
TECHNISCHE UNIVERSITÄT DRESDEN

FACULTY OF COMPUTER SCIENCE

CENTER FOR ADVANCING ELECTRONICS DRESDEN

CHAIR FOR COMPILER CONSTRUCTION

PROF. DR. JERONIMO CASTRILLON

Master’s Thesis

for obtaining the academic degree
Master of Science

A Domain-Specific Generative Model of Code for
LLVM

Alexander Thierfelder
(Born 20. May 1993 in Dresden)

Tutor: Andrés Goens

Dresden, January 30, 2020

Task Description

The source code used to describe software applications is generally rich in structure and complex. Gen-

erative models in machine learning provide methods to learn the properties of complex structures from

examples. Learning a generative model of code can help produce code examples. This has several

applications, ranging from benchmark generation to code completion and other constrained generation

tasks.

Methods for automated generation of code have been developed and studied for decades. However, the

research community has barely scratched the surface of the new deep-learning-based approaches in this

field. In particular, state-of-the-art generative models of code [1] use a model at the character-level of

the source code. This disregards much of the structure we know to be present in the source code, in the

hopes that the neural networks can learn said structure from the character strings. This is particularly

problematic when dealing with long-term dependencies, which is for example why CLgen [1] explicitly

counts and adds closing brackets (}) manually.

In the realm of generative models based on neural networks, recent advances have been made that allow to

train and learn graph-based models [2]. This structure better reflects the structure of code, for example, as

expressed by the control- and dataflow graph (CDFG) in the LLVM compiler framework. In this thesis,

we shall explore these graph-based methods on LLVM. Specifically, we consider the deep generative

models of graphs (DeepGMG) graph-based method and adapt it to learn and generate CDFG from LLVM

code.

The LLVM language has a very particular structure. For example, a conditional “br” instruction takes

exactly three arguments: a condition, and two labels to jump to depending on the value of the condi-

tion. While a graph-based generative model can learn this structure from several examples, we can also

explicitly code this into the generative algorithm. This has the advantage of leveraging the structural

information we know. We conjecture that by doing so, the model can “focus” on learning the semantical

information of the code, instead of the structural information that defines valid LLVM code. In this the-

sis, we will develop such a domain-specific generative model of code that encodes structural information

of the LLVM language. Concretely, the student shall:

1. Familiarize himself with the methods from [1] and [2], as well as the LLVM language.

2. Develop a graph-based representation based on the LLVM CDFG, such that the LLVM code can

be fully reconstructed from it.

3. Using available implementations of these methods, and the CLGen data set, develop a generative

model using DeepGMG and the graph-based representation above.

4. Analyze the LLVM language and its structure and re-design the DeepGMG algorithm to encode

LLVM-specific structures like the conditional “br” instruction from the example.

5. Implement the modified DeepGMG algorithm to produce LLVM code that is mostly structurally

correct by construction.

6. Test the different implementations and compare them to the code generated by CLGen on the

OpenCL data set from CLGen.

Declaration of authorship

I hereby declare that I wrote this thesis on the subject

A Domain-Specific Generative Model of Code for LLVM

independently. I did not use any other aids, sources, figures or resources than those stated in the refer-

ences. I clearly marked all passages that were taken from other sources and cited them correctly.

Furthermore I declare that – to my best knowledge – this work or parts of it have never before been

submitted by me or somebody else at this or any other university.

Dresden, January 30, 2020

Alexander Thierfelder

Abstract

Graph structured data effectively models relational structures in many different domains, including

source code. Recently, graph-based generative models have risen in popularity; however, existing ap-

proaches are often too general and computationally expensive to generate large graphs in complex target

domains. In this thesis, we implement a domain-specific graph generative model for the generation of

the LLVM intermediate representation (IR) based on Li et al.’s DeepGMG. For this purpose, we de-

sign a graph representation for LLVM IR and incorporate structural knowledge about the language into

our graph generation process. Our approach generates valid samples at a substantially higher rate than

the general-purpose DeepGMG. Additionally, we find that our model’s samples are considerably richer

in structure than those generated by the base model. However, our approach is not able to outperform

the state-of-the-art CLgen in eighter of those metrics. Furthermore, we observe various issues of our

model, the biggest one being type-correctness. Consequently, our model is biased towards structurally

simple types and small graphs. As a result, the graphs generated by our model only partially cover the

feature-space present in our training set.

1

Contents

1 Introduction 5

2 Related Work 7

3 Machine Learning Foundations 9

3.1 Recurrent Neural Networks . 9

3.2 Gated Recurrent Unit . 10

3.2.1 Architecture . 11

3.2.2 Evaluation . 11

4 Deep Generative Models of Graphs 13

4.1 Overview . 13

4.2 Graph Generation Process . 14

4.3 Learning the Graph Generative Model . 14

4.3.1 Probabilities of Structure Building Decisions 16

4.4 Evaluation . 17

4.4.1 Experiments . 17

4.4.2 Challenges . 18

4.4.3 Conclusion . 19

5 LLVM 21

5.1 Overview . 21

5.2 Intermediate Representation . 22

5.2.1 Vertex Labels . 22

5.2.2 Instructions . 23

5.2.3 Control-Flow . 25

5.2.4 Types . 26

5.2.5 Constant Values . 28

5.2.6 Unsupported Features . 30

2

6 Adapting the Generative Graph Model 33

6.1 Extenstion Points of the Base Model . 33

6.2 Graph Generation Process . 35

6.2.1 Active Nodes . 35

6.2.2 Subroutines . 37

6.2.3 Main Algorithm . 42

6.3 Architecture of Structure Building Modules . 49

6.3.1 Binary Graph Level Modules . 49

6.3.2 N-ary Graph Level Modules . 49

6.3.3 Binary Node Level Modules . 51

6.3.4 N-ary Node Level Modules . 51

6.4 Baseline model . 53

7 Training the Generative Graph Model 55

7.1 Training Data . 55

7.2 Actionizing the Training Data . 56

7.3 Hyperparameter Optimization . 57

7.3.1 Optimization Target . 57

7.3.2 Reducing the Search Space . 59

7.3.3 Bayesian Optimization . 61

7.4 Training the Model . 62

7.5 Training the Baseline Model . 62

8 Evaluation 63

8.1 Generated Samples . 63

8.1.1 Baseline Model . 66

8.2 Evaluation against CLgen . 67

8.2.1 Valid Sample Rate . 68

8.2.2 Graph Features . 68

8.2.3 Principal Component Analysis . 69

8.3 Conclusion . 70

9 Conclusion and Outlook 73

Bibliography 75

3

List of Figures 79

Acronyms 81

Appendix A: LLVM IR Implementation Details 83

Appendix B: Translating Training Samples to Decision Sequences 91

Appendix C: Hyperparameter Optimization 93

Appendix D: Model Evaluation 95

4

5

1 Introduction

Graphs are highly versatile data structures that effectively capture complex relationships between entities

in many important scientific, economic, and social domains. One example of such a domain is source

code, which is generally rich in structural entities such as instructions, operands, and other language-

specific concepts. Recently, graph-based generative models have risen in popularity; however, to our

knowledge, not much research has been done on the ability of such models to generate code.

In this thesis, we design and implement a domain-specific model for the generation of the LLVM IR,

which is the assembly language used inside the LLVM compiler. We base our model on the general-

purpose graph generative model proposed by Li et al. [2] and modify it to specifically accommodate the

graph representation of LLVM IR that we develop throughout this thesis.

We begin this work with an analysis of the machine learning concepts required to implement our ap-

proach (chapter 3), and a review of the model proposed by Li et al. (chapter 4). In chapter 5, we give a

short overview of the LLVM project, analyze the LLVM IR, and subsequently develop a suitable graph

representation for it. At this point, we will have fulfilled all necessary prerequisites for the extension

of Li et al.’s DeepGMG into our domain-specific approach. Chapter 6, therefore, discusses both our

structural modifications of the model, as well as our new graph generation algorithm. In the last part of

this thesis, we examine the training procedure (chapter 7), evaluate our model (chapter 8), and give an

outlook on possible future work (chapter 9).

Although our goal is the generation of LLVM code, we work atop the training set provided by Cummins

et al. [1], which consists of roughly 5600 OpenCL kernels. Throughout this thesis, we develop a pipeline

which enables us to transform OpenCL kernels into a graph representation, train our model, and generate

LLVM code.

Code Generation Pipeline In order to synthesize LLVM code, various transformation and compu-

tation steps are necessary. Figure 1.1 shows the code generation toolchain we developed for this purpose.

The first pipeline step transforms an OpenCL kernel into an LLVM program through Clang [3], which

can compile source code directly into LLVM IR. In the next step, we extract all structurally relevant

6 1. INTRODUCTION

OpenCL
kernels

Clang
LLVM

programs
LLVM
miner

Graph
Transformator

Code
Graphs

Graph
Actionizer

Decision
Sequences

Graph
Generative

Model

Graph
Generator

Code
Graphs

Code
Generator

LLVM
programs

Domain-specific Architecture

Figure 1.1: LLVM code generation pipeline.

information from the IR and save it to a JSON file. Usually, the LLVM optimizer opt uses passes

to optimize or collect information about a program; we can use this architecture for our purposes by

developing an analysis pass that traverses the IR and collects all necessary data. We can subsequently

use this information to construct a code graph, which is a restructured, in-memory representation of the

code.

The graph generative model introduced by Li et al. [2], and by extension, our model, trains on decision

sequences, which represent a number of actions concerning the generation of a graph. Therefore, we

utilize a graph actionizer to transform code graphs into their corresponding decision sequences. We

then use these sequences to train our domain-specific generative model, which we develop on top of

Brauckmann’s implementation [4] of DeepGMG. In the next step, we use a graph generator to transform

decision sequences generated by our model back into code graphs, which we subsequently transform

into LLVM IR through our code generator.

It is worth noting that all domain-specific aspects of our approach are located in the graph-actionizer,

the model itself, and the graph generator. Therefore, when we compare our approach against Li et al.’s

model during the evaluation in chapter 8, we only need to adapt these three components of the pipeline.

7

2 Related Work

Graph neural networks (GNNs) have been initially proposed by Scarselli et al. in 2009 [5], and are a

class of neural network models whose unique characteristic is the ability to process graph-structured

input directly. Unlike the work done in [2] and [6], Scarselli et al. utilize an output model that maps

node embeddings to outputs which are independent per node. In the same year, Micheli [7] proposed

a model closely related to GNNs, which differs from them mainly in its usage of transductions to map

input graphs to an output domain.

In 2016, Li et al. [6] proposed gated graph sequence neural networks (GG-SNNs), which modify GNNs

to predict output sequences. The most significant structural adaptations of GG-SNNs are the usage

of gated recurrent units (GRUs) [8] for the computation of node embeddings, and the propagation of

information over a fixed number of steps T . Importantly for our work, this change allows for the usage

of domain-specific node embedding initializations, since there no longer exists a fixed-point that node

embeddings converge to during the information propagation process.

Johnson has described an approach related to GG-SNNs in 2017 [9]. He proposed an extension of

GG-SNNs called gated graph transformer neural networks, which construct graphs to use them as an

intermediate representation to solve reasoning problems. However, unlike the work done by Li et al. [2],

Johnson’s approach makes assumptions about the generation process, such as a fixed number of nodes

for each input sentence.

Research has also been done towards domain-specific generative models of graphs. In 2018, Li et al.

[10] proposed a new approach for the generation of molecules. Compared to the general approach in

[1], this method generates graphs in a domain-specific iterative process and scales to larger molecules

than those generated in the experiments we analyze in section 4.4.1. This work shows that sacrificing

generality for performance in a chosen target domain can be a valuable tradeoff.

To the best of our knowledge, there is no existing work regarding the generation of LLVM code. This

is not true for code generation in general, however. In 2015, Chiu et al. described GENESIS [11], a

language for the generation of synthetic training programs in machine learning, a use case which is also

possible for the samples generated in this thesis. However, unlike our approach, GENESIS relies on user

input to annotate specific parts of a template program with possible values and a corresponding statistical

8 2. RELATED WORK

distribution to generate samples.

Graph representations of code have also been used in machine learning tasks. In 2018, Allamanis et al.

[12] used a graph representation of C# programs based on their abstract syntax tree with added data-

flow edges to reason over variable names and misuses. Unlike the work done in this thesis, however,

Allamanis et al. approach is based on GNNs and is consequently not used in generative tasks.

9

3 Machine Learning Foundations

This chapter introduces the machine learning concepts and techniques required for the implementation

of DeepGMG. We examine each technique with regards to its mathematical concepts, merits, and chal-

lenges.

3.1 Recurrent Neural Networks

Conventional feed-forward neural networks (NNs) have been applied to a multitude of classification and

regression problems successfully. They struggle, however, at tasks that require information persistence.

For example, it is unclear how a traditional NN could use its knowledge about previously generated

words of a sentence to influence the generation of the next word. Recurrent neural networks (RNNs)

address this issue by feeding past information back into themselves, where it is, in turn, used to influence

future decisions. Figure 3.1 shows the schematic layout of an RNN in its ordinary and unrolled form.

Their structure makes RNNs naturally suited for sequential tasks, and they have been successfully applied

to a large number of problems such as language modeling [13], speech recognition [14] and stock price

pattern recognition [15].

F

yt

xt

ht F

y0

x0

F

y1

x1

h0

F

yn

xn

hn−1

(a) (b)

Figure 3.1: Schematic structure of an RNN by itself (a), and unrolled through time (b).

10 3. MACHINE LEARNING FOUNDATIONS

Since an RNN’s behavior is temporally dynamic, its output at time t is dependent on all previous cal-

culations up to that point. When training an RNN with a backpropagation algorithm, this temporal

structure has to be simulated by unrolling the network with a technique called backpropagation through

time (BPTT). This, however, requires a significantly higher amount of memory than traditional back-

propagation. Furthermore, conventional RNNs trained with BPTT have been found to have difficulties

learning long time dependencies and are inefficient to train due to a phenomenon called the “vanishing

gradient problem” [16].

Vanishing gradients occur when RNNs are trained with BPTT over a large number of time steps t. Since

individual weights inside the RNN are typically smaller than 1, they, and with them their derivative,

decrease exponentially as t increases, which in turn makes the weights slower to update and the network

as a whole harder to train.

Since the discovery of these problems, a lot of research on potential solutions has been made, leading to

the development of various novel RNN architectures. One of them, the GRU, will be discussed in the

next section.

3.2 Gated Recurrent Unit

The GRU is an RNN core introduced by Cho et al. in 2014 [8]. It aims to solve the vanishing gradient

problem found in more traditional RNN cores, while at the same time having a simpler, and therefore

easier to train internal structure than long short-term memory (LSTM) models. Figure 3.2 illustrates the

mechanisms inside a fully gated GRU cell.

+

rt zt h̃t

1− +

+ +

ht−1

ht

xt
•

•

•

•

•
•

Figure 3.2: Internal structure of a fully gated GRU cell, as proposed by Cho et al. [8].

3.2. GATED RECURRENT UNIT 11

In this thesis, we use a GRU to predict node embeddings for the GNNs of Li et al.’s generative model [2]

discussed in chapter 4.

3.2.1 Architecture

Contrary to LSTMs, a GRU has no need for an output gate, as all past information is carried in the output

of the previous time step t− 1. To achieve this, the cell updates its internal state ht using an update gate

z and a reset gate r. The computation of ht is performed in three steps:

First, the reset gate r is computed. It decides how much of the previous hidden state ht−1 is “remem-

bered”, and therefore incorporated into ht. It is computed in the following way:

rt = σ([Wrx
t] + [Urh

t−1]) (3.1)

Here, σ is the logistic sigmoid function, Wr and Ur are learned weight matrices, x is the cell input and

ht−1 is the hidden state at time step t− 1.

In the next step, the update gate z is computed. It controls how much information from ht−1 is carried

over into the current hidden state ht. It acts similar to the memory cell in an LSTM and helps the GRU

remember long-term information. z is computed in a similar fashion to r:

zt = σ([Wzx
t] + [Uzh

t−1]) (3.2)

Analogous to Equation 3.1, Wz and Uz are learned weight matrices.

Once both gates are computed, the hidden state ht is updated in the following way:

h̃t = φ([Wx] + [U(r � ht−1]) (3.3)

ht = zht−1 + (1− z)h̃t (3.4)

In equation 3.3, the current memory content h̃t is calculated. Here, φ represents the tanh-function, � is

the Hadamard (elementwise) product, and W and U are once more learned weight matrices. Equation

3.4 then calculates ht using the update gate z to control the ratio of information carried over from the

previous hidden state ht−1 versus the information incorporated from the current memory content h̃t.

3.2.2 Evaluation

Since their proposal in 2014, GRUs have been quickly adopted and used in a multitude of scenarios.

While they are strictly weaker than LSTMs [17], Chung et al. [18] have found them comparable to

LSTMs in terms of performance.

12 3. MACHINE LEARNING FOUNDATIONS

In 2015, Jozefowicz et al. [19] examined how LSTMs, GRUs, and several dynamically generated archi-

tectures perform in various tasks. They found that GRUs outperform LSTMs in tasks such as arithmetic

integer computations and XML-modelling, while LSTMs outperform GRUs in a language modeling task

on the Penn TreeBank1.

Li et al. [2] have tested DeepGMG both with an LSTM and a GRU and found the results comparable.

In addition, the GRU is, thanks to its simpler structure compared to an LSTM, able to alleviate some of

DeepGMG’s problems that we discuss in section 4.4.2.

This, combined with the results of the research mentioned above, makes the GRU a suitable RNN core

for our domain-specific graph generative model.

1A treebank is a structured, annoted text corpus.

13

4 Deep Generative Models of Graphs

This chapter discusses the machine learning model introduced by Li et al. in March 2018 [2]. Since

the model is an integral part of the work in this thesis, and we modify and expand it throughout the

following chapters, we conduct an in-depth examination of its underlying mechanisms and mathematical

foundations.

4.1 Overview

DeepGMG use graph neural networks to learn probability distributions over graphs. They make no

assumptions about the structure of the graphs and can, therefore, in principle, be used to generate any

arbitrary graph.

This is achieved through a sequential generation process, which splits up the graph generation into a

series of structural decisions. During this process, nodes are generated one at a time and are connected

to the already existing part of the graph by creating edges one by one. Every action is influenced by

the history of structure building decisions before it, and therefore by the current state of the graph. One

example of this process is illustrated in Figure 4.1.

The distribution of information inside the graph is achieved through an information propagation process.

Add edge?
(yes/ no)

Add edge?
(yes/ no)

2

Add node (2)?
(yes/ no)

2

Pick node (0) to
add edge (0,2)

Add node (0)?
(yes/ no)

Add edge?
(yes/ no)

Add edge?
(yes/ no)

1 1

0 0

Add node (1)?
(yes/ no)

1

Pick node (0) to
add edge (0,1)

0

1

0

1

0

1

0

1

0

2

Add edge?
(yes/ no)

1

0

2

0 0

Generation steps

Figure 4.1: Depiction of the steps taken during the generation process, as taken from [2]. Used with

permission of Dr. Yujia Li.

14 4. DEEP GENERATIVE MODELS OF GRAPHS

start end

add node?

add node
to graph

add edge?
choose

target edge

add edge
to graph

no

yes

no yes

Figure 4.2: Flowchart of the sequential graph generation process. The three boxes highlighted in orange

perform predictions using the faddnode (left), faddedge (center), and fnodes modules (right).

4.2 Graph Generation Process

The generative model uses a sequential process to predict structure building decisions one by one. More

precisely, the decisions are made by three modules called faddnode , faddedge, and fnodes. The algorithm

works as follows:

(1) Sample whether to add a node of a particular type (in the following called “label”) or to terminate

the algorithm. If a node label is chosen, add a node v with the according label to the graph G.

(2) Sample whether an edge should be added to the newly added node. If not, go to (1).

(3) Sample the target node u for the edge to be added. Add the edge (u, v) to G. Go to (2).

Figure 4.2 illustrates this process. While this base version of the algorithm does not support labeled or

backwards edges, it can quite easily be extended to support these functionalities as well, as shown in

chapter 6.

After one iteration of this process, a sequence of decisions and consequently a corresponding graph is

generated.

4.3 Learning the Graph Generative Model

In order to compute and learn structure building decisions, the model computes a representation hG of

the graph G = (V,E). For that purpose, every node v ∈ V in the graph is associated with a node

embedding vector hv ∈ RH , where H ∈ N+. These node embeddings are initially computed based on

domain-specific inputs xv associated with v (e.g., the one-hot encoded node label):

hv = finit(Rinit(hV , G),xv) (4.1)

4.3. LEARNING THE GRAPH GENERATIVE MODEL 15

Here, hV is the set of all existing node embeddings, Rinit(hV , G) computes a graph representation1and

finit is an multi layer perceptron (MLP). The use of Rinit(hV , G) as input for the initialization process

prevents nodes with the same input features from having the same initial node embeddings.

The node embeddings will then be propagated along the graph to aggregate information on their local

neighborhood. Each iteration of this process consists of the following steps:

(1) A "message" vector is computed on each edge.

(2) Every node collects the message vectors of all its incoming edges.

(3) Every node recomputes its own node embedding based on its old representation, the incoming

message vectors, and the corresponding feature vectors of the incoming edges.

This process is characterized by the following equations:

av =
∑

u:(u,v)∈E

fe(hu,hv,yu,v), ∀u ∈ V (4.2)

h′v = fn(av,hv), ∀v ∈ V (4.3)

Here, fe(hu,hv,yu,v) computes the message vector from u to v and yu,v is a feature vector describing

the edge (u, v). In the extended model used in later chapters, this vector contains the edge label of (u, v).

In the second equation, h′v represents the updated node embedding. fn can be implemented as another

MLP, but lends itself to instead be implemented as a RNN core, since it needs to incorporate newly

gathered information into the node embedding, while at the same time preserving as much of the known

information as possible. In this thesis, we implement fn as a GRU, as suggested by Li et al [2].

One round of propagation is denoted as h′V = prop(hV , G). Multiple rounds of propagation allow for

information to travel through increasingly larger parts of the graph. In order to compute hG, the updated

node embeddings hv are then mapped to a higher dimensional vector, where fm is another MLP:

hG
v = fm(hv) (4.4)

This step allows for a higher dimensionality of hG, which in turn allows for a better representation of the

(compared to a node) high amount of information contained in the graph.

The final step in the computation of hG is a gated summation over all node embeddings contained in the

graph:

hG =
∑

v∈V
gG
v � hG

v (4.5)

1This graph representation is not the same as hG, but can be calculated identically to equation 4.5. The computation is,

however, performed by a different set of MLPs.

16 4. DEEP GENERATIVE MODELS OF GRAPHS

T rounds of propagation

Figure 4.3: Illustration of the graph propagation process (left), graph level predictions using faddnode and

faddedge (center), and node selection using the fnodes module (right), as taken from [2]. Used

with permission of Dr. Yujia Li.

A separate gating network, which can again be implemented as an MLP, computes gG
v = σ(gm(hv)) for

each node, where σ denotes the logistic sigmoid function.

In short, T rounds of propagation (Eq. 4.2 and 4.3) and the subsequent recomputation of the graph

representation vector (Eq. 4.4 and 4.5) are denoted as:

h
(T)
V = prop(T)(hV , G) (4.6)

hG = R(h
(T)
V , G) (4.7)

In order to predict structure building decisions, hG can now be used as input to the faddnode, faddedge

and fnodes modules. Figure 4.3 visualizes the application of these modules during the graph generation

process.

4.3.1 Probabilities of Structure Building Decisions

The sequential graph generation process follows the algorithm illustrated in Figure 4.2. Each of the

decision steps is modeled by one of the three modules described in this section.

(a) faddnode(G) This module predicts whether to add a node on the graph level and, if the nodes

are labeled, which label the new node should have. This is achieved by predicting a vector of node

label probabilities in which one entry indicates the termination of the algorithm. The probabilities are

computed as follows:

faddnode(G) = softmax(fan(hG)) (4.8)

Here, fan is an MLP that maps hG to the action output space, and the softmax function transforms the

output into a vector of probabilities.

4.4. EVALUATION 17

(b) faddedge(G, v) This module predicts the probability of adding an edge to a newly created node v.

Since this decision is made on the node level, the node embedding hv of v is also given as input:

faddedge(G, v) = σ(fae(hG,h
(T)
v)) (4.9)

fan is implemented as an MLP, σ is the logistic sigmoid function and h
(T)
v indicates hv after T rounds

of propagation.

(c) fnodes(G, v) This module first predicts a score su for each node u in the G. In the next step, the

softmax function is applied to the vector of all scores s:

su = fs(h
(T)
u ,h(T)

v), ∀u ∈ V (4.10)

fnodes(G, v) = softmax(s) (4.11)

fs is once more implemented as an MLP. In order to determine the target node for the edge predicted by

faddedge, the argmax function is then applied to fnodes(G, v).

4.4 Evaluation

Li et al. have evaluated their graph generative model in multiple experiments. This section briefly

illustrates the two experiments applicable to unconditional graph generation found in [2], as well as the

model’s performance in them. Subsequently, we give a general overview of the strengths and weaknesses

of the model, as found by Li et al.

4.4.1 Experiments

Generation of Graphs with Certain Topological Properties In the first experiment, the model

is trained on three sets of synthetic undirected graphs: Cycles, trees and Barabasi-Albert graphs,2 each

having between 10 and 20 nodes.

The model is compared against a regular LSTM trained on graph generating sequences and an Erdős-

Rényi random graph model [20]. Table 4.1 shows the results of this experiment. The graph generative

model distinctly outperforms the LSTM and the E-R-Model at generating cycles and trees and is able to

achieve a much smaller Kullback-Leibler (KL) divergence than those models.

Molecule Generation In the second experiment, the model is trained for the task of molecule gen-

eration using the ChEMBL [21] molecule database. The number of nodes of graphs in the data set is
2A Barabasi-Albert model generates scale-free graphs.

18 4. DEEP GENERATIVE MODELS OF GRAPHS

Data Set Graph Model LSTM E-R Model

Cycles 84.4% 48.5% 0.0%

Trees 96.6% 30.2% 0.3%

B-A Graphs 0.0013 0.0537 0.3715

Table 4.1: Percentage of valid samples for three models on data sets for cyclic graphs and trees, and the

KL-divergence3for Barabasi-Albert graphs.

restricted to 20, and the graph model is again compared against an LSTM trained on graph generating

sequences. The model is extended to support labeled edges, and the number of propagation steps T is

chosen form {1,2}. In this task, on average, the graph model produces 96.75% valid samples, while the

LSTM produces 88.3% valid samples.

These experiments show that the graph model is a powerful approach capable of outperforming conven-

tional graph generation models. Nevertheless, there are still a number of challenges facing it, which we

discuss in the next section.

4.4.2 Challenges

A primary challenge for the model is the generation of large graphs. Due to the nature of the sequential

generation process, such graphs produce long decision sequences. If available, more conventional forms

of graph linearization4 are typically 2-3 times shorter. This is a significant disadvantage for the graph

model, since long decision sequences make training more difficult. In this thesis, we try to alleviate this

problem by using domain-specific knowledge to combine multiple decision steps and generation process

loops into fewer, or even single steps.

Large graphs also pose challenges regarding the scalability of the information flow inside the model.

The number of propagation steps T used to propagate information along the edges of the graph is fixed

during training. To achieve sufficient information flow in large graphs, high T s would be required, which

in turn would negatively influence training speed and increase the model’s memory intensity.

Lastly, the constant addition of new node embeddings hv can lead to unstable training, more so than for

typical LSTM models. To alleviate this, Li et al. suggest to use a lowered learning rate.

3The Kullback-Leibler divergence is a distance measure between probability distributions, in this case between the degree

distributions of the Barabasi-Albert graph data set and the graphs generated by the three models.
4For example, in the case of molecule graph generation, SMILES strings can be used to specify molecules more efficiently.

4.4. EVALUATION 19

4.4.3 Conclusion

The deep generative model proposed by Li et al. has proved to be a powerful and novel approach for the

generation of arbitrary graphs. However, while it has shown promise in certain applications, it also faces

challenges, particularly at generating large graphs.

It has become clear that, in order to adapt this model for the creation of (potentially large) LLVM code

graphs, substantial structural changes to the model are necessary.

20 4. DEEP GENERATIVE MODELS OF GRAPHS

21

5 LLVM

The LLVM1 project encompasses a variety of modular compiler and toolchain technologies aiming to

deliver fast compile times as well as useful debug information for a variety of popular CPU architectures

[22]. This chapter gives a brief overview of the LLVM infrastructure and IR. We then analyze how to

map the IR to a graph representation usable to train our domain-specific graph generative model.

5.1 Overview

LLVM originated as a research project at the University of Illinois in 2000. Since then, the project

has found success in a wide variety of commercial [23] and open-source [24] projects and has been

extensively studied and used in academic research [25][26]. LLVM provides components for every part

of the compiler toolchain.

Front end Since version 2.6, LLVM provides a native compiler frontend for languages in the C family

(C, C++, etc.) through Clang, which was designed to act as a replacement for the GNU Compiler

Collection (GCC). Consequently, Clang aims to support a wide range of GCC features and extensions

[3]. Frontends have also been written for a variety of other languages, including Go [27], Javascript [28],

and Ruby [29].

Optimizer The LLVM Core libraries contain the modular LLVM optimizer and analyzer opt, which

works atop LLVM IR. Optimizations are implemented as passes that traverse the IR to eighter transform

it or collect information usable by subsequent passes. In order to extract the necessary information for a

mapping of IR to a graph representation, we implement an optimization pass as well.

Back end The transformation of LLVM IR into target-specific machine code is handled by the LLVM

target-independent code generator. It provides a range of reusable components, including target de-

1Despite its appearance, the name “LLVM” is not an acronym, but the full name of the project. While it originally stood for

“Low-Level Virtual Machine”, this acronym has officially been removed to avoid confusion, since LLVM now contains a

22 5. LLVM

scription interfaces and target-independent algorithms for various phases of native code generation (e.g.,

register allocation). At the time of writing, it supports many mainstream architectures, including x86,

x86-64, and ARM, and is extendable to provide support for arbitrary target architectures.

Alongside these components, LLVM also encompasses a native debugger [30] and various other subpro-

jects positioned at various steps of the compile chain [31][32] and outside of it [33].

5.2 Intermediate Representation

The LLVM IR lies at the core of LLVM and is the code representation all compile-time optimizations are

performed upon. It is a target-independent, static single assignment (SSA) language; hence, every value

is immutable once assigned. Assigned values are stored in virtual registers, which are, unlike physical

registers, unlimited in size and amount. The LLVM IR is representable in three different forms: As an

in-memory compiler IR, bitcode, and a human-readable assembly language representation. A line of

LLVM IR in human-readable form may look like this:

%result = fmul float %var, 4.0

In this example, the value of the virtual register %result is set to the result of the multiplication of the

contents of %var and the literal value 4.0. The following sections will discuss how LLVM IR can be

mapped to a graph representation.

5.2.1 Vertex Labels

The first task in designing a mapping from LLVM IR to a graph representation lies with determining

the set of possible vertex2 labels. For instruction opcodes, this is straightforward: Every opcode can be

mapped to a corresponding node label. The same holds true for most other IR language constructs, such

as structs, vectors, and arrays. The first non-trivial case arises with integer types, a typical usage of which

may look like this:

%result = add i32 4, %var

Most languages differentiate between a small number of different integer bit-widths, e.g., 8, 16, 32, and

64 bit. In LLVM IR, however, integers can be of every bit width from 1 to 223−1. To limit the number of

variety of different subprojects.
2In the following, the terms “vertex” and “node” will be used interchangeably.

5.2. INTERMEDIATE REPRESENTATION 23

add

int32 udiv

op0 op1

(a)

add

udiv

add

mul sub

op op

op op

(b)

Figure 5.1: Graph representation of an add instruction (a) and an ambiguous , and therefore rejected,

representation of instructions with variable operand counts (b).

possible node labels, only the nine integer types found in the training data set3 have been implemented:

i1, i2, i6, i8, i16, i31, i32, i33, and i64.

Mappings for all other IR concepts are mostly straightforward; their implementation, as well as the

implementation of edge labels, will be discussed in the following sections. A complete list of all 91

implemented node labels is located in Appendix A.1.

5.2.2 Instructions

The LLVM IR language reference [34] specifies 64 different instructions opcodes, 47 of which are imple-

mented in this thesis. The remaining 17 opcodes do not appear in the training data set and are, therefore,

omitted. For a complete list of the implemented opcodes, please refer to Appendix A.2.

With the exception of unreachable, all instructions perform calculations on several constant or vari-

able (i.e., previously calculated) operands. We map constant values to nodes (or in the case of com-

plex values, to subgraphs) labeled with the type of the corresponding constant. Literals are additionally

labeled with their normalized4 value. Figure 5.1a illustrates the usage of both constant and variable

operands.

Fixed operand instructions Of the 47 implemented opcodes, 43 have a fixed number of operands

between zero and four, which allows for a straightforward mapping of operand order to the graph repre-

sentation. We connect each operand to its instruction node with an edge labeled according to the operands

position, e.g., the second operand of an add instruction is connected with an edge labeled “op1”.

3Section 7.1 discusses our training set in detail.
4The details of this normalization are discussed in section 6.3.2.

24 5. LLVM

add

op

opmul

udiv op

add

op sub

op

op

op

op

op0 op0

op0 op0

(a)

call

op

op

function

add

int32

op

op

op0

op0

op0

(b)

Figure 5.2: Graph representation of the usage of operand nodes (a) and a call instruction (b). The node

label “operand” is abbreviated with “op”.

Variable operand instructions The phi, switch, call, and getelementptr instructions

differ from other opcodes in that they possess a variable number of operands. Directly mapping operand

order to edge labels is impractical for these instructions, as it would introduce a potentially unlimited

number of new labels.

As a first approach, we tried directly linking the operands in order of appearance. This, however, leads

to ambiguities when multiple instructions perform calculations on the same virtual registers. Figure 5.1b

illustrates this problem with two add5 instructions. IR that produces such a graph may look like this:

%add1 = add i32 %udiv0, %mul0

%add2 = add i32 %udiv0, %sub0

The code establishes %mul0 and %sub0 as the second operands of %add1 and %add2, respectively.

However, this information is lost in the graph representation, as it is no longer obvious which operand

belongs to which add instruction. The solution lies in the introduction of a new node and edge label,

which we denote as “operand” node and “operand” edge. For the first operand, we connect a node

with this label to the instruction; for each subsequent operand, we instead attach such a node to the last

operand node in the chain. Additionally, we connect each operand node to the corresponding variable

operand with an “op0” edge. Figure 5.2a shows the code mapped to a representation using these labels.

The opcodes call, switch, and phi also posses a default operand. A call instruction, for example,

is always linked to a node representing the called function. Since they are present in all instruction

instances, we connect default operands directly to instructions with an “op0” edge, as shown in Figure

5.2b.
5add instructions have a fixed number of operands; however, their usage simplifies the explanation of this problem. In the

actual implementation of the graph mapping, add instructions are connected directly to their operands with edges labeled

“op0” and “op1”, as shown in Figure 5.1a.

5.2. INTERMEDIATE REPRESENTATION 25

mul

add

ret

cf0

cf0
op0

op0

cf0

op1

op1op0

(a)

br

add store

icmp

cf0

cf0 cf1

op0

cf0 cf0

(b)

Figure 5.3: Graph representation of control-flow transition for non-diverting instructions (a) and br in-

structions (b).

5.2.3 Control-Flow

Order of execution is an IR concept that we map to the graph representation through the usage of control-

flow edges. For most instruction types, this is achieved by directly linking them to each other in order of

appearance, as shown in Figure 5.3a. We represent the entry-point of an LLVM function in a similar way,

by creating a “function” node with an outgoing control-flow edge to the first instruction of the function.

Two opcodes, though, require a different approach.

Branch instructions Depending on whether a branch is conditional, it can transfer the control-

flow to one or two locations in the program; we represent these with the instruction nodes that execute

immediately after the jump. The following IR implements a conditional jump:

br i1 %icmp0, label %7, label %8

%add0 = add i32 5, 3 ; <label>:7:

...

store i32 2 i32* %alloca0 ; <label>:8:

Contrary to many other languages, LLVM declares jump labels implicitly; they appear on the leader

of each basic block. Basic blocks themselves are declared implicitly as well; they begin at the first

instruction that obtains the control-flow after a so-called “terminator instruction” and extend until the

next terminator instruction. Out of the implemented opcodes, return, br, and switch constitute

terminator instructions.

Since br instructions may have multiple outgoing control-flow edges whose order carries structural

information, it is not sufficient to label both of them in the same way. Consequently, we introduce the

“cf1” label for control-flow edges, which enables us to map the order of branch targets to our graph

representation, as depicted in Figure 5.3b.

26 5. LLVM

switch

mul phi

op op

int32 zext call

int32

op0

cf1

cf0

cf1

op0
cf0 cf0

op0cf0

cf0 cf0cf0

cf0 cf0

Figure 5.4: Graph representation of a switch instruction with two case values.

Switch instructions Whereas a br statement allows for a maximum of two jump targets, switch

instructions can transfer the program’s control-flow to one of many possible locations. They are, as

mentioned in section 5.2.2, variable operand instructions: Additionally to a comparison variable, they

may possess an arbitrary amount of value-label operand pairs. We map these pairs to operand nodes

connected with “cf1” edges. Each operand node is then linked to the value node and the jump target

with edges labeled “op0” and “cf0” respectively. Figure 5.4 shows the graph presentation of a switch

statement with a default jump target and two case values.

5.2.4 Types

Every global variable, function argument, and instruction result in LLVM has a type associated with it.

In the human-readable representation of the IR, these types are explicitly declared in front of the variable

or instruction opcode. To keep graph sizes manageable, we omit type nodes wherever doing so does not

introduce ambiguities. For most instructions, this is easily achieved, as their result type is a function of

the type and value of their operands, and can therefore be deduced from information already present in

the graph. As an example, let us consider the following extractelement instruction:

%result = extractelement <4 x i32> %vec, i32 0

The first operand of an extractelement instruction is required to be a vector, and its element type

constitutes the instruction’s result type. In this case, the result type is i32.

Implicitly defining types is, however, not possible for function arguments, global variables, and certain

instructions6. In the following part of this section, we therefore discuss how to represent LLVM types as

subgraphs.

6The following opcodes require explicit type definitions: trunc, zext, bitcast, sext, alloca, sitofp, fptoui,

fpext, fptrunc, fptosi, uitofp, ptrtoint, and inttoptr.

5.2. INTERMEDIATE REPRESENTATION 27

fpext

float double

cf0

op0 ty

cf0

(a)

vector

i8

ty

(b)

pointer

half

ty

(c)

Figure 5.5: Graph representation of an fpext instruction (a), the vector type7<8 x i8> (b), and the

pointer type half* (c). The edge label “type” is abbreviated with “ty”.

Integer and floating-point types As mentioned in section 5.2.2, integer and floating-point literals

can be mapped to a single node labeled with their type. The same holds true when representing them as

types. With the introduction of the edge label “type”, which allows us to distinguish types from constant

values, we are able to map simple types to the graph representation. Figure 5.5a showcases this based on

a fpext instruction.

Vectors, arrays, and pointers Both vectors and arrays are data structures which hold constant val-

ues. However, whereas vectors may only contain primitive data types such as i32 or float, arrays may

consist of elements of any type with non-zero size. Albeit they are semantically distinct, we represent

them both with a root node connected to their element type with a type edge, as depicted in Figure 5.5b.

We employ the same approach to represent LLVM pointers. (Figure 5.5c).

Structures To allow for collections of data types in memory, LLVM incorporates the structure

type. In our graph representation, we differentiate between the declaration of a structure and its usage as

a type or constant value. The IR for a structure declaration may look like this:

%struct = type { [3 x <16 x i32>], [64 x i8] }

Here, two subtypes are declared: an array of vectors of i32, and another array of i8. We map this

to a structure node that, through the usage of type edges, acts as a central hub for all subtypes, as

depicted in Figure 5.6a.

In order to represent instances of such a structure, we directly connect them to the corresponding decla-

ration with a “ty” edge (Figure 5.6b).

7Although the size 8 of the vector is not depicted in this graphical representation, during training, we give this information to

the model as part of the domain-specific input vector xv , as discussed in section 4.3.

28 5. LLVM

structure

array

array

vector i32

i8

ty

ty

ty ty

ty

(a)

structure

i8

float

bitcast

i32

ty

ty

ty

op0

cf0

cf0

(b)

Figure 5.6: Graph representation of structure declaration (a) and a bitcast instruction utilizing a pre-

viously declared structure as target type (b).

5.2.5 Constant Values

Instructions can operate on both variable and constant operands, as established in section 5.2.2. In this

section, we examine how to map the latter to subgraphs representing the corresponding value.

Integer and floating-point values We map elementary literals to single nodes labeled with the

respective type. Their value is given to the generative model as part of the input vector xv. For details

on this process, please refer to section 4.3.

Null pointers and undefined or zero-initialized values LLVM provides the keywords null,

undef, and zeroinitializer to initialize constant values in different ways:

• null is reserved for pointer values and associates them with no specific address.

• undef indicates an unspecified bit-pattern and is used to initialize arbitrary constants. Typically,

this keyword emerges from variable declarations without initialization, e.g., “int i;” in C.

• zeroinitializer initializes a value of any type, including aggregate values, to zero.

We map constants initialized in one of these three ways to nodes labeled with the corresponding key-

word. This representation alone, though, does not establish the constant’s type, which we consequently

incorporate into the graph as well.

Figure 5.7a illustrates this on the basis of a mul instruction with two constant i32 operands, one of

which is initialized with the undef keyword.

Vectors and arrays We employ the same approach to represent both constant vectors and constant

arrays (hereafter also referred to as lists). As a first idea, we simply mapped them to a root vector

or array node connected to a chain of constant values, as depicted in Figure 5.7b. This approach

5.2. INTERMEDIATE REPRESENTATION 29

mul

i32 undef

i32

op0 op1

ty

cf0

cf0

(a)

vector double double double
op0 op0 op0

(b)

array

array array

vector

vector

vector

vector

i32

i32

i32

i32

op0

op0

op0

op0

op0

op0

op0

op0

op0

op0

(c)

array

array array

vector

vector

vector

vector

i32

i32

i32

i32

array vector

i32

lh

ls

lh

ls

lh

ls

lh

lh

lh

lh

ty ty

ty

(d)

Figure 5.7: Usage of an undefined i32 constant (a), a rejected graph representation of constant vectors

and arrays (b) (c), and the adjusted version of this representation (d). The edge labels “list

head” and “list successor” are abbreviated with “lh” and “ls”, respectively.

has two problems: Whenever all elements of the chain are initialized by undef or a similar keyword,

their type is not reconstructable from the graph. Simply creating type nodes for every value that is

initialized in this way is not preferable either, as it would generate redundancies and increase graph

sizes substantially. Furthermore, this representation is ineffective when applied to nested arrays/vectors,

such as the in Figure 5.7c depicted [2 x [2 x <1 x i32>]]. Even though the graph produced by

this mapping still retains all necessary information, it fails at efficiently representing the relationships

between nodes. Especially larger subgraphs would require many rounds of propagation to sufficiently

contain the structural information of the nested list inside their node embeddings.

Therefore, we adjust the mapping in two ways: To resolve the problem of missing types, we associate

the first node of a constant list with a subgraph representing its type. Additionally, we introduce two

new edge labels, “list head” and “list successor” to more effectively represent nested lists. The former of

these labels links the root node with the first element, whereas the latter connects all subsequent elements.

Figure 5.7d incorporates both of these adjustments.

Global variables Unlike most other languages, LLVM requires global variables to be declared as

constant values. We map them to our graph representation by creating a ”global” node which we connect

to the respective constant value with an edge labeled “op0”, as depicted in Figure 5.8b.

30 5. LLVM

call

function op gep

op

global

op

i64

i64

op0 op

op

op0op0

op

op0

op0

cf0

cf0 op0

cf0

(a)

global

undef

float

op0

ty

(b)

Figure 5.8: Graph representation of a constant getelementptr instruction used as operand of a call

instruction (a), and the global variable @A.j = global float undef (b). The node

label “getelementptr” is abbreviated with “gep”.

Constant expressions LLVM supports a range of constant expressions, which are instructions op-

erating on constant values that themselves are treated as constant values. They function in the same way

as their non-constant counterparts, e.g., a constant getelementptr operation may look like this:

%result = call i32 @A(i1* getelementptr ([5 x i1], [5 x i1]* @glo, i64 0, i64 0))

In this example, an i1* pointer is extracted from the global variable @glo of type [5 x i1]*. We

represent constant expressions in the same way we represent normal instructions, and connect them to

their parent instruction with the appropriate operand edge. Figure 5.8a depicts the getelementptr

instruction shown above, as well as a call instruction that operates on it.

5.2.6 Unsupported Features

In order to correctly synthesize LLVM programs, it is necessary to transfer them from one of their

original representations (e.g., human-readable IR) to our graph representation and vice versa. Ideally,

this transition should be achievable without information loss, e.g., the following should hold true:

x = f−1(f(x)), ∀x ∈ X (5.1)

Here, X is the set of all possible LLVM programs, and f is the transformation-function to our graph

representation. As established in section 5.2.2, we only implemented the LLVM features exhibited by

the kernels in our data set. For example, we forgo the implementation of functions with a variable number

of arguments, since no kernel utilizes this IR feature. However, even for the kernels in the data set, we

are unable to satisfy equation 5.1, as some IR features are not carried over to the graph representation.

5.2. INTERMEDIATE REPRESENTATION 31

For an example of the information loss occurring when translating an LLVM program to our graph

representation and back to IR, please refer to Appendix A.3.

To explain why we omit some features of the LLVM IR, we first need to reiterate that one of the main

goals of our graph representation is to keep graph sizes as small as possible. Consequently, instead of

trying to satisfy equation 5.1, we omit all features that are not required to satisfy the following equation,

where ≡ denotes equivalency and Y is the CLgen data set [1]:

y ≡ f−1(f(y)), ∀y ∈ Y (5.2)

This approach requires us to define equivalency between LLVM programs. Fortunately, LLVM provides

the tool llvm-diff, that compares the structure of two LLVM modules and ignores “[i]nsignificant differ-

ences, such as changes in the ordering of globals or in the names of local values” [35]. With this, we

define two LLVM programs llvm_0 and llvm_1 to be equivalent, when the bash command

llvm-diff llvm_0 llvm_1

produces no output, provided the LLVM environment is installed correctly on the test computer. Using

this method, we are able to filter out a sizeable amount of information, that, while being helpful for the

optimizer, is not required for the compilation of an LLVM program.

The filtered information can be divided into two main groups: target data and attributes. The former

contains information about the target architecture; the latter acts as additional information for optimiza-

tion passes or the code generator. Both are unrelated to the semantics of the program itself, and can,

therefore, be omitted for our purposes.

32 5. LLVM

33

6 Adapting the Generative Graph Model

In order to synthesize valid LLVM IR through the approach described by Li et al. [2], substantial struc-

tural changes to the model are required, as established in section 4.4. In this chapter, we discuss these

changes in detail. First, we evaluate which parts of the model need to be modified, before giving a high-

level overview of our extended model and graph generation algorithm. In the last part of the chapter, we

discuss mathematical foundations and implementation details of our approach and give an overview of

the baseline model we use for evaluation purposes in chapter 8.

6.1 Extenstion Points of the Base Model

To briefly reiterate, the structure of the generative graph model can roughly be divided into two phases:

1. Information propagation between nodes, followed by the computation of the node embeddings hV

and the graph representation hG.

2. Prediction of structure building decisions using hV and hG.

To accommodate the domain-specific properties of LLVM graphs, we focus on the parts of the model

that perform the steps described in phase 2, while leaving the parts involved in phase 1 unchanged1.

More precisely, we modify the modules faddnode, faddedge, and fnodes and introduce new modules where

necessary.

Modification of existing modules We modify the first of the three base modules, faddnode, in

order to account for the high number of node labels in our graph representation. More concretely, we

split it into the submodules faddinstruction, faddtype, faddconstant and fpredicate. These four modules are

structurally similar to faddnode; however, each of them only predicts a subset of all node labels. With this

approach, we separate the creation of instruction nodes, type nodes, constant nodes, and predicates2 on

a structural level, which allows us to devise a more robust graph generation algorithm.

1With the exception of extending the input of Rinit by a value representing type sizes and the numerical value of constants,

as discussed in sections 5.2.4 and 5.2.5, respectively.
2Predicates specify how icmp and fcmp instr. compare their operands, e.g., the predicate eq indicates a test for equality.

34 6. ADAPTING THE GENERATIVE GRAPH MODEL

Since we design our algorithm specifically for the construction of LLVM graphs, we are able to make

strong assumptions about the structure of certain parts of the graph. This allows us to map multiple

actions to one decision step, or even to forgo certain decisions entierly. The “add edge” decision step

is most affected by this; with one exception, we are able to derive the decision whether to add edges to

a newly created node from the current state of the graph. Consequently, we rarely use faddedge in our

model. However, since faddedge predicts binary node level (BNL) decisions, we reuse its structure in a

range of new modules that we discuss below.

The function of the last module, fnodes, can be achieved more efficiently by domain-specific modules,

which is why we omit it entirely. However, similarly to faddedge, we construct new modules by reusing

its internal structure.

Introduction of new modules Unlike Li et al. [2], who designed their model around arbitrary

graphs, our narrowly defined field of application allows us to incorporate domain-specific modules into

the graph generation process. With faddinstruction, faddtype, faddconstant, and fpredicate, we already dis-

cussed four such modules. In order to adapt the model to the IR’s structure, we introduce three additional

modules that predict LLVM-specific structural decisions on the graph level: faddglobal, faddstructure and

faddfunction. These modules predict whether to add additional global variables, structures, or functions

to the graph, respectively. Whenever one of them produces a positive output (i.e., “true”), a subroutine

in the graph generation algorithm creates the corresponding graph structure.

As mentioned above, we also introduce several modules that are derived from faddedge. Concretely,

these modules are foperand, fconstant, and fbranchedge. Each of them predicts binary decisions on the

node level. The foperand module decides whether to add a new operand to a variable operand instruction,

whereas fconstant predicts if an operand should be a constant value or a variable. The last of these

modules, fbranchedge, computes whether a control-flow edge added to a br instruction should be labeled

“cf0” or “cf1”. Explicitly deciding the branch edge order in this way allows for branches where the “cf0”

edge connects to instructions that are generated at a later point in time than the instruction connected

with a “cf1” edge.

Additionally, we substitute the general-purpose module fnodes, which in the base model predicts edge-

targets, with three domain-specific modules that each fulfills a more specific task:

• The selection of control-flow edge- and operand edge-targets is handled by finstructionedge.

• Whenever the label “structure” is chosen during type creation, fstruct predicts which structure

declaration is chosen.

6.2. GRAPH GENERATION PROCESS 35

• Lastly, whenever a call instruction calls a locally defined function, flocalfunction selects the

function node.

The modules discussed up until now perform tasks that, in principle, are achievable through the base

model as well, though in a less efficient way. However, the generation of LLVM graphs requires func-

tionality that is not provided by the base model at all. More precisely, we require the ability to predict

numerical values as well as externally defined OpenCL and LLVM functions.

In order to address the first shortcoming, we introduce two new modules fnumber and ftypenumber.

Whereas the former calculates numerical values of integer and floating-point constants, we utilize the

latter for the prediction of integer literals in types, e.g., the 8 in <8 x i32>. This distinction is ne-

cessitated by the discrepancy between the value ranges of constant literals and type-sizes; e.g., whereas

constants may represent almost any value, types only contain (typically small) non-negative integers.

We overcome the second shortcoming through the introduction of the module fexternalfunction. To ex-

plain why the prediction of externally defined OpenCL and LLVM functions is necessary, we have to

examine the call instruction, which can call both locally and externally defined functions. In the case

of local functions, the selection of callable functions is limited to all functions that have been defined in

the current graph. This is not the case for external functions, which is why we require a separate module

for them. When a call to an external function is about to be generated, fexternalfunction selects a function

out of 920 LLVM and OpenCL functions present in our training set.

6.2 Graph Generation Process

Our modified model sacrifices the simplicity of Li et al.’s general-purpose approach to more effectively

synthesize LLVM graphs. Consequently, our graph generation algorithm is far more complex than the

one of the base model (Figure 4.2). In this section, we introduce the concept of “active nodes”, discuss

each subroutine of the generation process, and conclude with an analysis of the main algorithm.

6.2.1 Active Nodes

In the base model, any node level action, e.g., any action that takes a node embedding hv with v ∈ V
as input, performs its calculations on the node that was added last to the graph. Our model, in contrast,

often “returns” to a node after performing several actions not directly related to that node. For example,

we may generate an “add” node u, construct a subtree representing its first operand, and then create an

edge (u,w) to a previous instruction w that represents u’s second operand. Because of this, we introduce

36 6. ADAPTING THE GENERATIVE GRAPH MODEL

start

faddstruct
add “structure”
node to graph

construct type

faddglobal
add “global”

node to graph
construct

constant value

faddfunction
unfinish.
phi ops?

end

foperand add operand finstructionedge

connect to
target with
“op1” edge

add “function”
node to graph

faddinstruction

construct type

first instr.?

faddedge finstructionedge switch/br?

fbranchedge
connect to
target with
chosen label

“switch”
def. op?

foperand

add “operand”
node to graph

connect “cf1”
to last “switch”

chain node

construct
constant value

“switch” now
has default op

connect to
target with
“cf0” edge

fconstant

connect to
“function” node
with “cf0” edge

fexternalfunctionflocalfunction

add “function”
node to graph

connect to
“function” node
with “op0” edge

connect to
“function” node
with “op0” edge

function
ops. left?

add operand

add operand

finstructionedge

connect to
target with
“op1” edge

add “phi”
to unfished
“phi” ops

foperand add operand
add branch

edge
add branch

edge

add chosen
instruction

node to graph

add operand

var. op.
instr.?

more
operands? add operand

foperand add operand

yes

no

yes

no

no no

yesno

yes

yes

no

arg.

other no

yes

br

switch

no

yes

yes

no

no

yes

no

call
instr.

yes

no

yes

phi instr.all other
instr.

branch instr. yes

no

other

switch instr.

other instr.

no

yes

yes

yes

no

no

no

Figure 6.1: Flowchart of our modified graph generation process. Blue elements signify subroutines.

6.2. GRAPH GENERATION PROCESS 37

the concept of an active node, which represents the node v whose embedding hv will be used whenever

node level actions are performed. During graph generation, we change the active node to the last added

node whenever a node is generated, as well as to other nodes whenever necessary. In the example above,

we set u as the active node after the creation of the first operand.

6.2.2 Subroutines

For clarity, we abbreviated multiple procedures in Figure 6.1 with blue boxes. In order to comprehensibly

discuss our modified graph generation algorithm in the next section, we first examine each of those

subroutines, as well as the modules they use.

Construct type subroutine The generation of type-subgraphs is required numerous times during

graph synthetisation; Figure 6.2 depicts a flowchart of this process. We differentiate between structure

declarations and other type declarations.

For structure declarations, the process is straightforward: The foperand module predicts whether to add

another subtype to the structure, which is, in the case of a positive outcome, constructed trough recur-

sively executing the “construct type” routine (When entering “construct type” in this way, the subprocess

is not considered to be a structure declaration). The inquiry of foperand and the subsequent type genera-

tion continues until foperand produces a negative outcome. This allows for empty structure declarations,

which are valid in LLVM IR.

For non-structure types, we first predict one of 17 possible type labels through faddtype. Depending on

the result, we construct the type in different ways: If “structure instance” is chosen, we select a structure

declaration node through fstruct. In the next step, we create a type edge from the start node (the node

that was active before the “construct type” routine was entered) to the chosen structure node. In the

start
struct.
decl.?

foperand

construct type

faddtype

fstruct

connect start
node to chosen
structure (“ty”)

end

ftypenumber

add appropriate
node to graph

connect to
start node

with “ty” edge
construct type

add appropriate
node to graph

connect to
start node

with “ty” edge

yes

yes

no

struct

no

vector,
array

pointer
pointer,
int, fp

int,
fp

Figure 6.2: Flowchart of the “construct type” subroutine referenced in Figure 6.1.

38 6. ADAPTING THE GENERATIVE GRAPH MODEL

following, we call the node which is active when a subroutine is entered “start node” and denote it as vs.

In the case faddtype predicts one of the two labels “vector” or “array”, we first predict the size of the list

using ftypenumber. We then create an appropriately labeled node v, as well as the type edge (vs, v). The

previously predicted integer value is used as input for Rinit during the initialization of v (please refer to

section 4.3 for details). In the last step, we construct the subtype of the list by recursively executing the

“construct type” routine.

Two additional cases may occur: Eighter faddtype predictes the “pointer” label or one of 12 different

floating-point or integer labels. In both cases, we first create an appropriately labeled node v and connect

the starting node to v with the type edge (vs, v). Additionally, if “pointer” is the selected label, we create

the pointer’s subtype by recursively executing the “construct type” routine.

Construct constant value subroutine Similarly to types, constant values may be constructed at

multiple stages of the graph generation process. When this subroutine is entered, the parent step passes

along an edge label k, which we use to label the edge connecting the start node vs to the first node

generated by this routine. The value of k depends on the context in which the routine is entered, e.g.,

when generating the first operand of an add instruction, we pass along the label “op0”. The first step

of the generation process consists of predicting one of 23 possible node labels through the faddconstant

module. Depending on the chosen node label, we generate the constant value in different ways.

In the case that one of the labels “undef”, “null” or “zeroinitializer” is selected, we add a node v with

the corresponding label to the graph and connect it to the start node with an edge (vs, v) labeled k. Since

this node contains no type information, we additionally execute the “construct type” routine.

start faddconstant

add appropriate
node to graph

connect to start
node with ap-
propriate edge

construct type

fnumber

add appropriate
node to graph

construct list

add appropriate
node to graph

add operand

construct type

more
operands?

add operand

foperand

add operand

end

connect to start
node with ap-
propriate edge

undef,
null, zi.

int, fp vector,
array

constant expressions

cast
expressions

select-, icmp
expression

yes

getelementptr
expression

yes

no

Figure 6.3: Flowchart of the “construct constant value” subroutine referenced in Figure 6.1.

6.2. GRAPH GENERATION PROCESS 39

If instead, one of 12 integer or floating-point labels is selected, we predict its numerical value with the

fnumber module. Subsequently, we once more create a node v with the respective label and connect it to

the start node vs with an edge (vs, v) labeled k. The predicted numerical value is given to the model as

input to Rinit.

Since the generation of constant vectors and arrays is somewhat complex, we execute a separate “con-

struct list” routine whenever one of the two associated labels is chosen. When entering the routine, we

pass along k (we discuss the reason for this below). The remaining six labels predicable by faddconstant

all represent constant expressions. Three of them, “bitcast”, “icmp”, and “inttoptr”, are structurally sim-

ilar and can, therefore, be generated in the same way. If one of these labels is selected, we create a

node labeled with it and execute the “add operand” routine a number of times equal to the number of the

expression’s operands.

Out of the three remaining labels representing constant expressions, two have fixed operands (“select”,

“icmp”) and one has variable operands (“getelementptr”). We construct them by generating as many

operands as required by their opcode and as predicted by foperand, respectively.

Construct list subroutine As discussed in section 5.2.5, lists may be nested, which makes their

generation process somewhat complex compared to other constant values. Fortunately, we are able to

once more apply the same approach for the generation of both constant vectors and arrays. When calling

the “construct list” routine, the caller (either “construct constant value” or “construct list” itself) passes

along an edge label k, which is used to connect the first generated node to the start node.

start

called re-
cursively?

ftypenumber

add appropriate
node to graph

connect to start
node with ap-
propriate edge

called re-
cursively?

construct type

fconstant

is subtype
list?

construct
constant value

add appropriate
node to graph

connect to
active node

construct list

elements
left?

end
yes

no

no

yes

no
yes

otherundef,
zeroinitializer

yes

no

Figure 6.4: Flowchart of the “construct list” subroutine referenced in Figure 6.1.

40 6. ADAPTING THE GENERATIVE GRAPH MODEL

Upon entering the routine, we first check whether it was called recursively, indicating the generation of

a nested list. If this is not the case, we determine the list size through the ftypenumber module. If the

routine was called recursively, this step is not necesessary since all type information is provided by the

caller (we discuss this in detail below). Following this step, we create a “vector” or “array” node v, and,

if computed, pass the list size to Rinit. We connect the generated node to the start node vs through an

edge (vs, v) with the label k. If “construct list” is not called recursively, we subsequently generate the

lists element type by executing the “construct type” routine. This concludes the construction of the list

base; the next task is the generation of the list’s elements.

To distinguish between simple and nested lists, we examine the previously calculated element type (if the

routine is called recursively, the caller passes this type information to the callee). If the element type is

neither a “vector” nor an “array” type, we construct the list element by executing the “construct constant

value” routine, passing along the edge label “list head” as argument (For details on why this edge label

is necessary, please refer to section 5.2.5). If, however, the element type is a list type itself, we predict

whether the corresponding constant value is undefined or zero-initialized through the fconstant module.

To accomplish this, we first tried to apply a mask to fconstant that nullifies all outputs not representing

either “undef”, “zeroinitializer”, “vector” or “array”. This approach led to an overrepresentation of

undefined/zero-initialized list elements in synthesized graphs when compared to the graphs in the training

data set. Therefore, we chose to instead check specifically for “undef” and “zeroinitializer”, and treat all

other outputs as an indication for a regularly initialized constant value. With this method, the model is

able to learn the probability of undefined/zero-initialized list elements that exists within the training set.

If either “undef” or “zeroinitializer” is selected by fconstant, we add a corresponding node v to the graph

and connect it to the base node vb with a “list head” edge (vb, v). Since the lists global type information

is already contained in the graph, we are able to forgo the local type generation of v.

If neither “undef” nor “zeroinitializer” is selected, we generate the list element by recursively executing

the “construct list” routine. We pass two arguments to the routine: First, the edge label “list head”, which

is used to connect the resulting list to the current list base node. Additionally, we pass along the subtype

of the previously predicted element type (e.g., if we earlier predicted the type [3 x <16 x i32>],

we pass the type <16 x i32>), thereby allowing the routine to use this information for the process

described in the previous paragraph. With this, one list element is generated; we now set the node which

was added to it first as the active node. Depending on whether the routine is executed normally or re-

cursively, we determine the remaining number of elements to be generated with the list size predicted by

ftypenumber or by the type information provided by the caller, respectively. However, for all subsequent

elements, we substitute all uses of the edge label “list head” with “list successor”.

6.2. GRAPH GENERATION PROCESS 41

start
first op of
icmp/fcmp?

fpredicate

add appropriate
predicate

node to graph

connect to start
node with ap-
propriate edge

var. op
instr.?

add “operand”
node to graph

connect to
start node

with “op” edge

fconstant
construct

constant value

finstructionedge

connect to
active node

with apt. edge

end

no

yes

yes

no

no

yes

Figure 6.5: Flowchart of the “add operand” subroutine referenced in Figure 6.1.

Add operand subroutine This subroutine handles the generation of instructions operands, includ-

ing constant instructions, i.e., constant expressions. When it is executed, the caller passes along the

parent instructions opcode as well as the edge label k, which we use to connect the resulting operand to

said parent instruction. Additionally, a predefined LLVM type t may be passed by the caller. We explain

the reason for this below.

We first address a special case: If the routine is executed in order to generate the first operand of an

icmp or fcmp instruction, the result is required to be a predicate. We, therefore, select one of 17

possible predicates through the fpredicate, add an accordingly labeled node v to the graph, and connect it

to the parent instruction (i.e., the start node) vs through an edge (vs, v) that we label k.

For all other argument pairs, we first check whether the passed opcode belongs to a variable operand

instruction. If this is the case, we create an “operand” node and connect it with an incoming “op”

edge to eighter the parent instruction, or if it already has at least one operand, to the last node in the

chain of “operand” nodes connected to the parent instruction. The procedure then converges, making

the following steps identical for both variable and fixed operand instructions. We proceed by predicting

whether the resulting operand is constant through the fconstant module. If this produces a positive result,

we handle the operand generation through the “construct constant value” routine, passing k as argument.

A negative result from fconstant, however, indicates a variable operand. In this case, we select a node v

with the finstructionedge module and connect it to the active node va (either the parent instruction or the

added “operand” node) with an edge (va, v) labeled k. If an LLVM type t is passed to “add operand” as

argument, we limit the possible results of finstructionedge to instruction nodes with the same associated

type. We use this during the creation of a call statement’s function operands, where the function’s

signature predetermines the type of each operand.

Add branch edge subroutine The last subroutine we introduce concerns control-flow edges orig-

inating from br instructions; more specifically, we use it to predict jump targets as well as jump order

42 6. ADAPTING THE GENERATIVE GRAPH MODEL

start faddedge
has branch
cf-edges?

choose opposite
cf-edge label

connect
start node to
target node

fbranchedge

end

finstructionedge
yes

yes

no

no

Figure 6.6: Flowchart of the “add branch edge” subroutine referenced in Figure 6.1.

for newly generated nodes representing br statements. This process is comparatively simple: First, we

utilize faddedge to predict whether to add an edge at all. If this produces a negative result, the routine

terminates. We allow for this possibility, since several potential jump targets of br instructions may not

exist in the graph at the time of their generation. Therefore, we allow this routine to leave the graph

unaltered, effectively reducing the space of potential jump targets to nodes generated at a later point in

time. Next, we choose a target node vi through finstructionedge. After this, we check whether the br in-

struction in question already has outgoing control-flow edges. If this is the case, we add an edge (vs, vi)

to the graph, where vs is the start node as well as the node representing the br instruction. We set the

label of this edge to be the one in {cf0, cf1} that is not used by the already existing control-flow edge

originating from vs.

If, however, vs has no outgoing control-flow edges, we choose an edge label k through fbrachedge. Sub-

sequently, we once more add an edge (vs, vi) to the graph and label it with k.

6.2.3 Main Algorithm

After discussing the subroutines of our modified graph generation algorithm, we now examine its high-

level structure. In this section, we will give a brief overview of the main algorithm, followed by a more

thorough examination of each part in order of its occurrence during graph generation.

Overview We begin the graph synthetization by generating structures and global variables. Next,

we predict whether to add an LLVM function to the graph. If no function is created, we complete all

previously created “phi” instructions (we discuss the details of this below) and terminate the algorithm.

If instead, a new function is created, we add a “function” node vf to the graph and begin with the

generation of an instruction. In this process, we first select a label with the faddinstruction module. If

“none” is chosen, the algorithm returns to the prediction of new functions. If any other label is chosen, we

6.2. GRAPH GENERATION PROCESS 43

add a node vi with the according label to the graph. We predict both function arguments and instruction

opcodes with faddinstruction. If the label “argument” is selected, we add an accordingly labeled node to

the graph and generate its type. If, however, an opcode is selected, we handle it differently depending

on whether it represents the first instruction of the current function. If this is the case, we additionally

construct a control-flow edge (vf , vi). For all other instructions, we select a predecessor instruction vi−1,

and connect it to vi with a control-flow edge (vi−1, vi); the exact procedure varies depending on the label

of vi−1. It is also possible to predict multiple predecessor instructions, since it is possible for LLVM

instructions to be the target of multiple jumps.

The algorithm then generates the instruction’s operands. In this step, we handle “call”, “phi”, “br”, and

“switch” separately from other instruction opcodes. After the generation of operands is complete, the

algorithm returns to the start of the instruction generation process. In the following part of this section,

we discuss each step of the algorithm in detail.

Generation of structures and global variables As mentioned above, the first task of synthesiz-

ing LLVM graphs lies in the generation of structures, followed by global variables. We construct them

in this order, since it is possible for global variables to be instances of previously defined structures. In

both cases, a node with the corresponding label is added to the graph, followed by the generation of a

type or constant value, respectively.

Adding functions and instructions Next, we predict whether to add a new LLVM function to the

graph through the faddfunction module. If this produces a positive result, we add a “function” node to the

graph. The steps taken if no function should be added (concerning the completion of “phi” instructions)

are discussed later.

We now begin with the generation of the new function’s instructions. For this purpose, we select one

of 49 possible node labels through the faddinstruction module. If “none” is selected, we consider the

function complete and go back to predicting whether to add another one with faddfunction. However, in

order to prevent the premature termination of the instruction generation procedure, we apply a mask to

the output of faddinstruction that nullifies the probability of selecting “none” if not all basic blocks are

complete, e.g., end with a terminator instruction (return, br or switch). Since no explicit basic

block information is contained in the graph, we compute it separately each time a node is added to the

graph. Aside from 47 opcodes and “none”, faddinstruction may also select the node label “argument”. We

include it in this module, since function arguments, similarly to instructions, have associated types and

may be used as instruction operands. If this label is selected, we add an “argument” node to the graph

and generate its associated type through the “construct type” subroutine.

44 6. ADAPTING THE GENERATIVE GRAPH MODEL

The majority of faddinstruction’s result space, however, represents instruction opcodes. If one of these

labels is selected, we add a node vi with the corresponding label to the graph and connect it to the

existing graph through control-flow edges. If the current function does not contain any instructions, we

construct a “cf0” edge originating from the current “function” node vf to vi. If it, however, contains at

least one instruction, the procedure is considerably more complex. In this case, we first predict whether

to add a control-flow edge through faddedge. If this produces a positive result, we choose a predecessor

instruction vi−1 through the finstructionedge module. In order to prevent nodes that have reached their

maximum of outgoing control-flow edges from being selected, we only apply finstructionedge to nodes

that may still receive such edges. For example, we ignore an add instruction with an outgoing “cf0”

edge and a br instruction with outgoing “cf0” and “cf1” edges, but always predict scores for switch

instructions, since they may have an arbitrary number of jump targets (greater than zero). Depending on

the label of vi−1, we handle edge construction in different ways:

• For most labels, a “cf0” edge from vi−1 to vi is added to the graph.

• If vi−1 represents a br instruction, we label the new edge “cf0” or “cf1”, depending on the predic-

tion of fbranchedge.

• Lastly, if vi−1’s label is “switch”, we first check whether vi−1 already has a default jump target.

If not, we utilize foperand to predict whether one should be added. If this is the case, we consider

vi to be the default operand of the switch instruction represented by vi−1, and add a “cf0” edge

from vi−1 to vi. If, however, vi−1 already has a default jump, or foperand predicts that none should

be added, we regard vi as a conditional jump target of vi−1. In this case, we add an “operand”

node to the graph and connect it to vi−1 (or, if vi−1 already has at least on non-default operand,

we connect it to the last “operand” node in the chain of nodes with this label originating from

vi−1) with an incoming “cf1” edge. Subsequently, we construct an “cf0” edge from the “operand”

node to vi. For every conditional jump target, a switch instruction also possesses a constant

comparison value to check whether this target should be jumped to or not. We generate this value

through the “construct constant value” subroutine and pass it the edge label “op0” as argument.

We repeat the process of adding control-flow edges until faddedge produces a negative result.

Generation of call operands Now that an instruction node vi has been added to and connected

with the graph, the next task lies with the construction of its operands. Here, we differentiate between

call, phi, br, switch and the remaining opcodes. If vi represents a call statement, we proceed

by predicting whether an external function or a local function is called through fconstant. We use this

module since the generation process for an external function very much resembles the creation of a

6.2. GRAPH GENERATION PROCESS 45

constant value: First, we predict the specific function through fexternalfunction. This module selects

one of 920 predefined OpenCL and LLVM functions that we extracted from the training set, such as

get_global_id. It should be noted, that many of these functions are mangled3 versions of the same base

function. We chose to include mangled functions instead of demangled ones, to reduce the number of

actions required for the construction of external functions; unmangled functions would require additional

actions to specify their signature. After an external function is selected, we add a “function” node vf to

the graph. Additionally, we create an “operand” node for each argument α in the function’s signature

and connect it to vf (or the last “operand” node in the chain originating in vf) with an incoming “op”

edge. Thereafter, we construct the corresponding operand with the “add operand” subroutine, which we

pass the LLVM type of α as argument.

If fconstant instead produces a negative result, we choose a previously generated, local function as the

callee of the call instruction represented by vi. We achieve this by selecting a “function” node vf

through the flocalfunction module and subsequently adding an edge (vi, vf) with the label “op0” to the

graph. In the next step, we extract the chosen function’s signature from the graph and proceed with it in

the same way we did with the external function’s signature.

Generation of phi operands If, however, faddinstruction selects the label “phi” for vi, we proceed

by generating exactly one phi operand. To explain our reason for doing so, a short examination of SSA

languages (to which LLVM belongs) and the usage of ϕ in SSA graphs is necessary. First, let us clarify

what exactly SSA form is:

Definition 6.2.1. A language that is in static single assignment form requires each variable to be as-

signed exactly once.

With this definition in mind, let us examine the following C function:

int foo(int bar){

int result = 0;

if(bar == 0){

result = 1;

}

return result;

}

3Name mangling is a process in which information about the signature and namespace of an entity (e.g., a function) is encoded

into its identifier. This is done to avoid name clashes of different entities at compilation time. An example applicable to

our domain is the LLVM function round, which may be mangled to “llvm.round.f32” or “llvm.round.v4f32”, depending on

46 6. ADAPTING THE GENERATIVE GRAPH MODEL

inf foo(int bar)

int result = 0;

bar == 0 result = 1;

return result;

true

false

(a)

result0 ← 0

bar = 0 result1 ← 1

result← ϕ(result0, result1)

true

false

(b)

Figure 6.7: Control-flow graph of the C function depicted on page 45 (a), and its corrected SSA graph

representation (b).

Figure 6.7a shows the control-flow graph of this function. As illustrated by the graph, two control-flow

paths exist, resulting in two possible values for the variable result. Even though such behavior is

typical for most languages, it directly contradicts definition 6.2.1, since a value is assigned to result

more than once. In order to translate this code into an SSA language such as LLVM, a new statement

is required, which examines all possible reaching definitions of result and creates a new variable

containing its actual value during program execution, which depends on the executed control-flow path.

The function performing this task is called ϕ. Figure 6.7b depicts the SSA graph of the code above and

contains an application of ϕ to result.

In the graph, no variable is assigned more than once; instead, substitute variables are created in order to

adhere to the SSA form. The two possible values of result are then unified through the ϕ function.

In LLVM, the functionality of ϕ is achieved through the phi statement. We, therefore, can deduce the

following:

1. Whenever a phi statement is executed, at least one possible control-flow path leading up to it has

been traversed; hence, one possible value of it has been computed.

2. Since the actual value of phi during program execution depends on the program’s control-flow, the

order of its operands has no semantic significance. E.g., the following lines of IR are equivalent:

%var2 = phi i64 [%var0, %label0], [%var1, %label1]

%var2 = phi i64 [%var1, %label1], [%var0, %label0]

From this follows, that during graph synthetisation, whenever a node vi representing a phi instruction

is constructed, one of its operands already exists within the graph. Therefore, we can always predict vi’s

whether it is applied to a floating-point value or a vector of floating-point values.

6.2. GRAPH GENERATION PROCESS 47

first operand. Such an operand is of the form [%var, %label] which consists of two parts: The

actual value to be assigned to the phi instruction (%var), followed by the label of the basic block that

needs to be traversed in order for this assignment to be performed (%label). Since we do not translate

labels to our graph representation, we represent them with an edge to the first instruction after them.

We construct the first part of the phi operand by executing the “add operand” subroutine, passing it the

edge label “op0”. Unfortunately, even if this results in a variable (i.e., a previously generated instruction

node), we cannot deduce the second part of the phi operand from it, since both sub-operands may be

located in different basic blocks. Consequently, we select a “label” vl through finstructionedge and add

an edge (vo, vl) labeled “op1” to the graph, where vo represents the “operand” node created by the “add

operand” subroutine. Lastly, we add vi to a set Sphi, which contains all unfinished phi instructions.

Generation of branch operands The third instruction requiring a unique approach regarding its

operand generation is br. LLVM differentiates between unconditional and conditional branches; we

predict to which of those two categories a newly generated br statement belongs through the foperand

module. This approach is possible since a conditional jump has, unlike an unconditional one, a boolean

operand that determines which of its two jump targets is selected during program execution. Therefore,

if foperand produces a positive result, we know that vi represents a conditional br instruction. We

consequently generate vi’s operand through the “add operand” subroutine. Additionally, we execute the

“add branch edge” subroutine twice, thereby generating between zero and two jump targets. If foperand

instead produces a negative result, we can conclude that vi represents an unconditional br statement;

hence, we do not generate an operand, and instead execute “add branch edge” once.

Generation of switch operands Unlike br instructions, a switch is required to dominate4 each

of its jump targets. Since we generate instruction nodes in a topological ordering, it follows that, at the

time of a switch’s construction, the graph contains none of its jump targets. However, this is not the

case for the comparison value that determines which jump is executed during runtime. Therefore, we

construct this value through the “add operand” routine and pass it the edge label “op0” as argument.

Default operand generation procedure Each of the four opcodes discussed until now requires

a unique approach regarding the generation of its operands. For the 43 other opcodes selectable by

faddinstruction, however, we can apply the same approach, since they are structurally similar. We begin

by determining whether the selected label represents a variable operand opcode. If this is the case,

we utilize foperand to predict whether to construct a new operand. We then execute the “add operand”

4In a control-flow graph, a node vd dominates a node vn, if every control-flow path from the entry node to vn goes through vd.

48 6. ADAPTING THE GENERATIVE GRAPH MODEL

subroutine as long as foperand produce a positive result. If the chosen label represents a constant operand

opcode, we instead execute the subroutine as long as vi has fewer operands then specified by its opcode.

After eighter foperand produces a negative result or vi has the number of operands specified by its opcode,

the operand generation procedure is completed.

The five separate paths handling the generation of instruction operands now converge again, and the

algorithm continues by predicting whether to add a new instruction through the faddinstruction module.

Completion of phi instructions On the previous pages, we discussed our approach for the genera-

tion of instruction nodes and their operands. This part of the algorithm repeats, as long as faddinstruction

produces a positive result. However, if faddinstruction predicts the label “none”, indicating the termi-

nation of the instruction generation process, the algorithm returns to the decision step performed by

faddfunction. We also discussed the actions taken if this module predicts the addition of another function

to the graph. If faddfunction instead produces a negative result, no more functions are created, leaving

only one remaining task: The completion of previously generated phi instructions.

On page 46, we stated that during the initial operand generation process of a node representing a phi

instruction, exactly one operand is constructed. As discussed, the reason for this is that at this point, one

possible phi value is already present in the graph. However, this also means that we cannot guarantee

the existence of any other such value at that stage of the graph generation process. At the current stage

of the algorithm, however, all functions and instructions have been generated; thus, we are able to finish

operand generation for the previously constructed phi nodes. For this purpose, we select the earliest

generated node vi from the set Sphi of nodes representing unfinished phi instructions and set it as the

active node. The actual operand generation process is identical to the one for newly created phi nodes:

We construct the “value part” of the operand with the “add operand” subroutine and the “label part”

of it with the finstructionedge module. Lastly, we add an “op1” edge (vo, vl) from the “operand” node

generated by “add operand” to the chosen “label” vl and remove vi from Sphi. We repeat this procedure

until Sphi is empty. After the construction of the remaining phi instructions is finished, the algorithm

terminates, resulting in one generated LLVM graph.

In this section, we discussed the logical structure of our graph generation algorithm as well as the purpose

of the modules comprising it. However, in order to not divert any attention from the algorithm itself, we

refrained from examining the mathematical structure of those modules. Now that our process of graph

generation has been laid out, we will discuss their architecture in detail.

6.3. ARCHITECTURE OF STRUCTURE BUILDING MODULES 49

6.3 Architecture of Structure Building Modules

Our modified graph generative model is comprised of 17 modules predicting structure building deci-

sions. In the previous section, we discussed the semantics of these modules; here, we examine their

mathematical structure.

6.3.1 Binary Graph Level Modules

In the graph generation process, it is often necessary to predict binary decisions that are not associated

with specific nodes (one example of this would be the decision whether to add another function node to

the graph). We categorize modules making such decisions as graph level modules, since they only take

the graph representation vector hG as input. Out of the 17 implemented modules, faddstruct, faddglobal

and faddfunction constitute graph level modules. They compute binary decisions in the following way:

fbglm(G) = σ(fbn(hG)) (6.1)

Here, fbglm represents each of the three binary graph level (BGL) modules, as they are structurally

identical. The MLP fbn computes a binary output from the graph representation vector hG, which is

then normalized by the logistic sigmoid function σ. It should be noted, that faddstruct, faddglobal and

faddfunction each have a separate fbn. We discuss the exact dimensions of hG and fbn in section 7.3.3,

which discusses the hyperparameter optimization in our model.

6.3.2 N-ary Graph Level Modules

Apart from the binary modules described in the previous section, our model comprises six n-ary graph

level (NGL) modules: The four domain-specific substitutes of the faddnode base module faddinstruction,

faddtype, faddconstant, and fpredicate, as well as fnumber and ftypenumber.

Add node modules The two modules faddconstant and fpredicate share an identical structure:

fnode(G) = softmax(fan(hG)) (6.2)

Similarly to fbglm in Eq. 6.1, fnode represents both modules. The MLP fan has, depending on which

module it belongs to, 23 or 17 output neurons, respectively. After fan maps hG to the action output

space, the softmax function is used to transform the output into a vector of probabilities. The actual node

label is then selected by applying the argmax function to fnode(G).

50 6. ADAPTING THE GENERATIVE GRAPH MODEL

qs

qv qvnqa

qsi

qe

qso

ve
ct

or

structure instance

number

ints, floats

active

pointer

pointer

array

number

structure

te
rm

in
at

ed

number

ints, floats

Figure 6.8: State diagram of the type generation process.

We construct faddinstruction and faddtype in a similar way, however, we additionally filter their output

with a bitmask m:

faddtype/instr.(G) = softmax(fati(hG))�m (6.3)

Here, faddtype/instr. once more represents both modules, � is the Hadamard (elementwise) product and

m is a vector that satisfies mT ∈ {0, 1}n, where n is the number of type labels (17), or instruction labels

(49) selectable by the MLP fati, respectively5. Regarding faddinstruction, we set all values of m, except

the one representing the label “none” to 1. If all basics blocks in the current graph are complete, we set

the value corresponding to “none” to 1, otherwise to 0 (we discussed the reason for this in section 6.2.3).

To explain how we determine the elements of m in faddtype, we need to re-examine the type generation

subroutine (Figure 6.2). During this process, we utilize faddtype repeatedly. Every time we do this, as

well as every time we predict a number through ftypenumber, we feed the results from these modules to a

state machine S. Figure 6.8 depicts the state diagram of S6. For any state qn, the following holds:

mi =




1, if (qn, li) ∈ δ

0, else
i ∈ {0, 1, 2, . . . , 16} (6.4)

Here, li is the label represented by the i-th output neuron of ftypenumber, and δ represents the state-

transition function of S. For example, if S is in the state qvn, we set the entries of m representing integer

or floating-point labels to 1, and all others to 0.

This approach guarantees that the resulting LLVM type t is syntactically correct. However, this does not

mean that t is also semantically correct, for example, during the target-type generation for a bitcast

instruction, the resulting type might not be castable to the statements operand type. Initially, we tried to

5In this section, T refers to transposition, not to rounds of information propagation
6If we reach the state qso, we initialize another state machine S1 that is structurally identical to S. As long as S1 does not

terminate, or foperand (see Figure 6.2) produces a positive result, we stay in qso. If both of these conditions are not satisfied,

we advance to the accepting state qe.

6.3. ARCHITECTURE OF STRUCTURE BUILDING MODULES 51

implement a state machine of the form Suniversal(o, n) = m, which takes an opcode o and an integer

n ∈ N0 representing the operand number, and produces an according bitmask m. However, this proved

too time-consuming. We were also unable to implement a similar state machine for the generation of

constant values; once more due to time constraints.

Add number modules The modules fnumber and ftypenumber are graph level modules, even though

they predict numerical values of nodes representing constant values and types, respectively. The reason

for this is that we pass their results to Rinit (as discussed in sections 5.2.4 and 5.2.5); thus, we compute

this value before the affected node is present in the graph.

Before training, we normalize the numerical values that act as target labels for both modules through

min-max normalization, thereby constraining them into the range [0, 1]:

fnorm(x) =
x−min(x)

max(x)−min(x)
(6.5)

Here, the values min(x) and max(x) represent the lowest and highest numerical values found in the

training data for each module; hence, min(x) and max(x) are different for fnumber and ftypenumber.

Both modules, here represented by fnum, operate in the following way:

fnum(G) = σ(fn(hG)) (6.6)

Since the modules only predict one value between 0 and 1, we implement fn as an MLP with one output

neuron and normalize its output with the logistic sigmoid function σ. To obtain the actual predicted

value, we denormalize the module’s output with the inverse normalization function f−1norm.

6.3.3 Binary Node Level Modules

Modules operating on the node level take the graph representation vector hG, as well as the node embed-

ding hv of a node v as input. In our model, four such modules predict binary structure building decisions:

faddedge, fbranchedge, foperand, and fconstant. They operate as follows:

fbinnode(G, v) = σ(fbn(hG,hv)) (6.7)

Similarly to Eq. 6.1, fbn is an MLP with two output neurons, and fbinnode represents each of the four

BNL modules.

6.3.4 N-ary Node Level Modules

The last class of modules predicts node level decisions with an n-ary action output space. We implement

four such modules: finstructionedge, flocalfunction, fstruct, and fexternalfunction.

52 6. ADAPTING THE GENERATIVE GRAPH MODEL

Score-based modules Out of those four modules, three are score-based. More precisely, the mod-

ules finstructionedge, flocalfunction, and fstruct each predict a score sv for each node v ∈ V in the graph

G = (V,E) and subsequently select the node u ∈ V with the highest score su.

The two modules flocalfunction and fstruct, here represented by fnodes, share the following structure:

su = fs(hu,hv), ∀u ∈ S (6.8)

fnodes(G, v) = softmax(s) (6.9)

Here, fs is again implemented as an MLP, s is a vector containing all scores computed in Eq. 6.8, and

S represents a subset of nodes in the graph. Each of the two modules possesses a separately denoted S

containing different nodes:

• In the case of flocalfunction, the set Sfunction contains all “function” nodes that represent the entry

point of an LLVM function (Sfunction does not include, for example, the “function” operand of

another call instruction).

• fstruct utilizes the set Sstruct, which contains all root nodes of a subtree representing a structure.

It does not include “structure” nodes that are themselves part of a larger type-subtree.

The third module, finstructionedge, has a structure similar to the one described in Eq. 6.8 and Eq. 6.9.

However, the MLP fie, that computes a score for a given node pair has one additional input:

su = fie(hu,hv,xtarget), ∀u ∈ Sinstruction (6.10)

finstructionedge(G, v) = softmax(s) (6.11)

Here, the set Sinstruction contains instruction nodes, and xtarget ∈ ({0, 1}2)T is a one-hot encoded

vector. We incorporate xtarget into fie to accommodate for two different use cases of finstructionedge:

If the module selects a control-flow edge source node, which happens at a single point in the graph

generation process, shortly after a new instruction node is generated, we define xtarget = (0, 1)T . In

all other cases, finstructionedge instead predicts a control-flow edge target node; hence, we set xtarget =

(1, 0)T . The content of Sinstruction also varies depending on the application of the module:

• If finstructionedge predicts a control-flow edge source, Sinstruction contains all instruction nodes

that may still receive outgoing control-flow edges.

• If the module is instead utilized for the prediction of a control-flow edge target, Sinstruction con-

tains all instruction nodes of the graph.

• During the “add operand subroutine”, if a type t is passed as an argument, and finstructionedge

selects an instruction operand, Sinstruction only contains nodes whose associated type matches t.

6.4. BASELINE MODEL 53

start end
external

functions?

faddnode

ftypenumber fnumber

faddedge fnodes

add edge
to graph

add node
to graph

fexternalfunction

no

array, vector ints, floats other

no yes

no yes

Figure 6.9: Flowchart of the base model’s graph generation process, extended to allow for the generation

of LLVM graphs.

External function module The last of the four n-ary node level (NNL) modules, fexternalfunction,

does not predict a score for nodes in the graph. Instead, it selects one of 920 classes representing external

LLVM and OpenCL functions:

fexternalfunction(G, v) = σ(fef (hG,hv)) (6.12)

Structurally, the only difference between fexternalfunction and the BNL modules characterized by Eq.

6.7 is the dimensionality of their respective MLP’s last layer.

6.4 Baseline model

In section 8.1.1, we compare the performance of our domain-specific model against the performance

of the base model proposes by Li et al. [2]. This comparison necessitates the implementation of the

LLVM graph generation process for the base model. In section 6.1, however, we established that the

base model’s functionalities are not sufficient for the domain of LLVM graphs, as it does not allow for

the selection of external functions or the prediction of numerical values. To allow for a comparison of

the two approaches, we altered the base model in a way that keeps most of its structure intact, while still

extending it for the generation of LLVM graphs.

Figure 6.9 shows this extended base model. We altered its structure in two ways: First, After faddnode

predicts a node label l, we check whether l represents a list label (“vector” or “array”) or an integer or

floating-point label. If eighter is the case, we apply ftypenumber or fnumber, respectively, to predict a

numerical value, which we then feed into Rinit. If l is not one of those labels, the procedure remains

unchanged. Our second structural modification takes effect after the graph is already generated: At

this point, any external function represented in the graph takes the form of a “call” node u connected

to a “function” node v, as well as to a (potentially zero-length) chain of “operand” subtrees (Figure

54 6. ADAPTING THE GENERATIVE GRAPH MODEL

5.2b shows an example of this). However, since there are multiple LLVM and OpenCL functions with

the same signature, this representation may not always uniquely identify them. Therefore, we apply a

modified version of the fexternalfunction module to the “function” node v in each of those constructions:

fexternalfunction(G, v) = σ(fef (hG,hv))� b (6.13)

This version of fexternalfunction, unlike the one described in Eq. 6.12, incorporates the bitmask b, which

satisfies bT ∈ {0, 1}920. We determine b’s value the following way:

bi =




1, if fi ∈ Fv

0, else
i ∈ {0, 1, 2, . . . , 919} (6.14)

Here, fi is the function represented by the i-th output neuron of fef , and Fv is the set of external functions

that are correctly represented by the subtree of the “call” node u that v is connected to. For example,

the subtree depicted in Figure 5.2b may describe a function with two i32 operands7 (if we assume the

length of the “operand” node chain to be two). In this case, Fv would contain all external functions

whose signature matches (i32, i32).

We use the result selected by fexternalfunction to determine which function is represented by the subtree

emerging from u. This approach assumes that Fv 6= ∅, as this would imply that the graph has been

generated incorrectly. In this case, we abort the graph generation algorithm.

7From this visual representation, it is not clear what bit-width the integer type of the first “add” operand has. In the actual

graph, however, this information is provided by the operands of this node.

55

7 Training the Generative Graph Model

Until now, we focused primarily on the structural and mathematical modifications necessary to extend Li

et al.’s [2] model for the generation of LLVM graphs. In this chapter, we focus on the technical details

of training this adapted model. First, we conduct an examination of our training data and discuss how

we transform its kernels into decision sequences. Next, we focus on our model’s hyperparameters and

how to optimize them. In the last part of the chapter, we discuss the training procedure of both the final

model and the baseline model.

7.1 Training Data

For the training of our model, we rely on the same data set used by Cummins et al. to train CLgen [1].

It contains around 5700 OpenCL kernels that were scraped from various GitHub repositories. However,

not all kernels contain syntactically correct code, and even fewer are semantically correct, i.e., can be

executed successfully. To avoid learning semantically erroneous graphs, we reduce the training set to

kernels that can be successfully executed by cldrive [36], which is a tool that can execute arbitrary

OpenCL kernels. Out of the approximately 5700 kernels in the data set, only 1257 meet this requirement.

Additionally, many of them produce long decision sequences, which is problematic for two reasons:

• We conduct all training on the high-performance computing (HPC) cluster Taurus1 at the TU

Dresden ZIH on NVIDIA Tesla V100-SXM2 GPUs. The implementation of our model is not

parallelized; therefore, we are only able to utilize one GPU during training, which limits us to

32GB of memory. During training, our model is unrolled in memory because we use BPTT;

therefore, longer decision sequences directly result in higher memory utilization.

• Our jobs on Taurus are restricted to a runtime of 24 hours. Although it is possible to suspend

training after this period and resume it on another job, during hyperparameter optimization, we

adhere to this limit in order to increase the number of constellations we can test. However, since

an increase in decision sequence length entails a proportional increase in model parameters and,

therefore, in training time, we are compelled to limit their length.

1https://tu-dresden.de/zih/hochleistungsrechnen/hpc

https://tu-dresden.de/zih/hochleistungsrechnen/hpc

56 7. TRAINING THE GENERATIVE GRAPH MODEL

Decision sequence length

N
u
m
b
er

of
sa
m
p
le
s

0 100 200 300 400 500 600 700 800 900 1000+
0

20

40

60

80

100

Figure 7.1: Histogram of the decision sequence length of the kernels in our training set with a bin-size of

10. Sequences that exceed 1000 actions are grouped in the same bin.

Especially the second point is problematic, since it restricts the number of parameters we can incorporate

into a model while still achieving meaningful training progress. Therefore, we introduce two restrictions

towards the graphs in our training set: During hyperparameter optimization, we only utilize graphs with

a corresponding decision sequence containing at most 100 actions2. For the training of the final model,

we increase this limit to 200, since we train it only once and can, therefore, use more time. This limit,

unfortunately, entails a low amount of complex sub-structures in the training graphs. For example, both

training sets do neither contain nested lists nor complex constant global variables. However, this is

not a fundamental shortcoming of our approach and could, in principle, be circumvented with more

computation time and memory.

Figure 7.1 displays the decision sequence length of the graphs produced by the 1257 usable kernels in

the training set. It becomes clear that, even with a length limit of 200 actions, a large number of kernels

are not usable for training. More precisely, 203 kernel’s decision sequences are short enough to be

used during hyperparameter optimization, and 600 kernels fulfill the requirement to be used in the final

model’s training. Ideally, we would like to increase the number of training samples significantly; due to

time constraints, we leave this task for future work.

7.2 Actionizing the Training Data

Before we can use a kernel k for training, we need to translate it to a decision sequence Sk, which we

denote by Sk = actionize(k). For this purpose, we define an order in which we traverse k, since any non-

2The initialization of a new node through Rinit also counts towards this action limit, even though we did not depict it in the

Flowcharts describing our graph generation process in chapter 6.

7.3. HYPERPARAMETER OPTIMIZATION 57

trivial graph can be constructed in a multitude of ways. Although the translation process is structurally

similar to our graph generation algorithm discussed in chapter 6, it lacks certain fail-safe mechanisms,

as we can assume every training kernel to be syntactically correct. To avoid redundancies, the following

description of the procedure only represents an overview (for more information, please refer to Appendix

B):

1. Actionize each structure in k in the order of its appearance. Subsequently, do the same for each

global variable in k.

2. Sort the basic blocks of k with breadth-first search (BFS) based on their appearance in the kernel’s

control-flow graph (CFG).

3. For each function f in k:

a) Actionize f .

b) For each basic block b in f :

i. Actionize each instruction i.

ii. If i is a phi instruction, add it to the ordered set Iphi and actionize its default operand.

If not, actionize all operands of i.

4. For each phi instruction p in Iphi, actionize all operands except the default operand.

7.3 Hyperparameter Optimization

The rather complex nature of our domain-specific approach results in our model having a large number

of tweakable hyperparameters. In order to find a suitable set of values for them, we apply Bayesian

optimization [37]. However, since each additional hyperparameter multiplies the search space, and both

our resources and time are limited, it is necessary to define a subset of parameters to optimize for. In this

section, we first discuss how to find such a subset, followed by an examination of the actual optimization

process.

7.3.1 Optimization Target

The first task of hyperparameter optimization lies in determining the target metric. Intuitively, we would

want to aim for the highest possible ratio of correctly generated LLVM graphs. However, multiple

tests on models with randomized hyperparameters have shown that, as the number of training epochs

increases, the ratio of valid sample graphs consistently decreases, as depicted in Figure 7.2a.

58 7. TRAINING THE GENERATIVE GRAPH MODEL

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

10

20

30

40

50

60

Training epochs

va
li
d
sa
m
p
le
s
in

%

(a)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
0

2

4

6

8

10

12

Training epochs

K
L
-d
iv
er
ge
n
ce

o
f
g
ra
p
h
si
ze

(b)

Figure 7.2: Percentage of valid samples (a) and the KL-divergence between the size distributions of gen-

erated samples and training graphs (b) for an increasingly trained model.

Even though this discovery seems unintuitive, it makes sense upon closer inspection of the graph model

structure. In a randomly initialized model, binary decisions (such as the choices of whether to add a

new global variable, function, or edge) have an approximately even chance to predict eighter a positive

or negative result. Therefore, on average, the length of the graphs generated by such a model is signifi-

cantly shorter than the length of graphs in the training set. For example, the following minimal decision

sequence produces an empty, but valid, LLVM graph:

<do not add structure>

<do not add global variable>

<do not add function>

It is composed of three binary decisions, and therefore has, on average, a 12.5% chance of being produced

by an untrained model. However, simply ignoring this particular decision sequence does not solve the

problem. As the size of generated samples approaches the mean size of the training set graphs during

training, each generated graph’s corresponding decision sequence also increases in size, and therefore

in its susceptibility to erroneous decisions. A whole code graph can become invalid from just one such

decision; therefore, a decrease in the percentage of correctly generated graphs is a natural consequence

of an increase in their size.

Consequently, we require a different metric for measuring training success. Since our generative model

learns a probability distribution over the graphs in the training set, a probability-distance measure be-

tween those graphs and the samples generated by the model is a more useful measure than the ratio of

valid samples. However, since it would be unreasonable to try to model the entire probability space of

LLVM graphs, we instead focus on the graph order (i.e., graph size) distribution. Our metric of choice is

7.3. HYPERPARAMETER OPTIMIZATION 59

the KL-divergence3, which, for discrete distributions, is calculated in the following way:

DKL(P (x) ‖ Q(x)) =

|P (x)|∑

i=0

Pi(x) ∗ log2
(
Pi(x) + ε

Qi(x) + ε

)
(7.1)

Here, P (x) and Q(x) are two discrete probability distributions defined over the same probability space

X , and ε is a small positive number that ensuresQi(x)+ε > 0 to avoid divisions through 0. Additionally,

it prevents the term log2(0) from occurring.

During training, as the model learns the probability distribution of the graphs in the training set, the KL-

divergence between generated samples and those graphs should decrease, which is indeed what happens,

as depicted in Figure 7.2b. Although a multi-faceted metric (e.g., a combined distance-measure of the

graph size distributions and the node degree distributions) might be even more useful in determining

training progress, it would also introduce problems. For example, it is not clear how each component of

such a merged metric should be weighted in order not to distort its significance. Because of this, as well

as for time reasons, we rely on the KL-divergence of the graph size distributions for the evaluation of

models with separate sets of hyperparameters.

7.3.2 Reducing the Search Space

Our model consists of 17 decision-making modules, as well as the components that compute the node

embeddings hV and the graph representation hG, as discussed in section 4.3. In order to reduce the

number of possible hyperparameter configurations, it is necessary to limit the number of optimization

parameters. Therefore, we define a range of (partially abstract) hyperparameters:

• We establish hs = |hv| as the parameter that determines the node embedding’s size. Intuitively,

this value should be at least equal to the number of node labels, which is 91. However, since not

all labels are used in the training data, we designate {60, 61, 62, . . . , 130} as the search space of

hs.

• The parameter hbn determines the shape of BGL modules, such as fbranchedge. Later in this section,

we define a number of hidden neurons n for each MLP, which allows us to shift the optimization

process towards the shape of MLPs rather than their size. The shape is then determined by hbn:

We construct the MLP with hbn hidden layers of size n
hbn

. For example, if n = 100, and hbn = 5,

3Technically, the KL-divergence is not a measure of distance, as DKL(P (x) ‖ Q(x)) is generally not equal to DKL(Q(x) ‖

P (x))), for two probability distributions P (x) and Q(x). However, in our case, it still produces the desired effect of

quantifying the difference between two probability distributions.

60 7. TRAINING THE GENERATIVE GRAPH MODEL

the MLP has 5 hidden layers of 20 neurons each. We define [1, 5] as the discrete search space of

hbn.

• We additionally introduce hbg, hnn and hng, which act as equivalents of hbn for BGL, NNL,

and NGL modules, respectively. We chose a discrete search interval of [1, 5] for each of these

parameters as well.

• Lastly, we introduce hfg, which governs the shape of the MLPs involved in the computation of hG

in Eq. 4.5. Once more, we designate [1, 5] as the distinct search interval for hbn.

This assortment of values, however, only represents a subset of the model’s hyperparameters. For exam-

ple, we predefine the number of propagation rounds during the node embedding update procedure to be

T = 2, since this value is used by Li et al. [2] during the experiments discussed in section 4.4.1, and any

increase in it substantially slows down training. Additionally, we select 100 as our model’s mini-batch

size, since this value facilitates a high training speed. In three tests with otherwise identical models with

the batch sizes 25, 50, and 100 over 2000 epochs, we have not observed meaningful differences in the

KL-divergence of generated samples. For time reasons, we also do not optimize the shape of the MLPs

contained in fnumber and ftypenumber. In the mentioned mini-batch size test, MLPs with three hidden

layers containing 300 neurons each have shown to be a reasonable solution for both modules.

As most of the computations in our model are performed by MLPs, each having a virtually unlimited

number of possible shapes, it is necessary to structure our search. Therefore, we define a certain overall

size of the model, as mentioned above. This approach allows us to use hyperparameters such as hbn

and hfg to focus our search on the shape of the MLPs. We assume that a higher number of model

parameters translates into an improvement of the model’s performance, or at least not into a performance

decrease. Due to time reasons, we are unable to test this hypothesis; however, the fact that the model

becomes unstable once n becomes too small4 suggests that this assumption holds true up to a certain

point. Consequently, we require a set of MLP sizes which allows us to perform a substantial amount of

training during the hyperparameter optimization phase (where we limit the decision sequence length of

training samples to 100 and the training duration to 24 hours). Additionally, the same set of parameters

should allow for a complete training run of the final model (which uses training samples with up to 200

actions) within a week. Therefore, we define the following parameters:

• For BGL modules, we define nbg = 900. Similarly to the parameters described in the following,

we select this value empirically based on a small number of test runs.

4This phenomenon seems to be related to the size of the node embeddings hs. With hs = 60, the size for BNL modules

nbn = 600, and hbn = 3, we experienced exploding gradients during training. However, once we decreased hs = 30,

training proceeded without problems.

7.3. HYPERPARAMETER OPTIMIZATION 61

• We define nng, which determines the size of NGL modules, as nng = 1800. The reason for

this high value compared to nbg, is the large output space of NGL modules of up to 49 states, as

opposed to the two output states of BGL modules.

• For BNL modules, we choose nbn = 1500, since the higher dimensionality of their input vector

leads to unstable training for low nbn’s.

• Additionally, we define nnn, which governs the size of NNL modules, as nnn = 1500, as they

have the same input vector size as BNL modules.

• For the MLPs involved in the computation of hG , we select nfg = 1500 as well, since the high

dimensionality of hG leads to a large output space of both MLPs.

7.3.3 Bayesian Optimization

In order to find a suitable set of values for the hyperparameters defined in the previous section, we

apply Bayesian optimization. This search strategy was first introduced by Močkus in 1974 [37] and

attempts to find a global optimum of a black-box function f(x) in a minimum number of steps. To

briefly summarize, Bayesian optimization utilizes a surrogate model that approximates f(x). This model

updates its approximation every time a new sample point of f(x) is calculated. In order to decide which

parameter constellation x to sample, the model utilizes an acquisition function that aims to strike a

balance between the exploitation of known parameter constellations and the exploration of new ones

(depending on the acquisition function, one or the other might be favored).

For our purposes, we rely on a Gaussian surrogate model and the expected improvement acquisition

function. We train each model over 5000 epochs. For the training in this section as well as the following

sections, we use an Adam Optimizer with a learning rate of η = 0.0000075 and the L2 loss function for

all decision modules. Table 7.1 contains the result of the hyperparameter search. For the complete data

set of the Bayesian optimation process, please refer to Appendix C.

Parameter hs hbg hng hbn hnn hfg KL-divergence

Value 68 1 3 1 3 1 0.72

Table 7.1: Result of the hyperparameter search with Bayesian optimization over 16 iterations with three

initial evaluations.

62 7. TRAINING THE GENERATIVE GRAPH MODEL

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000
0

1,000

2,000

3,000

4,000

Training epochs

L
os
s

Figure 7.3: Loss of the final model during training.

7.4 Training the Model

For the training of the final model, we rely on the same training parameters that we used in the previous

section, except for the number of epochs: We continue training as long as the following inequality, where

mn denotes our model after n training epochs, is satisfied:

loss(mn−100) > loss(mn) ∗ 1.01 (7.2)

With this approach, training lasts for 6162 epochs, as depicted in Figure 7.3, and we achieve a KL-

divergence (sampled over 1000 graphs) between the graphs contained in the training set and the final

model of DKL(Pdataset(x) ‖ Pmodel(x)) = 0.72.

7.5 Training the Baseline Model

Due to time reasons, we are unable to conduct a hyperparameter search for the base model. Therefore,

we reuse the hyperparameters hng and hnn, as well as the corresponding values nng and nnn for the

modules ftypenumber and fexternalfunction, respectively. Additionally, we introduce han, which governs

the shape of the MLP contained in the faddnode module (Eq. 4.8). We set han = hng, since faddnode is

also a NGL module. However, since fan has an output space of 91 actions (one for each label), we define

nan = 3600.

We employ a similar approach for faddedge and fnodes. For both modules, we adopt the corresponding

hyperparameters found in section 7.3.3. Additionally, we once more utilize the inequality characterized

by Eq. 7.2 to determine the number of training epochs. The baseline model achieves a KL-divergence

(sampled over 1000 graphs) of DKL(Pdataset(x) ‖ Pbaseline(x)) = 7.07.

63

8 Evaluation

After focusing on the design of our model and subsequently on its training, in this chapter, we evaluate

our approach based on its ability to generate LLVM code. We begin by examining generated samples,

and subsequently compare our model to Li et al.’s general-purpose approach [2] and Cummins et al.’s

CLgen [1].

8.1 Generated Samples

To evaluate our model, we generate 10000 samples, six of which are depicted in Figure 8.1. Excluding

empty graphs, 2.3% of these samples represent unique, valid LLVM programs, i.e., can be transformed

into human-readable LLVM IR by our code generator and compiled to bitcode with the tool llvm-as [38].

However, the mean decision sequence length of these samples is 32, whereas graphs in the training set

require, on average, 98 actions to be constructed. To understand this discrepancy, a re-examination of

our code generation pipeline (Figure 1.1) is necessary. During the generation process, we first construct

a graph, which we subsequently transform into LLVM IR. Therefore, a sample has to undergo both

stages as well as a successful compilation by llvm-as (which transforms human-readable IR to bitcode)

before it can be considered valid. Since an entire decision sequence can be invalidated by one erroneous

action, all of these stages favor short sequences, as those are statistically less likely than long ones to

contain such an action. Therefore, the mean decision sequence length of samples decreases after each

generation stage. This observation is reaffirmed by the mean decision sequence length of the samples

passing the stages of graph generation and code generation, which are 75 and 60, respectively. Out of all

attempts, 37% manage to advance past the graph generation stage, 23.4% successfully pass through the

code generator, and 2.3% constitute valid LLVM programs.

The reason so many attempts fail at the graph generation stage is (for the most part) the type-computation

we perform for each newly added node1. Even after the graph generation stage, types remain the primary

1For example, the type-computation of getelementptr instructions has a particularly high failure rate, since each operand

following the first (which is of an aggregate type) indexes a sub-type. Therefore, each index has to stay in the bounds of its

corresponding sub-type, e.g., a structure with two elements only allows for the two operands i32 0 or i32 1.

64 8. EVALUATION

argument

pointer

i32

function

call function

op

i32

ret

ty

ty

cf0

op0

op

op0

cf0
op0

(a)

argument

pointer

pointer

float

argument

array

i32

function

ret

argument

i8

ty

ty

ty

ty

ty

ty

cf0
cf0

(b)

argument

i32

function

br i1

ret ret

ty cf0

op0

cf0
cf1

(c)

function

callargument

pointer

i32

function

op

i32

load

ret

ty

ty

cf0

op0

op

op0

op0
cf0

cf0

(d)

function

store i8

load

argument

pointer

i8 ret

ret

cf0

op0

cf0

op1

op0ty

ty cf0

cf0

(e)

function

call

getelementptr

ret

function

op

i32

op

op

argument

pointeri32

cf0

cf0

cf0

op0

op

op0

op

op

op0

op0

ty

ty

(f)

Figure 8.1: Six valid LLVM graphs generated by our domain-specific model. The corresponding LLVM

programs are located in Appendix D.1.

8.1. GENERATED SAMPLES 65

challenge for our approach. Whereas the IR produced by our code generator constitutes (with rare

exceptions) structurally correct LLVM, 6% of these LLVM programs contain empty function bodies (and

are, therefore, invalid), another 10% constitute valid LLVM programs, and the remaining 84% contain

type-related semantic errors. For example, let us examine the following generated IR:

define void @A(i1**) {

; <label>:1:

store i32 211, i1** %0

ret void

}

Here, the store instruction is structurally correct; however, its types do not match, as a variable of type

t requires a storage address of the corresponding pointer type t*. In this case, the constant i32 211

requires an address of type i32*; therefore, the program is invalid.

Low rate of valid samples Since our goal in this work is the development of a model that, by design,

creates mostly structurally correct LLVM graphs, the question arises as to why our model only generates

valid samples at a ratio of 2.3%. As stated above, the main weakness of our approach in its current form is

type-consistency. Our graph generation process primarily applies structural domain-specific knowledge

concerning, for example, the number of edges in an add instruction, or the termination of basic blocks

with terminator opcodes. Although these limitations lead to a high number of structurally correct LLVM

graphs, they fail to prevent semantic errors, such as the one depicted in the code sample above. If we,

however, focus on samples that have been transformed into LLVM IR but have not yet been compiled

by llvm-as, we ignore such semantic errors. Out of all generation attempts, 23.4% advance to this stage.

As stated above, these samples have a mean decision sequence length of 60. Although this is a severe

oversimplification, a success rate of 23.4% over 60 actions translates into an average success rate of

roughly 97.5% per individual action. However, since different decision-making modules have separate

action output spaces, this number can only serve as a rough estimate.

In summary, we observe that our approach succeeds in significantly reducing structural errors, but strug-

gles with semantic errors. Nevertheless, we believe that this issue is not insurmountable, especially since

we successfully integrated a type state machine (Figure 6.8) into the graph generation process. Similar

state machines could be used to implement type-consistency checks. We leave this for future work.

Opcode distribution Since our model learns a probability distribution over the training graphs, in

theory, their opcode distribution should resemble the distribution of opcodes contained in generated

samples. Figure 8.2 shows that this is not entirely the case. For example, our model produces a higher

66 8. EVALUATION

gep call load store ret shl ashr br add icmp trunc fadd bitcast fmul and mul phi
0

10

20

30

40
P
ro
b
ab

il
it
y
in

%
Training Set
Generated Graphs
Valid Samples

Figure 8.2: Probability of appearance for the 17 most common opcodes. The opcode getelementptr

is abbreviated with “gep”. The values for generated graphs (red) and valid samples (orange)

have been calculated with 10000 generated samples. Probabilities for all opcodes are located

in Appendix D.2.

number of ret statements than expected. This is a direct consequence of the low decision sequence

length of the generated samples. Since every basic block is required to end with a terminator instruction,

and, out of these opcodes, ret is the simplest one, samples which few and short basic blocks terminating

with ret pass the generation process disproportionally often.

In the opcode distribution of graphs and valid samples, we can additionally observe an underrepresen-

tation of getelementptr instructions, which is a consequence of the structural complexity of this

opcode. The same underrepresentation can be observed for load instructions, although we are not cer-

tain about the reason for this, especially since the structurally more complex store is generated at a

rate more closely resembling its probability of appearance in the training set. Although we have ob-

served a general tendency of the model towards void instructions (to which load does not belong to)

and structurally simple types, as those avoid type-related errors, a more thorough examination of load’s

underrepresentation might provide valuable insights. Due to time reasons, we leave this for future work.

8.1.1 Baseline Model

For the evaluation of the baseline model, we once more attempt to generate 10000 samples. However,

since only an exceedingly small percentage of generation attempts pass the code generation stage, it is

infeasible to synthesize such a large number of samples. Therefore, we instead analyze the results of

10000 generation attempts.

Out of those attempts, 65 (0.65%) reach the code generation stage, 35 (0.35%) successfully pass through

our code generator, and 2 (0.02%) constitute valid, non-empty LLVM IR. The two valid samples both

8.2. EVALUATION AGAINST CLGEN 67

use 9 actions and represent the same LLVM program:

define void @A() {

; <label>:0:

ret void

}

The samples passing the graph generation and code generation stages have a mean decision sequence

length of 49 and 43, respectively. The ability of the baseline model to produce arbitrary graphs proves

to be a significant disadvantage in a precise and highly error-sensitive domain such as LLVM graph

generation. For example, even the generation of a function argument proves to be difficult without

structural restrictions, as illustrated by the following generated sample:

define void @A(operand*) {

; <label>:0:

ret void

}

Out of the 65 samples that pass the graph generation stage, many contain “argument” nodes connected

to usually small subgraphs with “ty” edges, which suggests that the model at least partially learned how

to generate function arguments. However, most of the constructs connected to “argument” nodes in such

a way do not represent valid LLVM types, as illustrated by the nonsensical construct operand*. Fur-

thermore, instructions and operands entail an even higher structural complexity than function arguments,

and consequently decrease the probability of a correctly generated sample exponentially.

Therefore, we conclude that, at least with our small number of training samples and limited computa-

tion time, the baseline model does not represent a useful approach for the generation of LLVM graphs.

Additionally, due to the low amount of valid samples, we exclude the baseline model from the analyses

performed in the following section.

8.2 Evaluation against CLgen

After examining the samples generated by our model in isolation, we now compare them against the

samples generated by Cummins et al.’s CLgen [1]. For this purpose, we define a set of features that we

use to provide an overview of the different approaches. Subsequently, we perform a principal component

analysis (PCA) over these features to gain a more in-depth insight into the different models.

68 8. EVALUATION

valid sample % decision sequence length

Baseline 0.02 9.00

Graph 2.31 32.34

CLgen 16.20 156.37

Table 8.1: Sample rate and mean decision sequence length of valid samples generated by the baseline

model, our model, and CLgen.

8.2.1 Valid Sample Rate

During the stand-alone analysis of our model, we observe the generation of valid samples at a rate of

2.3%. Concerning CLgen, neither [1] nor [39] contains information about its valid sample rate; there-

fore, we sample 1000 kernels with the model. To ensure a fair comparison, we disable CLgen’s dynamic

checker2 and set the temperature hyperparameter to 1. With these settings, 16.2% of the samples gener-

ated by CLgen constitute valid OpenCL kernels. Once we transform them into our graph representation

and analyze the corresponding decision sequences, we observe an average of 156 actions per kernel,

which is more than three times the size of the average valid sample generated by our model. However,

unlike our model, which directly produces LLVM, CLgen generates OpenCL, which, on average, is 3.6×
longer3 once it is transformed into LLVM. Furthermore, CLgen manually predefines a function signa-

ture, thereby usually adding between 10 and 20 “pseudo-actions” to any given sample once we transform

it into our graph representation. The comparatively small size of our training-graphs decreases the size

of our model’s samples further. Consequently, a comparison between the action-count of both model’s

samples can only act as a guideline. For a better comparison of both approaches, we need to retrain

CLgen on our reduced training set. Due to time limitations, we leave this for future work as well.

In the following sections, we analyze the differences between the approaches with a set of structural

features characterizing their graph representation.

8.2.2 Graph Features

Similarly to Grewe et al. [40], we require a set of features that capture significant characteristics of code

samples. However, since our goal in this work is the generation of code, not its execution, we utilize

features that describe a samples structure rather than its behavior during runtime. Since all samples

2This means that a sample’s correctness is only evaluated during compile-time, which is the same standard that we apply to

the samples generated by our model.
3Measured on the character level on the kernels in the CLgen dataset.

8.2. EVALUATION AGAINST CLGEN 69

nodes # edges # instr. # struct. # globals # arguments # unique labels

Training Set 30.11 37.98 9.91 0.01 0.02 2.64 13.62

Graph 10.39 9.86 3.17 0.00 0.03 1.42 8.41

CLgen 41.06 53.13 14.57 0.01 0.01 4.07 18.78

Table 8.2: Averaged graph features for our training set, our domain-specific model, and CLgen.

eighter exist in, or can easily be transformed into, a graph representation, we use graph metrics in our

comparison. For every graphG = (V,E), we measure the vertex cardinality |V | and the edge cardinality

|E|. Additionally, we measure the number of instructions, non-nested structures, global variables, and

arguments that the graph contains. Lastly, we measure the number of unique node labels in G.

Table 8.2 contains the mean of these metrics for all training samples, as well as for the valid samples

generated by our model and CLgen. As expected after the previous analyses, we observe lower values

across the board for our model compared to both the training set and CLgen. Notably, we also find

that the mean vertex degree deg(V) = |E|
|V | of our model’s graphs is 0.95, whereas it is 1.26 and 1.29

for the training set graphs and CLgen’s graphs, respectively. We can largely attribute this finding to the

low rate of variable (e.g., previously calculated) instruction operands, as well as to the many unconnected

argument sub-trees produced by our model (as illustrated by the graphs in Figures 8.1a to 8.1c). Although

the same cannot be said about the former pattern, the latter is present in the training set as well.

If we turn our attention to the mean vertex and edge cardinalities of the graphs generated by CLgen,

we find that both values are significantly higher then their training set equivalents. Although we have

not analyzed the model’s training procedure in-depth, it is highly likely that this is a consequence of the

smaller mean size of our training graphs, compared to the ones used in CLgen’s training.

8.2.3 Principal Component Analysis

To visualize the differences between the graphs from the training set, our model, and CLgen, we perform

a PCA on all samples with the features illustrated in Table 8.2. For this purpose, we first collect the

corresponding data for each sample and scale it appropriately. We choose a two dimensional PCA, as

it explains 94.79% of the variance in the collected data (as illustrated by Figure 8.3a), and is easily

representable in a two-dimensional graph.

Figure 8.3b shows the results of the PCA for 40 randomly selected samples per data set. For the training

set samples, we observe a comparatively even spread over a wide range of values for both principal

components, whereas the graphs generated by CLgen are more concentrated around the negative values

70 8. EVALUATION

1 2 3 4 5 6 7

92

94

96

98

100

Number of components

V
a
ri
an

ce
in

%

(a)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.2

−0.1

0

0.1

0.2

0.3

Principal Component 1

P
ri
n
ci
p
al

C
o
m
p
on

en
t
2

Training Set Model CLgen

(b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Principal Component 1

R
ea
la
ti
ve

F
re
q
u
en

cy

Training Set Model CLgen

(c)

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Principal Component 2

R
ea
la
ti
ve

F
re
q
u
en

cy

Training Set Model CLgen

(d)

Figure 8.3: Explained variance for the features described in section 8.2.2 as a function of the number of

PCA components (a), the two-dimensional PCA for 50 randomly selected samples per data

set (b), and the relative frequency of all samples for both principal components (c) (d).

of principal component 1. The graphs generated by our model, however, are concentrated exclusively

around a relatively small area around the point (0.61, 0.05). This shows that our model is only able to

produce graphs covering a sub-area of the training sets feature space. Notably, there is almost no overlap

in principal component 1 for our model and CLgen, which is likely a consequence of the vastly different

decision sequence lengths of the graphs generated by both models.

8.3 Conclusion

The analyses in the previous sections have shown that our domain-specific approach is able to produce

valid LLVM code at an acceptable, albeit lower rate than CLgen. Whereas the generated samples are

mostly structurally correct, our approach struggles with the semantic aspects of LLVM, such as type-

correctness. Additionally, our domain is highly error-sensitive, as one action can invalidate an entire

8.3. CONCLUSION 71

decision sequence. Consequently, our model is biased towards smaller samples, as shown by the consis-

tent decrease in decision sequence length following each generation stage.

As a result, our model only partially covers the feature space present in the training set. However,

despite its shortcomings, our extension of Li et al.’s generative model is beneficial to its performance in

our specific target domain, since it produces valid LLVM IR at a higher rate and variety than the general-

purpose approach. In the next chapter, we discuss possible ways to alleviate many of the weaknesses of

our approach.

72 8. EVALUATION

73

9 Conclusion and Outlook

In this thesis, we developed a new domain-specific generative model for LLVM, based on Lit et al.’s

DeepGMG [2]. We have shown that our approach is capable of generating valid LLVM programs at a

rate surpassing this general-purpose model.

However, we also found shortcomings of our model. While we were able to successfully incorporate

domain-specific knowledge of LLVM into our graph generation procedure, thereby significantly de-

creasing the probability of structural errors in generated samples, we struggled to achieve the same for

the semantic aspects of the language. We identified type-related errors as the most significant issue of our

approach in its current state. Consequently, our approach is biased towards simple (e.g., void) types and

shorter graphs. As a result, the model only covers a sub-area of the feature space present in the training

graphs and generates correct samples at a lower rate than CLgen [1].

Nevertheless, we are confident that many of these problems can be alleviated in future work. Since

we already successfully implemented a state machine that ensures context-independent type-correctness,

the implementation of similar mechanisms that guarantee context-dependent type-correctness is certainly

feasible.

Furthermore, in this work, we placed restrictions on the decision sequence length of training samples

to decrease training time, thereby shrinking our training set to only 600 kernels. A substantial increase

in the number of training samples would likely benefit the model. If time is less of an issue, such an

increase could be achieved by relaxing the limits we imposed. Additionally, techniques such as truncated

backpropagation through time could be implemented to alleviate the memory intensity of our model.

In conclusion, we found that our extension of Li et al.’s general-purpose model shows promise in the

domain of LLVM graph generation, and we are hopeful that many of its current issues could be mitigated

in future work. However, it remains to be seen whether graph generative models are the best approach

for the complex and highly error-sensitive domain of code generation.

74 9. CONCLUSION AND OUTLOOK

75

Bibliography

[1] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. Synthesizing benchmarks

for predictive modeling. In CGO. IEEE, 2017.

[2] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative

models of graphs. CoRR, abs/1803.03324, 2018.

[3] Clang - Features and Goals. https://clang.llvm.org/features.html#gcccompat,

(accessed November 1, 2019).

[4] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon. Compiler-based

graph representations for deep learning models of code. In Proceedings of the 29th ACM SIGPLAN

International Conference on Compiler Construction (CC 2020), CC 2020, New York, NY, USA,

February 2020. ACM.

[5] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network

model. IEEE Transactions on Neural Networks, 20(1):61–80, Jan 2009.

[6] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural

networks. In 4th International Conference on Learning Representations, ICLR 2016, San Juan,

Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[7] A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on

Neural Networks, 20(3):498–511, March 2009.

[8] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-

chine translation. CoRR, abs/1406.1078, 2014.

[9] Daniel D. Johnson. Learning graphical state transitions. In ICLR, 2017.

[10] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with conditional

graph generative model. Journal of Cheminformatics, 10(1):33, 2018.

[11] Alton Chiu, Joseph Garvey, and Tarek S. Abdelrahman. Genesis: a language for generating syn-

thetic training programs for machine learning. In CF ’15, 2015.

https://clang.llvm.org/features.html#gcccompat

76 Bibliography

[12] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs

with graphs. CoRR, abs/1711.00740, 2017.

[13] Tomas Mikolov, Martin Karafiát, Lukáš Burget, Jan Černocký, and Sanjeev Khudanpur. Recurrent

neural network based language model. In INTERSPEECH, 2010.

[14] A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks.

In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6645–

6649, May 2013.

[15] K. Kamijo and T. Tanigawa. Stock price pattern recognition-a recurrent neural network approach.

In 1990 IJCNN International Joint Conference on Neural Networks, pages 215–221 vol.1, June

1990.

[16] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is

difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994.

[17] Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite preci-

sion RNNs for language recognition. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 740–745, Melbourne, Australia,

July 2018. Association for Computational Linguistics.

[18] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical evaluation of

gated recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning,

December 2014, 2014.

[19] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent

network architectures. Journal of Machine Learning Research, 2015.

[20] Paul. Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.

Sci., 5:17, 1960.

[21] ChEMBL molecule database. https://www.ebi.ac.uk/chembl/, (accessed October 15,

2019).

[22] The LLVM Compiler Infrastructure Project. https://llvm.org/, (accessed November 1,

2019).

[23] LLVM Compiler Overview. https://developer.apple.com/library/archive/

documentation/CompilerTools/Conceptual/LLVMCompilerOverview/

index.html, (accessed November 1, 2019).

[24] Breno Campos Ferreira Guimarães, Gleison Souza Diniz Mendonca, and Fernando Magno Quintão

https://www.ebi.ac.uk/chembl/
https://llvm.org/
https://developer.apple.com/library/archive/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
https://developer.apple.com/library/archive/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html
https://developer.apple.com/library/archive/documentation/CompilerTools/Conceptual/LLVMCompilerOverview/index.html

Bibliography 77

Pereira. Dawncc: a source-to-source automatic parallelizer of c and c++ programs. 2016.

[25] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program analysis transforma-

tion. In International Symposium on Code Generation and Optimization, 2004. CGO 2004., pages

75–86, March 2004.

[26] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Formalizing the

llvm intermediate representation for verified program transformations. In John Field and Michael

Hicks, editors, POPL, pages 427–440. ACM, 2012.

[27] llgo: LLVM-based compiler for Go. https://github.com/go-llvm/llgo, (accessed

November 1, 2019).

[28] Emscripten. https://emscripten.org/, (accessed November 1, 2019).

[29] rubinius: The Rubinius Language Platform. https://github.com/rubinius/rubinius,

(accessed November 1, 2019).

[30] The LLDB Debugger. http://lldb.llvm.org/, (accessed November 1, 2019).

[31] "libc++" C++ Standard Library. http://libcxx.llvm.org/, (accessed November 1, 2019).

[32] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly - performing polyhedral opti-

mizations on a low-level intermediate representation. Parallel Processing Letters, 22(04):1250010,

2012.

[33] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation, OSDI’08, pages 209–224, Berkeley, CA, USA,

2008. USENIX Association.

[34] LLVM Language Reference Manual. https://llvm.org/docs/LangRef.html, (ac-

cessed November 4, 2019).

[35] llvm-diff - LLVM structural ‘diff’. https://llvm.org/docs/CommandGuide/

llvm-diff.html, (accessed November 13, 2019).

[36] cldrive - Run arbitrary OpenCL kernels. https://github.com/ChrisCummins/

cldrive, (accessed December 19, 2019).

[37] J. Močkus. On Bayesian Methods for Seeking the Extremum, pages 400–404. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1975.

[38] llvm-as - LLVM assembler. https://llvm.org/docs/CommandGuide/llvm-as.

https://github.com/go-llvm/llgo
https://emscripten.org/
https://github.com/rubinius/rubinius
http://lldb.llvm.org/
http://libcxx.llvm.org/
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/CommandGuide/llvm-diff.html
https://llvm.org/docs/CommandGuide/llvm-diff.html
https://github.com/ChrisCummins/cldrive
https://github.com/ChrisCummins/cldrive
https://llvm.org/docs/CommandGuide/llvm-as.html
https://llvm.org/docs/CommandGuide/llvm-as.html

78 Bibliography

html, (accessed January 2, 2020).

[39] Synthesizing Benchmarks for Predictive Modeling. https://github.com/

ChrisCummins/paper-synthesizing-benchmarks, (accessed January 8, 2020).

[40] D. Grewe, Z. Wang, and M. F. P. O’Boyle. Portable mapping of data parallel programs to opencl

for heterogeneous systems. In Proceedings of the 2013 IEEE/ACM International Symposium on

Code Generation and Optimization (CGO), pages 1–10, Feb 2013.

https://llvm.org/docs/CommandGuide/llvm-as.html
https://llvm.org/docs/CommandGuide/llvm-as.html
https://github.com/ChrisCummins/paper-synthesizing-benchmarks
https://github.com/ChrisCummins/paper-synthesizing-benchmarks

List of Figures 79

List of Figures

1.1 LLVM code generation pipeline . 6

3.1 Structure of an RNN . 9

3.2 Internal structure of an GRU cell . 10

4.1 Depiction of the steps taken during the sequential graph generation process 13

4.2 Flowchart of the sequential graph generation process 14

4.3 Illustration of the graph propagation process and graph level predictions 16

5.1 Graph representation of an add instruction, and variable operand number instructions . . 23

5.2 Graph representation of the usage of operand nodes and a call instruction 24

5.3 Graph representation of control-flow transition . 25

5.4 Graph representation of a switch instruction with two case values 26

5.5 Graph representation of a fpext instruction, a vector type, and a pointer type 27

5.6 Graph representation of structures . 28

5.7 Graph representation of undefined values and lists . 29

5.8 Graph representation of constant expressions and global variables 30

6.1 Flowchart of modified graph generation process . 36

6.2 Flowchart of the “construct type” subroutine . 37

6.3 Flowchart of the “construct constant value” subroutine 38

6.4 Flowchart of the “construct list” subroutine . 39

6.5 Flowchart of the “add operand” subroutine . 41

6.6 Flowchart of the “add branch edge” subroutine . 42

6.7 Control-flow graph of a C function and its corrected SSA graph 46

6.8 State diagram of the type generation process . 50

6.9 Flowchart of the extended base model’s graph generation process 53

7.1 Histogram of the training set decision sequence length 56

7.2 Percentage of valid samples and the KL-divergence for an increasingly trained model . . 58

80 List of Figures

7.3 Loss of the final model during training . 62

8.1 LLVM graphs generated by our domain-specific model 64

8.2 Probability of appearance for common opcodes . 66

8.3 Principal component analysis of training samples and generated samples 70

List of Figures 81

Acronyms

Acronyms

BFS Breadth-first search

BGL Binary graph level

BNL Binary node level

BPTT Backpropagation through time

CDFG Control- and dataflow graph

CFG Control-flow graph

DeepGMG Deep generative models of graphs

GCC GNU Compiler Collection

GG-SNN Gated graph sequence neural network

GNN Graph neural network

GRU Gated recurrent unit

HPC High-performance computing

IR Intermediate representation

KL Kullback-Leibler

LSTM Long short-term memory

MLP Multi layer perceptron

NNL N-ary node level

NGL N-ary graph level

NN Neural network

PCA Principal component analysis

RNN Recurrent neural network

SSA Static single assignment

82 List of Figures

.

Acronyms

83

A LLVM IR Implementation Details

The following sections contain implementation details of the LLVM IR to graph mapping used through-

out this thesis.

A.1 Node Labels

Node label Description

none Used to signal the termination of a subroutine in the graph generation algorithm.

phi Opcode.

call Opcode.

trunc Opcode.

add Opcode.

icmp Opcode.

and Opcode.

or Opcode.

mul Opcode.

br Opcode.

zext Opcode.

getelementptr Opcode.

bitcast Opcode.

load Opcode.

store Opcode.

shl Opcode.

ret Opcode.

ashr Opcode.

sdiv Opcode.

sub Opcode.

sext Opcode.

84 APPENDIX A. LLVM IR IMPLEMENTATION DETAILS

Node label Description

insertelement Opcode.

shufflevector Opcode.

srem Opcode.

urem Opcode.

select Opcode.

fadd Opcode.

fmul Opcode.

fsub Opcode.

xor Opcode.

alloca Opcode.

lshr Opcode.

extractelement Opcode.

fdiv Opcode.

fcmp Opcode.

sitofp Opcode.

fptoui Opcode.

udiv Opcode.

fpext Opcode.

fptrunc Opcode.

fptosi Opcode.

insertvalue Opcode.

extractvalue Opcode.

switch Opcode.

uitofp Opcode.

ptrtoint Opcode.

unreachable Opcode.

inttoptr Opcode.

function Specifies the beginning of a function.

struct Specifies instances of a struct definied earlier in the code.

i1 Integer type with bit-width 1.

i2 Integer type with bit-width 2.

A.1. NODE LABELS 85

Node label Description

i6 Integer type with bit-width 6.

i8 Integer type with bit-width 8.

i16 Integer type with bit-width 16.

i32 Integer type with bit-width 32.

i33 Integer type with bit-width 33.

i64 Integer type with bit-width 64.

half Floating-point type with bit-width 16.

float Floating-point type with bit-width 32.

double Floating-point type with bit-width 64.

void Type label that does not represent any value and has no size.

pointer of Type label for pointer types.

array of Type label for arrays.

vector of Type label for vectors.

struct of Type label for struct definitions.

undef Specifies constant undefined values of any type.

zeroinitializer Initializes a constant value of any type to zero.

null Initializes a pointer type with no address.

operand Used with variable operand opcodes. Specifies the next operand.

argument Specifies an argument of a function.

global var Specifies a global variable.

eq predicate “equal” predicate for icmp-instructions.

ne predicate “not equal” predicate for icmp-instructions.

ugt predicate “unsigned greater than” predicate for icmp-instructions.

uge predicate “unsigned greater or equal” predicate for icmp-instructions.

ult predicate “unsigned less than” predicate for icmp-instructions.

ule predicate “unsigned less or equal” predicate for icmp-instructions.

sgt predicate “signed greater than” predicate for icmp-instructions.

sge predicate “signed greater or equal” predicate for icmp-instructions.

slt predicate “signed less than” predicate for icmp-instructions.

sle predicate “signed less or equal” predicate for icmp-instructions.

uge predicate “ordered and greater than” predicate for fcmp-instructions.

86 APPENDIX A. LLVM IR IMPLEMENTATION DETAILS

Node label Description

ult predicate “ordered and less than” predicate for fcmp-instructions.

ule predicate “ordered and equal” predicate for fcmp-instructions.

sgt predicate “ordered and greater than or equal” predicate for fcmp-instructions.

sge predicate “ordered and less than or equal” predicate for fcmp-instructions.

slt predicate “unordered or not equal” predicate for fcmp-instructions.

sle predicate “unordered or equal” predicate for fcmp-instructions.

A.2 Implemented LLVM opcodes

The following opcode descriptions are modified versions of the opcode descriptions found in [34].

Opcode Description

phi Implements the ϕ node of the SSA graph representing the program.

call Implements a function call.

trunc Truncates its operand to the smaller integer type.

add Returns the sum of its two operands.

icmp Compares its two operands and returns a boolean value or a vector of boolean values.

and Returns the result of a bitwise logical “and” operation of its two operands.

or Returns the result of a bitwise logical “or” operation of its two operands.

mul Returns the product of its two integer operands.

br Transfers the control-flow to a different basic block in the current function.

zext Zero-extends its operand to the target type.

getelementptr Extracts the address of a subelement of a data structure.

bitcast Converts a value to a target type without changing any bits.

load Reads from memory.

store Writes to memory.

shl Returns its operand left-shifted by the specified number of bits.

ashr Returns its operand right-shifted by the specified number of bits with sign extension.

sdiv Returns the quotient of its two integer operands.

sub Returns the difference of its two integer operands.

sext Sign-extends its operand to a target type.

insertelement Inserts an element into a vector at a specified index.

A.3. LOSSY TRANSFORMATION BETWEEN IR AND GRAPH REPRESENTATION 87

Opcode Description

shufflevector Constructs a permutation of elements from two input vectors.

srem Returns the remainder of the signed division of its two operands.

urem Returns the remainder of the unsigned division of its two operands.

select Chooses one of its two operands based on a condition.

fadd Returns the sum of its two floating-point operands.

fmul Returns the product of its two floating-point operands.

fsub Returns the difference of its two floating-point operands.

xor Returns the result of a bitwise logical “exclusive or” operation of its two operands.

alloca Allocates memory.

lshr Returns its operand right-shifted by the specified number of bits with zero fill.

extractelement Extracts an element from a vector at a specified index.

fdiv Returns the quotient of its two floating-point operands.

fcmp Compares its two floating-point operands and returns a boolean value or vector.

sitofp Regards its operand as a signed integer and converts its to a floating-point type.

fptoui Converts a floating-point operand to its unsigned integer equivalent of a target type.

udiv Returns the quotient of its two operands, regarding them as unsigned integers.

fpext Extends a floating-point operand to a larger floating-point type.

fptrunc Casts a floating-point operand to a smaller floating-point type.

fptosi Converts a floating-point operand to a target type, regarding it as an signed integer.

insertvalue Inserts a value into a member field of an aggregate value.

extractvalue Extracts an element from a vector at a specified index.

switch Transfers the control-flow to one of several different places.

uitofp Regards its operand as an unsigned integer and converts it to a target type.

ptrtoint Converts the pointer or a vector of pointers to a target type.

inttoptr Converts an integer value to a pointer type.

unreachable Informs the optimizer that a particular portion of the code is not reachable.

A.3 Lossy Transformation between IR and Graph Representation

The following OpenCL kernel demonstrates that the transformation of LLVM programs to our graph

representation is not lossless:

88 APPENDIX A. LLVM IR IMPLEMENTATION DETAILS

OpenCL kernel

void kernel __attribute__((reqd_work_group_size(1, 1, 1))) A(global int2* a, ←↩

global float4* b, int c) {

b = ((global float4)a)[c];

}

Compiled to LLVM IR

source_filename = "-"

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-pc-linux-gnu"

; Function Attrs: minsize norecurse nounwind optsize uwtable

define spir_kernel void @A(<2 x i32>* nocapture readonly, <4 x float>* nocapture,←↩

i32) local_unnamed_addr #0 !kernel_arg_addr_space !3 !kernel_arg_access_qual←↩

!4 !kernel_arg_type !5 !kernel_arg_base_type !6 !kernel_arg_type_qual !7 !←↩

reqd_work_group_size !8 {

%4 = bitcast <2 x i32>* %0 to <4 x float>*

%5 = sext i32 %2 to i64

%6 = getelementptr inbounds <4 x float>, <4 x float>* %4, i64 %5

%7 = load <4 x float>, <4 x float>* %6, align 16, !tbaa !9

store <4 x float> %7, <4 x float>* %1, align 16, !tbaa !9

ret void

}

attributes #0 = { minsize norecurse nounwind optsize uwtable "correctly-rounded-←↩

divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad←↩

"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-jump-←↩

tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "←↩

no-trapping-math"="false" }

!llvm.module.flags = !{!0}

!opencl.ocl.version = !{!1}

!llvm.ident = !{!2}

!0 = !{i32 1, !"wchar_size", i32 4}

!1 = !{i32 1, i32 0}

!2 = !{!"clang version 6.0.0-1ubuntu2 (tags/RELEASE_600/final)"}

!3 = !{i32 1, i32 1, i32 0}

!4 = !{!"none", !"none", !"none"}

!5 = !{!"int2*", !"float4*", !"int"}

A.3. LOSSY TRANSFORMATION BETWEEN IR AND GRAPH REPRESENTATION 89

!6 = !{!"int __attribute__((ext_vector_type(2)))*", !"float __attribute__((←↩

ext_vector_type(4)))*", !"int"}

!7 = !{!"", !"", !""}

!8 = !{i32 1, i32 1, i32 1}

!9 = !{!10, !10, i64 0}

!10 = !{!"omnipotent char", !11, i64 0}

!11 = !{!"Simple C/C++ TBAA"}

Transformed to our graph representation and from there back to LLVM IR

define void @A(<2 x i32>*, <4 x float>*, i32) {

; <label>:3:

%4 = bitcast <2 x i32>* %0 to <4 x float>*

%5 = sext i32 %2 to i64

%6 = getelementptr <4 x float>, <4 x float>* %4, i64 %5

%7 = load <4 x float>, <4 x float>* %6

store <4 x float> %7, <4 x float>* %1

ret void

}

The details of this information loss are discussed in section 5.2.6.

90 APPENDIX A. LLVM IR IMPLEMENTATION DETAILS

91

B Translating Training Samples to Decision Sequences

The following algorithm describes the translation algorithm discussed in section 7.2 in greater detail:

Algorithm 1 Translation of a training sample to a decision sequence

1: procedure ACTIONIZE(k)
2: Sk ← ∅ . Initial decision sequence is an empty ordered set
3: Iphi ← ∅ . No unfinished phi instructions exist at the start
4: for each s ∈ k do . Loop through all structures s
5: Sk ← Sk ∪ astructure . Create “add structure” action
6: Sk ← Sk ∪ ACTION(stype) . Create actions for the type of s
7: end for
8: Sk ← Sk ∪ anostructure . Create “do not add structure” action
9: for each g ∈ k do . Loop through all global variables g

10: Sk ← Sk ∪ astructure . Create “add global” action
11: Sk ← Sk ∪ ACTION(gvalue) . Create actions for the value of g
12: end for
13: Sk ← Sk ∪ anostructure . Create “do not add structure” action
14: for each f ∈ k do . Loop through all functions f
15: Sk ← Sk ∪ afunction . Create “add function” action
16: for each a ∈ f do . Loop through all function arguments a
17: Sk ← Sk ∪ ACTION(a) . Create “add instruction node” action
18: Sk ← Sk ∪ ACTION(atype) . Create actions for the type of a
19: end for
20: B ← BASICBLOCKS(f)

21: B ← BFS(B) . Order basic blocks breath-first
22: for each b ∈ B do
23: for each i ∈ b do . Loop through all instructions i
24: Sk ← Sk ∪ ainstruction . Create “add instruction” action
25: Sk ← Sk ∪ ACTION(iedge) . Create edge related actions for i
26: if iopcode = phi then
27: Sk ← Sk ∪ ACTION(op0) . Create actions for the default operand
28: Iphi ← Iphi ∪ i . Add i to unfinished phis
29: else
30: for each op ∈ i do . Loop through all operands op
31: Sk ← Sk ∪ ACTION(op) . Create actions to construct op
32: end for
33: end if
34: end for
35: Sk ← Sk ∪ anoinstruction . Create “do not add instruction” action
36: end for
37: end for

92 APPENDIX B. TRANSLATING TRAINING SAMPLES TO DECISION SEQUENCES

38: Sk ← Sk ∪ anofunction . Create “do not add function” action
39: for each p ∈ Iphi do
40: for each op ∈ p \ {op0} do . Loop through all operands except the default operand
41: Sk ← Sk ∪ ACTION(op) . Create actions to construct op
42: end for
43: end for
44: return Sk
45: end procedure

In order to keep the algorithm readable, we abbreviated multiple procedures with the function ACTION.

Although our graph generation algorithm and the algorithm described here are not identical, they share

far-reaching similarities. For more details on the abbreviated procedures, please refer to the discussion

of our graph generation algorithm in section 4.2. Please note, however, that the explanations provided in

this section may differ from Algorithm 1 in some minor points.

93

C Hyperparameter Optimization

The following table contains the parameters and results of the Hyperparameter search through Bayesian

optimization performed in section 7.3.3.

Iteration hs hbg hng hbn hnn hfg KL-divergence comment

0 83 2 1 1 4 2 1.87 Initial eval.

1 99 3 3 3 1 1 1.05 Initial eval.

2 69 3 3 3 4 1 0.90 Initial eval.

3 69 4 4 2 3 1 1.49

4 84 1 1 2 4 3 0.91

5 69 2 3 1 3 1 0.88 New opt.

6 69 1 4 1 4 2 1.42

7 70 3 4 3 4 1 1.24

8 83 1 1 1 4 2 0.75 New opt.

9 68 4 4 2 2 2 1.82

10 69 4 3 4 4 1 1.13

11 69 4 4 1 2 1 2.22

12 69 3 3 1 3 2 0.83

13 68 1 3 1 4 1 0.92

14 68 1 3 1 3 1 0.72 New opt.

15 71 4 4 3 3 1 1.72

16 68 4 3 1 2 2 1.19

17 69 3 3 2 3 1 0.92

18 00 0 0 0 0 0 0.98

result 68 1 3 1 3 1 0.72 Iteration 14

Our setup tries to maximize the KL-divergence; therefore, we multiply each result by −1 before passing

it to the Bayesian optimization model.

94 APPENDIX C. HYPERPARAMETER OPTIMIZATION

95

D Model Evaluation

D.1 LLVM IR of Generated Samples

In chapter 8, we evaluate the graphs generated by our domain-specific model. In section 8.1, six such

graphs are depicted in Figure 8.1. The following LLVM IR is the code produced by our code generator

for each of those graphs.

LLVM IR for Figure 8.1a

declare i64 @get_global_id(i32)

define i64 @A(i32*) {

; <label>:1:

%2 = call i64 @get_global_id(i32 376)

ret i64 %2

}

LLVM IR for Figure 8.1b

define [3 x i32] @A(float**, [3 x i32], i8) {

; <label>:3:

ret [3 x i32] %1

}

LLVM IR for Figure 8.1c

define i32 @A(i32) {

; <label>:6:

br i1 87, label %2, label %3

; <label>:7:

ret i32 %0

ret i32 -641

}

96 APPENDIX D. MODEL EVALUATION

LLVM IR for Figure 8.1d

declare i64 @get_group_id(i32)

define void @A(i32*) {

; <label>:1:

%2 = call i64 @get_group_id(i32 376)

%3 = load i32, i32* %0

ret void

}

LLVM IR for Figure 8.1e

define void @A(i8*) {

; <label>:1:

store i8 174, i8* %0

%2 = load i8, i8* %0

ret void

; <label>:2:

ret void

}

LLVM IR for Figure 8.1f

declare i64 @get_global_id(i32)

define void @A(i32*) {

; <label>:1:

%2 = call i64 @get_global_id(i32 376)

%3 = getelementptr i32, i32* %0, i64 %2

ret void

}

D.2 Opcode Distributions

The following table contains the probability of each LLVM opcode appearing in the training set as well

as in graphs and valid samples generated by our model in %.

Opcode Training Set Generated Graphs Valid Samples

getelementptr 17.79 3.76 2.74

call 12.36 11.14 12.33

load 12.34 4.10 6.85

D.2. OPCODE DISTRIBUTIONS 97

Opcode Training Set Generated Graphs Valid Samples

store 12.03 12.63 11.37

ret 11.37 31.52 36.58

shl 4.82 3.10 1.64

ashr 4.75 5.74 4.27

br 4.60 4.25 4.27

add 3.99 1.80 1.92

icmp 2.80 1.26 1.37

trunc 2.42 1.53 1.51

fadd 1.89 1.49 1.51

bitcast 1.84 1.92 1.37

fmul 1.13 1.80 1.23

and 1.02 1.57 1.37

mul 0.68 1.80 1.10

phi 0.65 1.57 1.23

select 0.50 0.76 0.82

zext 0.37 0.43 0.82

uitofp 0.21 0.23 0.69

fsub 0.21 0.23 0.41

sext 0.21 0.57 0.41

insertelement 0.20 0.64 0.55

shufflevector 0.20 0.46 0.55

sitofp 0.16 0.46 0.41

sub 0.17 0.12 0.00

extractelement 0.17 0.00 0.27

fdiv 0.14 0.57 0.00

alloca 0.11 0.12 0.00

sdiv 0.11 0.12 0.41

fpext 0.11 0.34 0.00

fptosi 0.08 1.15 0.14

udiv 0.08 0.00 0.00

urem 0.08 0.00 0.41

98 APPENDIX D. MODEL EVALUATION

Opcode Training Set Generated Graphs Valid Samples

fptrunc 0.08 0.23 0.14

lshr 0.08 0.12 0.00

xor 0.06 0.00 0.00

fcmp 0.06 0.21 0.00

srem 0.03 0.23 0.00

fptoui 0.03 0.12 0.00

switch 0.03 0.80 0.27

or 0.03 0.00 0.41

unreachable 0.00 0.80 0.27

ptrtoint 0.00 0.34 0.14

inttoptr 0.00 0.12 0.27

99

Copyright Information

The graphics used in Figures 4.1 and 4.3 have been taken from [2] with the permission of Dr. Yujia Li.

100 Copyright Information

	1 Introduction
	2 Related Work
	3 Machine Learning Foundations
	3.1 Recurrent Neural Networks
	3.2 Gated Recurrent Unit
	3.2.1 Architecture
	3.2.2 Evaluation

	4 Deep Generative Models of Graphs
	4.1 Overview
	4.2 Graph Generation Process
	4.3 Learning the Graph Generative Model
	4.3.1 Probabilities of Structure Building Decisions

	4.4 Evaluation
	4.4.1 Experiments
	4.4.2 Challenges
	4.4.3 Conclusion

	5 LLVM
	5.1 Overview
	5.2 Intermediate Representation
	5.2.1 Vertex Labels
	5.2.2 Instructions
	5.2.3 Control-Flow
	5.2.4 Types
	5.2.5 Constant Values
	5.2.6 Unsupported Features

	6 Adapting the Generative Graph Model
	6.1 Extenstion Points of the Base Model
	6.2 Graph Generation Process
	6.2.1 Active Nodes
	6.2.2 Subroutines
	6.2.3 Main Algorithm

	6.3 Architecture of Structure Building Modules
	6.3.1 Binary Graph Level Modules
	6.3.2 N-ary Graph Level Modules
	6.3.3 Binary Node Level Modules
	6.3.4 N-ary Node Level Modules

	6.4 Baseline model

	7 Training the Generative Graph Model
	7.1 Training Data
	7.2 Actionizing the Training Data
	7.3 Hyperparameter Optimization
	7.3.1 Optimization Target
	7.3.2 Reducing the Search Space
	7.3.3 Bayesian Optimization

	7.4 Training the Model
	7.5 Training the Baseline Model

	8 Evaluation
	8.1 Generated Samples
	8.1.1 Baseline Model

	8.2 Evaluation against CLgen
	8.2.1 Valid Sample Rate
	8.2.2 Graph Features
	8.2.3 Principal Component Analysis

	8.3 Conclusion

	9 Conclusion and Outlook
	Bibliography
	List of Figures
	Acronyms
	Appendix A: LLVM IR Implementation Details
	Appendix B: Translating Training Samples to Decision Sequences
	Appendix C: Hyperparameter Optimization
	Appendix D: Model Evaluation

