nes the integer type in the generated c++ code, which in consequence lead to
the bitwidth of the operand registers. It becomes clear, that these types have to
be adapted for 32 Bit architectures to generate 32 Bit wide registers.

The c++ code that is omitted by the gem5 ISA parser is de�ned by formats.
There, the omitted class declaration corresponding to the instruction and the

37

4 Concept and Implementation

1 0 x0 : ROp : : add ({ {
2 Rd_sd = Rs1_sd + Rs2_sd ;
3 } }) ;

Listing 4.2: Add instruction de�nition for 64 bit architectures.

1 c l a s s Add : public RegOp
2 {
3 public :
4 / / / C o n s t r u c t o r .
5 Add (MachInst machIns t) ;
6 F a u l t e x e c u t e (ExecContex t ∗ , Trace : : I n s t R e c o r d ∗) const

o v e r r i d e ;
7 using RegOp : : g e n e r a t e D i s a s s e m b l y ;
8 } ;

Listing 4.3: Generated class for the 64 bit add instructions.

execute() method are de�ned. An example for the usage of formats can be seen in
Listing 4.2. There, the format ROp tells the gem5 ISA parser, that the instruction
add is a register-register operation. The reason for the necessity to adapt all
formats is the omitted declaration of the c++ class de�ned by the formats. There,
the name of the de�ned instruction is taken as the class name. This is clari�ed by
the comparison of the de�nition of an instruction in Listing 4.2 and its generated
class in Listing 4.3. The add instruction generates a class named Add. As the
instructions in 32 and 64 bit architectures have the same names, two decoder
�les lead to two generated classes with the same name. With the introduction
of new formats for 32 bit instructions, this problem is solved. Every generated
c++ class, that corresponds to a rv32 instruction, is placed inside a namespace.
Hence, no duplicated names occur.

With the implementation two di�erent decode trees are available. Gem5 must
chose the right decode tree for the application. Therefore, the simulator needs
to know the architecture type of the system. Gem5 already provides features to
analyse binaries, which are extended. With using this utilities, the system gets
the information about the architecture type and stores it. This information now
has to be passed to the decoder. Moreover, the bit width of the architecture is
chosen based on the binary. This o�ers the possibility to implement a switching
of architectures during simulation.

The class representing the decoder and its most important functions can be
seen in Listing 4.4. With the function moreBytes() the CPU gives data to the

38

4.3 Extending Full-System Support in gem5

1 c l a s s Decoder
2 {
3 protected :
4 / / The e x t e n d e d machine i n s t r u c t i o n b e i n g g e n e r a t e d
5 ExtMachIns t emi ;
6
7 public :
8 S t a t i c I n s t P t r d e c o d e I n s t (Ex tMachIns t mach_ ins t) ;
9 void moreBytes (const PCSta t e &pc , Addr fetchPC ,

MachInst i n s t) ;
10 } ;

Listing 4.4: Most important functions of the decoder class.

decoder. More precise, this function is used to �ll the protected member emi with
the bytes of the instruction, that shall be decoded. The bytes of this instruction
are delivered with the argument inst. More important information, like alignment,
address and compression of this instruction are stored within the program counter
object pc of type PCState. The member variable emi is than given to the method
decodeInst(), which is the generated by the ISA parser, as described in Section 2.2.1.
That means, the only way to get the information about the bit width of the
architecture into the decoder is within the PCState. Than it has to be stored inside
the ExtMachInst. This type is 64 bit wide and every instruction in RISC-V is only
32 bit wide, independent of the underlying architecture. Therefore, the upper 32
bit of ExtMachInst can be used to store additional information. To do so, the type
is changed from plain uint64_t to a bit �eld de�nition, which is possible in gem5
through prede�ned macros.

Within the decodeInst() function the architecture bit �eld is analysed. Depend-
ing on that, the corresponding decode tree is chosen. The implementation of
the ISA description �le, that is parsed by gem5 to such a decoder is shown in
Listing 4.5. Behind these include statements, two separate ISA description �les
de�ne the rv64 and rv32 instructions.

With this implementation it is possible to simulate 32 bit architectures, addi-
tional to already existing possibility to simulate 64 bit architectures. Together with
the previously described concepts and changes to gem5 it ful�ls all requirements
that were introduced in Section 4.2.

39

4 Concept and Implementation

1 decode ARCH defaul t Unknown : : unknown () {
2 0 :
3 ## i n c l u d e " rv64 . i s a "
4 1 :
5 ## i n c l u d e " rv32 . i s a "
6 }

Listing 4.5: Choice of the right decoder depending on the architecture bit �eld within
the ExtMachInst.

4.4 Interface for Custom Extensions

The second group of tasks regards the simulation of custom extensions. In
summary, it is required to have an interface where users can de�ne instructions
and registers. These de�nitions shall be parsed to retrieve necessary information
for extensions of gem5 and the RISC-V toolchain. Therefore, a project is created,
the RISC-V Custom Extension Parser. This section introduces the concept and
implementation of crucial parts of it.

4.4.1 The RISC-V Extension Parser

In the following, an overview of the project itself is given. Additionally, the
integration in build process of gem5 is described.

Overview of the RISC-V Extension Parser Project

The requirements on design of the RISC-V Custom Extension Parser from Table 4.1
in Section 4.2 are visualised in Figure 4.19. This diagram shows the steps from
de�ning an extension until the simulation of a binary using the de�ned extension
is possible.

Starting point is the de�nition of an extension. This de�nition is given to the
Extension Parser. As the name indicates, it has the task to parse the de�ned models
and to gather information about instructions and registers. These information are
processed to generate toolchain patches o�ering the possibility to access custom
instructions with assembly code. Additionally, a plug-in for the gem5 simulator
is created containing decoding and timing information of added instructions.
Moreover, with this plug-in custom registers can be used in gem5.

Figure 4.20 shows the structure of the project, most important folders and
�les. Folders are illustrated in light blue, �les in white. Due to the amount of
di�erent �le types, the �les are sorted by these. Central part is the python folder

40

4.4 Interface for Custom Extensions

Extensions

Extension Parser

Plug-In

Gem5

Toolchain Patches RISC-V Toolchain

Binary

Simulation with Custom Extensions

Figure 4.19: The RISC-V custom extension parser in context of toolchain and gem5.

containing scripts with all needed functionality and an extensive unit testing
framework. Located in this folder is the �le extensionparser.py. It is the entry
point for adding custom extensions to the toolchain and the simulator. With
this script the parsing of the models is started. This process can be con�gured
with the �le con�g.ini, which is checked in the beginning of the parsing process.
For example, a con�guration option is to de�ne the folder, in which the custom
extensions are, which is by default the folder extensions. When processing the
custom extensions, the riscv-opcodes [67] project is used to conveniently generate
matches and masks for the custom instructions. These are then used by the
patches for the RISC-V toolchain. Additionally, a plug-in for gem5 is generated as
well. While generating this plug-in, di�erent �les have to be created. These are
placed in the build folder. Together with the �les in the include and src directory,
these are used to compile the plug-in. For a convenient use, the SConscipt �le
enables integration in the gem5 build process.

In the following a closer look into the class structure of the python project is
taken,as it is the central part. Implementing the functionality in python enables
convenient parsing of c++ �les. Moreover, due to its object orientation, the
language is su�cient to express the di�erent targets, namely RISC-V toolchain
and the gem5 simulator, and the sources, namely custom extensions, as objects. A
rough overview of the class hierarchy is given in Figure 4.21. The ExtensionParser
creates a parser, which processes the de�ned instructions and registers. With the
gained information, it creates an object Compiler containing functions to extend
header �les, source �les and generate intrinsic instructions. Furthermore, the

41

4 Concept and Implementation

extension-parser

build

extensions

include

python

modelparsing

tst

extensionparser.py

riscv-opcodes

src

cxx

isa

config.ini

SConscript

Figure 4.20: The extension parser package and its project structure.

parser instantiates an object, that represents the gem5 simulator, which is called
Gem5. This class implements functions to generate a custom decoder and let
gem5 generate appropriate c++ �les with help of the ISA parser. Moreover this
class provides a function to process the timing information of instructions and
creates custom functional unit timings, used by the CPU model in gem5.

Integration in gem5 and Build Process

The processing of custom extensions is integrated in the gem5 build process.
Therefore, the whole project is placed in the folder ext of the gem5 project.
Therein, less-common external packages needed to build gem5 are located. This
hierarchy is expressed in Figure 4.22. Gem5 uses the build tool scons, which is
based on python and enables the invocation and execution of python code. When
building, the SConstruct �le of gem5 searches the external folder for SConscript
�les. In the SConscript �le of the RISC-V Extension Parser project the python class
ExtensionParser is created and called. The placement of these �les can also be
seen in Figure 4.22. The SConstruct �le is placed in the top level folder of the

42

4.4 Interface for Custom Extensions

Extensions

Gem5

gen_decoder()
gen_cxx_files()
gen_FU_timings()

Compiler

extend_header()
extend_source()
extend_stdlibs()

Parser

parse_models()
extend_compiler()
extend_gem5()

ExtensionParser

Figure 4.21: Class diagram of the extension parser.

1 [DEFAULT]
2 MODELPATH = ~ / p r o j e c t s / gem5_cc / e x t / r i s c v −custom−e x t e n s i o n /

e x t e n s i o n s
3 TOOLCHAIN = ~ / p r o j e c t s / r i s c v −gnu− t o o l c h a i n

Listing 4.6: Content of the con�guration �le for the extension parser.

gem5 project and within the extension parser project the SConscript �le is found.

gem5

ext

extension-parser

SConscript

SConstruct

Figure 4.22: Folder structure of the extension parser project within gem5.

To specify certain paths, like the path of the RISC-V toolchain and the folder,
where custom extensions are de�ned, a con�guration �le is placed in the project
and analysed be the ExtensionParser class. This �le is of type .ini and an example
can be seen in Listing 4.6.

Having stored the con�gurable parameters, the extension parser instantiates
an object of type Parser. Than the three methods of the Parser class, which can be
seen in Figure 4.21 are invoked. When done, the SConscript takes the generated

43

4 Concept and Implementation

�les to build a static library. After that, gem5 can be linked against it.
In the following, all broached topics are described in more detail, giving an

�ne-grained insight of the processing of custom extensions until they can be
used in RISC-V binaries and simulated in gem5.

4.4.2 Defining Custom Extensions

This section describes how users can de�ne custom extensions. Furthermore the
choice of the language in which these de�nitions happen is explained.

The requirements on con�gurable parameters of custom extensions are de-
scribed in the following. When de�ning an instruction, users want to assign a
custom name and of course de�ne a certain semantic. Furthermore, the possibility
to chose an instruction format, as in Figure 2.1, shall be supported. This gives the
user additional �exibility for the usage of the custom instruction. Besides de�ning
the instruction itself, users shall be able to state further information, namely
operational codes and the cycles that the instruction shall consume. Another
requirement is the possibility to de�ne custom registers by their name and index.
Furthermore, these registers need to be easily accessible. For that, functions for
reading and writing needs to be provided.

For the de�nition of custom extensions, a language is required. Due to various
advantages c++ was chosen. First, parsers for c++ are already available. Because
many information has to be retrieved from the model de�nition, it has to be
parsed. To reduce the e�ort to write a parser for a custom description language,
it is more e�cient to use a language where parsers are already available. Another
advantage is the feasibility of c++. Having de�ned a model, that is already
compilable, hardware designer can include the function in testbenches. There,
the model serves as a reference to test the hardware implementation of the custom
extension against it and compare the produced outputs [26]. Last but not least,
the gem5 decoder uses pure c++ to describe the semantics of a function. Having
obtained the de�nition of the custom instruction, it can be directly included in
the gem5 ISA description without translation. That, again, saves a lot of e�ort.

One custom instruction is de�ned by one c++ function. Furthermore, the base
format of the instruction is de�ned by the name of the c++ function arguments.
Thereby, the base instruction formats R-Type and I-Type are supported.

As stated before, operational codes and cycle counts also needs to be ascer-
tained. these information are added directly in the c++ �le, where the instruction
is de�ned Rather than having an additional con�guration �le in yet another lan-
guage, this approach ensures that every information is in place and not distributed
over a lot di�erent �les.

44

4.4 Interface for Custom Extensions

1 u i n t 8 _ t c y c l e s = 2 ; / / c y c l e c oun t f o r t h i s i n s t r u c t i o n
2 u i n t 8 _ t opc = 0 x02 ; / / opc , 5 b i t s
3 u i n t 8 _ t f u n c t 3 = 0 x00 ; / / f un c t 3 , 3 b i t s
4 u i n t 8 _ t f u n c t 7 = 0 x00 ; / / f un c t 7 , 7 b i t s
5
6 void foo (u i n t 3 2 _ t Rd , u i n t 3 2 _ t Rs1 , u i n t 3 2 _ t Rs2)
7 {
8 / / f u n c t i o n body
9 }

Listing 4.7: Example de�nition of a custom instruction.

1 # include < c s t d i n t >
2
3 #define c0 0 x800 / / r e ad and w r i t e
4 #define c1 0 xcc0 / / r e ad on l y
5
6 u i n t 3 2 _ t READ_CUSTOM_REG (u i n t 3 2 _ t reg) ;
7 void WRITE_CUSTOM_REG (u i n t 3 2 _ t reg , u i n t 3 2 _ t v a l) ;

Listing 4.8: Example de�nition of custom registers.

Listing 4.7 illustrates the de�nition of a custom instruction. Here, a R-Type
instruction named foo is de�ned consuming two cycles and has certain operational
codes.

Custom registers are de�ned in a c++-header �le with #de�ne statements. It
is done this way to keep a consistency between de�ning registers and instruc-
tions. Listing 4.8 shows an example of de�ning two custom registers. The index
conventions follow the o�cial RISC-V speci�cation in [81]. There is de�ned that
non-standard read-only user register start with the index 0xcc0 and readable and
writeable user registers with index 0x800. The functions READ_CUSTOM_REG()
and WRITE_CUSTOM_REG() are place-holders whose implementation is later
generated by the backend.

4.4.3 Parsing of the Extension Models

The Parser class has the task to analyse the c++ models for custom extensions.
This includes parsing the custom instructions as well as the custom register �le.
Therefore, a closer look into the class Parser of the class diagram in Figure 4.21 is
taken. A more detailed extract is shown in Figure 4.23. There, the class Model can
be seen. One instance of this class represents a model of a custom instruction,

45

4 Concept and Implementation

which means one function de�ned in a c++ �le. In this class functions exist,
to compile and analyse a model. The Parser also creates an Extensions object,
wherein all custom instructions and registers are gathered. Additionally, the
registers �le is analysed and depending on the de�nition of custom registers an
object Registers is instantiated, that saves all names and indexes.

Figure 4.23: Class diagram of the Parser class and its properties.

To illustrate this process, Figure 4.24 shows the parsing of a single model of
an instruction until all necessary information are in place to generate toolchain
patches and build the plug-in for gem5. For every model, that is found in the
con�gured extensions folder an instance of the class Model is generated. This is
done in the parse_models() method. Therein, every c++ �le is at �rst compiled,
which ensures a semantically correct model. After that, the model is parsed
within the parse_model() function. The tool used for parsing and analysing is the
libclang project [31]. This project provides a c-language API for accessing the
abstract syntax tree (AST) of a parsed source �le. Libclang has python bindings
as well, which enables the use of this project from python scripts. These bindings
provide functions and methods to traverse the nodes of the AST representing
the c++ model of the custom extensions [70]. The nodes are analysed and all
necessary information are retrieved. Having parsed the models, an Extensions
object is generated. With the method gen_insts() Instruction objects are gener-
ated for all models. Therein, information obtained by parsing are transformed
and extended with masks and matches for each instruction. The matches and
masks are obtained by invoking the riscv-opcodes project [67] and are used by
the toolchain patches. Masks and matches are required for de�ning assembly
instructions in the toolchain. Their purpose is to separate instructions. With
the mask variable parts of the instruction word, such as input registers, output
registers and immediate values, are masked. With that, only the opcodes remain.
If these remaining bit pattern is equal to the match, the corresponding instruction

46

4.4 Interface for Custom Extensions

is found.

Figure 4.24: Sequence diagram of the parser processing information from a given model
to generate a class instance, that represents the custom instruction.

4.4.4 Implementation of the gem5 Plug-In

To be able to simulate applications using custom extensions, gem5 must know
about additional instructions and registers. That requires gem5 to be able to
decode added instructions and execute them with respect to the con�gured
timing information. Furthermore, the simulator must know about additional
registers.

Having again a look into the class diagram of the python project, the class that
is responsible for the described tasks is called Gem5. As seen in Figure 4.25, this
class has access to the recently parsed information via the Extensions object. The
processing of the parsed information to enable simulation of custom instructions
and custom registers is described in the following.

Custom Instructions

The gem5 decoder must be able to recognise the newly added operational codes
and needs know the functional semantics of the custom instructions. Patching

47

4 Concept and Implementation

Instruction

Registers

Extensions

gen_insts()

Gem5

gen_decoder()
gen_cxx_files()
gen_FU_timings()

0..1

0..n1

Figure 4.25: Class diagram of the class Gem5 and its aggregations.

the decoder description �le in gem5 with these information would lead to the
rebuild of a lot of gem5 components. To fasten this process and prevent gem5
components from being recompiled, another approach is chosen. This approach is
to generate a stand-alone decoding function, which can be achieved by invoking
the gem5 ISA parser. After that, a library is built that gem5 calls as a fall-back, if
the standard decoder is not able to recognize the operational code.

Being able to decode the instruction is not enough for e�cient and realistic
design of integrated circuits. It is crucial to consider timing information about
the consumed cycles of each function. Therefore the plug-in must enrich the
MinorCPU of gem5 with timing information devices for each custom instruction.
As described in Section 2.2.3, altering the pool of timing devices for a functional
unit of the CPU can be done during execution time. That means, this change to
gem5 by the plug-in does not result in recompiling the simulator.

To summarise this, Figure 4.26 gives an overview of components in the plug-in.
The functional unit timings of the MinorCPU will use additional custom timings,
that are generated for each instruction. Moreover the ISA decoder has a fall-back
to the generated custom decoder. The generation of the custom decoder and the
generation of timing information for custom instructions is now described in
more detail.

Generation of the Custom Decoder. The goal is to build a library that con-
tains a decoder for the custom instructions. This is achieved by treating the
custom instructions as whole instruction set and providing an ISA description
that gem5 is able to parse within its ISA parser. This parser is implemented
in python and as a result it can be called conveniently from the RISC-V Custom
Extension project. The gem5 ISA parser takes one single �le of type .isa as input,
the main.isa. In this �le, all other .isa �les, such as bit �eld de�nitions, operand
types and instruction formats, has to be included. The �le main.isa of the RISC-V
custom instruction decoder reuses most required .isa descriptions from the RISC-

48

4.4 Interface for Custom Extensions

ISA Decoder

FU Timings

gem5

Custom Decoder

Custom Timings

RISC-V plug-in

Figure 4.26: Gem5 components interacting with corresponding components in the RISC-
V custom extensions library.

1 S t a t i c I n s t P t r
2 decodeCus tomIns t (Ex tMachIns t mach_ ins t)
3 {
4 R i scvcus tomISA : : Decoder decoder ;
5 return decoder . d e c o d e I n s t (mach_ ins t) ;
6 }

Listing 4.9: Extract of the source �le custom_decoder.cc.

V ISA de�nition in gem5. Furthermore, a decode tree must be included in this �le.
This tree is auto-generated by class Gem5 of the python project. Furthermore,
this class also invokes the gem5 ISA parser, which leads to the generation of c++
�les. These �les contain the de�nition of the decoder for custom instructions.

Gem5 accesses the custom decoder with the function decodeCustomInst(),
whose de�nition can be seen in Listing 4.9. This c++ function instantiates the
custom decoder and calls the method decodeInst(). It has to be mentioned that
the de�nition of this method originates from the gem5 isa parser.

Figure 4.27 illustrates the usage of the custom decoder by the gem5 RISC-V
decoder. In this sequence diagram, the decoding of an example custom instruction,
named customInst, is shown. First, the RISC-V decoder in gem5 is called for
decoding the bit stream. As the bit stream represents a custom instruction, the
decoder will not �nd the corresponding instruction. But instead of throwing and
unknown instruction exception, it invokes the function decodeCustomInst() and
gives control to the RISC-V Custom Extension plug-in. This function instantiates
the CustomDecoder and calls its method decodeInst(). There, the corresponding
instruction to the operational code is found. As every instruction is represented
by a c++ class, the object CustomInst is instantiated. Finally, a pointer to this class
is then returned to the RISC-V Decoder.

49

4 Concept and Implementation

Figure 4.27: Sequence diagram of the process of decoding a custom instruction in gem5.

This approach leads to an execution of custom instructions within the execution
pipeline of the CPU model.

Timing Information for Custom Instructions. With the just described im-
plementation, gem5 is able to recognize a custom instruction and execute it.
What is missing is the information about how many cycles a custom instruction
consumes. Currently, every custom instruction is assumed to take only one
cycle. This is not practicable, as instructions, that accumulate a lot of logical
operations, would limit the clock frequency. Due to the limit of speed, that logical
components have, the clock frequency could only be as fast, as it takes to process
the input in the custom extension. Furthermore, some calculations may require
several steps and therefore need to be pipelined. With splitting the calculation
over multiple cycles, the user is able to de�ne the clock frequency more �exible.
As seen in Listing 4.7, a user can de�ne the cycles, that a custom instruction
needs, until its result is available. To model this behaviour in simulation, the
in-order CPU of gem5 o�ers the possibility to assign set of timing objects to
a functional unit, as described in Section 2.2.3. Therefore, a functional unit is
created, that is responsible for all custom instructions. In this unit, the possibility
exists to create a set of MinorFUTiming objects. This timing objects inherit from
the SimObject class, which means, that this object can be con�gured from python
scripts. Therein, matches and masks can be de�ned to assign the timing infor-
mation to one speci�c instruction. Only of the instruction logically anded with
the mask is equal to the match, the additional timing information are applied.
This mechanism is used to generate timing objects for each custom instruction

50

4.4 Interface for Custom Extensions

1 c l a s s MinorFUTimingFoo (MinorFUTiming) :
2 d e s c r i p t i o n = ’ CustomFoo ’
3 match = 0 xb
4 mask = 0 x f e 0 0 7 0 7 f
5 extraCommitLat = 1

Listing 4.10: Generated timing object for a custom instruction.

using the matches and masks that are generated while the custom extensions
are parsed. Such a generated timing object can be seen in Listing 4.10. This
object is generated from the instruction model in Listing 4.7. The value stored in
extraCommitLat is added to the commit latency speci�ed in the functional unit.
In the python project, the Gem5 class creates one functional unit timing object
for each custom instruction that has a commit latency greater than 1 cycle.

Custom Registers

Apart from custom instructions, gem5 must also be able to recognize custom
registers. In contrast to other general purpose registers, a user can be sure, that
values in custom registers are not written back to memory. This allows a fast
access of the content in a de�ned amount of time. The simulator must be able to
store the values, that are written to these registers, and retrieve this value, if an
application reads the custom register. Two di�erent approaches are evaluated in
the following.

Memory-mapped Custom Registers. The �rst approach is to make custom
registers memory mapped. This allows to access a register by writing or reading
from the address it is mapped to. To simulate memory mapped custom registers
in gem5, a concept similar to the CPU-Timer is implemented. The corresponding
class diagram can be seen in Figure 4.28. There, the class CustomReg inherits
from the abstract class PioDevice, which gives the possibility to be attached to a
port and receive packets from the memory backend of gem5. To process these
packets read() and write() functions have to be overwritten. These functions
access the RegisterMap, where the addresses and values of all custom registers
are maintained.

The resulting de�nition of the system to be simulated in gem5 can be seen
in Figure 4.29. Similar to the CPU-Timer, the CustomRegisters object is attached
to the TimerBus, which ensures delay-free access. With this approach, RISC-V
binaries can access a de�ned custom register with writing to or reading from the

51

4 Concept and Implementation

Figure 4.28: Class diagram the concept for memory mapped custom registers.

con�gured address. In the simulation, this triggers the invocation of the memory
backend of gem5.

MemBus

TimerBus

CPU Model CPU Timer CustomRegisters

Memory UART Terminal

memctrl.port

cpu.icache_port cpu.dcache_port timer_cpu.pio custom_reg.pio

uart.pio

Figure 4.29: System de�nition in gem5 with memory mapped custom registers.

The disadvantage of this approach is the realisation of accesses of custom
registers within custom instruction. Thereby, the memory backend has to be
invoked to access the simulation object representing custom registers. This
requires the creation of a memory packet and waiting until gem5 has processed it.
All this logic has to be implemented in the custom instruction, where the register
value is needed. This approach is therefore not practicable.

Index-mapped Custom Registers. The second approach is to make custom
registers index-mapped. In the privileged architecture speci�cation of the RISC-V
ISA [81], indexes for special registers are de�ned. The indexes from 0x800 to
0x8FF are reserved for non-standard registers and 0xCC0 to 0xCFF is reserved
for non-standard read-only registers.

In gem5 the class Isa represents the underlying ISA itself. This class already
provides functions to access special registers by its indexes, which can be seen in

52

4.4 Interface for Custom Extensions

1 #define READ_CUSTOM_REG (reg) ({ u i n t 3 2 _ t v a l ; v a l = xc−>
readMiscReg (reg) ; v a l ; })

2
3 #define WRITE_CUSTOM_REG (reg , v a l) (xc−> s e t M i s c R e g (reg , v a l)

)

Listing 4.11: Generated macros for read and write access to a custom register.

the class diagram in Figure 4.30. The functions readMiscReg() and setMiscReg()
access the de�ned special registers, called MiscReg. To represent custom registers,
a map is added in the class Isa, here illustrated as class CustomReg. Access of
this map is implemented in the functions setMiscReg() and readMiscReg(). Fur-
thermore, Figure 4.30 shows that the class Isa inherits from the abstract class
SimObject. As stated earlier, this implies that the class has an equivalent python
class and their parameters can be con�gured from python in run time. Therefore
the entries of the custom register map can be de�ned without recompiling gem5.

Figure 4.30: Class diagram the concept for index mapped custom registers.

The realisation of accesses of custom registers within custom instructions
was identi�ed as disadvantage of the approach of memory mapped registers.
With index mapped registers, this use-case can be implemented conveniently.
Within instructions, registers can be accessed by just calling the readMiscReg() and
setMiscReg() functions of the class Isa due to the inheritance of the ExecContext
variable. It o�ers the possibility to access function of the class Isa. As the
function body from the model de�nition is directly taken as function description
in the custom decoder, a mechanism has to be provided to ensure convenient
de�nition of instructions accessing custom registers, without knowing about
gem5 mechanics. To solve this problem, a header �le containing macros is
generated. These macros can be seen in Listing 4.11.

Listing 4.12 shows an example of a custom instruction accessing custom reg-
isters. This code hides the gem5 mechanisms and the generated macros, as in

53

4 Concept and Implementation

1 # include " r e g i s t e r s . hh "
2
3 void c u s t _ i n s t (u i n t 3 2 _ t Rd , u i n t 3 2 _ t Rs1 , u i n t 3 2 _ t Rs2)
4 {
5 u i n t 3 2 _ t var = READ_CUSTOM_REG (c0) ;
6
7 / / some c a l c u l a t i o n s
8
9 WRITE_CUSTOM_REG (c0 , var) ;

10 }

Listing 4.12: De�nition of a custom instruction using custom registers.

Listing 4.11, are invoked when gem5 executes the functionality of the custom
instruction.

4.4.5 Generation of Toolchain Patches

Having parsed the c++ models of custom extensions and having built a plug-in for
gem5, the last missing piece is to ensure convenient development of RISC-V based
applications using custom instructions and custom registers. For that, the Parser
class of the RISC-V Custom Extension project creates a member of type Compiler,
which can be seen in Figure 4.21. In the following, patching the toolchain to use
custom instructions in assembly code is described. After that it is shown, how
custom registers can be accessed conveniently in RISC-V based binaries.

Custom Instructions

Though, extending the RISC-V ISA with custom instructions is supported, ex-
tending the toolchain requires the patching of di�erent �les yet. However, the
user shall be able to call its new instruction with assembly code. Extracting the
required information from custom extensions to patch the �les in the toolchain
automatically is already done. What is left is adding these information in the
right format The �les, that have to be patched, can be seen in Figure 4.31. In the
header �le riscv-opc.h, where the mask and match to every instruction is de�ned.
The source �le riscv-opc.c contains an array, where all instructions are de�ned.
Again, an entry in this array is a struct, that combines the name of an instruction,
its operands and its masks and matches. Hence, adding instructions there makes
them available in assembly code.

In the implementation, the python class providing functions to patch the source

54

4.4 Interface for Custom Extensions

RISC-V Toolchain

riscv-opc.h

riscv-opc.c

Toolchain Patches

Figure 4.31: The RISCV custom extension plug-in.

and the header �les is the class Compiler. A class diagram of it can be seen
in Figure 4.32. Similar to the class Gem5, that is responsible for the plug-in
generation, this class also has access to the generated instructions and registers
via the Extensions object.

The functions extend_header() is responsible for patching riscv-opc.h. First,
it creates a copy of the original �le. Than it creates a custom header �le and
patches riscv-opc.h to include this custom header. Therein, the generated masks
and matches for the custom instructions are de�ned. Additionally, this imple-
mentation allows a convenient restoration of the original, unchanged header
�le.

With the function extend_source the source �le riscv-opc.c is patched. Again,
the original �le is copied and stored. Than, the array, that contains the structs, as
described earlier, is extended. For every custom instruction, that is de�ned, this
function generates the appropriate struct de�nition and adds it in the �le.

Registers

InstructionExtensions

gen_insts()

Compiler

extend_header()
extend_source()
extend_stdlibs()

1

0..1

0..n

Figure 4.32: Diagram of the class Compiler.

Custom Registers

For the use of custom registers in user programs, no toolchain �les have to be
patched. Although the riscv-opcodes project, that is used to generate matches
and masks, also generates de�ne statements for special registers, these are hard

55

4 Concept and Implementation

coded into the project. Therefore, adding the index and names of custom registers
there would again require to patch the project itself. Instead another approach is
chosen. As soon as at least one custom register is de�ned, two additional custom
instructions are generated, that enable read and write access to custom registers

Figure 4.33: Sequence diagram showing the decoding and execution of a read of a custom
register.

The process for simulating the access of a custom register in gem5 is shown in
Figure 4.33. It shows the interaction of the generated plug-in and gem5 compo-
nents to access a custom register. First, the CPU invokes the RISC-V decoder to
decode a bit stream. As it �nds no matching instruction to the given operational
code, it calls the fall-back function to the custom decoder. The CustomDecoder
�nds the instruction ReadCustReg and instantiates it. The pointer to this class
is then given to the CPU, which invokes the execute() function. Therein, the
function readMiscReg() of class Isa is called. The Isa looks in its custom register
map, that is shown in the class diagram in Figure 4.30 for the called index and
returns its value to the CPU.

56

4.4 Interface for Custom Extensions

1 # include < r i s c v i n t r . h>
2
3 in t main ()
4 {
5 / / s e t s p e c i a l r e g i s t e r
6 WRITE_CUSTOM_REG (c0 , 5) ;
7 in t a ;
8 a = READ_CUSTOM_REG (c0) ;
9 return 0 ;

10 }

Listing 4.13: Include of the header for the generated RISC-V intrinsic instructions.

RISC-V Intrinsic Instructions

To access custom instructions, a user has the possibility to use assembly code.
Hence, this would require the use of in-line assembly in c code, which is a rather
ungainly coding style. Therefore, intrinsic instructions, that wrap the assembly
code are generated. These are de�ned in a header �le, namely riscvintr.h, that is
placed in the include directory inside the compiled toolchain. Having again a look
into the class diagram in Figure 4.32, the function extend_stdlibs() is responsible
for the creation and placement of this �le. This way, the header can be included
just like standard libraries. The Listing 4.13 shows the use of generated intrinsic
instructions for reading and writing custom registers.

57

5 Verification and Evaluation

This chapter describes the veri�cation of the previously described implementa-
tions. Furthermore, this chapter evaluates the accuracy of gem5 by comparing
the simulator to real RISC-V hardware. Finally, the usage of the RISC-V Extension
Parser for accelerating algorithms by using custom extensions is demonstrated
with an example.

5.1 Verification of the Implementation

Tests were developed, in order to verify the implementations and ensure its
functional correctness. In this section, these tests are described. This covers
the veri�cation of the correctness of the RISC-V FS mode and the RISC-V 32 bit
mode in gem5. Furthermore, this section describes the testing of the interface for
custom extensions.

5.1.1 Verification of the RISC-V Full-System Mode

A custom RISC-V binary holding the current feature status is developed simulta-
neously to the implementations in the RISC-V FS mode in gem5. This application
is simulated in gem5, and the output is observed and interpreted as a test result.
This way, it is checked whether an application behaves as expected and if gem5
is able to simulate the use-cases which were described in Section 4.1. Therefore,
the binary prints characters via UART, sets up a timer, waits for the interrupt,
and �nally uses de�ned custom instructions and custom registers.

The binary has more than just a testing purpose. Due to the sparse docu-
mentation about the FS mode and crucial functions, it also has the purpose of
discovering missing function implementations in gem5.

The advantage of writing an own kernel instead of using existing kernels is
its customisability for the current features implemented in gem5. In context
of this thesis, the term kernel refers to a small implemented library containing
start-up code and trap handling. With every implemented feature, the bootloader
implementation is extended as well.

To be able to conveniently maintain the �les and add new implementations, an
own project is created. In the following, the project structure and the build process

59

5 Veri�cation and Evaluation

are introduced. After that, important features of the kernel implementation are
highlighted.

Project Structure and Build Process

With implementing more features to gem5 and therefore to the testing binary, the
number of �les grew. Hence, it is appropriate to create an independent project
for the RISC-V binary. To ease adding of new �les and features, CMake is chosen
as the build tool.

While building, the kernel containing the start-up code is compiled into a
static library. Every user application links against this library in order to use this
kernel. Therefore, many di�erent applications for test purposes can be developed,
conveniently added to the project and integrated in the build process.

Additionally, a con�guration script is added to the project, which automates
the build process. With this script it can be con�gured, if the binary shall be
compiled for a 32 bit oder 64 bit architecture. Accordingly, the right compiler is
chosen and a build directory is created. After that, the generation of the Make�le
with the tool cmake is done and the build is started.

Features of the Custom Kernel

Along with the implementations in gem5, the custom kernel grows and is extended
with more and more features. These features re�ect the use-cases for embedded
systems, that are presented in Section 4.1.

The kernel comes with its own linker script, wherein, the memory origins and
sizes are de�ned. Furthermore, input sections are assigned to output sections,
which again are assigned to the de�ned memories. Using a custom linker script
gives the opportunity to adapt the memory de�nitions to the settings of the
hardware systems.

Important features of the kernel regard the loading of the main application and
handling traps. On start-up, the kernel zero-�lls every integer register, enables
interrupts globally and writes the trap vector in the mtvec register. After that, it
initialises the stack pointer and jumps to the main application. Next, the kernel
only is active on occurrence of a trap. Responsible for this task is the trap handler.
It saves the current CPU state by writing the inputs of all registers to a dedicated
save area. Then, it analyses the cause of the exception and handles it accordingly.
After that, the register state is restored and the interrupted execution continued.
Both, the entry code and the trap handler, are implemented in assembly and

60

5.1 Veri�cation of the Implementation

1 in l ine i n t 3 2 _ t
2 add (i n t 3 2 _ t rs1 , i n t 3 2 _ t r s 2)
3 {
4 i n t 3 2 _ t rd = 0 ;
5 ROP (" add " , rd , r s1 , r s 2) ;
6 return rd ;
7 }

Listing 5.1: Wrapper for the add assembly instruction.

veri�ed against the implementation in the RISC-V Berkeley Bootloader [82] and
in the RISC-V Linux port [66].

Other important features that the custom kernel provides, enable the use of
peripheral devices, namely access of the UART device and setting up a timer.
To redirect all prints to the UART register, the _write() function is overwritten.
Routines in libc use this function for output to all �les including stdout. Addition-
ally, a library is provided allowing applications to set up a timer. The user mode
application calls the provided functions, wherein a system call is done. This call
is handled by the kernel in machine mode, which allows access to the memory
mapped timer registers. As physical memory protection is not implemented in
gem5, the access of the timer register happens in machine mode to represent a
realistic RISC-V system.

Additionally, the custom kernel is able to support both, 64 bit and 32 bit
architectures. To use the same custom kernel for tests systems of both bit widths,
architecture speci�c load and store instructions were replaced by macros. This
saves e�ort and prevents code duplication. The macro is then replaced with the
real instruction depending on the chosen toolchain. With that, it is possible to
use the same kernel for 32 bit and 64 bit RISC-V applications.

5.1.2 Verification of the RISC-V 32 Bit Mode

The enabling of the 32 Bit address mode described in Section 4.3.4 added the
possibility to decode the RV32IMC assembly instructions. Therefore, the imple-
mentation of the functional semantics of every instruction needs to be tested.

In the test program, every instruction of the 32 bit standard instruction set and
the extensions for multiplication,division and compressed instructions is tested.
To do so, c functions are implemented as wrappers around the corresponding
inline assembly instruction. This can be seen in Listing 5.1 for the add instruction.
The actual test can be seen in Listing 5.2. The expected result and the assembly
function, that shall be tested, is given to a function evaluating the output.

61

5 Veri�cation and Evaluation

1 / / add
2 expec t < i n t 3 2 _ t > (1 6 6 3 8 , [] { return I : : add (0 x 3 f f f , 0 x f f) ; } , "

add ") ;
3 expec t < i n t 3 2 _ t >(−1 ,
4 [] { return I : : add (0 x 7 f f f f f f f , 0 x80000000) ; } ,
5 " add , o v e r f l o w ") ;

Listing 5.2: Test of the 32 bit add instruction.

The test is based on the already existing instruction test for the 64 bit RISC-V
instructions, which exists as test program in the gem5 repository. This 32 bit
instruction test is run in FS mode. The results are printed on the gem5 terminal,
which is connected to the UART device.

5.1.3 Verification of the Custom Extension Parser

Apart from the implementations in gem5, the interface for custom extensions
developed to a rather complex piece of software with numerous features. As
described in Section 4.4.2, the interface, where users can de�ne instructions
and registers, is restricted in terms of variable names and required information.
Therefore, the parser script has to consider many di�erent error cases and do
extensive sanity checks.

Unit tests verify the correctness of every function in every class. The overall
functioning is veri�ed with test binaries, that either uses custom registers or
custom instructions. These applications uses the previously described custom
kernel and are simulated in gem5. As test result are print statements evaluated.

5.2 Accuracy Evaluation of gem5

With the introduced tests it is attested that the simulator is able to run typical
embedded applications. To be used for virtual prototyping or architectural studies,
more than just pure functionality is important. Another vital attribute is the
accuracy of the simulator. Only if systems are simulated with su�cient precision,
assumptions on their architectural behaviour can be made.

In this section, an accuracy evaluation of gem5 is done. The simulator is
compared against two hardware systems, the SiFive HiFive1 board, a RISC-V
core on real silicon, and the CommSolid Samara FPGA board. Both architectures
di�er quite severely, which gives the opportunity to analyse the adaptivity to
di�erent system architectures of gem5. The architecture of these RISC-V systems

62

5.2 Accuracy Evaluation of gem5

is �rst introduced before the benchmarks, being used to measure the accuracy,
are explained. After that the results are shown and evaluated.

5.2.1 Architectures of the RISC-V Systems

To be able to rebuild the RISC-V systems in gem5, a closer look on their archi-
tecture is given. Each hardware is analysed and then rebuild in python scripts
with components provided by gem5. The attributes of these components are than
adapted to the constraints of the systems in order to achieve an accurate model.

CommSolid PicoRV32

The RISC-V CPU on the FGPA board by CommSolid [18] is based on the open
source project PicoRV32 [84]. It is a size optimised RISC-V core implementing
the 32 bit instruction set with the multiplication, division, and compressed in-
structions standard extensions. Additionally, the core is highly con�gurable to
save size by implementing the multiplier and divider in hardware. Although the
multiplier is able to deliver the result in one cycle, the divider is a rather simple
implementation processing one bit per cycle. Therefore, its execution latency is
32 cycles. For the purpose of being small, the core does not implement a pipeline
and has no caches. It directly fetches data and instruction from SRAM. This
fetch lasts two cycles. One cycle is consumed for loading the operands from the
registers and one more cycle is consumed for write-back. Hence, the latency of
an instruction is four cycles plus the latency of the execute state. For example,
the execute state of the ALU consumes one cycle. Therefore, an ALU operation,
such as add or sll, is expected to consume �ve cycles. As the multiplier is an own
hardware unit, the core needs one additional cycle to invoke this unit. For this
reason, the result of a multiplication is expected to have a six cycle latency.

The core is connected to an advanced high-performance bus (AHB), just like
the SRAM. The equivalent system de�nition is similar to the most basic system
that can be de�ned in gem5. This system is shown in Figure 2.3. Just a CPU, a
memory bus and a memory are needed. The memory bus models the AHB and
the memory simulates the SRAM.

The assigned memory for the RISC-V core is only 64 KiB. Therefore, only
small programs can be executed and they must not be linked against the standard
library, as it consumes too much memory. This causes the printf statement not
to be available for information retrieval. Hence, the cycle and instruction counts
are stored in variables and read by executing the program with the debugger
GDB. After processing the benchmark, an ebreak instruction is executed, which

63

5 Veri�cation and Evaluation

causes the GDB to halt. By inspecting the local variables, the cycle and instruction
counts can be retrieved and the benchmark evaluated.

SiFive HiFive1

The second available system is the SiFive HiFive1 board, whose architecture
is introduced in the following. It is an open source RISC-V development kit,
that uses the industry’s �rst commercially available RISC-V SoC SiFive FE310-
G000 [37, 38]. It implements a 32 bit RISC-V CPU with the standard extensions
for multiplication and division, atomic and compressed instructions. A schematic
layout of the core is shown in Figure 5.1. On the left side, the core complex and
its functional units can be seen, whereas on the ride hand side interfaces and
memories are shown.

Figure 5.1: Core complex of the RISC-V CPU on the SiFive HiFive1, according to [37].

The core implements a single issue in-order CPU with a �ve stage pipeline,
that leads to a one cycle result latency for most instructions. It is capable of
running with up to 320 MHz clock frequency and is con�gured to run with 256
MHz. In the architectural overview in Figure 5.1 it can be seen, that the RISC-V
CPU has one load-store unit, one arithmetical unit and a hardware multiplier
and divider. The multiplier has a �ve cycle result latency in the pipeline and
the divider is implemented with an early out, which means its latency varies

64

5.2 Accuracy Evaluation of gem5

MemBus

CPU

SPI-Flash SRAM

UART Terminal

memctrl.port memctrl.port

cpu.icache_port cpu.dcache_port

uart.pio
ICache

cpu_side

mem_side

Figure 5.2: The system de�nition in gem5, that re�ects the SiFive HiFive1 board.

between two and 33 cycles. Furthermore, the CPU has a 16 KiB 2-way associative
instruction cache being connected to the instruction fetch unit. Another part of
the core is a GPIO complex with UART ports, which gives the possibility to use
print statements in RISC-V applications [37]. The UART device is also used to
print the measured values within the benchmarks.

The board has several memories for di�erent purposes. User applications are
stored in the SPI-Flash memory, which has a size of 512 MB. Typical for �ash
memories are high access latencies compared to other memory types. The latency
of the SPI-Flash memory of this board is not documented in the manual, and
therefore has to be measured. Data in the binary are loaded on start-up by the
bootloader into the Data SRAM, which has two cycles latency for reading full
words. This memory has a size of 16 KiB and prevents data from being written
back into the slow �ash memory. The mentioned bootloader is stored in ROM,
that can be seen on the right hand side of Figure 5.1.

For this board, an open source software development kit is available, that o�ers
the possibility to compile programs and �ash them into the memory of the board.
Additionally, debug possibilities are available for the convenient development of
RISC-V applications. [38]

To simulate this system, a corresponding system de�nition was created in
gem5. This de�nition can be seen in Figure 5.2. Noticeable is the central memory
bus, being used to connect the memories and the UART device with the CPU and
cache. This is required, because gem5 uses this bus to load the data segments of
the binary into the memories. The dcache_port of the CPU is connected directly

65

5 Veri�cation and Evaluation

to the memory bus. As the architecture of the SiFive FE310-G000 also has no data
cache, this su�ciently re�ects the real board. A SimpleMemory is used to model
the SRAM and a second SimpleMemory is used to model the SPI-Flash. For the
core the MinorCPU model is chosen, as it also implements an in-order pipeline.

5.2.2 Approach for the Accuracy Evaluation

The approach to evaluate the accuracy is to run benchmarks on hardware and in
the simulator. The execution times of these benchmarks are compared. For that,
the same, unmodi�ed binary is run on the hardware board and on the calibrated
system model created in gem5.

The execution time of the benchmark cannot be retrieved directly, but needs to
be calculated. For that, Equation (5.1) is used, where n is the number of consumed
cycles and f is the frequency. The frequency of the systems is known, while
the number of consumed cycles can be measured. For that, the control register
mcycle is read before and after the execution of the benchmark. Calculating the
di�erence of both values results in the number of cycles, that the benchmark
consumed.

t =
n

f
(5.1)

The second value being directly measured in the binary is the instruction count.
To retrieve this count, the control register minstret is accessed. Similar to the
cycle count, the instruction count is also measured before and after execution of
the benchmark. The consumed instructions are then calculated by subtracting
both values.

Both values are used to compare simulation to hardware. If the instruction
count is the same on both, it is ensured that the same amount of instructions
are run. This indicates that the simulator executes the same instructions as the
hardware boards. Comparing the calculated execution time indicates how much
time the program consumed. Di�erences in this time are then analysed and
explained.

5.2.3 Calibration of the System Models

Gem5 o�ers pre-de�ned objects for every component on a chip for system de�ni-
tion. These objects can be con�gured through parameters. A calibration is done
to adapt parameters of the objects in the modelled system to the characteristics

66

5.2 Accuracy Evaluation of gem5

Table 5.1: Cycles per assembler instruction for the PicoRV32 core on the CommSolid
Samara board.

PicoRV32 add c.add mul div lw sw

Cycles per Instruction 5.04 4.06 6.03 39.42 7.99 8.33

of the hardware boards. For that, assembler instructions are benchmarked to
evaluate the parameters of the functional units and memories in gem5.

Every functional unit of the CPU is calibrated by measuring the used cycles
per instruction for an assembly instruction executed by the corresponding unit.
For that, the add instruction the ALU is utilised. In each of the hardware systems,
the multiplier and divider are self-reliant functional units. To evaluate this,
the instructions mul and div are benchmarked. Furthermore, the two boards
support the standard extension for compressed instructions. To measure the
impact of compressed instructions on the instruction fetch, the c.add, which
is the compressed add instruction, is benchmarked as well. Finally, the load
and store units and the memory latencies need to be calibrated. Therefore, lw
and sw, the instructions for loading and storing a word, are analysed. Each
of the mentioned assembler instructions are run 1000 times and the consumed
instructions and cycles are measured. This is done in multiple rounds to measure
the impact of the instruction cache in the SiFive HiFive1 core. With the obtained
values, the consumed cycles per assembly instruction are calculated. Based on
this value the corresponding functional unit in gem5 is calibrated.

CommSolid PicoRV32

In the following, the calibration of the system de�nition re�ecting the CommSolid
FPGA board is described. The challenge of this architecture is to �nd the most
feasible CPU model in gem5. Therefore, the PicoRV32 core is benchmarked by
the execution of assembly instructions, where the results can be seen in Table 5.1.
The measured cycles per assembly instructions are shown. It can be seen, that
the compressed instruction consumes one cycle less than the add instruction.
This results from the CPU fetching two instructions with one word. Therefore, in
every second instruction the fetch state can be skipped, which saves two cycles.
The lw and sw both consume around 8 cycles per instruction, whereas the load is
slightly faster.

Based on these results, two gem5 CPU models were chosen and evaluated
to �nd the most feasible. Thereby, the challenge is to model the non-pipelined

67

5 Veri�cation and Evaluation

Table 5.2: Calibrated latencies of the CommSolid system model components.

Component Default Latency Calibrated Latency

SimpleMemory 30ns 63ns

MemBus 2 cycles 0 cycles

ALU 3 cycles 5 cycles

Multiply Unit 3 cycles 6 cycles

Division Unit 9 cycles 40 cycles

Load-Store Unit 1 cycle 8 cycles

PicoRV32 core. Gem5 provides a non pipelined CPU model, that considers tim-
ing information of the memory. The drawback of the TimingCPU is its lack
of functional units. This results in every instruction consuming one cycle in
the execution stage. The other CPU that is evaluated is the MinorCPU, whose
functional units are calibrated on the just measured cycle counts of the assembly
instructions. Table 5.2 shows the calibrated latencies for the memory models
and the functional units of the in-order CPU model. The latency of the mem-
ory is calculated by the measured cycle count of the lw instruction and with
Equation (5.1). In this equation, the number of cycles is set to 4 as the execute
state of the instruction consumes 4 cycles. This leads to the assumption that the
memory latency is 4 cycles as well. The frequency on the FPGA board is 64MHz.
Therefore, the calculated latency of the memory is roughly 63ns .

The results for both CPU models can be seen in Table 5.3. The mismatch of the
TimingCPU is at least 25% except for the store instruction. The highest mismatch
occurs in the case of the div instruction. As it has the highest result latency in
the PicoRV32 core with 39 cycles, the impact of the one cycle execution stage in
the TimingCPU model is the biggest. This results in a mismatch of 92.25% for the
div instruction.

By calibrating the functional units in the MinorCPU, feasible results for the
assembler instructions can be achieved. For all instructions except c.add and
sw the mismatch is below one percent. The high mismatch of the compressed
instruction of 23.97% can not be reduced. In gem5, the c.add instruction is
also assigned to the functional unit being responsible for ALU operations. More
speci�c, the c.add instruction cannot be calibrated separately and therefore shares
the same con�gured latency as the add instruction. That means, it is de�ned that
an operation in the ALU has a �ve cycle result latency. Furthermore, the pipeline

68

5.2 Accuracy Evaluation of gem5

Table 5.3: Cycles per assember instruction and mismatch to the PicoRV32 core.

Cycles per Instruction add c.add mul div lw sw

MinorCPU 5.03 5.03 6.01 39.41 7.98 7.98

Mismatch 0.25% 23.97% 0.21% 0.03% 0.07% 4.22%

TimingCPU 3.05 3.05 3.05 3.05 6.00 8.31

Mismatch 39.44% 24.94% 49.32% 92.25% 24.84% 0.24%

add c.add mul div lw sw
0

10

20

30

40

Assembly Instruction

C
yc

le
s

pe
r

in
st

ru
ct

io
n

CommSolid

MinorCPU

TimingCPU

add c.add mul div lw sw
0

20

40

60

80

100

Assembly Instruction

M
is

m
at

ch
[%
]

MinorCPU

TimingCPU

Figure 5.3: Cycle counts for the CommSolid Samara board.

in the in-order CPU model fetches an instruction in every cycle, even though this
instruction has already been fetched. Therefore, compressed instructions do not
cause the fetch stage to be skipped, and no cycle is saved.

To summarise the results of the assembly instruction benchmarks, Figure 5.3
shows the measured cycles per instruction of the CommSolid core compared to
the two CPU models in gem5. When taking a look at the mismatches between the
CPU models and the CommSolid PicoRV32, it becomes clear that the MinorCPU
is more feasible for simulating the CommSolid FPGA board.

SiFive HiFive1

In this part, the calibration of the components in the system de�nition correspond-
ing to the SiFive HiFive1 board is shown. As described in Section 5.2.1, the RISC-V
board implements the in-order pipelined CPU FE310-G000. The corresponding
model in gem5 is the highly con�gurable MinorCPU, which models an in-order
CPU. To calibrate the functional units, the assembler instruction benchmarks are

69

5 Veri�cation and Evaluation

Table 5.4: Cycles per assember instruction and mismatch to the FE310-G000 core com-
pared to the gem5 MinorCPU.

Assembly Instruction add c.add mul div lw sw

HiFive1 1.04 1.04 6.73 6.73 1.99 1.04

MinorCPU 1.02 1.02 6.91 8.88 2.48 1.99

Mismatch 2.48% 1.56% 2.69% 31.87% 24.69% 90.93%

add c.add mul div lw sw

2

4

6

8

Assembler instruction

C
yc

le
s

pe
r

in
st

ru
ct

io
n

HiFive1

gem5

add c.add mul div lw sw
0

20

40

60

80

100

Assembly Instruction

M
is

m
at

ch
[%
]

Figure 5.4: Cycle counts using the instruction cache for the SiFive HiFive1 board.

run and evaluated.
Table 5.4 lists the cycles each instruction consumes with a warmed up cache

and Figure 5.4 illustrates these results. Especially the calibration ALU and the
multiplier leads to accurate results with a maximum of only 2.96% mismatch
between simulation and reality. The calibration of the divider is a challenge, as the
HiFive1 board implements an early out. In gem5, the default divider con�guration
was left unchanged leading to a 9 cycle result latency. This leads to an error of
31.87% for the div instruction. This mismatch is not constant due to the early
out. Therefore, the mismatch depends on the numerator and the divisor. The lw
instruction achieves a mismatch of 24.96% and the sw instruction has an even
higher error with 90.93% mismatch between simulation and real hardware. The
corresponding functional unit is calibrated on the lowest possible result latency
and therefore a higher accuracy is not possible.

As stated earlier, the latency of the SPI-Flash of the SiFive HiFive1 board is
not speci�ed in the manual. To calibrate the memory that models the SPI-Fash a
separate benchmark is created. This benchmark measures the number of cycles

70

5.2 Accuracy Evaluation of gem5

Table 5.5: Cycles per assembler instruction and mismatch to the FE310-G000 core com-
pared to the gem5 MinorCPU.

Cache Line Fetches 1 2 3 4 5

Number of Instructions 9 17 25 33 41

Cycles
HiFive1 4632 9258 13884 18516 23144

gem5 4631 9258 13883 18512 23139

Mismatch 0.02% 0% 0.01% 0.02% 0.02%

for an instruction cache miss by executing several nop instructions. Each nop is
executed in the ALU, and therefore the pipeline is expected to deliver one result
per cycle, if no cache miss occurs. If a miss occurs, the instruction is fetched from
the �ash memory. By measuring the cycle counts for this action, the latency can
be calculated with the formula Equation (5.1). Therein, t is the time of the SPI
�ash access latency, n is the number of cycles and f is the frequency of the core.
In Table 5.5 the consumed cycles for di�erent numbers of instructions can be seen.
The numbers of instructions are chosen according to the number of cache misses
they lead to. For one cache miss within 9 instructions, 4632 cycles are needed.
This implies, that the instruction where the cache miss occurs lasts 4624 cycles.
The MinorCPU has a 4-stage pipeline, and it is assumed that the execute stage,
the decode stage and the fetch2 stage consume one cycle each. Therefore, the
fetch1 stage consumes 4621 cycles, which is the cycle count n in Equation (5.1).
This calculation leads to a calibrated latency of the SPI �ash of 18µs .

Figure 5.5 shows the calibrated gem5 system in comparison to the SiFive
HiFive1 board. Therein, the consumed cycles for various numbers of instructions
are shown. With the adjusted latency of the �ash memory, the results are within
0.02% mismatch.

Table 5.6 summarises the calibrated latencies of the components in the system
model. The SimpleMemory, modelling the data RAM, is calibrated to 4ns as the
memory responds within one cycle. This set-up achieves feasible accuracy on
the single-instruction benchmarks and re�ects the real hardware board well.

5.2.4 Benchmarks

To evaluate the overall accuracy of gem5, several benchmarks are implemented.
These benchmarks have the purpose to primarily analyse the accuracy and con�g-
urability of the gem5 CPUs, its functional units and the memory system including

71

5 Veri�cation and Evaluation

10 20 30 40

0.5

1

1.5

2

2.5
·104

Number of Instructions

C
on

su
m

ed
C

yc
le

s

HiFive1

gem5

Figure 5.5: Cycle counts for multiple cache line fetches.

Table 5.6: Calibrated latencies of the HiFive1 system model components.

Component Default Latency Calibrated Latency

SimpleMemory (Flash) 30ns 18µs

SimpleMemory (RAM) 30ns 4ns

Cache - 1 cycle

MemBus 2 cycles 0 cycles

ALU 3 cycles 1 cycle

Multiply Unit 3 cycles 7 cycles

Division Unit 9 cycles 9 cycles

Load-Store Unit 1 cycle 1 cycle

72

5.2 Accuracy Evaluation of gem5

Table 5.7: Execution time for the calculation of the Mandelbrot set for di�erent pixel
sizes.

Number of Pixels 2x2 5x5 10x10 20x20 50x50 100x100

Execution

Time [s]

CommSolid 0.008 0.039 0.15 0.58 3.44 13.634

gem5 0.007 0.035 0.133 0.51 3.02 11.958

Mismatch 10.71% 11.6% 11.91% 12.12% 12.23% 12.29%

caches. The latency of peripheral devices and other system components are not
evaluated.

After calibrating the systems to achieve a high accuracy on the di�erent assem-
bler instructions, more complex calculations are run. Therefore, three algorithms
with di�erent properties are benchmarked.

First, the calculation of a Mandelbrot set for di�erent numbers of pixels is exe-
cuted, which predominantly consists of arithmetical operations. These numbers
vary from 2x2 to 100x100 and the number of iterations is set to 100 for all cases.

Second, a matrix multiplication is done for di�erent matrix sizes. This bench-
mark is intended to stress the load-store unit and to evaluate the accuracy of
memory latency as well. In this test, the size of the matrices varies from 2x2 to
64x64.

Finally, the calculation of the N -point fast Fourier transform (FFT) is bench-
marked, which uni�es the focus of the previous tests. The mismatch between the
execution time for di�erent numbers of points N is evaluated. The number of
points range from 8 to 1024.

CommSolid PicoRV32

The results for the Mandelbrot set benchmark are shown in Table 5.7 and illus-
trated in Figure 5.6. The results show, that the simulator is faster in any case. The
assumed reasons for that are the pipeline and di�erent functional units in the
MinorCPU model. These allow to execute instructions concurrently, which leads
to a performance increase and a faster execution time. With taking a look at the
mismatch, it can be seen that the error rate increases with the number of pixels
from 10.71% to 12.29%. But the diagram in Figure 5.6 shows, that the slope of the
mismatch is decreasing, which means, that the error rate has an upper bound.
Even for large processing times, such as 13s , the mismatch is in a reasonable
magnitude.

73

5 Veri�cation and Evaluation

2x2 5x5 10x10 20x20 50x50 100x100

0

5

10

15

Number of Pixels

Ex
ec

u�
io

n
Ti

m
e
[s
]

CommSolid
gem5

2x2 5x5 10x10 20x20 50x50 100x100

11

11.5

12

Number of Pixels

M
is

m
at

ch
[%
]

Figure 5.6: Execution time for the Mandelbrot set benchmark on the CommSolid Samara
board and simulated in gem5.

Table 5.8: Execution time for the calculation of the multiplication of matrices of di�erent
sizes.

Matrix Size 2x2 4x4 8x8 16x16 32x32 64x64

Execution

Time [ms]

CommSolid 0.04 0.23 1.6 12.14 94.59 738.58

gem5 0.03 0.2 1.44 11.05 86.15 697.88

Mismatch 8.53% 10.75% 10.03% 8.96% 8.92% 7.95%

The results of the matrix multiplication benchmark are shown in Table 5.8 and
Figure 5.7. The highest error of 10.75% occurs by multiplying two 4x4 matrices.
When processing larger matrices, the error rate decreases and is 7.95% for the
64x64 entries. As the space for two input matrices and the output matrix is
allocated on the stack, multiplying larger matrices is not possible due to the
limited memory. From this benchmark can be concluded, that algorithms loading
and storing values often can be simulated with reasonable accuracy, even though
a pipelined CPU model is used in gem5.

The N -point FFT is the third of the executed benchmarks for evaluating the
overall accuracy of gem5. The results can be seen in Table 5.9. The longest
execution time of about 704ms on the FPGA board occures for the 1024-point
FFT. The mismatch for this 1024-point FFT is 10.87% and it is also the highest
occurring. Similar to the error for the Mandelbrot set benchmark, the slope of
the error for this benchmark also is decreasing. The temporal progress of the
graph for the mismatch in Figure 5.8 indicates that the mismatch has an upper

74

5.2 Accuracy Evaluation of gem5

2x2 4x4 8x8 16x16 32x32 64x64

0

200

400

600

800

Matrix Size

Ex
ec

u�
io

n
Ti

m
e
[m

s]

CommSolid
gem5

2x2 4x4 8x8 16x16 32x32 64x64

8

9

10

11

Matrix Size

M
is

m
at

ch
[%
]

Figure 5.7: Execution time for the matrix multiplication benchmark on the CommSolid
Samara board and simulated in gem5.

Table 5.9: Execution time for the FFT benchmark of di�erent sizes.

FFT Points 8 32 128 512 1024

Execution

Time [ms]

CommSolid 3.18 17.14 77.61 338.8 704.01

gem5 2.96 15.45 69.4 302.1 627.47

Mismatch 7.15% 9.83% 10.59% 10.83% 10.87%

bound and will not increase further for larger execution times.

To summarise the results of the benchmarked algorithms it can be said, that
even though a pipelined CPU model needs to be used to simulate a non-pipelined
core, the simulation results have a reasonable accuracy to evaluate the hardware
system based on the simulation. The highest observed error is 12.29% for the
Mandelbrot set calculation of 100x100 pixels. This error occurs by the longest
execution time of 13.63s . The error averages at around 10%. Within the particular
benchmarks, the average error is highest for the Mandelbrot set benchmark,
whereas the average error in the matrix multiplication benchmark is the lowest.
This leads to the assumption, that computation intensive algorithms are simulated
with a higher error than memory-access intensive algorithms. The simulation
is always faster than the hardware, which can be explained by the pipeline in
the CPU model. This pipeline allows concurrent execution of instructions and
achieves therefore a higher performance than a non-pipelined CPU. It is assumed,
that the pipeline in the CPU model is the reason for this.

75

5 Veri�cation and Evaluation

0 200 400 600 800 1,000

0

0.2

0.4

0.6

FFT Points

Ex
ec

u�
io

n
Ti

m
e
[m

s]

CommSolid
gem5

0 200 400 600 800 1,000

7

8

9

10

11

FFT Points

M
is

m
at

ch
[%
]

Figure 5.8: Execution time for the FFT benchmark on the CommSolid Samara board and
simulated in gem5.

Table 5.10: Execution time for the calculation of the multiplication of matrices of di�er-
ent sizes.

Matrix Size 2x2 4x4 8x8 16x16 32x32

Execution

Time [ms]

HiFive1 0.23 0.24 0.35 1.08 6.37

gem5 0.14 0.15 0.24 0.88 5.73

Mismatch 36.42% 35.64% 31.69% 18.13% 10.00%

SiFive HiFive1

In Table 5.10 the results for the matrix multiplication benchmark are shown. With
a mismatch of 36.42% for the multiplication of two 2x2 matrices the simulation is
inaccurate for short calculations. With a greater execution time, the mismatch
gets smaller and is 10% for the multiplication of two 32x32 matrices. Due to the
limited memory, it is not possible to multiply larger matrices as they are allocated
on the stack.

The graphs in Figure 5.9 illustrate this observation. Even though the execution
time increases exponentially, the mismatch decreases. This leads to the assump-
tion, that a part in the algorithm initialisation is simulated with low accuracy.
This part has a higher in�uence for small matrices and is quali�ed for longer
execution times.

The results for the calculation of the Mandelbrot set and FFT are shown in
Table 5.11 and Table 5.12. Additionally, these values are graphically illustrated
in Figure 5.10 and Figure 5.11. For the Mandelbrot set calculation, the mismatch

76

5.2 Accuracy Evaluation of gem5

2x2 4x4 8x8 16x16 32x32

0

2

4

6

Matrix Size

Ex
ec

u�
io

n
Ti

m
e
[m

s]

HiFive1
gem5

2x2 4x4 8x8 16x16 32x32

10

20

30

Matrix Size

M
is

m
at

ch
[%
]

Figure 5.9: Execution time for the matrix multiplication benchmark on the SiFive HiFive1
board and simulated in gem5.

Table 5.11: Execution time for the calculation of the Mandelbrot set for di�erent pixel
sizes.

Number of Pixels 2x2 5x5 10x10 20x20 50x50 100x100

Execution

Time [ms]

HiFive1 0.008 0.039 0.15 0.58 3.44 13.634

gem5 0.007 0.035 0.133 0.51 3.02 11.958

Mismatch 102.31% 124.83% 164.28% 180.56% 177.74% 176.13%

varies from 100% to 180%. The mismatch of the 1024-point FFT is even higher with
190%. After the calibration and results from the matrix multiplication benchmark,
these mismatches are remarkable and requires further investigation.

5.2.5 Analysing the HiFive1 Simulation Model

The gem5 simulation model of the SiFive HiFive1 board achieved high mismatches
for the FFT benchmark and the calculation of the Mandelbrot set, although the
calibration leads to a good accuracy of single instruction benchmarks. Further-
more, the achieved accuracy for the matrix multiplication is su�cient with 10.00%
for 32x32 matrices. In the following, the process of �nding the reason for the
high mismatches in the FFT and Mandelbrot set benchmark is described. It is
chosen to outline this analysis as the location of the reason for the high errors
was not straight forward.

First, the in�uence of the cache is assumed to be a potential issue. Since the
CommSolid PicoRV32 core has no caches, and the mismatch between it and

77

5 Veri�cation and Evaluation

2x2 5x5 10x10 20x20 50x50 100x100

0

1,000

2,000

3,000

4,000

Number of Pixels

Ex
ec

u�
io

n
Ti

m
e
[s
]

HiFive1
gem5

2x2 5x5 10x10 20x20 50x50 100x100

100

120

140

160

180

Number of Pixels

M
is

m
at

ch
[%
]

Figure 5.10: Execution time for the Mandelbrot set benchmark on the SiFive HiFive1
board and simulated in gem5.

Table 5.12: Execution time for the FFT benchmark of di�erent sizes.

FFT Points 8 32 128 512 1024

Execution

Time [ms]

HiFive1 5.93 7.69 15.65 46.98 89.96

gem5 6.63 12.57 36.15 132.44 261.25

Mismatch 11.85% 63.43% 130.95% 181.87% 190.41%

0 200 400 600 800 1,000

0

100

200

FFT Points

Ex
ec

u�
io

n
Ti

m
e
[m

s]

HiFive1
gem5

0 200 400 600 800 1,000
0

50

100

150

200

FFT Points

M
is

m
at

ch
[%
]

Figure 5.11: Execution time for the FFT benchmark on the SiFive HiFive1 board and
simulated in gem5.

78

5.2 Accuracy Evaluation of gem5

1 l i a7 , 1000
2 0 :
3 beqz a7 , end
4 a d d i a7 , a7 , −1
5 j 0b
6 end :

Listing 5.3: Instruction sequence of the testcase producing high mismatches.

its simulation is in a su�cient range, issues with the cache seems plausible.
Therefore, the cache misses for the FFT benchmark are analysed. The cache
misses are approximately constant for all numbers of points in the FFT. More
precisely, the 8-point FFT produced the same amount of cache misses as the
1024-point FFT. This leads to the assumption that the cache is not the reason for
the high mismatches.

To investigate further potential causes, a look into the linker script of the SiFive
HiFive1 software development kit is done. There, the output section .rodata ag-
gregating read-only data is mapped into the SPI-Flash memory. Furthermore, it
is unpacked by the bootloader into �ash memory as well. That implies, read-only
data is located in the �ash memory during execution of the user-application.
The board has only an instruction cache and accesses to �ash memory are slow
with a calculated latency of 18µs . Moreover, only the FFT and the Mandelbrot
set benchmarks contained read-only data. Therefore, a di�erence in the access
time of read-only data could be an issue. To investigate this assumption, an-
other benchmark is created. A constant array is de�ned that is mapped into the
section .rodata by the linker. Its values are accessed and the consumed cycles
measured. The benchmark leads to mismatches of less than 5%, which disproves
the assumption.

The occurrence of �oating-point values and calculations in former algorithms
is another di�erence of the Mandelbrot set and FFT benchmark compared to the
vector multiplication. As the board has no �oating-point unit, calculations and
conversions are done in software. For that, the library glibc provides prede�ned
functions. Through several measurements of the execution time of these functions,
the method __muldf3 is found to cause a high mismatch between execution on
the board and in the gem5 simulator. Investigation of its structure shows, that
besides arithmetic instructions unconditional jumps occur in a signi�cant amount.
To analyse this further, a benchmark was designed were de�ned amounts of
unconditional jumps are executed. Listing 5.3 shows the assembly sequence that
causes high mismatches between the HiFive1 board and the gem5 simulator.

79

5 Veri�cation and Evaluation

Table 5.13: Consumed cycles for di�erent numbers of unconditional jumps.

Number of Jumps 1000 2000 3000 4000 5000

Number of Instruction 3018 4018 5018 6018 7018

Consumed Cycles
HiFive1 3066 4069 5045 6069 7057

gem5 8040 16038 10040 18038 12040

Mismatch 162.23% 294.15% 99.01% 197.22% 70.61%

Table 5.14: Execution time for the FFT benchmark of di�erent sizes without the initiali-
sation phase.

FFT Points 8 32 128 512 1024

Execution

Time [ms]

HiFive1 0.89 1.16 2.55 9.40 19.63

gem5 0.75 1.00 2.28 8.58 18.03

Mismatch 15.67% 13.44% 10.79% 8.76% 8.17%

Table 5.13 shows the results for this benchmark. It compares the consumed
instructions and cycles for unconditional jumps. Additionally, the mismatch be-
tween the gem5 simulator and the SiFive HiFive1 board is shown. This mismatch
varies from 70.61% for 5000 jumps to 294.15% for 2000 jumps.

To analyse the exact cause for this mismatches, the execution pipeline of the
CPU model in gem5 is observed using the pipeline viewer. This tool is part of the
gem5 project and visualises the pipeline. It can be comprehended how a single
assembly instruction is processed through each stage of the pipeline. Utilizing
this tool shows, that the branch predictor experiences di�culties while processing
backward jumps. If a backward jump occurs, the pipeline is stalled for 6 cycles.
The measurements listed in Table 5.13 indicate that the pipeline in the SiFive
HiFive1 board is fully utilized during the whole benchmark.

The FFT benchmark uses �oating-points only for initialising an array that
represents the input signal. To prove the just presented observations, a second
measurement was done excluding the initialisation step. Table 5.14 and Figure 5.12
show the results. After an analyse, it occurs that the mismatch is highest for the
8-point FFT and lowest for the 1024-point FFT. The highest occurring error is
15.67% for the 8-point FFT. It decreases to 8.17% for 1024 points. Similar to the
vector multiplication benchmark, short execution times cause high errors. For

80

5.2 Accuracy Evaluation of gem5

0 200 400 600 800 1,000

0

5

10

15

20

FFT Points

Ex
ec

u�
io

n
Ti

m
e
[m

s]

HiFive1
gem5

0 200 400 600 800 1,000

8

10

12

14

16

FFT Points

M
is

m
at

ch
[%
]

Figure 5.12: Execution time for the FFT benchmark without the initialisation phase on
the SiFive HiFive1 board and simulated in gem5.

longer execution times a higher accuracy is achieved.

5.2.6 Discussion of the Benchmark Results

The benchmark results for both system models show a su�cient simulation
accuracy for severely di�erent hardware architectures. It is possible to simulate
a non-pipelined CPU using the in-order CPU model of gem5. This causes the
simulation to be faster than the hardware. However, the speed-up is in a feasible
range with the highest occurring error of 12.29%. The average error for this
use-case is around 10% and slightly higher for long lasting calculations. These
results are reliable for di�erent types of applications as the occurring errors for
all three benchmarked algorithms are within similar range.

The accuracy for simulating a pipelined board depends on the program �ow.
The analysis in Section 5.2.5 shows, that the occurrence of backward jumps in the
program �ow in�uence the accuracy severely. Using theMinorCPU for simulation
of hardware with pipelined CPUs is feasible for long running applications where
few backward jumps occur. In this scenario, the accuracy is feasible with an error
below 10%. This requires knowledge about the structure of the program, that is
run on the simulation model. If the program structure is not known and many
jumps occur, the simulation results are not reliable in terms of cycle counts and
execution time. Especially if the application processes �oating-point operations
in software, high errors can be expected.

Gem5 is su�cient to study the behaviour of applications running on a speci�c
system. The simulator is build to study the interaction of components of a
SoC while running unmodi�ed binaries and operating systems on the system

81

5 Veri�cation and Evaluation

model. If the exact architecture of the CPU matters, it is better to implement a
corresponding model in gem5.

5.3 Accelaration of Algorithms Using the RISC-V Extension
Parser

This section gives an example on how the RISC-V Extension Parser supports
the acceleration of algorithms by using additional hardware. It shows, that
using the tool together with gem5 allows fast evaluation of the impact of custom
instructions on software algorithms. For this purpose the FFT algorithm is chosen,
because it is already available in c-code due to its use as benchmark. The algorithm
is compiled with the compiler option "-O2" for speed optimisations, as system
model serves the de�nition of the SiFive HiFive1 board.

Deep inside in the algorithm, a �xed-point multiply function is called. Therein,
two values of type short are multiplied and the result is right shifted by 15 Bit.
Listing 5.4 shows the function de�nition. In the target architecture, the type
short is 16 Bit wide. As a consequence, the multiplier in the execution pipeline
of the SiFive HiFive1 model multiplies two 16 Bit values, though it is capable
of processing 32 Bit. This multiplier has a result latency of 7 cycles. Building
a �xed-point multiplier directly in hardware that only processes 16 Bit input
values is assumed to deliver the result within one cycle. Moreover, the right shift
is achieved in hardware by ignoring the lower 15 Bit. Consequently accelerating
this function with a custom instruction can increase the performance of the FFT.

To evaluate this statement, a �xed-point multiply instruction with a result
latency of one cycle is de�ned in the RISC-V Extension Parser. After de�ning the
instruction, the FFT algorithm is adapted to access the additional hardware when
multiplying �xed-point values.

1 #define FIX_MPY (DEST , A , B) DEST = ((long) (A) ∗ (long) (B))
>>15

2
3 f i x e d f ix_mpy (f i x e d a , f i x e d b)
4 {
5 FIX_MPY (a , a , b) ;
6 return a ;
7 }

Listing 5.4: De�nition of the �xed-point multiply function used inside of the FFT
algorithm.

82

5.3 Accelaration of Algorithms Using the RISC-V Extension Parser

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

·106

FFT Points

C
on

su
m

ed
C

yc
le

s

Original
Accelerated

0 200 400 600 800 1,000

0

2

4

6

8

FFT Points

A
cc

el
er

at
io

n
[%
]

Figure 5.13: Cycle counts of the FFT algorithm in c and accelerated with a custom
instruction.

Figure 5.13 shows the consumed cycles for the original FFT compared to
the accelerated algorithm. Additionally, the gained acceleration in percent is
illustrated. For the 8-point FFT the gained acceleration is below 1% as the �xed-
point multiply is not called often. Larger sizes of the FFT causes more �xed-point
multiplication, hence the custom instruction is utilised more often. It can be seen
that the accelerated version of the 1024-point FFT consumes nearly 7.8% less
cycles than the original c-implementation.

83

6 Related Work

This chapter highlights relevant projects based on RISC-V and gem5.

6.1 RISC-V

RISC-V is of high interest for both researchers and the industry due to its ad-
vantages against other open source risc architectures [3]. This section gives an
overview about existing RISC-V projects.

Very soon since RISC-V has been proposed by Asanović and Patterson [3] in
2010 the University of Berkeley used the ISA in own projects and teaching [47].
Lee [47] used a simple unpipelined RISC-V core for tutorials on RTL synthesis.
Also the �rst more complex studies on CPU designs based on RISC-V came from
Berkeley. In 2014 Lee et al. [48] proposed a 64 Bit dual-core. This architecture
consists of two Rocket cores that both have a six stage pipeline with single-
issue in-order execution. The core uses the high extensibility of the RISC-V
architecture and implements custom vector accelerators. Furthermore, it meets
the requirements to boot modern operating systems including Linux [48]. This
core achieves better energy e�ciency by smaller size than the ARM Cortex-A5.
These results show that RISC-V is competitive in the area of low power devices,
including smartphones and IoT devices.

In 2015 Asanovic, Patterson, and Celio [4] proposed BOOM, a superscalar out-
of-order RISC-V core. It is intended to serve as baseline implementation of a
out-of-order micro-architecture for education, research and industry [4]. The
core supports branch speculation and branch prediction. Benchmark results show
that this core is competitive in performance and area compared to commercially
available embedded out-of-order cores [4].

The two presented RISC-V cores lead to the Rocket Chip Generator proposed
by Asanovic et al. [5]. This project is an open-source SoC generator, that emits
synthesizable RTL. The framework is a library of generators for cores, caches
and interconnects and composes them to a SoC. It is base for several projects
that lead to tape-outs and has therefore proven its practicability [49, 50].

Due to the properties of RISC-V that make the ISA ideal for academic use, other
universities realised projects based on it. Popular among them is the PULPino
project by ETH Zürich [76]. The goal of Traber et al. [76] is to build an open-source

85

6 Related Work

ultra-low-power processor for computing in internet of things (IoT). Because of
its FreeBSD license, its compressed instructions and its extensibility, the group
chose RISC-V. The outcome is an open source, 32 Bit single-core SoC [75] that is
competitive against the ARM Cortex-M4 [76]. Because of its Advanced Debug Unit
that enables debugging over JTAP and SPI and its peripheral devices including
UART, timer and GPIO, this project is ideal as SoC in embedded devices. [76]

The PULPino project is the base for other academic works, which focus on
embedded systems and IoT as well. Cheikh et al. [17] proposed a multi-threaded
RISC-V core family. This work approaches the execution of concurrent threads
in IoT end-nodes. It solves this problem by enabling multi-threading. With that,
multiple applications can be run on a single core. It is a 32 bit architecture, that
is compliant with the PULPino SoC and can therefore be used as processing core
in the system. [17]

In embedded computing energy e�ciency is required while being able to
e�ciently process complex computations involve �oating point operations [54].
Mach et al. [54] use the high extensibility of RISC-V and implement a �oating point
unit in the RI5CY core of the PULPino SoC. This FP unit optimizes the system
regarding energy e�ciency by implementing SIMD operations for �oating point
formats and is directly integrated in the execution stage of the pipeline of the
core. With that implementation the PULPino core is up to 18% more e�cient by
up to 25% more performance.

Both, the Rocket Chip Generator and the PULPino SoC are important projects
used as starting point for works that approach problems in embedded systems.
For instance, these problems include the enhancement of security in embedded
systems [22, 69, 87].

Not only in academia, but also in industry RISC-V becomes more and more
popular. The �rst commercially available RISC-V SoC is produced by SiFive [37].
This system is part of the SiFive HiFive1, a cheap and small arduino compatible
RISC-V development kid [38]. Therein, a 32 bit six stage pipelined processor is
implemented. The company also o�ers an open source software development
kid for convenient implementation, building and debugging of RISC-V based
software.

To summarise the just presented academic works, RISC-V is very famous in the
domain of low-power embedded devices. Due to its extensibility, custom hardware
units can be implemented to optimize designs regarding energy e�ciency and
power consumption. The results of this approaches are shared among researches
and taken as starting point for new projects. This is only possible, because RISC-V
is an open source ISA.

86

6.2 gem5

6.2 gem5

The gem5 simulator [11] is of high interest in the academia. This chapter sum-
marises important works regarding accuracy evaluations using the gem5 simula-
tor. Furthermore, usage of gem5 in context of RISC-V and embedded system is
summarised.

As accuracy is an important property for simulators, several works have evalu-
ated the accuracy of gem5. These evaluations mostly targeted ARM cores. Butko
et al. [15] analysed the execution time of benchmarks against the hardware de-
velopment kit Snowball SKYS9500-ULP-C01. This board implements a dual-core
ARM Cortex-A9 with instruction and data L1 caches and a shared L2 cache. The
mismatch of the execution time varies between 1.39% and 17.94%. However,
Butko et al. [15] used the Timing Simple CPU model that does not simulate at the
micro-architectural level.

Endo, Couroussé, and Charles [25] directly focused on in-order and out-of-
order ARM microprocessors. The researchers used the out-of-order CPU model
of gem5 to simulate ARM Cortex-A8 and ARM Cortex-A9 cores. As the O3 model
was the only functional timing accurate CPU model in gem5 at that time, they
con�gured it to model an in-order pipeline. With that Endo, Couroussé, and
Charles [25] achieved accuracy results of only 7% mismatch.

Another work regarding accuracy optimization of gem5 for an ARM archi-
tecture was proposed by Gutierrez et al. [32]. They analysed the sources of
mismatches between simulation and reality for not only the overall system but
also for single components. For that, they compared the simulation with the
development board ARM Versatile Express TC2.

Further investigations were done regarding the accuracy of full system simula-
tors including gem5. Nowatzki et al. [61] evaluated errors in several full system
simulators. In gem5 they highlighted several �aws in the O3 CPU model. How-
ever, these �aws were only veri�ed against the x86 architecture and reported
to the gem5 community. This evaluation was only possible due to the openness
of gem5. With contributions by the community, the gem5 simulator improves
steadily, as �aws are found and �xed.

This thesis uses the RISC-V implementation for gem5 as foundation. The
implementation was contributed by Roelke and Stan [68] in 2017. Prior to this
implementation, simulators were either slow but highly accurate RTL level simu-
lations or fast but low-accurate binary translation. With gem5 this gap is closed
enabling fast but accurate simulation of RISC-V based systems. The implementa-
tions done in this work will extend the features contributed by Roelke and Stan
[68].

87

6 Related Work

Key features of RISC-V are the highly extensibility with standard extensions
as well as custom extensions. The simulator must support this feature as well.
Especially in embedded system, custom extensions are used to enhance the
performance of the chip. To achieve accurate results, simulators must be able
to work with such hardware accelerators. For gem5 an implementation was
proposed by Shao et al. [71] for co-design of extensions and SoC interfaces.
They assumed that hardware accelerators are often separate IP blocks within the
SoC and consists of multiple customized datapath lanes and local memories [71].
Especially the local memories require data movement and coherence management.
In their work Shao et al. [71] enhanced gem5 to capture interactions between the
SoC and accelerators and achieved an accuracy within 6% against real hardware.

This thesis proposes an interface for de�ning custom extensions to accelerate
system by additional hardware. The presented approach in Section 4.4 places
the additional hardware as functional unit within the pipeline of the CPU model.
This is conform to work by Mach et al. [54], who also placed their hardware
accelerator within the pipeline. Therefore, the work by Shao et al. [71] is not
used in this thesis.

Gem5 has a modular and open design that allows to combine the simulator
with other frameworks. In the following, two projects are introduced that used
this approach in order to increase the number possibilities for system level design
space exploration.

Menard et al. [57] contributed an implementation that allows interoperability
between the gem5 and SystemC framework. SystemC [40] is an IEEE standard
that extends c++ with macros and classes. With that an event-driven simulation
kernel is provided. Coupling gem5 and SystemC o�ers the possibility to use
and connect models from both frameworks. Furthermore, this project o�ers the
possibility to simulate ISA-heterogeneous systems, which increases the number
of systems that can be simulated.

Another approach that also allows to simulate multiple, distributed cores, is the
dist-gem5 project [58]. It is a distributed version of gem5 proposed by Mohammad
et al. [58]. Dist-gem5 reduces the time a simulation lasts by o�ering the possibility
to distribute the work load on multiple simulation hosts. Hence, the project was
intended to support design space exploration for HPC systems, the approach
can be used to simulate multi-processor system-on-chip (MPSoC) architectures.
Because every host runs its own gem5 instance, these instances can be compiled
for di�erent ISAs. This enables the simulation of ISA-heterogeneous computing.

To enrich design space exploration with gem5 with information about area
and power consumption, Endo, Couroussé, and Charles [24] combined gem5 and
McPAT. McPAT [52] is a multi-core power and area simulator, that estimates

88

6.2 gem5

power and area values for system de�nitions. In their work, the researchers
implemented a parser that enables system de�nition translation between these
two frameworks. With that, system de�nitions from gem5 can be used as input
for the McPAT simulator. This allows to estimate the power area consumption of
systems de�ned in gem5.

89

7 Future Work

This chapter summarises ideas for future projects using this work as base. First,
conceptions for further implementations in the gem5 simulator are presented.
These o�er the possibility to simulate a wider range of use-cases. Afterwards,
ideas for projects using implementations presented in this thesis as foundation.

7.1 RISC-V Support in gem5

The RISC-V support in gem5 needs to be extended in order to support a wider
range of systems. This regards better support of peripherals as well as imple-
mentation of more standard extensions. In the following, open tasks in gem5 are
discussed.

7.1.1 Evaluation of the Out-Of-Order CPU Model

The accuracy evaluation in Section 5.2.4 shows that the in-order CPU model has
di�culties with fully utilizing the pipeline on occurrence of jumps. Topics for
future projects can be the evaluation of the implementation of this CPU model
and the adaptation of the branch prediction.

Gem5 o�ers also an out-of-order CPU. This model is not tested for the RISC-V
ISA. In a future project, this CPU can be evaluated and analysed if it achieves a
higher accuracy on simulating the SiFive HiFive1 board.

7.1.2 Platform-Level Interrupt Controller

Currently, local timer interrupts with the implemented CPU-Timer are the only
possibility to interrupt the current program. As the name implies, this timer is
bound to one speci�c CPU. To simulate more realistic SoCs, global interrupts
have to be supported. Therefore, the platform-level interrupt controller (PLIC)
has to be implemented.

The PLIC is de�ned in the privileged architecture speci�cation of the RISC-V
ISA [81]. This device connects global interrupt sources to interrupt targets and its
purpose is to �nd an available hardware thread where an occurring interrupt can
be processed. Thereby, interrupt sources are usually I/O devices and interrupt

91

7 Future Work

targets are usually CPUs. On occurrence, global interrupts are sent to the PLIC.
In the controller, the interrupt is processed and the interrupt enable bits of each
of the CPUs are checked. The PLIC selects a target, where the pending interrupt
is enabled. The chosen hardware thread then processes the interrupt.

7.1.3 Physical Memory Protection

Privilege levels are not checked in the current implementation of the RISC-V ISA
in gem5. Consequently, user programs can access machine mode registers and
every memory region being de�ned in the system. Therefore, only insecure and
simple applications can be simulated. In current embedded systems, di�erent
applications run on the same processor and memory protection from user-mode
applications is common. To simulate this use-case in gem5, physical memory
protection and di�erent privilege levels are needed.

To support secure processing by limiting the physical addresses accessible by
software, the RISC-V privileged architecture speci�cation [81] de�nes physical
memory protection (PMP). The optional PMP unit adds additional machine mode
control registers. PMP entries are described by an 8 Bit con�guration register and
an address register of the width of the architecture. The access rights of di�erent
privilege levels for address spaces are de�ned. In fact, PMP is a partitioning of
the available memory and is also compatible to virtual memory.

Currently, in gem5 the control registers are implemented but the check within
memory access is missing. One approach to implement these checks is within the
TLB of the RISC-V architecture. Its methods for converting virtual to physical
addresses are always called, no matter if the system actually has virtual addresses.
Implementing the PMP check in the TLB ensures memory protection on every
memory access.

7.1.4 Support of Standard Extensions

The implementation of the 64 Bit version of RISC-V in gem5 supports the standard
extensions for �oating-point and atomic instructions. Implementing both in the
32 Bit decoder would enable the simulation of a wider range of systems.

The standard extensions for single-precision �oating point adds additional
instructions and registers and is compliant with the 2008th revision of the IEEE
754 arithmetic standard [89]. The 33 additional registers are 32 Bit wide, where
32 of them are general purpose and one is a status register [80]. Furthermore,
this extension adds 26 instructions.

Atomic instructions are required for supporting the synchronization between

92

7.2 Further Projects

multiple RISC-V hardware threads running in the same memory space. Therefore,
this standard extension contains 11 additional instructions for atomically read-
modify-write memory.

The concept of enabling these extensions in RISC-V is similar to the implemen-
tations of the standard described in Section 4.3.4. Single-precision �oating-point
values are 32 Bit wide, which o�ers the possibility to reuse the already de�ned in-
struction formats. To enable the �oating-point extension for 32 Bit architectures,
the instructions have to be added in the decode tree. For the standard extension
of atomic instructions existing instruction formats have to be adapted in order
to re�ect the 32 Bit width of the input and output registers. Furthermore, the
RISC-V 32 Bit decoder tree has to be extended with the operational codes and the
functional descriptions of the new instructions.

7.2 Further Projects

The implementations introduced in Chapter 4 o�er the possibility to simulate
RISC-V based systems with custom extensions in Full-System mode in gem5. This
section presents ideas for research projects using this possibility as foundation.

7.2.1 Automatic Generation of Peephole Optimisations

Accelerating hot-spots in computation-intensive algorithms with custom hard-
ware is very common in the domain of embedded systems. Examples are ac-
celeration of �oating point operations [54] or accelerating the calculation of
cryptographic algorithms [65, 78].

Due to its extensibility, the RISC-V ISA is ideal for building SoCs enriched
with hardware accelerators. The outcomes of the implementations presented in
this thesis support this feature by o�ering an interface, where arbitrary custom
extension can be de�ned. Furthermore, these extensions are directly usable in
the gem5 simulator allowing researchers the possibility to conveniently evaluate
the impact of accelerators in terms of computational performance.

Currently, the custom instructions have to be called by the programmer explic-
itly. Utilising the RISC-V Extension Parser can support research by developing
automatic generation of peephole optimisations. Peephole optimisers in com-
pilers recognize patterns and substitute them with functionally equal, but faster
instructions [20]. Creating these optimisations and replacement rules by hand
is time consuming. Furthermore, not all opportunities for optimisations may be
exploited [8]. Therefore, researchers proposed ideas for automated generation of
peephole optimisers [1, 8, 20].

93

7 Future Work

Utilising the RISC-V Extension Parser o�ers the possibility to develop auto-
mated generation of peephole optimisers for the RISC-V compiler. The tool can
be used to create arbitrary custom instructions and the capabilities of the gem5
simulator allows to analyse the e�ciency of the generated optimisers.

7.2.2 Heterogeneous Computing

Especially in embedded systems, multiple cores of di�erent ISAs are used to
achieve instruction level parallelism [46]. One type of heterogeneous computing
is having multiple cores of di�erent ISAs on a single chip [79]. Each core is
built to ful�l one speci�c task and its ISA is chosen according to its properties in
ful�lling this task. These special-purpose solutions have large performance and
energy advantages over general purpose solutions [6].

The extensibility and modularity of RISC-V is well-suited for the application
as a coprocessor with a dedicated task. For example, one small RISC-V core with
custom extensions built to process security algorithms is used as a coprocessor
besides an ARM application processor with multiple cores.

As the gem5 binary is compiled for exactly one ISA, the simulation of ISA-
heterogeneous systems is natively not possible. The SystemC coupling by Menard
et al. [57] can solve this limitation and enables simulation of heterogeneous
MPSoCs. With the coupling multiple gem5 instances compiled for di�erent ISAs
can be connected. Every instance represents one core of the MPSoC system and
is connected to the other cores with SystemC objects.

The academia is already aware of challenges of MPSoC architectures. As-
mussen et al. [6] proposed an microkernel-based operating system speci�cally
designed to support heterogeneous architectures with custom accelerators. The
implementations done in this thesis o�er the possibility to include RISC-V cores
with de�nable custom extensions into MPSoC simulations. These can be used to
support development of tools, such as compilers and debuggers, for e�cient and
convenient software development for MPSoC systems.

94

8 Conclusion

This thesis described a solution to overcome the de�ciency of full system simula-
tors for the RISC-V ISA. The basic RISC-V support in the simulator gem5 was
extended and the full system simulation mode was enabled. Furthermore, the
possibility was implemented to simulate 32 Bit architectures. A concept and an
implementation of a module enabling the de�nition of additional instructions
and registers was described. The RISC-V Extension Parser automatically parses
the de�nitions, patches the toolchain, and generates a plug-in for gem5. De�ned
custom instructions are directly included in the execution pipeline of the gem5
in-order CPU model. This o�ers the possibility to evaluate architectures enriched
with custom extensions with su�cient accuracy in a feasible amount of time.

In this thesis, the accuracy of the simulation of RISC-V based systems in gem5
was evaluated. Although these available hardware systems di�er quite severely
in their architecture, it was able to achieve su�cient accuracy results for both
systems. For the non-pipelined architecture of the CommSolid PicoRV32 core, a
mismatch between 7.15% and 12.29% was measured. It was shown that due to the
functionality of the in-order CPU model of gem5 the accuracy of the simulation of
pipelined architectures depends on the structure of the program. For arithmetical
calculations with few occurring backward jumps the mismatch between hardware
and simulator is below 10%.

This thesis presented an example on the possibility to use the RISC-V Extension
Parser for architectural evaluations. A custom instruction was created, whose
usage within the FFT algorithm increased the performance and lead to 7.8% less
consumed cycles.

Parts of the implementation have been contributed to the gem5 main release
and are available for use.

95

References

[1] Farhana Aleen, Vyacheslav P Zakharin, Rakesh Krishnaiyer, Garima Gupta,
David Kreitzer, and Chang-Sun Lin. “Automated compiler optimization of
multiple vector loads/stores”. In: International Journal of Parallel Program-
ming 46.2 (2018), pp. 471–503.

[2] ARMv8-A architecture reference manual. Tech. rep. ARM Ltd., 2015.

[3] Krste Asanović and David A Patterson. “Instruction sets should be free:
The case for risc-v”. In: EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146 (2014).

[4] Krste Asanovic, David A Patterson, and Christopher Celio. The berkeley
out-of-order machine (boom): An industry-competitive, synthesizable, pa-
rameterized risc-v processor. Tech. rep. University of California, Berkeley,
2015.

[5] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David
Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, et al. “The rocket chip generator”. In: EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[6] Nils Asmussen, Marcus Völp, Benedikt Nöthen, Hermann Härtig, and
Gerhard Fettweis. “M3: A hardware/operating-system co-design to tame
heterogeneous manycores”. In: ACM SIGPLAN Notices. Vol. 51. 4. ACM.
2016, pp. 189–203.

[7] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Wa-
terman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. “Chisel:
constructing hardware in a scala embedded language”. In: Design Automa-
tion Conference (DAC), 2012 49th ACM/EDAC/IEEE. IEEE. 2012, pp. 1212–
1221.

[8] Sorav Bansal and Alex Aiken. “Automatic generation of peephole superop-
timizers”. In: ACM Sigplan Notices. Vol. 41. 11. ACM. 2006, pp. 394–403.

97

References

[9] Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In:USENIX
Annual Technical Conference, FREENIX Track. Vol. 41. 2005, p. 46.

[10] Dileep Bhandarkar and Douglas W Clark. “Performance from architecture:
comparing a RISC and a CISC with similar hardware organization”. In:ACM
SIGARCH Computer Architecture News. Vol. 19. 2. ACM. 1991, pp. 310–319.

[11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna,
Somayeh Sardashti, et al. “The gem5 simulator”. In: ACM SIGARCH Com-
puter Architecture News 39.2 (2011), pp. 1–7.

[12] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G
Saidi, and Steven K Reinhardt. “The M5 simulator: Modeling networked
systems”. In: IEEE Micro 26.4 (2006), pp. 52–60.

[13] Alex Bradbury. RISC-V LLVM status update. http://lists.llvm.org/pipermail/llvm-
dev/2017-August/116709.html. Accessed: 24.04.2018. Aug. 2017.

[14] Doug Burger and Todd M Austin. “The SimpleScalar tool set, version 2.0”.
In: ACM SIGARCH computer architecture news 25.3 (1997), pp. 13–25.

[15] Anastasiia Butko, Rafael Garibotti, Luciano Ost, and Gilles Sassatelli. “Accu-
racy evaluation of gem5 simulator system”. In: Recon�gurable Communication-
centric Systems-on-Chip (ReCoSoC), 2012 7th InternationalWorkshop on. IEEE.
2012, pp. 1–7.

[16] Steve Chamberlain, Roland Pesch, Red Hat Support, and Je� Johnston. The
Red Hat newlib C Library. Tech. rep. Red Hat Inc., Dec. 2014.

[17] Abdallah Cheikh, Gianmarco Cerutti, Antonio Mastrandrea, Francesco
Menichelli, and Mauro Olivieri. “The microarchitecture of a multi-threaded
RISC-V compliant processing core family for IoT end-nodes”. In: arXiv
preprint arXiv:1712.04902 (2017).

[18] CommSolid by Goodix. Accessed: 15.08.2018. url: https://commsol
id.com/.

[19] Palmer Dabbelt. “RISC-V Software Ecosystem”. Accessed: 24.04.2018.

[20] Jack W Davidson and Christopher W Fraser. Automatic generation of peep-
hole optimizations. Vol. 19. 6. ACM, 1984.

98

https://commsolid.com/
https://commsolid.com/

[21] Tom De Schutter. Better Software. Faster!: Best Practices in Virtual Prototyp-
ing. Happy About, 2014.

[22] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas
Davi, Patrick Koeberl, N Asokan, and Ahmad-Reza Sadeghi. “LO-FAT: Low-
overhead control �ow attestation in hardware”. In: Proceedings of the 54th
Annual Design Automation Conference 2017. ACM. 2017, p. 24.

[23] Sarah El Kady, Mai Khater, and Merihan Alhafnawi. “MIPS, ARM and
SPARC-an architecture comparison”. In: Proceedings of the World Congress
on Engineering. Vol. 1. 2014.

[24] Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles. “Micro-
architectural simulation of embedded core heterogeneity with gem5 and
mcpat”. In: Proceedings of the 2015 Workshop on Rapid Simulation and Per-
formance Evaluation: Methods and Tools. ACM. 2015, p. 7.

[25] Fernando A Endo, Damien Couroussé, and Henri-Pierre Charles. “Micro-
architectural simulation of in-order and out-of-order ARM microproces-
sors with gem5”. In: Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), 2014 International Conference on. IEEE. 2014,
pp. 266–273.

[26] Jakob Engblom. “Full-system simulation”. In: Proceedings of the European
Summer School on Embedded Systems (ESSES 2003) (2003).

[27] Xiaocong Fan. Real-Time Embedded Systems: Design Principles and Engi-
neering Practices. Newnes, 2015.

[28] Yi-yuan Fang and Xue-jun Chen. “Design and simulation of UART se-
rial communication module based on VHDL”. In: Intelligent Systems and
Applications (ISA), 2011 3rd International Workshop on. IEEE. 2011, pp. 1–4.

[29] Michael J Flynn. Computer architecture: Pipelined and parallel processor
design. Jones & Bartlett Learning, 1995. isbn: ISBN 0867202041.

[30] GNU toolchain for RISC-V, including GCC. Accessed: 27.07.2018. 2017. url:
https://github.com/riscv/riscv-gnu-toolchain.

[31] Christopher Guntli. “Architecture of clang”. In: Analyze an open source
compiler based on LLVM (2011).

99

https://github.com/riscv/riscv-gnu-toolchain

References

[32] Anthony Gutierrez, Joseph Pusdesris, Ronald G Dreslinski, Trevor Mudge,
Chander Sudanthi, Christopher D Emmons, Mitchell Hayenga, and Nigel
Paver. “Sources of error in full-system simulation”. In: Performance Analysis
of Systems and Software (ISPASS), 2014 IEEE International Symposium on.
IEEE. 2014, pp. 13–22.

[33] Craig C Hansen and Thomas J Riordan. RISC computer with unaligned
reference handling and method for the same. US Patent 4,814,976. 1989.

[34] John Hennessy, Norman Jouppi, Steven Przybylski, Christopher Rowen,
Thomas Gross, Forest Baskett, and John Gill. “MIPS: A microprocessor
architecture”. In: ACM SIGMICRO Newsletter. Vol. 13. 4. IEEE Press. 1982,
pp. 17–22.

[35] Alireza Hodjat and Ingrid Verbauwhede. “Interfacing a high speed crypto
accelerator to an embedded CPU”. In: Signals, Systems and Computers,
2004. Conference Record of the Thirty-Eighth Asilomar Conference on. Vol. 1.
IEEE. 2004, pp. 488–492.

[36] Lee W Howes, Paul Price, Oskar Mencer, Olav Beckmann, and Oliver Pell.
“Comparing FPGAs to graphics accelerators and the PlayStation 2 using a
uni�ed source description”. In: Field Programmable Logic and Applications,
2006. FPL’06. International Conference on. IEEE. 2006, pp. 1–6.

[37] SiFive Inc. SiFive FE310-G000 Manual. Tech. rep. SiFive Inc., Oct. 2017.

[38] SiFive Inc. SiFive HiFive1 Getting Started Guide. Tech. rep. SiFive Inc., Jan.
2017.

[39] SPARC International Inc and David L Weaver. The SPARC architecture
manual. Prentice-Hall, 1994.

[40] Open SystemC Initiative et al. “IEEE standard SystemC language reference
manual”. In: IEEE Computer Society (2006), pp. 1666–2005.

[41] Open Virtual Platform Initiative et al. OVPsim instruction set simulators.

[42] JavaScript RISC-V ISA Simulator. Boots linux in a web-browser. Accessed:
26.07.2018. url: https://github.com/riscv/riscv-angel.

[43] Sagar Karandikar. Structure of the RISC-V So0ware Stack. Accessed: 30.07.2018.
Jan. 2015. url: https://riscv.org/wp-content/uploads/

100

https://github.com/riscv/riscv-angel
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf

2015/01/riscv-software-stack-bootcamp-jan2015.
pdf.

[44] Manolis GH Katevenis, Robert W Sherburne Jr, David A Patterson, and
Carlo H Séquin. “The RISC II micro-architecture”. In: Advances in VLSI and
Computer Systems 1.2 (1984), pp. 138–152.

[45] Manuel "Koschuch, Joachim Lechner, Andreas Weitzer, Johann Großschädl,
Alexander Szekely, Stefan Tillich, and Johannes Wolkerstorfer. “Hardware/-
Software Co-design of Elliptic Curve Cryptography on an 8051 Microcon-
troller”. In: Cryptographic Hardware and Embedded Systems - CHES 2006.
Ed. by Louis Goubin and Mitsuru Matsui. 2006, pp. 430–444.

[46] Rakesh Kumar, Dean M Tullsen, Norman P Jouppi, and Parthasarathy
Ranganathan. “Heterogeneous chip multiprocessors”. In: Computer 38.11
(2005), pp. 32–38.

[47] Yunsup Lee. “RTL-to-Gates Synthesis using Synopsys Design Compiler”.
In: (2010).

[48] Yunsup Lee, Andrew Waterman, Rimas Avizienis, Henry Cook, Chen Sun,
Vladimir Stojanović, and Krste Asanović. “A 45nm 1.3 GHz 16.7 double-
precision GFLOPS/W RISC-V processor with vector accelerators”. In: Eu-
ropean Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th. IEEE.
2014, pp. 199–202.

[49] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller,
Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blago-
jevic, et al. “An agile approach to building risc-v microprocessors”. In: IEEE
Micro 36.2 (2016), pp. 8–20.

[50] Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jae-
hwa Kwak, Ruzica Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic,
Pi-Feng Chiu, et al. “Raven: A 28nm risc-v vector processor with integrated
switched-capacitor dc-dc converters and adaptive clocking”. In: Hot Chips
27 Symposium (HCS), 2015 IEEE. IEEE. 2015, pp. 1–45.

[51] Qing Li and Caroline Yao. Real-time concepts for embedded systems. CRC
Press, 2003.

101

https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf
https://riscv.org/wp-content/uploads/2015/01/riscv-software-stack-bootcamp-jan2015.pdf

References

[52] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. “McPAT: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures”. In: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM. 2009, pp. 469–480.

[53] Gabriel H Loh, Samantika Subramaniam, and Yuejian Xie. “Zesto: A cycle-
level simulator for highly detailed microarchitecture exploration”. In: Per-
formance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Inter-
national Symposium on. IEEE. 2009, pp. 53–64.

[54] Stefan Mach, Davide Rossi, Giuseppe Tagliavini, Andrea Marongiu, and
Luca Benini. “A Transprecision Floating-Point Architecture for Energy-
E�cient Embedded Computing”. In: Circuits and Systems (ISCAS), 2018
IEEE International Symposium on. IEEE. 2018, pp. 1–5.

[55] Milo MK Martin, Daniel J Sorin, Bradford M Beckmann, Michael R Marty,
Min Xu, Alaa R Alameldeen, Kevin E Moore, Mark D Hill, and David
A Wood. “Multifacet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset”. In: ACM SIGARCH Computer Architecture News 33.4
(2005), pp. 92–99.

[56] Members at a Glance. Accessed: 14.04.2018. url: https://riscv.
org/members-at-a-glance/.

[57] Christian Menard, Jeronimo Castrillon, Matthias Jung, and Norbert Wehn.
“System simulation with gem5 and systemC: the keystone for full inter-
operability”. In: Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS), 2017 International Conference on. IEEE. 2017, pp. 62–
69.

[58] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Dae-
hoon Kim, and Nam Sung Kim. “dist-gem5: Distributed simulation of com-
puter clusters”. In: Performance Analysis of Systems and Software (ISPASS),
2017 IEEE International Symposium on. IEEE. 2017, pp. 153–162.

[59] Fuentes Morales and Jose Luis Bismarck. Evaluating Gem5 and QEMU
Virtual Platforms for ARM Multicore Architectures. Accessed: 05.05.2018.
2016.

102

https://riscv.org/members-at-a-glance/
https://riscv.org/members-at-a-glance/

[60] Apurv Nerlekar, Rishabh Sreedhara, Rishikesh Nagare, and Shivakumar
Soppannavar.Comparison between RISC architectures: MIPS, ARMand SPARC.
Accessed: 28.07.2018. May 2015. url: https://www.slideshare.
net/ApurvNerlekar1/cmpe-200-ppt-47929145.

[61] Tony Nowatzki, Jaikrishnan Menon, Chen-Han Ho, and Karthikeyan Sankar-
alingam. “gem5, gpgpusim, mcpat, gpuwattch," your favorite simulator
here" considered harmful”. In: (2014).

[62] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. “MARSS: a
full system simulator for multicore x86 CPUs”. In: Proceedings of the 48th
Design Automation Conference. ACM. 2011, pp. 1050–1055.

[63] David Patterson. “Reduced Instruction Set Computers Then and Now”. In:
Computer 50.12 (2017), pp. 10–12.

[64] David A Patterson and Carlo H Sequin. “RISC I: A reduced instruction set
VLSI computer”. In: Proceedings of the 8th annual symposium on Computer
Architecture. IEEE Computer Society Press. 1981, pp. 443–457.

[65] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattangady.
“Security in embedded systems: Design challenges”. In: ACM Transactions
on Embedded Computing Systems (TECS) 3.3 (2004), pp. 461–491.

[66] RISC-V Linux Port. Accessed: 11.07.2018. url: https://github.co
m/riscv/riscv-linux.

[67] RISC-V Opcodes. Accessed: 30.06.2018. url: https://github.com/
riscv/riscv-opcodes.

[68] Alec Roelke and Mircea R Stan. “Risc5: Implementing the RISC-V ISA in
gem5”. In: First Workshop on Computer Architecture Research with RISC-V
(CARRV). 2017.

[69] Laurent Sauvage, So�ane Takarabt, and Youssef Souissi. “Secure silicon:
Towards virtual prototyping”. In: Electromagnetic Compatibility-EMC EU-
ROPE, 2017 International Symposium on. IEEE. 2017, pp. 1–5.

[70] Stephen Schaub and Brian A Malloy. “Comprehensive Analysis of C++
Applications using the libClang API”. In: International Society of Computers
and Their Applications (ISCA) (2014).

103

https://www.slideshare.net/ApurvNerlekar1/cmpe-200-ppt-47929145
https://www.slideshare.net/ApurvNerlekar1/cmpe-200-ppt-47929145
https://github.com/riscv/riscv-linux
https://github.com/riscv/riscv-linux
https://github.com/riscv/riscv-opcodes
https://github.com/riscv/riscv-opcodes

References

[71] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei,
and David Brooks. “Co-designing accelerators and soc interfaces using
gem5-aladdin”. In: Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE. 2016, pp. 1–12.

[72] Spike, a RISC-V ISA Simulator. Accessed: 26.07.2018. url: https://
github.com/riscv/riscv-isa-sim.

[73] Nitish Srivastava. A Tutorial on the Gem5 Minor CPU Model. Accessed:
23.07.2018. July 2017. url: https://nitish2112.github.io/
post/gem5-minor-cpu/.

[74] Jürgen Teich and Christian Haubelt. Digitale Hardware/Software-Systeme:
Synthese und Optimierung. Springer-Verlag, 2007.

[75] Andreas Traber and Michael Gautschi. “PULPino: Datasheet”. In: ETH
Zurich and University of Bologna 63 (2016), p. 64.

[76] Andreas Traber, F Zaruba, S Stucki, A Pullini, G Haugou, E Flamand, FK
Gürkayank, and L Benini. “PULPino: A small single-core RISC-V SoC”. In:
3rd RISCV Workshop. 2016.

[77] Leon Urbas. “Mikrorechentechnik 1, Befehlssatzarchitektur”. Accessed:
16.04.2018. url: https://www.et.tu-dresden.de/ifa/
uploads/media/MRT1-003_Befehlssatzarchitektur_
01.pdf.

[78] Michael Vai, Ben Nahill, Josh Kramer, Michael Geis, Dan Utin, David
Whelihan, and Roger Khazan. “Secure architecture for embedded systems”.
In: High Performance Extreme Computing Conference (HPEC), 2015 IEEE.
IEEE. 2015, pp. 1–5.

[79] Ashish Venkat and Dean M Tullsen. “Harnessing ISA diversity: Design of
a heterogeneous-ISA chip multiprocessor”. In: ACM SIGARCH Computer
Architecture News 42.3 (2014), pp. 121–132.

[80] Andrew Waterman and Krste Asanovic. “The RISC-V Instruction Set Man-
ual Volume I: User-Level ISA”. In:CSDivision, EECEDepartment, University
of California, Berkeley (May 2017).

104

https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://nitish2112.github.io/post/gem5-minor-cpu/
https://nitish2112.github.io/post/gem5-minor-cpu/
https://www.et.tu-dresden.de/ifa/uploads/media/MRT1-003_Befehlssatzarchitektur_01.pdf
https://www.et.tu-dresden.de/ifa/uploads/media/MRT1-003_Befehlssatzarchitektur_01.pdf
https://www.et.tu-dresden.de/ifa/uploads/media/MRT1-003_Befehlssatzarchitektur_01.pdf

[81] Andrew Waterman and Krste Asanovic. “The RISC-V Instruction Set Man-
ual Volume II: Privileged Architecture”. In: CS Division, EECE Department,
University of California, Berkeley (May 2017).

[82] Andrew Waterman, Yunsup Lee, and Christopher Celio. EA RISC-V proxy
kernel and boot loader. Tech. rep. Tech. rep. EECS Department University
of California Berkeley, 2015.

[83] Andrew Shell Waterman. Design of the RISC-V instruction set architecture.
University of California, Berkeley, 2016.

[84] Cli�ord Wolf. PicoRV32 - A Size-Optimized RISC-VCPU. Accessed: 16.07.2018.
url: https://github.com/cliffordwolf/picorv32.

[85] Joe Xie. “NVIDIA RISC V Evaluation Story”. Accessed: 16.04.2018. July 2016.
url: https://www.youtube.com/watch?v=gg1lISJfJI0.

[86] Matt T Yourst. “PTLsim: A cycle accurate full system x86-64 microarchi-
tectural simulator”. In: Performance Analysis of Systems & Software, 2007.
ISPASS 2007. IEEE International Symposium on. IEEE. 2007, pp. 23–34.

[87] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad
Ibrahim, Yier Jin, and Ahmad-Reza Sadeghi. “Atrium: Runtime attestation
resilient under memory attacks”. In: Proceedings of the 36th International
Conference on Computer-Aided Design. IEEE Press. 2017, pp. 384–391.

[88] Dieter Zöbel. Echtzeitsysteme: Grundlagen der Planung. Springer-Verlag,
2008.

[89] Dan Zuras, Mike Cowlishaw, Alex Aiken, Matthew Applegate, David Bailey,
Steve Bass, Dileep Bhandarkar, Mahesh Bhat, David Bindel, Sylvie Boldo,
et al. “IEEE standard for �oating-point arithmetic”. In: IEEE Std 754-2008
(2008), pp. 1–70.

105

https://github.com/cliffordwolf/picorv32
https://www.youtube.com/watch?v=gg1lISJfJI0

Selbstständigkeitserklärung

Hiermit versichere ich, Robert Sche�el, geboren am 04.01.1994 in Görlitz, dass
ich die vorliegende Diplomarbeit zum Thema

Simulation of RISC-V based Systems in gem5

ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen
Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt über-
nommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und
Auswertung des Materials sowie bei der Herstellung des Manuskripts habe ich
Unterstützungsleistungen von folgenden Personen erhalten:

Dipl.-Ing. Christian Menard, Dipl.-Ing. Gerald Hempel

Weitere Personen waren an der geistigen Herstellung der vorliegenden Diplomar-
beit nicht beteiligt. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung
zum nachträglichen Entzug des Diplomabschlusses (Masterabschlusses) führen
kann.

Dresden, den 20.08.2018 .
Unterschrift

	Contents
	Introduction
	Background
	RISC-V
	Overview
	ISA Specification
	RISC-V Ecosystem
	Comparison to other ISAs

	The gem5 Simulator
	Overview
	Comparison to other Simulators
	Calibration of gem5 Components

	Motivation
	Concept and Implementation
	Use-cases for Embedded Applications
	Communication via UART
	Execution of Time-Controlled Tasks
	Performance Increase through Additional Hardware

	Requirements
	Extending Full-System Support in gem5
	Enable Full-System mode
	Support of Peripheral Devices
	Support for Interrupts and Exceptions
	32 Bit support

	Interface for Custom Extensions
	The RISC-V Extension Parser
	Defining Custom Extensions
	Parsing of the Extension Models
	Implementation of the gem5 Plug-In
	Generation of Toolchain Patches

	Verification and Evaluation
	Verification of the Implementation
	Verification of the RISC-V Full-System Mode
	Verification of the RISC-V 32 Bit Mode
	Verification of the Custom Extension Parser

	Accuracy Evaluation of gem5
	Architectures of the RISC-V Systems
	Approach for the Accuracy Evaluation
	Calibration of the System Models
	Benchmarks
	Analysing the HiFive1 Simulation Model
	Discussion of the Benchmark Results

	Accelaration of Algorithms Using the RISC-V Extension Parser

	Related Work
	RISC-V
	gem5

	Future Work
	RISC-V Support in gem5
	Evaluation of the Out-Of-Order CPU Model
	Platform-Level Interrupt Controller
	Physical Memory Protection
	Support of Standard Extensions

	Further Projects
	Automatic Generation of Peephole Optimisations
	Heterogeneous Computing

	Conclusion
	References

