
Chair for Compiler Construction

Towards Optimizing Compilers
for Systems with Racetrack Memories

Date:

28.04.2020

Master Thesis

Hauke Mewes

Referees:

Prof. Dr.-Ing. Jeronimo Castrillon
Prof. Dr. Akash Kumar

Supervisor:

Asif Ali Khan

Statement of authorship
I hereby certify that I have authored this Master Thesis entitled Towards
Optimizing Compilers for Systems with Racetrack Memories independently
and without undue assistance from third parties. No other than the resources
and references indicated in this thesis have been used. I have marked both
literal and accordingly adopted quotations as such. There were no additional
persons involved in the intellectual preparation of the present thesis. I am
aware that violations of this declaration may lead to subsequent withdrawal
of the degree.

Dresden, 28. April 2020

Hauke Mewes

Abstract

Racetrack memory (RTM) is an emerging non-volatile memory that promises
high speed, energy efficiency and unprecedented density. The high density in
RTMs is achieved by storing multiple bits in a nanoscale tape-like cell called
racetrack. Each racetrack has one or more access ports associated to it.
The data in the racetracks needs to be shifted to the access port position
before it can be accessed, which costs energy and increases the memory
latency. Hence, the memory offsets of subsequent memory accesses linearly
affect the memory performance. These shifts can be considerably reduced by
transforming the input programs. However, as of now, automatic approaches
exist only for scalar memory accesses.

This thesis presents the first automatic compilation framework that op-
timizes static loop programs over arrays for racetrack memories. To build
this framework, the applicability of state-of-the-art program transformations
to racetrack memories is explored. Based on that, RTM specific program
schedule and memory layout transformations are suggested. The framework
is implemented using the polyhedral compilation framework Polly to trans-
form existing input code into a form that can achieve minimal-offset locality,
i.e., mostly the same or neighboring memory locations are accessed. The
framework reduces the number of RTM shifts in stencils and linear algebra
code, thereby reducing the latency and energy consumption significantly.

ii

Contents

1 Introduction 1

2 Background 3
2.1 Racetrack Memory . 3
2.2 The Polyhedral Model . 7

2.2.1 Static Control Parts 7
2.2.2 Operations on Integer Sets and Maps 13
2.2.3 Schedule Trees . 15
2.2.4 Data Dependency Analysis 17

3 Related Work 21
3.1 Polyhedral Schedule Optimizations 21

3.1.1 Cost-model Based Optimizations 21
3.1.2 Iterative Optimizations 22
3.1.3 Pattern-based Optimizations 23
3.1.4 Use Case Specific Optimizations 24
3.1.5 Summary . 24

3.2 Shift Optimizations in Racetrack Memories 25

4 Optimizing Compilers for Racetrack Memories 27
4.1 The Overhead Shifts . 27
4.2 Possible Schedules Avoiding Overhead Shifts 29
4.3 Schedule Transformation Techniques 32
4.4 Layout Transformation . 38
4.5 Integration into the LLVM Framework 44

5 Evaluation 47
5.1 Benchmarks and Setup . 48
5.2 Cost-model Based Scheduling Techniques 49
5.3 Pattern-based Schedule Transformation 51
5.4 Layout Transformation . 54
5.5 Summary of the Shift Analysis 56
5.6 Energy and Latency Results 59

iii

iv CONTENTS

6 Conclusion & Future Work 63

1
Introduction

The memory system plays a key role in the performance and power con-
sumption of computing devices. In order to meet the increasing computa-
tional power of the processing units, which is achieved mostly through an
increase in the number of cores recently, there is a continuous demand for
scaling down the technology feature size. However, the down-scaled conven-
tional SRAM and DRAM technologies suffer from high leakage and refresh
powers. To address these issues, various non-volatile memory technologies
have emerged, including STT-RAM [31], RRAM [62] PCM [63], MRAM [6],
and racetrack memories (RTMs) [40]. RTMs have two distinct advantages
among the aforementioned memory technologies. They have a much higher
write endurance than most other NVM technologies, comparable to SRAM
and DRAM, and they can store up to 100 bits in a single memory cell [7].
However, this capacity benefit of storing multiple bits in a single cell of an
RTM comes at a cost: These cells work like tapes. They have one or more
access ports each to read or write the data. For that, the contents of the
cells need to be shifted to the port position.

Thus, the latency to access a single bit in a cell is variable and depends
on the position of the access port. If the data is not located far from the
port position, it can be accessed fast. If it resides at multiple cells away
from the port, it is a lot slower. Previous work has shown that this worst-
case latency can be 25.6ˆ higher compared to SRAM [54]. Hence, it is
desirable to have memory accesses that either do not require shifting at all
through reusing the same cell before proceeding, or shift once to access the
neighboring domain. This requires a special kind of locality in the memory
accesses, called minimal-offset locality by this thesis, as this is not solely
affected by whether elements in the memory are close together as is the case

1

2 CHAPTER 1. INTRODUCTION

for spatial locality, but also by the offsets of the memory cells. There are
two major means to achieve minimal-offset locality. One can either change
the order of the program statements to reduce the offsets between subsequent
memory accesses, or change the layout of the data in the RTM. For the layout
change, there is existing work [12, 13, 35, 29, 27] for placing scalar variables
to minimize the shifts. However, there exists only a single optimization for
minimizing the shifts in arrays that targets the specific use case of tensor
contraction [30], and of now, there is no algorithm or automatic framework
that can provide minimizations of shifts for array accesses.

Goal. This thesis aims to create the first automatic framework that can
optimize a specific class of programs for minimal-offset locality. More specif-
ically, this thesis focuses on optimizing static control parts (SCoPs). These
are programs that mainly consist of affine loop nests and affine array accesses,
allowing to use the so-called polyhedral model to analyze and transform the
SCoPs. SCoPs are usually mathematical kernels like linear algebra oper-
ations, linear algebra solvers, or stencils, and typically make heavy use of
arrays. Thus, they are the ideal starting point for automated optimizations
minimizing the RTM shifts.

Contributions. This thesis provides an analysis of existing polyhedral
schedule optimization techniques and their applicability to achieving minimal-
offset locality. Then, it proposes a pattern-based schedule transformation
algorithm to reduce the shifts in RTMs. Furthermore, a special memory lay-
out transformation for stencils is introduced. The newly proposed algorithms
are implemented on top of Polly [24], the polyhedral optimizer of the LLVM
framework[32], and evaluated using RTSim [28] for their effect on the number
of shifts, the latency and the energy consumption.

Structure. Chapter 2 provides the necessary background knowledge on
racetrack memories and polyhedral optimizations that are required to un-
derstand the optimization algorithms presented in this thesis. Chapter 3
covers related work, including general polyhedral schedule optimization al-
gorithms and existing software-based shift mitigation strategies for racetrack
memories. Chapter 4 considers different approaches to schedule and memory
layout transformations that aim at reducing the shifts for array accesses in
racetrack memories. Chapter 5 evaluates the presented optimizations using
different categories of programs having a polyhedral representation like linear
algebra routines and stencils. Chapter 6 summarizes the thesis and discusses
possible future work and proposals that could lead to further improvements.

2
Background

This chapter introduces the necessary concepts to understand how polyhedral
compilation can help to optimize code for racetrack memory. First, the
fundamentals of racetrack memories are introduced and the shift optimization
problem is defined. Then the polyhedral model and important concepts
related to it are introduced, including schedule trees and data dependency
analysis.

2.1 Racetrack Memory
Racetrack memory (RTM) is a prototypical form of fast non-volatile memory
which was first proposed in 2008 [40], the concept behind it dating back
to 2004 [41]. An overview of its functionality and development is given by
Parkin and Yang (in [42]), and by Bläsing et al. (in [7]), which are shortly
summarized in the following.

Functionality. Racetrack memory consists of magnetic nanowires called
racetracks that can be split into one or more magnetic regions called domains.
Each domain has its own magnetization direction that can represent one bit.
The domains are separated by domain walls. Thus, each nanowire can store
multiple bits. As each nanowire represents a memory cell with multiple bits,
the number of bits per nanowire is usually the same for all the nanowires
in the memory. In order to access the data bits, each cell has one or more
dedicated access ports. The port position is fixed and can only read or
modify one domain at a time. Hence, for a port to access another domain,
the domains need to be moved along the wire. This can be achieved by

3

4 CHAPTER 2. BACKGROUND

D
o
m

a
in

s

Access Port

Isr Isl

Figure 2.1: This depicts a single wire, or racetrack, which can store twelve
domains. As one can see, the rest of the space on the wire is necessary to
store the overflow bits that are used to store the shifted domains. Isr and Isl

are applied to shift to the right or left respectively. This figure is adapted
from figure 1 in [7, p. 3].

applying an electric current. Thus, overflow bits are required to store the
moved bits. An illustration of a single wire can be found in figure 2.1.

RTM Evolution. The development of the current racetrack memory con-
sists of four major steps. The first step was to show that one can use an
electric current to move the domain in permalloy nanowires[26]. With that,
a speed of 100 m s´1 is possible for the domains[40]. As permalloy nanowires
are magnetically soft, the domains are relatively big and flexible in size.
Hence, in a second step, the permalloy was replaced by Co/Ni, allowing
smaller and more robust domains[14]. In a third step, it was possible to
increase the speed of the domains up to 400 m s´1 by combining an ultrathin
magnetic layer with an underlying heavy metal layer, for example cobalt with
platinum[37]. This combination makes it possible to move the domains with
a spin-polarized current that induces spin transfer torques[50]. However, this
comes at the cost of limiting the domain density because of the demagne-
tizing fields produced by each domain, which causes neighboring domains to
interfere with each other. This issue was solved in the current generation of
RTM by combining two magnetic layers for a single wire which compensate
each others magnetic moment, thus not interfering with neighboring wires
any more. This increases the domain speed as well to up-to 1000 m s´1 [64].

Memory layout. For now, let us assume that a single nanowire can contain
64 domains, i.e., that each memory cell can store 64 bits. There are two
possibilities to map a multi-bit variable to a racetrack. For example, if we
have a double consisting of 64 bits, one could store it sequentially on a single

2.1. Racetrack Memory 5

V0

V1

...

VN´2

VN´1

.
VP`1

VP

VP`pN´2q

VP`pN´1q

V0b0

V1b0

...

VN´2b0

VN´1b0

.
V1bM´1

V0bM´1

VN´2bM´1

VN´1bM´1

Racetrack MemoryDomain Block Cluster

DBC0 DBCn´1RT0 RTM´1

V : Variable
b: bit
DBC: Domain block cluster
RT : Racetrack

M : Number of racetracks per DBC
n: Number of DBCs per RTM
N : Number of domains per track
P “ N ¨ n

Figure 2.2: This shows the architecture of the racetrack memory that is used
for this thesis. The racetrack memory consists of a list of DBCs where each
DBC is a group of consecutive racetracks. The ports of each racetrack can
only be moved together in a lock-step fashion. This figure is adapted from
figure 2 in [29, p. 4].

wire. This has the disadvantage that one has to shift through the whole wire
to access the variable, performing 64 sequential reads of a single bit. This
leads to a high latency. To avoid this, the idea of a domain block cluster
(DBC) was developed in [53]. A DBC is a fixed-size group of nanowires, see
figure 2.2. For now, we assume a DBC has 32 nanowires. Instead of storing
the bits of a variable sequentially in a single nanowire, one can instead store
the bits in different wires of a DBC in a bit-interleaved fashion. With that,
a single DBC in our example can store up to 64 32-bit integers. To make
the access easier, all ports of a DBC are aligned to the same positions in
the racetracks and are moved together in a lock-step fashion. This memory
pattern is particularly useful to store arrays. For example, if we have an
arry of 192 32-bit integers, we could store it in three DBCs with the first
containing the indices 0 to 63, the second containing 64 to 127 and the third
128 to 191. This is the memory layout considered in this thesis unless stated
otherwise.

This works great if the array size is a multiple of the nanowire size. If
this is not the case, then the required amount of DBCs is chosen and the last
DBC then contains some unused bits.

A two-dimensional array with the dimensions m ˆ n can be treated as
m one-dimensional arrays that are stored sequentially in the memory. This

6 CHAPTER 2. BACKGROUND

0 1 2 3
Domain in a DBC

0

1

2

3DB
C

Nu
m

be
r A[0][0]

A[0][4]

A[0][1]

A[0][5]

A[0][2]

A[0][6]

A[0][3]

A[1][0]

A[1][4]

A[1][1]

A[1][5]

A[1][2]

A[1][6]

A[1][3]

Default Memory Layout

Figure 2.3: This shows the default memory layout of a two-dimensional array
Ar2sr7s on a DBC with size 4. The empty cells are unused domains, as the
innermost dimension is not a multiple of the DBC size.

can be inductively generalized for arbitrary multi-dimensional arrays. For
example, if we have a three-dimensional array with dimenions 16 ˆ 8 ˆ 80,
there are two DBCs used for each of the 16 ¨ 8 “ 128 outer two dimensions.
A smaller example can be seen in figure 2.3.

Problem definition. Racetrack memory promises to be faster and more
energy-efficient compared to all available memory technologies today [7].
However, unlike traditional memory like DRAM, the access latency to a
specific memory cell is not constant, but dependendent on the position of
the access port, as the domain needs to be shifted to the access port. For
example, let us look at figure 2.3 again. If A[0][3] needs to be accessed, but
the port for the DBC points to A[0][0], the domain containing A[0][3]
needs to be shifted three times, whereas when it points to A[0][2], only
one shift is necessary. Thus, reducing the shifts in a program should also
reduce the latency. Furthermore, as the shifting requires a current, fewer
shifts also lead to a smaller energy consumption of the racetrack memory.
As summarized in [7], both effects are relevant in practice.

Hence, it is an interesting problem to reduce the number of shifts required
in a racetrack memory. Both hardware and software optimizations can be
used to achieve a reduction in the shifts [7]. This work investigates software
optimizations. More specifically, it focuses on using racetrack memory as
a scratchpad memory for storing the arrays that are currently used in a
program. All scalar variables are assumed to be stored in registers and are
not considered for the shift optimization. Thus, the problem that is tackled
in this thesis is the following:

Reduce the number of shifts for array accesses in a given static
control part.

2.2. The Polyhedral Model 7

In the following, it is assumed that arrays already reside in the scratchpad
memory and that each access port points to the first domain in its respective
racetrack.

2.2 The Polyhedral Model
This section explains the polyhedral model. First, it introduces the basic
definitions of representing a program in the polyhedral model. Second, it
states some operations on integer sets and maps. Third, it defines schedule
trees as an alternative schedule representation. Last, it explains the concept
of dependency analysis in the polyhedral context.

2.2.1 Static Control Parts
The polyhedral model is a mathematical representation of a program. It can
only represents programs with static control flow, referred to as static control
parts, abbreviated as SCoPs.1 In the following, the different parts of a SCoP
are introduced. After that, the conditions for a program to be a valid SCoP
can be derived.

Domain. The main idea of the polyhedral model is to represent each state-
ment of a loop by its iteration variables. For example, let us consider the
code in figure 2.4a. There are two statements involved. For the statement
S, all combinations of variables are shown in figure 2.5 where each point
represents an instance of the statement S. All the points put in a single
set form the domain of the statement S. The statement instances of T can
be represented as triples, as there are three loops surrounding T . When we
combine these to sets in an appropriate way as described after the following
definition, we get the domain of the entire SCoP. Thus, the domain exactly
describes which statement instances of each statement should be executed.

To represent the domain mathematically, the following definition is intro-
duced. It is based on [56], and used in [23, p. 23].

Definition 2.1 (Basic Integer Set).
Let p, d, e,m P N. A basic integer set Q is a mapping Q : Zp Ñ 2Zd , ~nÑ Qp~nq
where for some A P Zmˆd, B P Zmˆp, D P Zmˆe,~c P Zm, and for each ~n P Zp,
it is

Qp~nq “ t~x P Zd
|D~z P Ze : A~x`B~n`D~z ` ~c ě 0u;

p is the parameter dimensionality, d the set dimensionality, e the number
of existentially quantified variables in the constraints and m the number of
constraints.

1There is some work to extend the polyhedral model in order to make it a bit more
universally applicable.[5]

8 CHAPTER 2. BACKGROUND

for(int i = 0; i <= 3; ++i) {
for(int j = 0; j <= 3; ++j)

S: C[i][j] = β * C[i][j];
for(int k = 0; k <= 3; ++k)

for(int j = 0; j <= 3; ++j)
T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];
}

(a) This code shows a matrix multiplication combined with a matrix vector multi-
plication, known as the gemm kernel. There are many implementations of the gemm
kernel possible. The one used throughout this thesis is the one as it is implemented
in Polybench [65].

for(int i = 0; i <= n; ++i)
for(int j = 0; j <= 3; ++j)

S: B[i] += A[i][j]

(b) This is a kernel with a single statement and a parametric domain with the
parameter n.

Figure 2.4: This shows two example SCoPs for explaining the details of
SCoPs.

0 1 2 3

0

1

2

3

j

i

Figure 2.5: This shows the example domain for statement S in figure 2.4a.

In its direct form, this definition is a bit tedious to work with, but it is
precise. To understand its parts, we take the domain for the single statement
of figure 2.4b:

nÑ t pi, jq | 0 ď i ď n^ 0 ď j ď 3 u (2.1)

First note that this example, along with the rest of the thesis, omits the
matrix notation and instead describes each row of it as an inequation. In this
example, p “ 1, as there is one constant parameter to the SCoP (namely,
the n), d “ 2 as the the set is two-dimensional, m “ 4 as there are four
constraints on the values in the set, and e “ 0 as there are no existentially
quantified constraints.

2.2. The Polyhedral Model 9

For simple kernels like the one in figure 2.4b, the basic integer set is suf-
ficient. But to describe domains of kernels with multiple statements, several
additions to the definition are necessary. First of all, it is very useful to use a
name for the tuple to describe the statement one is referring to with this set.
For example, for figure 2.4b, the basic integer set that describes the domain
can be written like this:

nÑ t Spi, jq | 0 ď i ď n^ 0 ď j ď 3 u

A basic integer set when assigned a tuple name is called a named basic integer
set. For the rest of the work, the distinction between named and unnamed is
omitted as we are usually only working with named basic integer sets. With
this definition, it is possible to describe the space.

Definition 2.2 (Space).
The space of a named basic integer set Q is the following triple:

• The number of parameters p,
• the dimensionality d,
• and the tuple name,

and is denoted by SpacepQq.

For example, the space of set 2.1 is pp “ 1, d “ 2, Sq. In the domain of a
single statement p corresponds to the number of constant parameters that are
necessary to describe the domain, the dimensionality d describes the number
of loops that are surrounding the statement, called statement parameters,
and the tuple name is the statement name.

Define an integer set as the union of finitely many basic integer sets with
the same space. Define a union integer set as the union of finitely many
integer set. This allows to describe the domain of a multi-statement SCoP
in a single mathematical object. For example, the domain of the gemm kernel
in figure 2.4a can be written as the following union integer set:

t Spi, jq | 0 ď i ď 3^0 ď j ď 3 uYtTpi, k, jq | 0 ď i ď 3^0 ď k ď 3^0 ď j ď 3 u

For the remainder of this thesis, unless the context requires otherwise, basic
integer set is abbreviated as basic set, integer set as set, and union integer
set as union set.

Schedule. The domain of a SCoP describes which statement instances
should be executed, but does not make any statement on the order of execu-
tion. For this, a SCoP needs a schedule. A schedule describes a partial order
on the statements in which they should be executed. One way to describe the
schedule is to map every of the statement instances to a d-tuple and order
the execution by the lexicographic order of this map. An example for the

10 CHAPTER 2. BACKGROUND

0 1 2 3

0

1

2

3

j

i

Figure 2.6: This shows the lexicographic ordering of the domain of S in
figure 2.4a where each domain entry is mapped to itself. As can be seen from
the arrow directions, this represents two nested for loops, where j is the inner
one and i the outer one. Hence, this is the schedule of S as it shown in the
code in figure 2.4a.

lexicographic order can be seen in figure 2.6. As we have already mentioned
mapping, let us formally introduce maps:

Definition 2.3 (Basic Integer Map).
Let p, din, dout, e,m P N. A basic integer map M is a mapping M : Zp Ñ

2ZdinˆZdout where for some Ain P Zmˆdin , Aout P Zmˆdout , B P Zmˆp, D P

Zmˆe,~c P Zm, and for each ~n P Zp, it is

Mp~nq “ t~xin Ñ ~xout P Zdin ˆ Zdout |Dz : Ain~xin ` Aout~xout `B~s`D~z ` ~c ě 0u;

p is the number of parameters, din the input dimensionality, dout the out-
put dimensionality, e the number of existentially quantified variables in the
constraints and m the number of constraints.

This definition is analogous to the definition of the basic integer set,
except that it uses a relation with an input and output dimension instead of
a single set dimension. The schedule of figure 2.4b looks like this:

nÑ t pi, jq Ñ po1, o2q | o1 “ i^ o2 “ j u ô nÑ t pi, jq Ñ pi, jq u

Like with the basic set example, the matrix representation is replaced by a
short notation of the constraints. Furthermore, in case an input parameter is
equal to an output parameter, it can be written as on the right side. Similar
to the basic sets, it can be useful to assign a name to the input or output
dimension of the basic integer map. In that case it is called a named basic
integer map. In our case, this distinction is omitted for the rest of this work,

2.2. The Polyhedral Model 11

as nambed basic interger maps are used almost always. For example, the
schedule of figure 2.4b can be named as follows:

nÑ t Spi, jq Ñ pi, jq u. (2.2)

Hence, the spaces for basic integer maps look like this:

Definition 2.4 (Space II).
The space of a named basic integer map M is the following quintuplet:

• The number of parameters p,
• the input dimension din,
• the output dimension dout,
• the input tuple name,
• and the output tuple name,

and is denoted by SpacepMq.

For example, the space of map 2.2 is pp “ 1, din “ 2, dout “ 2, S, εq, where
ε is the empty word. Define an integer map as the union of finitely many
basic integer maps with the same space, and define a union integer map as
the union of finitely many integer maps. For the rest of this thesis, unless
the context requires otherwise, basic integer maps are abbreviated as basic
maps, integer maps as maps and union integer maps as union maps.

For schedules, the output dimensionality of the schedule’s integer map is
called the schedule dimension, while the input dimensionality still describes
the number of statement parameters. The schedule dimension is used to
classify schedules either as one-dimensional, when the schedule dimension
is equal to one, or as multi-dimensional, when the schedule dimension is
bigger than one. For example, the schedule represented by equation 2.2, is
multi-dimensional.

Memory Accesses. With the domain and the schedule, we have enough
information to describe an abstract form of a program. However, memory
accesses are a fundamental component of any program, and without them
the programs would be very restricted in their capabilities. Let us recall that
this work aims to optimize array memory accesses for racetrack memories.
For this, we need a representation of array memory accesses. The usual way
to do this in the polyhedral model is to encode the array access expressions as
affine expressions of the statement instance vectors. These can be represented
by integer maps, where for each array memory access in a statement, the
statement instance is mapped to a tuple of affine array index expressions,
one for each dimension of the array. These integer maps are called memory
access maps or memory access relations. In the memory access maps, the
input dimensionality also describes the number of statement parameters, the
output dimensionality describes the array dimension, and the output tuple

12 CHAPTER 2. BACKGROUND

name is equal to the array name. The last output dimension of the memory
access map is also called the fastest-changing dimension, as it usually is the
one that is changed in the innermost loop nests of algorithms, and this is the
dimension that is put into a single DBC in the default RTM memory layout.

For example, in figure 2.4b, the statement S accesses two arrays, namely
A and B. This can be represented by the following two access maps:

nÑ t Spi, jq Ñ Api, jq u

and
nÑ t Spi, jq Ñ Bpiq u.

Furthermore, for the dependency analysis (cf. 2.2.4), it is important that
each memory access is either marked as a read or a write access. For the
running example, A is only read, but B is both read and written. Although
the read and write occur at the same location, two distinct memory accesses
will be created for this, one marked as a read and one as a write.

Now that all major components of a SCoP are defined, it can be summa-
rized as follows:
Definition 2.5 (SCoP).
A static control part (SCoP) is a mathematical representation of a part of a
program. It contains the following parts:

• a union set representing the domain of the SCoP,

• a partial order on the domain that describes the schedule of the SCoP,
and

• for each statement a list of memory accesses, where each distinct array
access is a tuple consisting of its type (either read or write) and its
access function, represented as an integer map.

The following conditions can be derived for a program to have a valid
representation as a SCoP:

• There are four types of variables allowed in a SCoP: The first ones are
integer variables that are constants from the perspective of the SCoP,
called parameters. The other types are loop induction variables, arrays,
and local variables limited to a single statement.

• The only control structures allowed are the following: First, loops that
each have a single induction variable, a constant increment or decre-
ment in each interation, called stride, and a lower and upper bound
for the induction variable that are affine expressions in the surround-
ing induction variables and parameters. Second, conditional statements
where conditions can only contain affine expressions in the surrounding
induction variables and parameters.

2.2. The Polyhedral Model 13

• Array index expressions have to be affine expressions in the induction
variables and parameters.

• Statements have to be side-effect free basic blocks that only take array
elements, parameters, SCoP-local variables and loop induction vari-
ables as live-in and live-out variables.

All the above is adapted from [24]. With all that in mind, we can ex-
plain the term polyhedral model. For this, first introduce the definition of a
polyhedron:

Definition 2.6 (Polyhedron).
Let d,m P N. Let A P Zmˆd,~b P Zm. Then the set

t~x P Zd : A~x`~b ě ~0u

is called a polyhedron.

This definition resembles the ones of basic integer sets and maps, with
the exception that they have an additional existential quantifier. But when
one removes the existential quantifier from the sets by letting e “ 0 in defini-
tion 2.1 or 2.3, then both can be viewed as polyhedra by letting the parameter
~n be a part of the set instead of the domain of the mapping. Let us have a
look at a short example for this. Take the set

nÑ t pi, jq | 0 ď i ď n^ 0 ď j ď 3 u

again. This can be transformed into this:

t pn, i, jq | 0 ď i ď n^ 0 ď j ď 3 u

Hence, throughout this thesis, a basic set and map is viewed as a poly-
hedron if it is clear that no existential quantifiers are necessary for depicting
them. This is the case for the domain of a SCoP, for example.

2.2.2 Operations on Integer Sets and Maps
This section introduces important operations on integer sets and maps. The
following definitions are adapted from [55, p. 224f.]. For the remainder of
this section, let p, din, dout, d P Z, and let ~n P Zp.

First of all, maps can be split into their domain and range:

Definition 2.7 (Map Domain, Range, Inverse).
Let M : Zp Ñ 2ZdinˆZdout be a basic map. The domain of M is the basic set:

domM : Zp
Ñ 2Zdin , domMp~nq “ t~x P Zdin |D~y P Zdout : ~xÑ ~y PMp~nqu

14 CHAPTER 2. BACKGROUND

The range of M is the basic set:

ranM : Zp
Ñ 2Zdout

, ranMp~nq “ t~y P Zdout |D~x P Zdin : ~xÑ ~y PMp~nqu

The inverse of M is the basic map:

M´1 : Zp
Ñ 2ZdoutˆZdin ,M´1

p~nq “ t~y Ñ ~x|~xÑ ~y PMp~nqu

All these operations are the same as in other branches of the mathematics:
The dom operator grants access to the domain of a map, the ran operator
to its image, and the inverse allows to switch the domain and range of the
map.

Next, define the application of maps:

Definition 2.8 (Application of a Relation).
Let Q : Zp Ñ 2Zd be a basic set, M1 : Zp Ñ 2ZdˆZdin and M2 : Zp Ñ

2ZdinˆZdout be basic maps. If SpacepQq “ SpacepdomM1q, let:

M1pQq : Zp
Ñ 2Zdin ,M1pQqp~nq “ t~y P Zdout |D~x P Qp~nq : ~xÑ ~y PM1p~nqu,

and if SpacepranM1q “ SpacepdomM2q, let:

M2 ˝M1 : Zp
Ñ 2ZdˆZdout

, pM2 ˝M1qp~nq “

“ t~xÑ ~z P Zd
ˆ Zdout |D~y P Zdin : ~xÑ ~y PM1p~nq and ~y Ñ ~z PM2p~nqu

Applying a basic integer map to a basic integer set is the same as applying
an arbitrary function to a set. The concatenation of two basic integer maps
does the same as the concatenation of two arbitrary relations.

Next, define the delta set:

Definition 2.9 (Delta Set).
Let M : Zp Ñ 2ZdˆZd be a basic map. Define the delta set of M as:

∆pMq : Zp
Ñ 2Zd

,∆pMqp~nq “ t~δ P Zd
|D~xÑ ~y PMp~nq : ~δ “ ~y ´ ~xu

Verbally, the delta set describes the subtraction of each domain element
from its relating range elements. This is similar to the operation fpxq ´ x
for each x if f is a real function. Let us have a look at two small examples:

∆ptTpi, 0, jq Ñ Tpi, k, jq uq “ tTp0, k, 0q u.

Second, we have:

∆pt Spi, jq Ñ Spo, jq | ´1` i ď o ď 1` i uq “ t Spi, 0q | ´1 ď i ď 1 u

2.2. The Polyhedral Model 15

For the last operation on integer maps, we need the following formal
definition of the lexicographic ordering:
Definition 2.10 (Lexicographic ordering).
Let d P N, and ~a,~b P Zd. We call ~a lexicographically smaller than ~b, denoted
by ~a ă ~b, if there exists an i P t1, . . . , du such that ai ă bi and for all
j “ 1, . . . , i´ 1, it is aj “ bj. Denote ~a ĺ ~b if ~a ă ~b or ~a “ ~b.

Furthermore, define the lexicographic minimum:
Definition 2.11 (Lexicographic Minimum).
Let M : Zp Ñ 2ZdinˆZdout be a map. The lexicographic minimum of M is the
map:

lexminpMqp~nq :“ t~xÑ ~y PMp~nq|@~z P Zdout : ~xÑ ~z PMp~nq ñ ~y ĺ ~zu

This operation maps every element of the domain to the lexicographic
minimum of its relating range elements. For example, it is:

lexminpt Spi, jq Ñ Spo, jq | ´1` i ď o ď 1` i uq “ t Spi, jq Ñ Sp´1` i, jq u

The above are all the operations that are necessary to understand the
algorithms presented in this thesis. Additionally, the notion of injectivity is
required:
Definition 2.12 (Injectivity).
Let M : Zp Ñ 2ZdinˆZdout be a map. M is called injective if for each ~n P Zp

and for each p ~x1, ~y1q, p ~x2, ~y2q PMp~nq with ~y1 “ ~y2, it follows ~x1 “ ~x2.

Verbalized, injectivity means that each range element is related exactly
one domain element.

2.2.3 Schedule Trees
The union maps from section2.2.1 allow to represent all possible schedules
for SCoPs. As can be seen in chapter 3, there exist different approaches
to calculate schedules for an entire SCoP. However, when only parts of the
schedule need to be modified, the map representation of a schedule is a
bit inconvenient. By contrast, the schedule tree representation, which is an
alternative way to encode the order of statement instances in a SCoP, allows
to easily modify parts of a schedule while leaving the rest untouched [58]. The
main idea is to keep the original structure of the loop nests and statements of
the underlying program while maintaining the abstraction of the polyhedral
model. For this, a tree structure is ideal, as a a program consisting of loops
and statements has a tree-like structure. A schedule tree consists of the
following node types:

16 CHAPTER 2. BACKGROUND

D: t Spi, jq | 0 ď i ď 3^ 0 ď j ď 3 uY
tTpi, k, jq | 0 ď i ď 3^ 0 ď k ď 3^ 0 ď j ď 3 u

B: tTpi, k, jq Ñ i u Y t Spi, jq Ñ i u

S

F: t Spi, jq u

B: t Spi, jq Ñ j u

F: tTpi, k, jq u

B: tTpi, k, jq Ñ k u

B: tTpi, k, jq Ñ j u

Figure 2.7: This is one possible schedule tree for the SCoP in figure 2.4a.
This schedule tree is equivalent to the following schedule map:
t Spi, jq Ñ pi, 0, j, 0q u Y tTpi, k, jq Ñ pi, 1, k, jq u. The 0 and 1 in the second
dimension of the output vector are used to represent the second node. The 0
in the forth dimension of the first set is just a filler to let the schedule have
a unique, single dimension which is four in this case.

• Domain node (D): A domain node always forms the root of a schedule
tree and describes the statement instances that are ordered by this
tree. If the schedule belongs to a SCoP, then the domain node exactly
describes the domain of a SCoP. A domain node always has exactly
one child.

• Filter node (F): A filter node tells which statements are scheduled by
its subtree, i.e., it filters out statements that are scheduled by other
parts of the tree.

• Sequence node (S): A sequence node describes that its children should
be executed in order. It has always at least two childen. The children
of a sequence node are always filter nodes.

• Band node (B): A band node is a representation of a loop. It describes
the order of statement instances in its branch by a schedule map, just
like the map representation of a schedule. However, unlike in the map
representation of schedules, this schedule usually is a partial schedule
as it does not have the full dimensionality of the SCoP schedule or does
not provide a schedule for all of the SCoP’s statements.

2.2. The Polyhedral Model 17

• Leaf node (L): Each branch of the tree is terminated by a leaf node,
which has no function other than indicating termination. In the fol-
lowing, unless it is important, the leaf node is omitted.

To understand how these node types work together, it is best to have
a look at an example. For this, let us build the schedule tree for the gemm
SCoP in figure 2.4a, wich can be found in figure 2.7. As explained, the root
of the schedule tree is a domain node. The i loop of the SCoP surrounding
both statements translates to a band node that contains a one-dimensional
schedule map for both statements. Below that is sequence node as in the
program, the remaining loops are nested around a single statement each
only, hence they need to be ordered. As the j loop for statement S comes
first, the first child of the sequence node is a filter node for S. The other
child is the filter node for T . Below the filter node for S resides a single band
node that represents the j loop around S. The child of the filter for T is a
band node for the k loop. This band’s child is another band representing the
j loop.

2.2.4 Data Dependency Analysis
This section explains data dependency analysis in a polyhedral context. The
terminology is adapted from [49]. Data dependencies in a program describe
the order in which variables are accessed in a program. The general problem
for computing data dependencies for any program is undecidable. However,
in the case of SCoPs and affine array accesses, things turn out to be a bit
different. To understand this, it is necessary to distinguish two kinds of de-
pendencies: memory-based dependencies and value-based flow dependencies.
A memory-based dependency from statement instance Sp~iq to statement in-
stance T p~jq arises when

• Sp~iq is executed before T p~jq, and

• both Sp~iq and T p~jq access the same memory location.

Depending on the type of the memory access, there are several possible
combinations: read-after-write (RAW), also called true dependencies, write-
after-read (WAR), also called anti-dependencies, write-after-write (WAR),
also called output dependencies, and read-after-read (RAR), which is usu-
ally of no interest. On the other hand, a value-based flow dependency from
Sp~iq to T p~jq is a memory-based RAW dependency where no write to the
shared memory location occurs between the execution of Sp~iq and T p~jq. The
difference is illustrated in figure 2.8.

For SCoPs, i.e., programs with a polyhedral representation, memory-
based dependency analysis is NP-complete, as it is equivalent to solving
an integer linear program [48]. Exact value-based flow dependency analy-
sis is decidable [17], and there exist different algorithms [17, 49, 36] with a

18 CHAPTER 2. BACKGROUND

for(int i = 0; i <= 3; ++i) {
for(int j = 0; j <= 3; ++j) {

S: C[j] = T[i][j]
}
for(int j = 0; j <=; ++j) {

T: A[i] += C[j]
}

}

(a) This represents an arbitrary kernel to demonstrate the different kinds of de-
pendencies.

● ● ● ●

(b) Memory-based RAW dependencies

● ● ● ●

(c) Memory-based WAR dependencies
● ● ● ●

(d) Memory-based WAW dependencies

● ● ● ●

(e) Value-based flow dependencies

Figure 2.8: This shows the different kind of dependencies of C[0] through the
i loop in 2.8a. The upper row with the dots represents the four statement
instances of S where C[0] is written (i.e., where j “ 0), the lower row
represents the four statement instances of T where C[0] is read (and j “ 0
again). The figure is adapted from [57, p. 107].

suitable performance for most practical problems. An implementation of a
combination of these algorithms is available in isl [61].

For this thesis, value-based flow dependency analysis is necessary as
it tells whether one is allowed to modify the schedule of a SCoP or not.
Memory-based dependency analysis would be too restrictive for that. Only
transformations that do not violate all the value-based flow dependencies are
valid. Otherwise one would change the semantics of the SCoP. Especially,
flow dependencies can be used to analyze whether a loop (or band node in
a schedule tree) carries a dependency or not. To carry a dependency means
that reordering the statement instances in this loop or band can lead to a
violation of some flow dependency. If a loop carries no flow dependency, its
elements can be re-arranged or it can be executed in parallel.

To check if a loop or band, represented by a partial one-dimensional
schedule map, carries some dependencies or not, one can do the following [23,
p. 61]: Assume there is a union map S describing the schedule and a union

2.2. The Polyhedral Model 19

0 1 2 3

0

1

2

3

j

i

(a) This shows a partial
schedule that does not carry
a dependency. Hence, the
four bands can be executed
in any order.

0 1 2 3

0

1

2

3

j

i

(b) This shows a partial
schedule that carries a
dependency. Thus, the four
bands have to be executed
from left to right.

Figure 2.9: Both figures shows schedule bands interacting with the depen-
dencies. The points depict the statement instances, the arrows mark the
dependencies, and the blocks show the statement instances that belong to
the same band.

map D describing all the dependencies. Then calculate the expression:

∆pS ˝ pS ˝D´1
q
´1
q

This gives the distance between the domain and range of the dependencies
in the schedule. If this distance is zero, then the schedule S does not carry
any of the dependencies in D, because all tuples of dependent statement
instances only appear within a single value of the schedule S. If the schedule
S describes a band in a schedule tree, this means that all blocks of the band
could be executed in parallel. In this case, the band is called coincident. If the
distance is anything other that zero, then this schedule map does carry some
of the dependencies in D, hence S cannot be changed without potentially
violating some dependencies. Both cases are illustrated in figure 2.9.

20 CHAPTER 2. BACKGROUND

3
Related Work

This section provides an overview of the literature relevant to this work.
First, it presents a summary of the polyhedral schedule optimization tech-
niques and their applications in real-world systems. In the second part, it
gives an overview of compiler optimizations for memory systems in general
and racetrack memories in particular.

3.1 Polyhedral Schedule Optimizations
The polyhedral schedule optimization can be broadly classified into three
different categories. First, there are cost-model based approaches that opti-
mize a given cost function. The second group of approaches finds efficient
schedules by iteratively searching the entire schedule space. A third group
of approaches uses pattern-based optimizations.

3.1.1 Cost-model Based Optimizations
Feautrier was among the first to introduce single- and multi-dimensional
polyhedral scheduling methods [18, 19]. He shows how the Farkas lemma can
be used to transform the polyhedral scheduling problem into a linear prob-
lem (LP). The LP incorporates program dependencies and adds additional
constraints to maximize the dependencies that are carried in each dimension
of the resulting multidimensional schedule and to minimize the size of the
coefficients. The LP is solved through finding the lexicographic minimum of
the solutions. Feautrier’s work is still relevant today; his scheduler is still
used as a fallback [60, p. 20] in the isl scheduler, and the theoretical foun-

21

22 CHAPTER 3. RELATED WORK

dation he provides to polyhedral scheduling in general is still the basic theory
behind most subsequent work.

The state-of-the-art scheduling algorithm is Pluto [9, 10]. Pluto aims at
optimizing parallelism and locality at the same time. The idea behind this
is to minimize the distance of dependencies between tiling hyperplanes, i.e.,
groups of statements that are scheduled together. This distance is used as a
cost function. It is not minimized directly, but bounded by an affine form.
By applying the Farkas Lemma, one can find a system of linear inequalities
that can be solved. From the first solution, additional constraints are added
until enough linear independent solutions are found. Experimental results
demonstrate that Pluto is able to provide significant speedup for a majority of
the tested kernels that are checked for both sequential and parallel execution.

A modification to Pluto is presented in [59]. Verdoolaege and Isoard
extend the Pluto algorithm to optimize for consecutive memory accesses,
thereby improving the spatial locality. For this, a special constraint based
on the affine access function is added that should enforce consecutivity. They
present an algorithm to efficiently satisfy this additional constraint. This is
somewhat interesting from the perspective of this work as consecutive mem-
ory accesses might provide a starting point for further optimizations. How-
ever, consecutivity in a random access memory is not the same as minimizing
the number of shifts in a racetrack memory, as the latter might benefit from a
reversal of the current access pattern to let the port move instead of jumping
to the start of the DBC.

3.1.2 Iterative Optimizations
Pouchet et al. apply the Farkas Lemma to the dependency polyhedron to
construct the complete one-dimensional schedule space for a given SCoP [45].
Without bounds, this space can still be infinite as there are cases where scal-
ing a solution with an arbitrary integer leads to a new solution. Thus, they
put tight constraints on the schedule coefficients to reduce the schedule space
to a comprehensible size. All schedules in the reduced space are exhaustively
tested with several compilers, taking the performance measurements for each,
to find the best program version for each of the compilers, which might be
different. They conclude that except in some special cases, their optimization
yields significant performance gains. Furthermore, they notice that the opti-
mal schedule can differ a lot between several compilers, as the performance
highly depends on which backend optimizations can be applied afterwards.
This differs greatly between the compilers. Overall, the optimal schedules are
quite complex, and it is difficult to say which part of the schedule is actually
responsible for the speedup.

Pouchet et al. extend this approach in [44]. While their first paper [45]
only covers one-dimensional schedules, this one constructs a schedule space
region of multi-dimensional schedules. As the schedule space is no longer

3.1. Polyhedral Schedule Optimizations 23

exhaustively enumerable, they introduce a heuristic that restricts the search
space to allow scalable traversal. They find that the heuristic increases per-
formance for kernels with few statements, while for a large number of state-
ments, the time limit is hit before good schedules are found. To improve
in the latter case, they develop a set of operators for a genetic algorithm
that further increases the scalability of the approach. They discover that for
kernels with ten statements at most, the heuristic comes close to the genetic
algorithm, while for the larger kernels the genetic algorithm provides much
higher performance gains.

Ganser et al. aim for tiling and parallelizing the input code [20] by fur-
ther expanding the previous work [44]. For this, they modify the creation
of the schedule space regions to include some with outer loops not carrying
dependencies in order to allow for outer parallel loops, and drop the con-
straints on the coefficients. Furthermore, they use Chernikova’s algorithm to
calculate the dual representation of a polyhedron to sample the regions. The
dual version of a polyhedron is not constraint-based, but instead based on
vertices and rays1.

For sampling, they use both a random exploration and a genetic algo-
rithm. They show that for selected kernels, both their random exploration
and their genetic algorithm outperform the approach in [44].

3.1.3 Pattern-based Optimizations
Gareev et al. contribute a specific pattern-based optimization for tensor
contraction in [22]. By searching the memory accesses for a specific pat-
tern, they detect tensor contraction and then apply selected optimizations
such as tiling, data layout transformations and vectorization, with specific
parameters selected for tensor contraction. They show that they can reach
the performance of specialized, state-of-the-art BLAS libraries.

The optimization suggested in [22] is implemented in the mainline branch
of Polly, but the implementation shows a major drawback of pattern-based
algorithms: Even for a simple case like that, the code can get rather verbose.
To tackle this, Chelini et al. suggest so-called loop tactics [11]. Loop tactics
provide a declarative way to describe computational patterns in the poly-
hedral model and support transformations that use pairs of matchers and
builders to implement the pattern-based optimizations. The authors provide
an implementation of their suggested framework for LLVM and a source-to-
source compiler. They implement the pattern from [22] and a data layout
transformation for SIMD code. They find that loop tactics reduce the code
complexity and code size of the optimizations in the compiler. They further

1This is due to the Farkas-Minkowski-Weyl theorem and steps a bit deeper into the
mathematics behind the polyhedral model, which is not the topic of this work. For further
read on duality, see[51, p. 87ff.]

24 CHAPTER 3. RELATED WORK

incorporate a replacement of code with vendor-optimized library routines for
special kernels like BLAS.

The loop tactics framework is exactly what is needed to make the pattern-
based optimizations explored in this thesis easier to implement. However, the
paper is too recent to incorporate its framework into the implementation for
this thesis. Future work to improve what is shown in this thesis should, how-
ever, use the loop tactics framework instead of the manual implementation.

3.1.4 Use Case Specific Optimizations

As this thesis targets the specific use case of applying polyhedral optimization
techniques to minimizing the shifts in racetrack memories, it is of interest
to see other areas where specific use cases were tackled using polyhedral
techniques.

As polyhedral schedule optimizations often aim at parallelizing existing
code, it is a natural fit for GPUs. An automatic c-to-cuda code generation
is presented in [4]. PPCG [2] is another source-to-source compiler to map
sequential programs on a modern GPU, and is improved upon in [52]. Poly-
hedral process networks are mapped onto GPUs in [2]. Another use case for
polyhedral optimization techniques is tensor contraction. Next to the afore-
mentioned pattern-based optimization [22], the polyhedral model is applied
to optimize tensorflow computation graphs [47] and for optimizing tensor
operations on computing-in-memory architectures [16]. Similar to tensor op-
erations, stencils are another kind of use case that fit into the polyhedral
model. They are automatically tiled for parallelism in [3], and automatic
time-tiling is proposed in [8]. Specialized platforms, like FPGAs [46] and
systolic arrays [15], also benefit from polyhedral optimization techniques.

3.1.5 Summary

In the aforementioned cost-model based and iterative algorithms, a shared
core idea is to utilize the Farkas Lemma. The pattern-based techniques are
complementary to those, and can be applied after the other two or as stan-
dalone. However, they are more likely to work well with the cost-model based
approaches than the iterative ones. The reasons for this are as follows: The
resulting schedules are sometimes very complex and might remove the ability
to detect any patterns in those. Furthermore, the iterative approach requires
to rate the code by a metric that is computed from the actual behaviour of
the code, thus running different versions of the code repeatedly. Hence, for
this thesis, it was chosen to combine existing cost-model based approaches
with a new pattern detection.

3.2. Shift Optimizations in Racetrack Memories 25

3.2 Shift Optimizations in Racetrack Memo-
ries

This section provides an overview of software optimization techniques for
shifts migitation in racetrack memories. There are various hardware solu-
tions to reduce the shifts in RTMs, however, as this thesis only investigates
software-based optimizations, they are beyond the scope of this work.

An important predecessor to the shift optimization problem for racetrack
memories is given by Liao et al. [34]. They target digital signal processors
(DSPs) for their optimization. DSPs store their data in stacks which are
usually addressed by one or more address registers. Incrementing or decre-
menting the address register by one can be done in the same operation as a
load of the address, whereas moving the address further in the stack requires
an extra operation. Hence, the problem of placing variables in the DSP stack
is similar to the problem of placing variables in DBCs, as in both cases, one
does ideally want to have movements of size one.

The main goal in [34] is to minimize the code size by maximizing the num-
ber of postincrement and postdecrement operations for address generation.
As an added bonus, this also benefits performance. For this, the authors
define the simple offset assignment problem (SOA) involving only a single
address register, and the general offset assignment problem (GOA) with an
arbitrary number of address registers. They show, by reduction to the maxi-
mum weight path covering problem, that SOA is NP-complete. Hence, they
present a heuristic for SOA and utilize this heuristic in a second heuristic to
tackle GOA. They find that their heuristic can reduce the number of address
instructions by around 46 %. Analogously to DSPs, SOA and GOA can be
defined for RTMs by either looking at a single or multiple DBCs.

Chen et al. claim to be the first ones who proposed a software-based
approach to address shift migitation in racetrack memory [12, 13]. They
show that the problem of optimal variable placement for minimal shifts in
racetrack memories is NP-complete. They introduce a grouping-base data
placement algorithm and compare it to an ILP solver, a placement arranged
according to first variable occurrence, and the SOA algorithm with modified
cost function from [34]. They find that their heuristic greatly outperforms
SOA and no-op, and is on par with the ILP solution.

Another approach to SOA for RTMs is presented by Mao et al. in [35].
They suggest three simple heuristics: either sort the variables according to
first access, place the variables most frequently accessed in the middle of the
racetrack, or place the variables most frequently accessed first in the race-
track. Additionally, they suggest a genetic algorithm to solve the problem,
which is further enhanced by using the simple heuristics for some of the initial
values. They find that this combination can find near-optimal solutions.

Khan et al. propose a third way to tackle SOA in [29] called ShiftsReduce.

26 CHAPTER 3. RELATED WORK

Based on existing heuristics for data placement on a DSP, they develop a
heuristic for racetrack memory that improves on [13] by considering temporal
locality of accesses. They, using the OffsetStone benchmark, show that their
heuristic improves on the existing ones significantly. In addition, they use a
genetic algorithm that provides near-optimal solutions. Finally, they show
that the reduction in shifts is directly connected to a reduction in energy
consumption.

While ShiftsReduce focuses on intra-DBC variable placement, in [27]
Khan et al. present a heuristic that optimizes the inter-DBC data place-
ment. The main idea is to calculate the live-ranges of each variable and to
group variables that have disjoint life-ranges in their access order together.
In addition, they present a genetic algorithm that should solve both the inter
and intra-DBC data placement at once to have a near optimal solution as a
baseline. Alongside their approach, they evaluate the inter-DBC placement
strategy by Chen et al. [12, 13]. They find that their heuristics likely per-
forms within a magnitude of the optimal solution, as a comparison with the
genetic algorithm shows.

Shift reduction in arrays is addressed in [30] by Khan et al. More specifi-
cally, they present an optimized memory layout and an optimized schedule to
reduce the number of shift operations in tensor contractions. Furthermore,
they add preshifting that proactively moves data to ports to hide the shift
latency. They find that the combined effect of their optimizations give RTMs
a competitive edge over SRAM in both performance and energy consump-
tion. Basically, this paper motivates and provides a starting point for this
thesis. It shows that optimizing the memory access pattern of arrays plays
an important role in utilizing racetrack memory for performance and energy
efficiency. However, Khan et al. suggest manual transformations and tackle
only a single kernel, namely tensor contraction, while this work presents an
automated end-to-end compilation framework that optimizes schedules and
layouts for RTMs.

Multanen et al. present a strategy to place instructions in RTM to reduce
the shifts [39] alongside an instruction fetch and memory architecture. The
core idea is to split each basic block into two pieces, revert the second half
of the basic blocks, and put the reverted half after the first in the DBC.
Two access ports are used to utilize this instruction memory layout. This
architecture and strategy achieves a significant reduction in number of shifts
and cycle count in all 12 evaluated benchmarks.

To the best of the author’s knowledge, this thesis is the first work that
explores polyhedral optimizations for optimizing memory access patterns in
racetrack memories.

4
Optimizing Compilers for

Racetrack Memories

This chapter explores schedule and layout transformations to achieve minimal-
offset locality in RTMs. First, a distinction of shifts into compulsory and
overhead shifts is provided. Second, schedule transformations that can re-
duce the shifts are explained. Third, different schedule optimization tech-
niques that can perform the aforementioned transformations are explored,
including a novel pattern-based schedule transformation algorithm. Forth, a
novel pattern-based layout transformation algorithm to optimize the memory
layout of stencil kernels is suggested. Last, the integration of the optimization
techniques into the LLVM framework is explained.

4.1 The Overhead Shifts
RTMs are sequential by design when one wants to use them to their full ca-
pacity. Even in the best case when accessing neighboring memory locations,
ports need to be moved to the next locations, thus incuring a shift of one.
However, there are cases when the ports are only moved to reset them to the
first location in their respective DBC. Between each of these multiple shifts,
the ports are not doing something useful. This allows to classify shifts into
two categories, compulsory shifts and overhead shifts. Compulsory shifts are
the ones that are required due to the nature of the RTMs and the memory
layout and access pattern of the program. Overhead shifts are the shifts that
are used to reset a port to its starting location, usually to the first posi-
tion, and which cause a high latency and can potentially be avoided by some

27

28 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

for(int i = 0; i <= 63; ++i)
A[i] = 1;

Figure 4.1: This shows simple program that sets every value of an array to
one and has no overhead shifts.

for(int i = 0; i <= 3; ++i)
for(int k = 0; k <= 3; ++k)

for(int j = 0; j <= 3; ++j)
T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];

Figure 4.2: This figure shows a simplified gemm kernel. It is a shorter version
of figure 2.4a. It has overhead shifts in the arrays B and C.

program transformation. For example, consider the program in figure 4.1.
With the default memory layout, the array A fits entirely into one DBC of
the RTM. Assuming that the racetracks in DBCs have a single port and it
points to the index zero, the porgram incurs 63 shifts in total. This number,
when using a single DBC, is optimal, as the port has to reach every single
entry of the DBC, hence it has to be moved at least 63 times. This can be
generalized a bit more: When the ports of all DBCs point to the first entry
each and one only accesses each array cell at most once in increasing order,
there should be no overhead shifts. Hence, when only a single access to each
memory cell occurs, there is little room for optimization.

This changes, however, when there are multiple accesses to the same
memory location in a program. For this, let us have a closer look at the
T statement of the gemm kernel again, which can be found in figure 4.2.
Especially, we want to investigate the array B, which is a 4 ˆ 4 array. With
the default layout, B requires 4 DBCs. Again, we assume that all ports
point to the first entry in each DBC. For i “ 0, as j increases from 0 to 3,
every access requires a single shift in each of the four DBCs However, in the
second iteration of the i loop, the same access pattern is used, but now the
ports point to the 4th entry of each DBC. Hence, they have to be moved
back to the first entry again, which requires 3 overhead shifts per DBC. The
same happens again with i “ 2 and i “ 3. This process is demonstrated
in figure 4.3. The reason for these overhead shifts is that each entry of B is
accessed more than once, and in between these accesses, other entries of B in
the same DBC are accessed. Without changing the semantics of the original
program, there are two ways to deal with this:

• One can change the schedule of the original program without violating
the value-based flow dependencies, or

• one can change the default memory layout of the array in the RTM to
a tailored one for the specific program.

4.2. Possible Schedules Avoiding Overhead Shifts 29

0 1 2 3

0

1

2

3

j

i

B00 B01 B02 B03

B00 B01 B02 B03

B00 B01 B02 B03

B00 B01 B02 B03

Overhead Shifts

Overhead Shifts

Overhead Shifts

DBC storing B[0][0...3]T pi, 0, jq

(i=0)

(i=1)

(i=2)

(i=3)

Figure 4.3: This demonstrates the overhead shifts of B in figure 4.2. On
the left, the statement instances T pi, 0, jq are shown, i.e., for the k loop,
only k “ 0 is viewed, as k ą 0 accesses a different part of B stored in a
different DBC. The arrows depict their schedule. On the right, the access
sequence of the port of the DBC that stores B[0][0...3] is shown. B[0][j]
is abbreviated as B0j. There are 12 compulsory shifts and 9 overhead shifts
occuring.

4.2 Possible Schedules Avoiding
Overhead Shifts

This section provides three examples for schedule transformations that can
mitigate the overhead shifts in RTMs. These transformations are loop alter-
nation, loop fusion and loop interchange.

One possibility for a schedule transformation to reduce the overhead shifts
suggested by Khan et al. in [30] is to alternate some of the loops. When con-
sidering the array B again, this means that in the second iteration of i, the j
loop is not incrementing from zero to three, but starting at three and moving
back to zero. This means that the backwards shifting of the ports pointing
to B is not an overhead, but each shift is used to read a value of B. In i “ 2, j
maintains its original order, while for i “ 3, j has to be reverted again. The
code for this can be found in figure 4.4a, and a graphical representation of
this can be found in figure 4.5. This transformation of the loop order from
uni- to bi-directional is called the alternation transformation, which improves
a special kind of the spatial locality that is called the minimal-offset locality
in this thesis.

Another way to reduce RTM shifts is to group together accesses to the
exact same array cell. For this, we have to look at the example code in

30 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

for(int i = 0; i <= 3; ++i)
for(int k = 0; k <= 3; ++k)

if(i % 2 == 0)
for(int j = 0; j <= 3; ++j) // forward iteration

T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];
else

for(int j = 3; j >= 0; --j) // backward iteration
T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];

(a) This figure shows the transformed version of 4.2 that reduces the overhead
shifts of B by alternating the j loop based on i.
for(int i = 0; i <= 3; ++i)

for(int k = 0; k <= 3; ++k)
if((i % 2) + (k % 2) != 1)

for(int j = 0; j <= 3; ++j) // forward iteration
T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];

else
for(int j = 3; j >= 0; --j) // backward iteration

T: C[i][j] = C[i][j] + α * A[i][k] * B[k][j];

(b) This figure shows the transformed version of 4.2 that reduces the overhead
shifts of both B and C by alternating the j loop based on i and k.

Figure 4.4: This shows two optimized versions of the gemm kernel.

0 1 2 3

0

1

2

3

j

i

B00 B01 B02 B03

B00 B01 B02 B03

B00 B01 B02 B03

B00 B01 B02 B03

DBC storing B[0][0...3]T pi, 0, jq

(i=0)

(i=1)

(i=2)

(i=3)

Figure 4.5: This showcases the benefits of the alternation transformation in
figure 4.4a. On the left, the statement instances T pi, 0, jq are shown, i.e.,
for the k loop, only k “ 0 is viewed, as k ą 0 accesses a different part of B
stored in a different DBC. The arrows depict their schedule. On the right,
the access sequence of port of the DBC that stores B[0][0...3] is shown.
B[0][j] is abbreviated as B0j. When compared to figure 4.3, one can see
that the overhead shifts are avoided.

4.2. Possible Schedules Avoiding Overhead Shifts 31

for(int i = 0; i <= 3; ++i)
S: B[i] = 2 * A[i];
for(int i = 0; i <= 3; ++i)
T: C[i] = 3 * A[i];

(a) This is a sample code where the
shifts of A can be reduced through
loop fusion.

for(int i = 0; i <= 3; ++i) {
S: B[i] = 2 * A[i];
T: C[i] = 3 * A[i];
}

(b) This shows the transformed code
where loops are fused.

Figure 4.6: This shows a code example where the shifts are reduced through
loop fusion.

for(int i = 0; i <= 3; ++i) {
for(int j = 0; j <= 3; ++j) {

S: B[i][j] = A[j];
}

}

(a) This is a sample code where the
shifts of A can be reduced through
loop interchange.

for(int j = 0; j <= 3; ++j) {
for(int i = 0; i <= 3; ++i) {

S: B[i][j] = A[j];
}

}

(b) This is the sample code with the
interchanged loop nest.

Figure 4.7: This shows a code example where the shifts are reduced through
loop interchange.

figure 4.6. The array A is accessed twice, once in each loop. As in the
previous paragraph for B, there are overhead shifts when moving the port of
A back to the first entry when executing the statement instance T p0q. We
can of course revert the loop surrounding T to remove those overhead shifts.
However, another possibility is to fuse both loops together which, at least
for this kernel, requires even fewer shifts, as each A[i] is now accessed twice
before the access port is moved to the next location. This example illustrates
that loop fusion can also be effective in reducing the number of shifts. An
effect similar to loop fusion can sometimes be achieved by loop interchange
as demonstrated in figure 4.7. By exchanging the j and the i loop, the shifts
for accessing A are minimized as A is only processed once instead of once per
iteration of i.

32 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

4.3 Schedule Transformation Techniques

This section examines the availabe polyhedral scheduling techniques summa-
rized in section 3.1 in the context of optimizing shifts in racetrack memories.

Two of the commonly known polyhedral schedule optimization techniques
are based on the Farkas Lemma, compare section 3.1.1 and 3.1.2. Hence, let
us have a look at the Farkas Lemma in its affine form [18, p. 328][51, p. 92ff.],
adapted from [45, p. 4].

Theorem 4.1.
Let Q “ t~x : A~x `~b ě ~0u be a polyhedron and let f : Q Ñ Z be an affine
function. Then fpQq ě 0 if and only if it is a positive affine combination:

fp~xq “ λ0 ` ~λ
T
pA~x` ~xq, with λ0 ě 0 and ~λT

ě ~0

λ0 and ~λT are called Farkas multipliers.

We can use one-dimensional schedules to demonstrate the core idea of
scheduling using the Farkas Lemma. For this, consider the dependency poly-
hedra from 4.2:

t Spi, jq Ñ Tpi, k, jq u (4.1)

and
tTpi, k, jq Ñ Tpi, 1` k, jq u.

Let us now assume that we want to construct affine one-dimensional schedules
for S and T . The prototypical schedules have the form:

tSpiS, jSq Ñ ps1¨iS`s2¨jS`s0quYtT piT , kT , jT q Ñ pt1¨iT`t2¨kT`t3¨jT`t0qu.

They can also be represented as two affine functions of the statement in-
stances:

θSpiS, jSq “ s1 ¨ iS ` s2 ¨ jS ` s0

and
θT piT , kT , jT q “ t1 ¨ iT ` t2 ¨ kT ` t3 ¨ jT ` t0.

These schedule functions need to fulfil the dependencies. This means that, on
every point piS, jS, iT , kT , jT q in the dependency polyhedron 4.1, the following
has to hold to satisfy the dependency:

θT piT , kT , jT q ą θSpiS, jSq ô θT piT , kT , jT q ´ θSpiT , jT q ´ 1 ě 0

Now one can apply the Farkas Lemma on the affine form

θT piT , kT , jT q ´ θSpiT , jT q ´ 1

4.3. Schedule Transformation Techniques 33

as the dependency is given by a polyhedron. With this, one obtains con-
straints on the schedule coefficients s0, s1, s2, t0, t1, t2, t3 involving the Farkas
multipliers. This can be done for the other dependency polyhedron as well.
In the end, one gets a system of linear inequalities with the Farkas multipli-
ers and the schedule coefficients. All coefficients and multipliers that satisfy
this system form a valid schedule. This system of linear inequalities is used
both in the cost-model based approaches from section 3.1.1 as well as in the
iterative approaches from section 3.1.2.

This method has a slight disadvantage in the sense that it limits the sched-
ule space to affine transformations of the original schedule. However, not all
desirable transformations are affine. Tiling is one example of a transforma-
tion that is non-affine, and is often applied as a post-processing to the sched-
ulers in sections 3.1.1 and 3.1.2. The alternation transformation presented in
section 4.2, is also non-affine, as is shown in the following. For this, assume
that there exists an affine schedule function f : Z2 Ñ Z, pi, jq Ñ fpi, jq with
the following properties:

0 ă fpi, j ` 1q ´ fpi, jq if i is even,

as, for even i, pi, jq is executed before pi, j ` 1q, and

0 ą fpi, j ` 1q ´ fpi, jq if i is odd,

as, for odd i, pi, jq is executed after pi, j ` 1q. As f is affine, it is

fpi, j ` 1q ´ fpi, jq “ fp0, 1q.

With both inequalities from above, it follows:

0 ă fp0, 1q and 0 ą fp0, 1q,

a contradiction. Hence, f either does not have the desired properties or is not
affine. Thus, the alternation transformation cannot be performed by cost-
model based or iterative schedule optimization algorithms. Hence, a different
approach for the alternation transformation is required. As they are already
used in practice for other specific use-cases, pattern-based transformations
look like a promising candidate for this kind of transformation, especially
since this transformation is local to loops and can be applied to an existing
schedule.

When looking at the example in section 4.2, the main idea of the alter-
nation can be summarized as follows:

Whenever the same array indices are accessed more than once
in different statement instances of the same statement, alternate
the loop that occurs in the fastest-changing array index.

34 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

Before going into the details of the algorithm, we look at a useful definition:

Definition 4.1 (Equal memory access indices).
Two memory access maps M1 and M2 with SpacepM1q “ SpacepM2q have
equal memory access indices if, for each statemement instance, the difference
between the two memory location vectors is a constant vector. More formally,
M1 and M2 of S have equal memory access indices if ∆ppM2 ˝M

´1
1 q´1q con-

tains only one element.

Note that this forms an equivalence relation, i.e., it is reflexive, symmetric,
and transitive.

For example, the accesses A[i][j], A[i][j+1] and A[i-1][j-1] all have
equal memory access indices, while all pairs of A[i][j], A[2i][j], A[j][i]
do not have equal memory access indices.

The following describes the implementation of this idea into a proper
pattern-matching algorithm on a SCoP.

The algorithm can be split into two parts and an additional preprocessing
step. The preprocessing ensures that the schedule tree meets certain require-
ments, the first part extracts all necessary information from the memory
accesses, while the second part uses this knowledge to find and transform
the appropriate nodes in the schedule tree.

Let us first have a look at the preprocessing, which ensures that:

• The schedule tree must not contain bands with more than one dimen-
sion. To get this, we traverse the schedule tree and split each band
with more than one dimension into multiple band nodes having one
dimension each, without changing the schedule order.

• Each band in the schedule tree that does not carry any dependency
needs to be marked as coincident. This can either be done manually,
as described in section 2.2.4, or it may be there anyways as an output
of the isl scheduler.

The algorithm can be found in algorithm 1. It is executed for each state-
ment of the SCoP. It gets provided with the statement name as stmtId, the
list of all memory accesses as memoryAccesses, and the schedule tree as
scheduleTree. It returns the modified schedule tree.

While explaining the algorithm, let us look at the code from figure 4.2 as
an accompanying example.

The list of memory accesses contains an integer map for each array access
in the code. The memory accesses belonging to stmtId are grouped by
the different array names (see line 2) into a single integer map. Next, the
algorithm iterates through those groups (see line 3). For our example, we
get three integer maps for the arrays A, B, and C. In the following, we will

4.3. Schedule Transformation Techniques 35

Algorithm 1 This shows the algorithm that detects and performs the
alternation transformation on a single statement.

1: procedure optimizeStatement(stmtId,memAccesses, scheduleTree)
2: G = group memAccessess of stmtId by name
3: for g P G do
4: if g is not injective then
5: M = group g by equal memory access indices
6: for m PM do
7: mfixed = fix uninvolved dims of m to smallest
8: L “ lexminpm´1

fixedq

9: D “ ∆ppL ˝mq´1q
10: AltBaseDims = get alternation base candidates from D
11: AltLoopDims = get alternation loop candidates from m
12: if AltLoopSet has exactly one element then
13: Leaf = find leaf of stmtId in scheduleTree
14: AltBand = findBandNodeAbove(Leaf , AltLoopDims, tF, Du)
15: AltBaseBand = findBandNodeAbove(AltBand,

ãÑ AltBaseDims, tDu)
16: if Leaf has single statement and AltBand exists and

ãÑ AltBand is coincident and AltBaseBand exists then
17: scheduleTree = alternate AltBand based

ãÑ on AltBaseBand in scheduleTree
18: end if
19: end if
20: end for
21: end if
22: end for
23: return scheduleTree
24: end procedure
25: procedure findBandNodeAbove(Node, Dims, NodeTypes)
26: while type of Node is not in NodeTypes do
27: Node = parent of Node
28: if Node is of type B then
29: Dim = get dim of Node
30: if Dim P Dims then
31: return Node
32: end if
33: end if
34: end while
35: return ε
36: end procedure

36 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

only look at the iteration for the array B. It has the following single access
relation which is the already grouped set g:

g :“ tTpi, k, jq Ñ Bpk, jq u

Next, the grouped set g is checked for injectivity (line 4). This injectivity
check represents the core idea of the algorithm. Injectivity for memory access
maps means that whenever the same index vector is accessed in an array,
this access happens only in a single statement instance. In other words,
this means that no single array cell is accessed by more than one statement
instance. Hence, it is likely that one does not get a significant benefit from
the alternation transformation. Otherwise, in case the memory access map
is not injective, then there are cells that are accessed by multiple statements.
In our example, the injectivity check of g yields that it is note injective. For
example, both Sp0, 0, 0q and Sp1, 0, 0q map to Bp0, 0q. Thus, we found a
potential candidate for our optimization.

Next, the access map for a single array is split into smaller groups of equal
memory access indices (compare line 5), which does nothing for our example,
as g consists of a single access map anyways, thus M “ g.

After this, we check each of those groups individually for optimization.
For this, we need to find the first statement that accesses each memory cell
in the original schedule. If the memory access group relation is called m (see
line 6), this can be computed by lexminpm´1q. However, this might fail if
there are statement parameters that are not involved in the memory accesses
at all. These need to be fixed to the minimum of that statement parameter
in m, respectively, before calculating L :“ lexminpm´1

fixedq. Note that the
minimum of the statement parameters is usually zero, but can be different if
the corresponding loop does not start at zero. For our example, this yields:

L “ lexminpm´1
fixedq “ tBpi0, i1q Ñ Tp0, i0, i1q u

Next, we calculate the relative offset of the first access to all subsequent
accesses with D :“ ∆ppL ˝ mq´1q (compare line 9). This set contains one
element per distinct memory access to the same cell, thus it captures the
pattern of the accesses. For our example, D becomes:

D “ ∆ppL ˝ Sq´1
q “ tTpi, 0, 0q u

This can be used to check which statement parameters are responsible for a
repeated access as follows (cf. line 10): Iterate through all set dimensions
of D. Let us name the current dimension i. Project out the i-th dimension
of D and see whether the new arising set is not equal to D any more. The
projection can be achieved by fixing the i-th set dimension to zero as the
vector ~0 is always contained in D. From this we get a set that contains all
the statement parameters that cause multiple accesses. These are potential

4.3. Schedule Transformation Techniques 37

candidates that can be used as a base for alternation, i.e., alternation base
candidates. For our example, a potential alternation base candidate is the i
loop of the statement T pi, k, jq, as when fixing its dimension to zero, the set
D becomes:

tTp0, 0, 0q u,

In the other two dimensions, D does not change when fixing those to zero,
so these are no alternation base candidates.

Next, we need the loop that is to be alternated, namely the alternation
candidate. The following explains line 11. For finding the alternation candi-
date, take m´1, drop all the constraints involving the input, i.e., the memory
dimensions, except the last one, fix all statement parameters that are not
affected by any constraint to zero, drop the constraints of the last input di-
mension, and then take all the indices of the range of the result that are not
equal to zero. For our example, the process described above yields the set:

tTp0, 0, jq u

Here, only the third dimension related to the j loop is not zero.
From what is described in the previous paragraph, we get a list of state-

ment parameters that occur in the fastest-changing dimension of the memory
access relation m, which is the dimesion that is consecutively put into the
DBCs. If there is only a single parameter, then this statement parameter
corresponds to the loop we want to alternate. If not, i.e., if there are mul-
tiple statement parameters present that are involved in the fastest-changing
dimension of m, it is unlikely that the alternation transformation is benefi-
cial. This is due to the fact that there multipe statement parameters in the
fastest-changing dimension, then the movement of the DBC ports is affected
by multiple loops at once. Thus, for our example, the j loop is an alter-
nation candidate, as it is the only statement parameter that occurs in the
fastest-changing dimension of m.

Additionally, we have a list of alternation base candidates. We now first
search the schedule tree for the band node related to the alternation can-
didate. However, this node has to have two properties: First, it has to be
marked as coincident (cf. section 2.2.4). Second, it is only allowed to schedule
stmtId, not any other statement. Hence, one can implement this by going
from the leaf of the statement up to the first filter node in the schedule tree
(or domain node, if there is no filter node at all). If the band is found, one
can continue to traverse the schedule tree upwards to find one of the alterna-
tion base candidates calculated previously. This is achieved in the algorithm
by two consecutive calls to findBandNodeAbove in lines 14 and 15. For the
alternation base band, no further restriction apply as it is left unchanged.
For our example, the bands for the alternation candidate and the alternation
base candidate are marked in figure 4.8a.

38 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

D: tTpi, k, jq | 0 ď i ď 3^ 0 ď k ď 3^ 0 ď j ď 3 u

B: tTpi, k, jq Ñ i u

B: tTpi, k, jq Ñ k u

B: tTpi, k, jq Ñ j u

(a) This is the schedule tree for the
code in figure 4.2.

D: tTpi, k, jq | 0 ď i ď 3^ 0 ď k ď 3^ 0 ď j ď 3 u

B: tTpi, k, jq Ñ i u

B: tTpi, k, jq Ñ k u

B: tTpi, k, jq Ñ j | piq mod 2 “ 0 uY
tTpi, k, jq Ñ ´j | p1` iq mod 2 “ 0 u

(b) This is the schedule tree for the
code in figure 4.4a.

Figure 4.8: This shows the schedule tree for the code in figure 4.2 before
and after the alternation transformation, for which the code can be found in
figure 4.4a. The alternation base candidate and the alternation candidate
are highlighted each.

When both bands are found, we can alternate the one based on the other.
This is done by splitting the band’s schedule into two parts with distinct
domains, one for the iteration where the selected alternation candidate band
is even and one where it is odd. For the part where the alternation candidate
band is even, we use the same schedule as for the original band. For the
odd part, the original schedule is reverted. This achieves the alternation
transformation. For our example, the transformed schedule tree can be found
in figure 4.8b.

4.4 Layout Transformation
As explored in section 4.3, different schedule transformation techniques can
be used to reduce the shifts in applications using racetrack memories. How-
ever, sometimes it might not be possible to change the schedule as much as
needed, for example, if there are dependencies blocking the desired transfor-
mation. Hence, it is promising to investigate another possibility to reduce
the shifts, that is, changing the layout of the array in the racetrack memory.
Until this point, the default layout described in section 2.1 was assumed.
While this is an easy solution that allows for simple continuous access when
accessing the entire array once, it is not optimal for other memory access
patterns.

To demonstrate this, look at a special kind of programming kernel called
stencil. A stencil is a program where an array is updated iteratively by
some fixed pattern. For example, they are useful in the domains of image
and video processing, computation of fluid dynamics, and weather forecasting
models. An example for a stencil code can be found in figure 4.9. The special
memory access that occurs in stencils is that, unlike gemm where the number
of accesses to a memory location is matrix size dependent, the number of

4.4. Layout Transformation 39

for(int i = 1; i <= 10; ++i) {
for(int j = 1; j <= 4; ++j) {

S: B[i][j] = A[i][j] + A[i-1][j] + A[i+1][j] + A[i][j-1] + A[i][j+1];
}

}

Figure 4.9: This shows an example stencil processing a 12 ˆ 6 array with a
5 points stencil.

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

. . .

(a) Sp1, 1q

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

. . .

(b) Sp1, 3q

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

. . .

(c) Sp2, 1q
A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

. . .

(d) Sp2, 4q

A00 A01 A02 A03 A04 A05

A10 A11 A12 A13 A14 A15

A20 A21 A22 A23 A24 A25

A30 A31 A32 A33 A34 A35

A40 A41 A42 A43 A44 A45

A50 A51 A52 A53 A54 A55

. . .

(e) Sp3, 1q

Figure 4.10: This example demonstrates the repeated memory accesses for
the array A in figure 4.9. Five statements are depicted that are executed in
the order from left to right and top to bottom, with some missing statements
in between. In each graphic, A[x][y] is depicted as Axy. One can see
that A[2][1] is accessed in Sp1, 1q, Sp2, 1q, and Sp3, 1q, while other array
elements of the same row are accessed in between, namely A[2][3] in p1, 3q
and A[2][4] in Sp2, 4q, for example. After the execution of Sp3, 1q, A[2][1]
is not accessed any more.

accesses to a memory location in stencils is always fixed. This access pattern
is demonstrated in figure 4.10.

The idea for a transformed layout for stencils is the following:

Shift to the next element only when the current location is not
accessed any more.

To achieve this, one can transform the memory layout of the array in the

40 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

DBC. Instead of storing the fastest-changing dimension in the DBC, it is put
into consecutive DBCs. This has to be done for as many second innermost
array entries as the stencil reads at the same time. This ensures that the
domains are only shifted once their value was used completely for this stencil.
For the stencil in figure 4.9, the number of second innermost dimensions
accessed at the same time is three (i, i ´ 1, and i ` 1), as demonstrated in
figure 4.10, so we need to store three of the second innermost dimensions
in the first DBC entry each. Figure 4.11 illustrates the original and the
transformed layout. The example shows that the layout transformation does
not necessarily preserve the number of DBCs. In this case, the number of
DBCs is reduced, however, depending on the size of each DBC, it can also
increase. This is highly dependent on the array sizes.

The described layout transformation only makes sense for arrays with at
least two dimensions. Define the following layout transformation function for
the two dimensional case:

Definition 4.2 (2D stencil layout transformation).
Let s be the size of a stencil, let r be the size of a DBC, and let a ˆ b
be dimensions of a two dimensional array. Define the the 2D stencil layout
transformation T as follows:

T : Zˆ ZÑ Zˆ Z,
T pv, wq “ px, yq, where

x “ b ¨ pvmod sq ` pb ¨ s ¨ p
Y v

s ¨ r

]

qq ` w,

y “
Yv

s

]

mod r

This transformation function provides the exact layout of a two-dimensional
array in an RTM, where x represents the DBC and y represents the domain of
the DBC. For higher-dimensional values, one can put each two-dimensional
chunk one after another.

An important question is how to detect where this layout transformation
might be beneficial. For this, similar to the schedule modification in sec-
tion 4.3, take a pattern-based approach. First identify a stencil-like access
pattern and then change the memory layout for this array according to the
transformation function.

Similar to the scheduling algorithm, this is done this statement by state-
ment. First of all, we consider only memory accesses for arrays with at least
two dimensions. Algorithm 2 is then used to analyze the statement, and
takes the statement name as stmtId, the list of memory accesses with at
least two dimensions as memAccesses, the schedule tree as scheduleTree
and the size of a DBC as dbc. We start by grouping the memory access maps
of a statement into the same integer map by name (compare line 2). This is
exactly the same as line 2 in algorithm 1. Each of these groups is checked in-

4.4. Layout Transformation 41

(a) This shows how A from figure 4.9
is stored in the RTM with the original
memory layout.

(b) This shows the transformed mem-
ory layout for A that is optimized for
the stencil memory access.

Figure 4.11: This shows the default and the transformed memory layout of
the array A from figure 4.9.

42 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

Algorithm 2 This shows the algorithm that detects the stencil pattern in
the memory accesses and transforms the latter accordingly.

1: procedure transformStencilMemAccess(stmtId, memAccesses,
scheduleTree, dbc)

2: G = group memAccesses of stmtId by name
3: innerBand = get the innermost band of stmtId from scheduleTree
4: for M P G do
5: if M has equal memory access indices then
6: L “ lexminpMq
7: D “ ∆ppL ˝M´1q´1q
8: D = fix the dim of D where innerBand occurs in M to zero
9: mName = get array name from M

10: if not D is singleton and mName is not transformed then
11: pDims = get the nonzero dims of D
12: for pDim P pDims do
13: stencilSize = get the stencil size of pDim in D
14: if DstencilSize then
15: transform allmemAccesses of the arraymName according to pDim,

ãÑ dbc and stencilSize
16: end if
17: end for
18: end if
19: end if
20: end for
21: end procedure

dividually for optimization possibilities (compare line 4). Let us have a look
at an accompanying example. For this, consider the code in figure 4.9, which
has a single statement. For this statement, we look at the loop iteration in
line 4 where the group A is processed. The group M for A looks like this:

M :“t Spi, jq Ñ Api, j ` 1q u Y t Spi, jq Ñ Api` 1, jq uY
Yt Spi, jq Ñ Api, jq u Y t Spi, jq Ñ Api´ 1, jq uY
Yt Spi, jq Ñ Api, j ´ 1q u

For a stencil to be selected for optimization, the entire group has to have
equal memory access indices (see line 5). Otherwise it is not clear whether the
layout transformation is actually beneficial, so the algorithm proceeds only
in this case. For the array A in our example, the group has equal memory
access indices, as all accesses point to A[i][j] with only a constant offset.

In the the next step, let L :“ lexminpMq and calculate the delta set
D :“ ∆ppL ˝M´1q´1q (lines 6 and 7). The delta set describes the different

4.4. Layout Transformation 43

memory accesses executed for the same statement. For our example, we get:

L :“ t Spi, jq Ñ Api´ 1, jq u,

D :“ tAp1, 1q u Y tAp2, 0q u Y tAp1, 0q u Y tAp0, 0q u Y tAp1,´1q u.

Next, fix all dimensions of D that are related to the innermost band/loop
surrounding the statement to zero (see line 8). These are the accesses where
the memory pattern does not provide any benefits, as these are memory ac-
cesses that refer to values that are located in the same DBC. In our example,
the innermost loop is the j loop, and as we can see from M , this means we
have to fix the second dimension of each element of D to zero. D becomes:

tAp2, 0q u Y tAp1, 0q u Y tAp0, 0q u.

If D contains more than one element after that (cf. line 10), it can benefit
from the transformation. As we can see, this is the case in our example. Next,
find the non-zero dimensions of D (cf. line 11). In our example, only the
first dimension of D is not equal to zero.

Next, check if the distances between the ascendingly sorted memory ac-
cesses of the nonzero dimension are constant (see line 13). If that is the case,
we have found a stencil and get the stencil from the number of elements in
D. When looking at the different values in our example, we get r0, 1, 2s,
which has the constant distance between subsequent entries of 1 and thus is
a stencil, of size three in this case.

Thus, we can apply the aforementioned transformation (see line 15). As-
suming that the RTM has a DBC size of four, we get the following layout
mapping for our example:

T : Zˆ ZÑ Zˆ Z,
T pv, wq “ px, yq, where

x “ 6 ¨ pvmod 3q ` p6 ¨ 3 ¨ p
Y v

3 ¨ 4

]

qq ` w,

y “
Yv

3

]

mod 4

44 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

Clang Opt
Passes

SCoP
Detec-
tion

isl+RTM
Scheduler

isl
Scheduler

RTM
Scheduler

SCoP
export

Layout
Trafo

SCoP
Codegen

Trace
Gen RTSim

...

Polly
LLVM

Source
File

LLVM
IR

LLVM
IR

SCoP
+IR

SCoP
+IR

SCoP
+IR

SCoP
+IR

SCoP
+IR

SCoP
+IR

SCoP

SCoP Trace
File

Sh
ift

s

Shifts, Latency
Energy Consumption

SCoP
+IR

LLV
M

IR
Binary

File

Figure 4.12: This shows the overall workflow from a source file with a SCoP
to the results presented in the analysis. The parts that are contributed by
this thesis are highlighted by a different background.

4.5 Integration into the LLVM Framework

This section describes the implementation of the preceeding algorithms into
an existing polyhedral optimization workflow. There are different implemen-
tations of the polyhedral model available, most noticeably Graphite [43] for
GCC, and Polly [24] for the LLVM framework [32]. For this work, Polly
was chosen as the LLVM framework is easily customizable, and Polly inter-
nally uses the isl library [56] that makes the suggested algorithms easy to
implement.

A high-level overview of the overall workflow is shown in figure 4.12.
It shows that Polly itself is implemented as a part of the LLVM optimizer
toolchain, starting with the SCoP detection and some normalization passes
which are not depicted. After these passes, the original implementation of
Polly allows to call the isl scheduler combined with some post-processing like
tiling if desired. For this work, this pass is modified to switch between three
modes. The first option is to call the isl scheduler, but disables any further
optimizations like tiling. The second is to call algorithm 1 that implements
the alternation transformation. The last option combines the isl scheduler
with the alternation transformation. This is the only modification to the
existing LLVM workflow provided by this thesis. After the optimization, the
rest of Polly, including the SCoP export and the code generation, continues,
leading to a binary after other LLVM optimization passes. The memory
layout transformation targeting stencils from section 4.4 is implemented using
the exported SCoP from Polly as an optional post-processing step. After
that, a trace generation that uses the polyhedral model to generate the array

4.5. Integration into the LLVM Framework 45

memory accesses in the correct order is used to generate a trace file. This
trace file can be used to simulate the memory accesses on RTSim [28], a
cycle-accurate racetrack memory simulator. This is necessary as RTMs are
still in development and not yet available. This is also the reason why the
layout transformation is implemented as a post-processing step and not in
Polly itself as the important details on how to specify the exact layout on
the RTM are not yet known in the compiler.

46 CHAPTER 4. OPTIMIZING COMPILERS FOR RTMS

5
Evaluation

This chapter presents the evaluation of the optimization techniques for RTM
shifts that were introduced in chapter 4.

The evaluations and qualitative comparison of different configurations
should answer the following research questions:

RQ1. Do existing cost-model based polyhedral scheduling algorithms provide
any benefit in reducing the shifts? We have seen in section 4.3 that the cost-
model based algorithms have some limitations, but they could be useful for
loop fusion or interchange that may reduce RTM shifts.

RQ2. Does the pattern-based schedule transformation always reduce the
shifts? This question points into two directions: First, whether the opti-
mization provides benefits as expected. Second, if it is actually monotonous
in the sense that it does not increase the shifts rather than reduce it.

RQ3. Does the pattern-based layout transformation always reduce the shifts?
The same as for the previous question applies to this one as well. Do the
transformations work as expected? Are there cases where the transformation
increases the RTM shifts?

RQ4. Which combinations of the aformentioned optimizations work best?
All of the three optimizations can be applied independently. Hence, it is a
question whether they complement each other when applied together or not.

47

48 CHAPTER 5. EVALUATION

RQ5. Does the shift reduction result in reduced latency and/or energy con-
sumption? The reduction in shifts is motivated in previous research by re-
duction in the memory latency and the energy consumption. This needs to
be checked for the aforementioned optimizations as well.

In the following, whenever average is spelled, the arithmetic mean and
the correspoding standard deviation are meant. For all diagrams, smaller
values are better.

5.1 Benchmarks and Setup

Number of DBCs 1024 ˆ 1024
Domains per DBC 64
Write energy [pJ] 576.2
Read energy [pJ] 447.3
Shift energy [pJ] 420.5
Read latency [ns] 12.82
Write latency [ns] 17.57
Shift latency [ns] 11.14

Table 5.1: The RTM parameters used for the evaluation. The RTM uses
32 racetracks per DBC, which makes a total of 256 Megabytes. The latency
and energy number are extracted from the circuit-level memory simulator
Destiny [38]. The per-access and per-shift latency and energy numbers also
include the latency/energy of the peripheral circuitry.

To answer the research questions above, it is necessary to evaluate the
novel optimizations with standard benchmarks. A benchmark suite that is
commonly used with polyhedral optimizations is Polybench [65]. In the ver-
sion 4.2.1 used in this thesis, it provides 30 kernels. The kernel deriche
was excluded from the evaluation in this thesis as it hit a limitation in the
trace generation (see figure 4.12) that made it unable to evaluate it properly.
In addition to the 29 kernels from Polybench, 3 representative kernels from
the COSMO atmospheric model [1] are included in the evaluation. COSMO
spells Consortium for Small-Scale Modelling and is a numerical atmospheric
model that can be used for weather forecasts and modelling of the climate
on a large scale. The three representative kernels are named diffusion,
fastwave, and advection. As the layout transformation from section 4.4
targets stencils, it is important to know which of the kernels are classified as
stencils. In total, there are 9, 6 from Polybench (adi, fdtd-2d, heat-3d,
jacobi-1d, jacobi-2d, and seidel-2d, according to [65]) and all three
COSMO kernels (diffusion, fastwave, and advection). The other ker-
nels of Polybench consist of statistical calculations, linear algebra operations

5.2. Cost-model Based Scheduling Techniques 49

(BLAS and more complex kernels), linear algebra solvers, and some uncate-
gorized kernels.

The experiments were run using the pipeline presented in section 4.5. For
the latency and energy results, the values in table 5.1 were used. For the
racetrack memory, 64 domains were used per track. The RTM was simulated
as a scratchpad memory where it is assumed that the arrays are already in
the memory, and the ports of each DBC point to the first entry in its DBC.

5.2 Cost-model Based Scheduling Techniques

The isl scheduler [60] combines both the Feautrier scheduler [18, 19] and the
Pluto scheduler [9, 10]. Hence, it can be used to evaluate both cost-model
based scheduling algorithms for RTM shifts. As the cost-model of these al-
gorithms targets other goals, these are not expected to reduce the shifts, but
they might still be beneficial due to loop reordering or loop fusion. The isl
scheduler provides 10 different boolean parameters [55, p. 194ff.] that can
influence the output of the scheduler. Hence, each combination of those can
potentially output a different schedule. However, not all of these schedules
need to be distinct. In fact, the number of different schedules is two to three
magnitudes smaller and ranges from 2 to 26, with a median of 5.0 schedules.
All of these distinct schedules were evaluated. The results can be found in fig-
ure 5.1. It shows the number of shifts for the best- and the worst-performing
schedule. The baseline is the number of shifts in the original kernel. In 23
out of the 32 kernels, none of the computed schedules reduces the number of
shifts by more than 5 %, and in the remaining 9 that are the 9 bottom ones in
figure 5.1, 4 of them (advection, syr2k, gemver, and threemm) also have
schedules where the shifts are increased by the worst configuration. This
already hints that, only in very limited cases, the goals of the isl scheduler,
namely optimizing for parallelism and temporal locality, incidentally reduce
RTM shifts. By examining the schedules for each kernel of the 9 kernels, it
is found that in all cases except syrk, syr2k, and threemm, the reduction in
shifts is achieved through loop fusion. This fuses accesses to the same loca-
tion occuring in different loop nests together, hence avoids shifts. All those
schedules are computed by the modified Pluto algorithm, except for the best
version of the cholesky kernel, where the Feautrier scheduler found the best
schedule. The other three, syrk, syr2k, and threemm, do not benefit from
loop fusion, but from loop interchange, which also groups together accesses
to the same memory location. For syrk, syr2k, the optimal schedule is found
by the Feautrier scheduler, while for threemm, Pluto interchanged the loops.

The observations are confirmed when aggregating all the relative shifts
across all benches for each of the 1024 possible configurations. Of these 1024
possible configuration values, there are 16 configurations with the exact same
arithmetic mean of 0.99˘ 0.29 relative shifts compared to the identity. Thus,

50 CHAPTER 5. EVALUATION

0 1 2 3
RTM Shifts Normalized

diffusion

advection

fastwave

syr2k

syrk

fdtd-2d

gemver

threemm

cholesky

trmm

nussinov

gemm

mvt

lu

covariance

twomm

durbin

atax

symm

seidel-2d

heat-3d

jacobi-2d

jacobi-1d

gesummv

floyd-warshall

trisolv

ludcmp

correlation

adi

doitgen

bicg

gramschmidt

Ke
rn

el ISL Configuration
Worst
Best

Figure 5.1: This shows the best and the worst schedule in terms of shifts
that was calculated by the isl scheduler each. The shifts are normalized to
the shifts in each of the original kernels, respectively.

5.3. Pattern-based Schedule Transformation 51

there is only a tiny improvement achieved overall. The worst configuration
has, on average, 1.29˘ 0.58 relative shifts compared to the identity. The
best configurations all contain the option to use the Pluto scheduler, while
the worst all use the Feautrier scheduler.

For the 16 configurations leading to the best schedule on average, it is
interesting to analyze the common options among these configurations. One
option is to use the Pluto scheduler. The second common option in all these
16 configurations is the one that reverts a modification to the Pluto scheduler
that exists in the isl implementation [60, p. 45ff.] by disabling incremental
scheduling of the strongly connected components of the dependency graph.
This is particularly interesting because the modified Pluto used in isl aims
at increasing the number of coincident loops. However, for the shifts this
modification seems to have a slight disadvantage. The option that splits the
two different groups of configurations into two equal-sized groups of 8 is the
one that can disable loop coalescing through bounding the loop coefficients.
Apparently, this does not have an influence on the shifts right now, but
it might affect the novel pattern-based optimizer, as that aims to optimize
single loops.

There is one last observation when considering the kernels bicg and
gramschmidt. For both, every single configuration of the isl scheduler
makes the shifts worse by at least 39.3 % and 100 % respectively. When look-
ing at the schedule of the best configuration in this case, it becomes clear
why this is the reason: For both, loops from the original code are split into
several loops, which is the opposite of loop fusion. This further strengthens
the observation from that loop fusion is a very useful operation for keeping
the RTM shifts low.

Overall, to answer RQ1, the analysis of the results show that the impact
of existing cost-model based schedulers on RTM shifts is largely arbitrary,
and provide neither a clear advantage nor a clear disadvantage. However,
as the relatively large standard deviation of 0.29, which is more than one
third of the mean, shows, it is highly unpredictable whether the schedule
will improve or worsen the number of shifts. That said, detailed analysis
of the best cases shows a trend in the result as well. The majority of large
improvements is achieved through loop fusion using the Pluto configuration
of the isl scheduler. Hence, for code where one knows that loop fusion is
possible, the isl scheduler running the Pluto algorithm might be an option
to consider for reducing RTM shifts.

5.3 Pattern-based Schedule Transformation
The results of the pattern-based schedule optimization are presented in Fig-
ure 5.2. For the two configurations where the name contains islb (for isl
best), it was chosen to use the overall best configuration of isl, that is to

52 CHAPTER 5. EVALUATION

0 0.5 1
RTM Shifts Normalized

diffusion

fastwave

advection

gemm

heat-3d

fdtd-2d

syrk

atax

jacobi-2d

syr2k

gemver

doitgen

durbin

correlation

covariance

trmm

symm

adi

threemm

lu

twomm

cholesky

jacobi-1d

Ke
rn

el

Configuration
islb-rtms
islb
rtms

Figure 5.2: This shows changes in shifts using only the pattern-based
schedule optimizer (rtms), the best configuration of the isl scheduler which
runs the Pluto algorithm (islb), and the combination of the two (islb-rtms).
The nine cases where the pattern-based schedule optimizer did not perform
any transformation (which are floyd-warshall, gesummv, nussinov,
seidel-2d, trisolv, mvt, ludcmp, bicg, gramschmidt) are not de-
picted. The shifts are normalized to the shifts in each of the original kernels,
respectively.

5.3. Pattern-based Schedule Transformation 53

use Pluto with both incremental scheduling and loop coalescing disabled, the
latter due to the fact that loop coalescing would be a disadvantage to the
schedule optimization approach, as it reduces the number of loops

But let us first look at the results of the pattern optimizer in a stand-
alone mode. There are 6 kernels where the opimizer alternates at least one
loop, but achieves a change in the shifts of under 2 %, 10 kernels where the
reduction is more than 10 %, 15 kernels where it detects no optimization
possibility, including the 9 kernels that are not shown in figure 5.2, and one
where it increases the shifts by 2.2 %. We see the best reduction in shifts
for the gemm kernel by 49.1 %, which is not surprising as the alternation
transformation was first suggested to improve shifts for exactly this type of
kernels.

The 10 kernels with considerable shifts reduction are from the follow-
ing Polybench groups [65]: BLAS routines (gemm, syrk, syr2k, gemver),
linear algebra kernels (atax) and stencils (heat-3d, fdtd-2d, diffusion,
jacobi-2d, fastwave). These show that the idea of the optimization is
effective as these groups are the ones with repeated, yet very simple memory
accesses. But one would expect to see an improvement of the shifts in kernels
like twomm and threemm as well, as these are only a combination of multiple
matrix-matrix-multiplications. However, here no alternation transformation
is applied. An analysis of the code of the two shows that this is due to
the loop structure where too many loops are fused and the loops that could
be alternated reside outside the first filter node in the schedule, hence they
are not selected as candidates for alternation as this would also affect other
statements. This shows that a purely pattern-based schedule optimization
is limited to cases where the code has a specific structure, and even small
changes in this structure forbid the optimization. Hence, it would be desir-
able to start from a schedule that is not as variable as provided by human
code.

For this, the isl scheduler (see above for the configuration) is executed
in front of the pattern-based schedule transformation. On the one hand,
it shows promising results. In 5 kernels, namely trmm, doitgen, symm,
twomm, threemm, the isl scheduler enables shift reduction. The pattern
optimizer already affected trmm and doitgen, but with no substantial im-
provements in shifts. In the other three cases, the pattern optimizer is able
to provide an alternation which was not possible without the isl scheduler.
On the other hand, in 8 of the 10 kernels where the pattern optimizer alone is
effective in reducing the shifts, the isl scheduler prevents the pattern-based
optimization that was possible without it. This is in some kernels offset by
the fact that the isl scheduler can provide a reduction in the shifts through
loop fusion. For the remaining 2, there is one, atax, where the isl sched-
uler does not change anything, while for gemver, combining both optimizers
reduces the shifts more than each of them alone.

54 CHAPTER 5. EVALUATION

This demonstrates again that applying a cost-model based scheduler up-
front whose model does not fit the shifts optimization goal is a double-edged
sword and can lead to both fewer or more shifts depending on the kernel.

This is further confirmed by the average of the relative shifts, which are
0.919˘ 0.134, and 0.934˘ 0.319 for the the pattern-based optimizer stan-
dalone and the combination of the two respectively, as the standard devi-
ation for the former is much smaller than for the latter. This means that
whether the isl scheduler improves or deteriorates the shifts is much more
unpredictable than for the pattern-based schedule optimization.

This result analysis helps in responding to RQ2. There is not even a
single kernel that is negatively affected by the alternation transformation, 10
kernels benefit significantly from it, including the gemm kernel which origi-
nated this idea. Hence, the alternation transformation provides a simple yet
useful pattern-based schedule optimization that can help to mitigate shifts
in racetrack memory.

A partial answer to RQ4 is already possible: Combining the two different
schedule optimization approaches can help, but also hinder the optimization.
It is mostly beneficial for the kernels that contain matrix multiplications,
namely twomm and threemm, where one expected the alternation transforma-
tion to be beneficial, but it actually was not because the structure of the
original schedule prevented the optimization.

5.4 Layout Transformation
The results of the memory layout transformation are shown in figure 5.3. It
only presents the kernels that were affected by the layout transformation. For
all other kernels and schedules, no layout transformation was applied, hence
the number of shifts did not change compared to the previous sections. First
of all, it is noticeable that the layout transformation is detected for five of
six Polybench kernels (seidel-2d, jacobi-2d, heat-3d, fdtd-2d, adi)
that are categorized as stencils [65]. The only one that is missing is the
jacobi-1d, which is to be expected, as this operates on one-dimensional
arrays for which the layout transformation does not provide any benefits.
All three COSMO kernels (diffusion, fastwave, advection) are also in-
cluded, and finally, there is a stencil-like access detected in nussinov.

The first important observation is that the layout transformation stand-
alone (named lt in figure 5.3) is effective, as it reduces the shifts in all nine
cases. When taking all 32 kernels into account, the average relative shifts are
0.874˘ 0.243 for lt which shows that the effect of the layout transformation,
at least in this kernel selection, is even better than the schedule transfor-
mations. The complete coverage of all the stencil kernels together with the
average reduction in shifts by 12.6 % allows to answer RQ3 positively.

It is interesting to see how the layout transformation interacts with the

5.4. Layout Transformation 55

0 0.5 1
RTM Shifts Normalized

diffusion

fastwave

advection

seidel-2d

heat-3d

jacobi-2d

adi

fdtd-2d

nussinov

Ke
rn

el

Configuration
islb-rtms-lt
islb-lt
rtms-lt
lt
islb-rtms
islb
rtms

Figure 5.3: This depicts the results for all possible combinations of the three
optimizations for the nine kernels where the layout transformation had an
effect, i.e., it detected a stencil-like memory access. The shifts are normal-
ized to the shifts in each of the original kernels, respectively. The layout
transformation was applied in those configurations that include the name lt.

56 CHAPTER 5. EVALUATION

other optimizations. First, one can observe that when the optimization is
combined with the isl scheduler (named islb-lt in figure 5.3), the shifts get
reduce even further in 6 cases. Only for seidel-2d and nussinov, nothing
changes. For the adi kernel, the shifts increase. This is not surprising as the
adi kernel is the only one which is also badly affected by the isl scheduler
without the layout transformation as well.

Second, when combining the layout transformation with the alterna-
tion transformation (named rtms-lt in figure 5.3), there are five kernels
(seidel-2d, nussinov, jacobi-2d, heat-3, adi) where nothing changes
compared to lt, three advection, fastwave, diffusion, where the shifts
get slightly worse, and only for fdtd-2d there is an improvement. The last
one can be explained by the fact that somehow the alternation transforma-
tion allows the stencil detection to optimize a third array.

When all three optimizations are used (islb-rtms-lt), the results are the
same as for the combination of the layout transformation with the isl sched-
uler. This is expected from the combination of the isl scheduler with the
alternation transformation (islb-rtms) as in there, the isl scheduler pre-
vented all alternations in all kernels affected by the layout transformation
except adi. This can be seen in figure 5.3 by the fact that islb and islb-rtms
are equal for all kernels except adi.

5.5 Summary of the Shift Analysis

The results of all configurations across all benchmarks are shown in figure 5.4
and summarized in table 5.2. The table indicates that, by the arithmetic
mean of all kernels, the combination of all three optimizations leads to the
best results; this answers RQ4. This is backed by the fact that there are
17 kernels in total that have an improvement in shifts by at least 0.05 %.
This is mostly driven by the combination of the two optimizations (rtms-lt)
proposed in this thesis, which improves 14 kernels and has the second-best
arithmetic mean among all kernels. Furthermore, in this case, for no kernel,
the shifts increase significantly by the optimizations. When we look only at
the shifts among the kernels that were improved, the combination of the isl
scheduler with the layout transformation performs best (islb-lt), however,
this improvement is achieved in only 12 kernels. Overall, the results show
the following:

• The layout transformation seems to have the most significant effect of
all three techniques, however, it is also the one that can be applied to
the least of the kernel.

• The two proposed optimizations in this work either reduce the number
of RTM shifts or leave them unchanged.

5.5. Summary of the Shift Analysis 57

Configuration I All #Aff. #Ben. I Ben. #Mal.
rtms 0.919˘ 0.134 17 10 0.742˘ 0.106 0
islb 0.991˘ 0.289 22 7 0.664˘ 0.263 4

islb-rtms 0.934˘ 0.319 24 12 0.658˘ 0.220 4
lt 0.874˘ 0.243 9 9 0.552˘ 0.257 0

rtms-lt 0.832˘ 0.246 20 14 0.617˘ 0.236 0
islb-lt 0.868˘ 0.394 26 12 0.503 ˘ 0.320 3

islb-rtms-lt 0.812 ˘ 0.400 28 17 0.546˘ 0.287 3

Table 5.2: This table shows the summarized results. The numbers of affected
kernels (#Aff.) are the ones where there occured any changed that altered
the number of shifts, even if it is only minor. Beneficial (#Ben.) are those
where the shifts are reduced by at least 5 %, whereas maleficial (#Mal.) refer
to those where the shifts are increased by at least that number. I All and
I Ben. refer to the arithmetic mean and standard deviation of the relative
shifts of all kernels or the beneficial ones, respectively.

• The isl scheduler, while sometimes highly effective through loop fu-
sion, behaves unpredictable, as expected.

• Loop fusion is an operation that strongly reduces the number of shifts.

• The combination of all optimizations produces the best results.

58 CHAPTER 5. EVALUATION

0 0.5 1 1.5 2
RTM Shifts Normalized

diffusion

fastwave

advection

heat-3d

seidel-2d

jacobi-2d

fdtd-2d

gemver

trmm

threemm

adi

twomm

doitgen

atax

nussinov

symm

cholesky

durbin

syrk

gemm

mvt

covariance

correlation

jacobi-1d

ludcmp

lu

syr2k

bicg

gramschmidt

Ke
rn

el

Configuration
islb-rtms-lt
islb-lt
rtms-lt
lt
islb-rtms
islb
rtms

Figure 5.4: This shows the RTM shifts normalized to the identity schedule
of all kernels, excluding floyd-warshall, gesummv, and trisolv, as those
were not modified in any configuration, and all configurations.

5.6. Energy and Latency Results 59

Config I Shifts I Latency I Energy
rtms 0.919˘ 0.134 0.958˘ 0.070 0.956˘ 0.073
islb 0.991˘ 0.289 0.980˘ 0.119 0.979˘ 0.126

islb-rtms 0.934˘ 0.319 0.959˘ 0.126 0.957˘ 0.134
lt 0.874˘ 0.243 0.930˘ 0.136 0.926˘ 0.142

rtms-lt 0.832˘ 0.246 0.911˘ 0.135 0.906˘ 0.141
islb-lt 0.868˘ 0.394 0.911˘ 0.189 0.907˘ 0.199

islb-rtms-lt 0.812 ˘ 0.400 0.891 ˘ 0.187 0.885 ˘ 0.197

Table 5.3: This table shows the arithmetic mean and standard deviation
of each configuration for the relative shifts, latency and energy consumption
among all kernels.

5.6 Energy and Latency Results

The average latency of each configuration is provided in table 5.3. The sum-
marized results of the latency compared with the RTM shifts for each kernel
can be found in figure 5.6. Both indicate the same trend: The reduction in
shifts corresponds to a reduction in latency, and an increase in shifts also
increases the latency. However, it is also shown that their relationship is
not directly proportional. The change in the RTM shifts tends to be more
extreme than the change in the latency. However, the difference in the re-
duction differs greatly between kernels.

For example, when looking at the configuration rtms for the kernels gemm
and heat-3d, for the former, the shifts are reduced by 49.1 %, while for the
latter, the shifts are reduce for 35.7 %. On the other side, the reduction in
latency by 21.8 % and 22.0 % is slightly better for the heat-3d kernel in this
case. Examining the schedule of both suggests that the number of-per access
shifts in heat-3d is higher than those in the gemm kernel in the unmodified
schedule.

Another interesting kernel is again gramschmidt. There, the shifts are
increased by the isl scheduler (configuration islb) by around 100 %, while
the access latency is only increased by 17 %. This is due to the fact that in
the gramschmidt kernel, there are a lot more accesses to the same memory
locations than there are shifts. Thus, there are a lot of accesses that do not
require shifting at all in both cases. Hence, the latency does not suffer as
much from the increase in shifts as it does in other kernels. Overall, the
latency results confirm that the combination of the isl scheduler with both
the pattern-based schedule and layout transformation yields the best result.

The summarized results of the energy consumption compared with the
RTM shifts for each kernel can be found in figure 5.6, and the arithmetic
means of the energy results are provided in table 5.3. Overall, the reduction
in energy consumption behaves similarly to the reduction in latency.

60 CHAPTER 5. EVALUATION

To summarize, one can answer RQ5 positively as both the energy and
latency are reduced when the RTM shifts are reduced, but the effect is not
directly proportional due to the reasons explaind above.

5.6. Energy and Latency Results 61

0 0.5 1 1.5 2

diffusion

fastwave

advection

heat-3d

seidel-2d

jacobi-2d

fdtd-2d

gemver

trmm

threemm

adi

twomm

doitgen

atax

nussinov

symm

cholesky

durbin

syrk

gemm

mvt

covariance

correlation

jacobi-1d

ludcmp

lu

syr2k

bicg

gramschmidt
Ke

rn
el

Normalized Latency

Configuration
islb-rtms-lt
islb-lt
rtms-lt
lt
islb-rtms
islb
rtms

0 0.5 1 1.5 2
Normalized Value

Normalized RTM Shifts

Figure 5.5: This shows the latency results next to the RTM shifts normalized
to the identity schedule of all kernels excluding floyd-warshall, gesummv,
and trisolv, as those shifts did not change in any configuration.

62 CHAPTER 5. EVALUATION

0 0.5 1 1.5 2

diffusion

fastwave

advection

heat-3d

seidel-2d

jacobi-2d

fdtd-2d

gemver

trmm

threemm

adi

twomm

doitgen

atax

nussinov

symm

cholesky

durbin

syrk

gemm

mvt

covariance

correlation

jacobi-1d

ludcmp

lu

syr2k

bicg

gramschmidt

Ke
rn

el
Normalized Energy Consumption

Configuration
islb-rtms-lt
islb-lt
rtms-lt
lt
islb-rtms
islb
rtms

0 0.5 1 1.5 2
Normalized Value

Normalized RTM Shifts

Figure 5.6: This shows the energy consumption results next to the RTM shifts
normalized to the identity schedule of all kernels excluding floyd-warshall,
gesummv, and trisolv, as those shifts did not change in any configuration.

6
Conclusion & Future Work

This section summarizes the thesis and discusses some future work and pro-
posals that could lead to further improvements.

The main contribution of this thesis is the first automatic framework that
optimizes the static control parts in programs for minimal-offset locality in
racetrack memories. The framework is built on top of the polyhedral opti-
mizer Polly and is integrated into the mainstream LLVM framework. It offers
support for both schedule and memory layout transformations to reduce the
number of RTM shifts and can combine those with the existing isl sched-
uler. The evaluations on the polybench and COSMO kernels showed that the
framework can achieve a significant reduction in RTM shifts, providing an im-
portant step forwards to integrating RTMs into mainstream computational
systems. More specifically, both the layout and schedule transformations
in this thesis guarantee that the RTM shifts are either reduced or the pro-
gram is left unmodified. However, the best results were achieved combining
both transformations with the isl scheduler calling Pluto, as this covered
the most kernels and achieved a reduction in shifts of 18.8 % on average.
Nonetheless, this framework is only the first step in the right direction. In
the following, some possibilities for future work and suggestions to improve
the performance of the framework are presented.

First, both pattern detection algorithms in their current form are not
optimized for execution time. Some non-representative measurements show
that the current implementation increases the compilation time. However,
this was not investigated thoroughly as this was not the focus of this thesis.
One idea would be to switch the implementation to the loop tactics frame-
work [11] which is meant for pattern-based optimization like the ones in this
thesis. Unfortunately, this was too recently published to adapt it.

63

64 CHAPTER 6. CONCLUSION & FUTURE WORK

Second, the implementation can also potentially benefit from using the
MLIR compiler infrastructure [33] that specifically aims at building a reusable
and extensible compiler infrastructure with a focus on heterogeneous hard-
ware. The latter is exactly what is needed for a use-case specific optimiza-
tion like the reduction of shifts in racetrack memories. Furthermore, MLIR
provides an affine dialect1 that is supposed to make the polyhedral transfor-
mations easy to implement.

Third, as explained earlier, the iterative scheduling approach was dis-
cared, largely due to two reasons: First of all, it often results in complex
schedules that are not suitable for postprocessing, which is currently neces-
sary to achieve the alternation transformation, as explained in section 4.3.
However, one could possibly embed the alternation transformation by split-
ting statements that might benefit from the alternation transformation into
two different statements with distinct domains. The second reason not to use
the iterative scheduling was that it is currently impractical, as one needs to
actually compute the metrics, in this case the shifts, for all schedules that are
explored. This is currently very time consuming, as of now, there exists no
model that can estimate the shifts. However, very recent work for a polyhe-
dral cache miss estimation model [25] has shown that the polyhedral model
is capable of estimations for memory models, and there exist first analytical
models for the overall RTM shifts [29, 30] that could provide a starting point
for a generalized estimation of shifts. It might also be possible to apply ma-
chine learning algorithms to model the shift costs of programs, as this was
also done for execution time [21].

Finally, this work specifically focused on software-based optimizations
to mitigate the RTM shifts in arrays, as there existed no prior work to do
this automatically. However, it did not focus on other optimizations goals
that are traditional part of polyhedral scheduling, the most important one
being parallelism. But there are transformations that are possible for cost-
model based schedulers that can mitigate the shifts (cf. chapter 4), and
chapter 5 shows that, by chance, these can coincide with the goals of the isl
scheduler, thus achieving both minial-offset locality and parallelism. Hence,
to support both goals explicitely and not by chance, one could try to improve
the current isl scheduler by changing the cost-model to include the shifts
as well. The work on consecutivity [59] provides a similar modification to
the isl scheduler, although as explained in section 3.1.1, this modification
is not the one required for RTMs. But it certainly seems possible, though
not obvious, to improve the isl scheduler for RTMs while still optimizing
for parallelism, tiling and locality. This would require a more complex design
of racetrack memories, as the memory architecture needs to support parallel
accesses to memory regions. This, however, is thoroughly covered in this
recent review on RTMs [7].

1https://mlir.llvm.org/docs/Dialects/Affine/, visited on 2020-04-19.

https://mlir.llvm.org/docs/Dialects/Affine/

Bibliography

[1] Michael Baldauf, Axel Seifert, Jochen Förstner, Detlev Majewski, Mat-
thias Raschendorfer, and Thorsten Reinhardt. “Operational Convective-
Scale Numerical Weather Prediction with the COSMO Model: Descrip-
tion and Sensitivities”. In: Monthly Weather Review 139.12 (2011),
pp. 3887–3905.

[2] Ana Balevic and Bart Kienhuis. “A data parallel view on polyhedral
process networks”. In: SCOPES. ACM, 2011, pp. 38–47.

[3] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. “Tiling
stencil computations to maximize parallelism”. In: SC. IEEE/ACM,
2012, p. 40.

[4] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan.
“Automatic C-to-CUDA Code Generation for Affine Programs”. In:
CC. Vol. 6011. Lecture Notes in Computer Science. Springer, 2010,
pp. 244–263.

[5] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. “The Polyhedral Model Is More Widely Ap-
plicable Than You Think”. In: CC. Vol. 6011. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 283–303.

[6] Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shun-
suke Fukami, and S.N. Piramanayagam. “Spintronics based random
access memory: a review”. In: Materials Today 20.9 (2017), pp. 530–
548.

[7] Robin Bläsing, Asif Ali Khan, Panagiotis Ch. Filippou, Chirag Garg,
Fazal Hameed, Jeronimo Castrillon, and Stuart S. P. Parkin. “Magnetic
Racetrack Memory: From Physics to the Cusp of Applications within
a Decade”. In: Proceedings of the IEEE (Mar. 2020), pp. 1–19.

[8] U. Bondhugula, V. Bandishti, A. Cohen, G. Potron, and N. Vasilache.
“Tiling and optimizing time-iterated computations over periodic do-
mains”. In: 2014 23rd International Conference on Parallel Architec-
ture and Compilation Techniques (PACT). 2014, pp. 39–50.

65

66 BIBLIOGRAPHY

[9] Uday Bondhugula, Muthu Manikandan Baskaran, Sriram Krishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. “Automatic
Transformations for Communication-Minimized Parallelization and Lo-
cality Optimization in the Polyhedral Model”. In: CC. Vol. 4959. Lec-
ture Notes in Computer Science. Springer, 2008, pp. 132–146.

[10] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. “A practical automatic polyhedral parallelizer and locality opti-
mizer”. In: PLDI. ACM, 2008, pp. 101–113.

[11] Lorenzo Chelini, Oleksandr Zinenko, Tobias Grosser, and Henk Corpo-
raal. “Declarative Loop Tactics for Domain-specific Optimization”. In:
TACO 16.4 (2020), 55:1–55:25.

[12] Xianzhang Chen, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Penglin
Dai, and Weiwen Jiang. “Optimizing data placement for reducing shift
operations on domain wall memories”. In: DAC. ACM, 2015, 139:1–
139:6.

[13] Xianzhang Chen, Edwin Hsing-Mean Sha, Qingfeng Zhuge, Chun Jason
Xue, Weiwen Jiang, and Yuangang Wang. “Efficient Data Placement
for Improving Data Access Performance on Domain-Wall Memory”. In:
IEEE Trans. VLSI Syst. 24.10 (2016), pp. 3094–3104.

[14] Daichi Chiba, Gen Yamada, Tomohiro Koyama, Kohei Ueda, Hironobu
Tanigawa, Shunsuke Fukami, Tetsuhiro Suzuki, Norikazu Ohshima,
Nobuyuki Ishiwata, Yoshinobu Nakatani, and Teruo Ono. “Control of
Multiple Magnetic Domain Walls by Current in a Co/Ni Nano-Wire”.
In: Applied Physics Express 3.7 (July 2010), p. 073004.

[15] Jason Cong and Jie Wang. “PolySA: polyhedral-based systolic array
auto-compilation”. In: ICCAD. ACM, 2018, p. 117.

[16] Andi Drebes, Lorenzo Chelini, Oleksandr Zinenko, Albert Cohen, Henk
Corporaal, Tobias Grosser, Kanishkan Vadivel, and Nicolas Vasilache.
TC-CIM: Empowering Tensor Comprehensions for Computing-In-Me-
mory. IMPACT 2020 - 10th International Workshop on Polyhedral
Compilation Techniques. Jan. 2020.

[17] Paul Feautrier. “Dataflow analysis of array and scalar references”. In:
International Journal of Parallel Programming 20.1 (1991), pp. 23–53.

[18] Paul Feautrier. “Some efficient solutions to the affine scheduling prob-
lem. I. One-dimensional time”. In: International Journal of Parallel
Programming 21.5 (1992), pp. 313–347.

[19] Paul Feautrier. “Some efficient solutions to the affine scheduling prob-
lem. Part II. Multidimensional time”. In: International Journal of Par-
allel Programming 21.6 (1992), pp. 389–420.

BIBLIOGRAPHY 67

[20] Stefan Ganser, Armin Größlinger, Norbert Siegmund, Sven Apel, and
Christian Lengauer. “Iterative Schedule Optimization for Paralleliza-
tion in the Polyhedron Model”. In: TACO 14.3 (2017), 23:1–23:26.

[21] Stefan Ganser, Armin Größlinger, Norbert Siegmund, Sven Apel, and
Christian Lengauer. “Speeding up Iterative Polyhedral Schedule Opti-
mization with Surrogate Performance Models”. In: TACO 15.4 (2019),
56:1–56:27.

[22] Roman Gareev, Tobias Grosser, and Michael Kruse. “High-Performance
Generalized Tensor Operations: A Compiler-Oriented Approach”. In:
TACO 15.3 (2018), 34:1–34:27.

[23] Tobias Grosser. “Enabling Polyhedral Optimizations in LLVM”. Diplo-
ma thesis. 2011.

[24] Tobias Grosser, Armin Größlinger, and Christian Lengauer. “Polly -
Performing Polyhedral Optimizations on a Low-Level Intermediate Rep-
resentation”. In: Parallel Processing Letters 22.4 (2012).

[25] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler.
“A fast analytical model of fully associative caches”. In: PLDI. ACM,
2019, pp. 816–829.

[26] Masamitsu Hayashi, Luc Thomas, Rai Moriya, Charles Rettner, and
Stuart S. P. Parkin. “Current-Controlled Magnetic Domain-Wall Nano-
wire Shift Register”. In: Science 320.5873 (2008), pp. 209–211.

[27] Asif Ali Khan, Andres Goens, Fazal Hameed, and Jeronimo Castrillon.
“Generalized Data Placement Strategies for Racetrack Memories”. In:
CoRR abs/1912.03507 (2019).

[28] Asif Ali Khan, Fazal Hameed, Robin Blaesing, Stuart Parkin, and
Jeronimo Castrillon. “RTSim: A Cycle-Accurate Simulator for Race-
track Memories”. In: Computer Architecture Letters 18.1 (2019), pp. 43–
46.

[29] Asif Ali Khan, Fazal Hameed, Robin Bläsing, Stuart S. P. Parkin,
and Jeronimo Castrillon. “ShiftsReduce: Minimizing Shifts in Race-
track Memory 4.0”. In: ACM Trans. Archit. Code Optim. 16.4 (Dec.
2019).

[30] Asif Ali Khan, Norman A. Rink, Fazal Hameed, and Jeronimo Castril-
lon. “Optimizing tensor contractions for embedded devices with race-
track memory scratch-pads”. In: LCTES. ACM, 2019, pp. 5–18.

[31] Emre Kultursay, Mahmut T. Kandemir, Anand Sivasubramaniam, and
Onur Mutlu. “Evaluating STT-RAM as an energy-efficient main mem-
ory alternative”. In: ISPASS. IEEE Computer Society, 2013, pp. 256–
267.

68 BIBLIOGRAPHY

[32] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: CGO. IEEE
Computer Society, 2004, pp. 75–88.

[33] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula,
River Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas
Vasilache, and Oleksandr Zinenko. “MLIR: A Compiler Infrastructure
for the End of Moore’s Law”. In: CoRR abs/2002.11054 (2020).

[34] Stan Y. Liao, Srinivas Devadas, Kurt Keutzer, Steven W. K. Tjiang,
and Albert R. Wang. “Storage Assignment to Decrease Code Size”. In:
ACM Trans. Program. Lang. Syst. 18.3 (1996), pp. 235–253.

[35] Haiyu Mao, Chao Zhang, Guangyu Sun, and Jiwu Shu. “Exploring
data placement in racetrack memory based scratchpad memory”. In:
NVMSA. IEEE, 2015, pp. 1–5.

[36] Vadim Maslov. “Lazy Array Data-Flow Dependence Analysis”. In: POPL.
ACM Press, 1994, pp. 311–325.

[37] Ioan Mihai Miron, Thomas Moore, Helga Szambolics, Liliana Daniela
Buda-Prejbeanu, Stéphane Auffret, Bernard Rodmacq, Stefania Pizzini,
Jan Vogel, Marlio Bonfim, Alain Schuhl, and Gilles Gaudin. “Fast
current-induced domain-wall motion controlled by the Rashba effect”.
In: Nature Materials 10.6 (2011), pp. 419–423.

[38] Sparsh Mittal, Rujia Wang, and Jeffrey Vetter. “DESTINY: A Com-
prehensive Tool with 3D and Multi-Level Cell Memory Modeling Ca-
pability”. In: Journal of Low Power Electronics and Applications 7.3
(Sept. 2017), p. 23.

[39] Joonas Multanen, Pekka Jääskeläinen, Asif Ali Khan, Fazal Hameed,
and Jeronimo Castrillon. “SHRIMP: Efficient Instruction Delivery with
Domain Wall Memory”. In: ISLPED. IEEE, 2019, pp. 1–6.

[40] Stuart S. P. Parkin, Masamitsu Hayashi, and Luc Thomas. “Mag-
netic Domain-Wall Racetrack Memory”. In: Science 320.5873 (2008),
pp. 190–194.

[41] Stuart SP Parkin. Shiftable magnetic shift register and method of using
the same. Dec. 2004.

[42] Stuart Parkin and See-Hun Yang. “Memory on the racetrack”. In: Na-
ture Nanotechnology 10.3 (2015), pp. 195–198.

[43] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-
André Silber, and Nicolas Vasilache. “GRAPHITE: Polyhedral analyses
and optimizations for GCC”. In: Proceedings of the 2006 GCC Devel-
opers Summit. Citeseer. 2006, p. 2006.

BIBLIOGRAPHY 69

[44] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.
“Iterative optimization in the polyhedral model: part ii, multidimen-
sional time”. In: PLDI. ACM, 2008, pp. 90–100.

[45] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vasi-
lache. “Iterative Optimization in the Polyhedral Model: Part I, One-
Dimensional Time”. In: CGO. IEEE Computer Society, 2007, pp. 144–
156.

[46] Louis-Noël Pouchet, Peng Zhang, P. Sadayappan, and Jason Cong.
“Polyhedral-based data reuse optimization for configurable comput-
ing”. In: FPGA. ACM, 2013, pp. 29–38.

[47] Benôıt Pradelle, Benôıt Meister, Muthu Manikandan Baskaran, Jona-
than Springer, and Richard Lethin. “Polyhedral Optimization of Ten-
sorFlow Computation Graphs”. In: ESPT/VPA@SC. Vol. 11027. Lec-
ture Notes in Computer Science. Springer, 2017, pp. 74–89.

[48] William Pugh. “The Omega test: a fast and practical integer program-
ming algorithm for dependence analysis”. In: SC. ACM, 1991, pp. 4–
13.

[49] William Pugh and David Wonnacott. “An Exact Method for Analysis
of Value-based Array Data Dependences”. In: LCPC. Vol. 768. Lecture
Notes in Computer Science. Springer, 1993, pp. 546–566.

[50] Kwang-Su Ryu, Luc Thomas, See-Hun Yang, and Stuart Parkin. “Chi-
ral spin torque at magnetic domain walls”. In: Nature Nanotechnology
8.7 (2013), pp. 527–533.

[51] Alexander Schrijver. Theory of linear and integer programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley,
1999.

[52] Jun Shirako, Akihiro Hayashi, and Vivek Sarkar. “Optimized two-level
parallelization for GPU accelerators using the polyhedral model”. In:
CC. ACM, 2017, pp. 22–33.

[53] Rangharajan Venkatesan, Vivek Joy Kozhikkottu, Charles Augustine,
Arijit Raychowdhury, Kaushik Roy, and Anand Raghunathan. “Tape-
Cache: a high density, energy efficient cache based on domain wall
memory”. In: ISLPED. ACM, 2012, pp. 185–190.

[54] Rangharajan Venkatesan, Shankar Ganesh Ramasubramanian, Swa-
gath Venkataramani, Kaushik Roy, and Anand Raghunathan. “STAG:
Spintronic-Tape Architecture for GPGPU cache hierarchies”. In: ISCA.
IEEE Computer Society, 2014, pp. 253–264.

[55] Sven Verdoolaege. Integer Set Library: Manual. English. Version isl-
0.21. INRIA. Mar. 26, 2019. 254 pp. url: http://isl.gforge.inria.
fr/isl-0.21.tar.gz (visited on 03/21/2020).

http://isl.gforge.inria.fr/isl-0.21.tar.gz
http://isl.gforge.inria.fr/isl-0.21.tar.gz

70

[56] Sven Verdoolaege. “isl: An Integer Set Library for the Polyhedral Model”.
In: ICMS. Vol. 6327. Lecture Notes in Computer Science. Springer,
2010, pp. 299–302.

[57] Sven Verdoolaege. Presburger formulas and polyhedral compilation. En-
glish. Version v0.02. Polly Labs and KU Leuven. Jan. 15, 2016. 172 pp.
url: https://lirias.kuleuven.be/retrieve/361209 (visited on
04/28/2020).

[58] Sven Verdoolaege, Serge Guelton, Tobias Grosser, and Albert Cohen.
“Schedule Trees”. In: Proceedings of the 4th International Workshop
on Polyhedral Compilation Techniques. Ed. by Sanjay Rajopadhye and
Sven Verdoolaege. Vienna, Austria, Jan. 2014.

[59] Sven Verdoolaege and Alexandre Isoard. “Extending Pluto-Style Poly-
hedral Scheduling with Consecutivity”. In: 2018.

[60] Sven Verdoolaege and Gerda Janssens. Scheduling for PPCG. Tech. rep.
CW 706. Department of Computer Science, KU Leuven, June 2017.

[61] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. “On Demand
Parametric Array Dataflow Analysis”. In: Proceedings of the 3rd In-
ternational Workshop on Polyhedral Compilation Techniques. Ed. by
Armin Größlinger and Louis-Noël Pouchet. Berlin, Germany, Jan. 2013,
pp. 23–36.

[62] H.-S. Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi
Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T. Chen, and Ming-Jinn
Tsai. “Metal-Oxide RRAM”. In: Proceedings of the IEEE 100.6 (2012),
pp. 1951–1970.

[63] H.-S. Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John
P. Reifenberg, Bipin Rajendran, Mehdi Asheghi, and Kenneth E. Good-
son. “Phase Change Memory”. In: Proceedings of the IEEE 98.12 (2010),
pp. 2201–2227.

[64] See-Hun Yang, Kwang-Su Ryu, and Stuart Parkin. “Domain-wall veloc-
ities of up to 750 m s-1 driven by exchange-coupling torque in synthetic
antiferromagnets”. In: Nature Nanotechnology 10.3 (2015), pp. 221–
226.

[65] Tomofumi Yuki and Louis-Noël Pouchet. PolyBench 4.2.1 (pre-release).
English. Version 4.2.1-beta. Ohio State University. May 20, 2016. 14 pp.
url: https : / / sourceforge . net / projects / polybench / files /
polybench-c-4.2.1-beta.tar.gz (visited on 04/04/2020).

https://lirias.kuleuven.be/retrieve/361209
https://sourceforge.net/projects/polybench/files/polybench-c-4.2.1-beta.tar.gz
https://sourceforge.net/projects/polybench/files/polybench-c-4.2.1-beta.tar.gz

	Introduction
	Background
	Racetrack Memory
	The Polyhedral Model
	Static Control Parts
	Operations on Integer Sets and Maps
	Schedule Trees
	Data Dependency Analysis

	Related Work
	Polyhedral Schedule Optimizations
	Cost-model Based Optimizations
	Iterative Optimizations
	Pattern-based Optimizations
	Use Case Specific Optimizations
	Summary

	Shift Optimizations in Racetrack Memories

	Optimizing Compilers for Racetrack Memories
	The Overhead Shifts
	Possible Schedules Avoiding Overhead Shifts
	Schedule Transformation Techniques
	Layout Transformation
	Integration into the LLVM Framework

	Evaluation
	Benchmarks and Setup
	Cost-model Based Scheduling Techniques
	Pattern-based Schedule Transformation
	Layout Transformation
	Summary of the Shift Analysis
	Energy and Latency Results

	Conclusion & Future Work

