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Abstract

The efficient parallelization of shared state applications has been an ongoing research
topic ever since the advent of multi-core processors. Due to the properties some of
these programs exhibit, such as amorphous data parallelism and the use of pointer-
based data structures, conventional concurrency control mechanisms like locking
fail to uncover any meaningful parallelism. Speculative parallelism approaches
have been developed as a result, the most prominent representative being Software
Transactional Memory. But these frameworks have their own set of drawbacks like
the lack of scalability and high overheads. It is unclear, whether approaches like
implicit parallelism could be a feasible and more performant alternative to use for
developing these applications.

This thesis tries to find out, whether Ohua, a framework for exploiting implicit
parallelism, could be used for writing shared state programs and whether it could be
an alternative to the by now aged STM. In order to do this, we tested in a preliminary
study Ohua’s usability in shared state environments. We then proposed a set of
transformations for Ohua to run at compile-time to automatically recognize and
exploit parallelism from such applications. To compare Ohua then against STM, we
tested both in a series of benchmarks that ressemble real-world applications.

The evaluation shows that Ohua is not able to exploit parallelism in shared state
applications to the same degree as STM does. Nonetheless, Ohua shows results
that are widely on par with Software Transactional Memory and performs especially
good in applications with amorphous data parallelism, validating our proposed
transformations.
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1Introduction

At the beginning of the century, it became apparent that advancements in CPU
architecture were hitting the power wall. Clock speeds of single cores could no
longer be increased without also increasing the power dissipation of the unit beyond
the capabilities of consumer-grade cooling solutions. Multi-core architectures and
technologies like Intel’s hyperthreading soon emerged as possible solutions to this
problem, making exploiting parallelism a viable option to improve performance.
However, this architectural change led to a new set of problems: As many programs
operate on large data structures throughout the whole execution, their concurrent
execution can create data races which can only be mitigated by using primitives that
allow safe state sharing. The first conceptually simple solution to this problem that
found wide adoption was synchronization using locks. By guarding sensitive blocks
of code with a lock, one can ensure that only a single thread may enter such a critical
section at a time. But this method of synchronization has a number of drawbacks.
For one, locks do not compose [Lee06]. When using several locks or combining
multiple libraries exposing locks, developers can easily produce deadlocks, situations
in which program execution comes to a halt and is unable to proceed. Also, locking
is a pessimistic parallelism approach as the concept behind it assumes that under
no circumstances two or more threads may enter the same critical section if data
races could occur. Yet, many real-world applications are based around pointer-based
data structures. Exploiting parallelism from these irregular applications using locks
is highly inefficient [Kul+09], as often several threads could manipulate the data
structure at the same time without conflicting, e.g., when working on a large tree-
based data structure. Instead, a more optimistic approach to parallelism is needed
for this type of problem.

Software Transactional Memory [ST97] is a framework that allows state sharing
without exposing low-level mechanisms like locks to the developer. Instead, the
framework allows the definition of so-called atomic blocks, code sections in which
all changes made to shared data are either written successfully or not at all, similar
to database transactions. Using this framework for concurrency control yields so-
called speculative or optimistic parallelism [Kul+07] as several threads execute
transactions on the same shared data structure, assuming no conflicts will occur.
Should a conflict be detected, the transaction is simply rolled back and retried.
This framework has now been an integral tool for state sharing for a while, yet
it has a number of problems that have been widely reported in research. These
include a lack of scalability [Per+08] and too high framework overheads [Cas+08].
When we inspected and used STM code written as part of the widely used STAMP
benchmark suite [Min+08], we also encountered issues: The code provided for
some benchmarks does not always produce a correct result for the computation
it implements [@Wit20b], serving as an example for how hard it is to correctly
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write a program using Software Transactional Memory. Even worse, using STM
actually makes memory management inside the application even harder, as several
irregularly occurring memory management issues [@Wit20e] prove. Finally, even
though Software Transactional Memory aimed to relieve the programmer of the
burden to manage locks manually, the framework itself may introduce deadlocks
into the application, as will be shown in this thesis. Although this may be traced back
to a bug within the framework itself this shows impressively that the implementation
of this framework is indeed not trivial and that proving its correctness is hard.

Ohua [EFF15], on the other hand, does not have these problems. Proposed by Ertel
et al., the framework allows for the creation of implicitly parallel programs. Using a
number of transformations, parallelism is extracted from an otherwise sequential
piece of code. The resulting dataflow graph is then translated into a runtime which
exploits the found parallelism. Both of these steps can be checked for correctness
relatively easily, leaving only the sequential code correctness to the developer. Its
underlying deterministic model additionally ensures that sporadically arising bugs
as observed in the STAMP suite cannot occur. Unfortunately, Ohua achieves most of
its guarantees because it only fosters local state to avoid the need for locking. Thus,
it is incapable of handling shared state as of now.

In this thesis, we want to test the usability of Ohua in shared state applications.
Therefore, we will look at the theoretical foundations of the framework to see,
whether they allow an extension to shared state. In order to then properly evaluate
Ohua in this context, we are going to compare its performance to the well-established
shared state programming framework STM, to see whether it could indeed be a
suitable alternative to use for this field of applications. We make the following
contributions:

• Preliminary studies regarding the feasibility of applying Ohua to shared state
scenarios where we tested, whether its theoretical foundations allow the
introduction of parallelism in such applications.

• Descriptions and definitions of transformations for the Ohua compiler to run on
input algorithms to enable it to automatically extract parallelism from shared
state applications.

• A set of experiments where we applied Ohua to a number of such applications
to test its performance in comparison to the STM framework.

• An evaluation of the question whether or not Ohua could be an alternative to
the now-used STM framework for developing shared state applications.

The rest of this thesis is structured as follows: Firstly, we will introduce some basic
notions and concepts necessary to understand this thesis as well as the motivation
for possibly replacing STM in Chapter 2. Then, we will present our preliminary
studies about whether or not Ohua’s theoretical foundations allow shared state
handling in Chapter 3. The resulting amendments that have to be made to the Ohua
compiler will be defined in chapter 4 and applied manually to a set of benchmarks in
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Chapter 5. Chapter 6 will then evaluate and interpret the results of the benchmarks.
Related work on other possible STM replacements is presented in Chapter 7. The
thesis will then close with future work presented in Chapter 8 before concluding in
Chapter 9.
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2Background and Motivation

In this chapter, we are going to introduce both Software Transactional Memory
and Ohua as a foundation for the following chapters. We will briefly present each
frameworks’ basic concepts as well as advantages and drawbacks to adduce for
the following comparison. To better understand why STM’s optimistic approach to
parallelism gives it an advantage over other approaches in parallelizing shared state
applications and to better understand their behavior, we will explain what causes this
phenomenon. Therefore, we will introduce the class of Irregular Applications as well
as the term Amorphous Data Parallelism which both describe important properties
encountered in many shared state applications. We will also briefly discuss the
difficulties that arise when reasoning about said application types and motivate, why
further research into this topic could prove valuable.

2.1 Irregular Applications
In the past, most of the research conducted in the field of performance improvements
for parallel programs has concerned itself with what is called regular applications.
These are applications, whose degree of exploitable parallelism is simply determined
by the program structure and the size of the input set. As both of there properties
are known or can be inferred at compile time, any optimization potential is easy to
uncover and exploit for compilers.

However, most applications that share state in some form, which are the main focus
in this thesis, are irregular applications. This term describes applications, whose
structure revolves around the manipulation of large, pointer-based data structures
like graphs and trees. Due to this structural peculiarity, compiler analyses struggle
to uncover any meaningful insights into the algorithm that would allow to exploit
any parallelism hidden in it.

To better outline this, Kulkarni et al. [Kul+09] developed an abstract representation
for irregular programs using a set of nodes and edges, as shown in Fig. 2.1. The nodes
and edges represent the input data and their relationships. During the execution of
an irregular algorithm, the program may perform computations on a (sub-)set of
active nodes or edges, the work items. In Figure 2.1, these are highlighted in red.
Performing said executions may involve reading from or writing to other nodes or
edges in the graph, which form an active elements’ neighborhood, shaded in blue.
Which elements of the graph make up the neighborhood of an active element is not
known beforehand and may encompass all direct neighbors in the graph (as seen for
nodes n2 and n3), maybe only a single neighboring element (as seen for node n4) or
transitively the neighboring elements of its direct neighbors.
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Usually, work items are not ordered and may be processed in any order. But
processing one element may generate an arbitrary number of new active elements
or remove others from the pool, depending on the algorithm. Also, some active
elements may not be processed simultaneously due to overlapping neighborhoods,
as the changes made by processing both items may conflict with each other.

Since these relationships and interdependencies are not known beforehand and
depend on the input data, this information cannot be uncovered by compile time
analyses. Yet, most shared state applications are irregular by design, making this a
large and interesting field of research. Because static parallelization fails to uncover
any viable parallelism opportunities in these programs, Kulkarni et al. [Kul+07]
argue, that optimistic strategies need to be used to tackle this class of problems.

2.1.1 Amorphous Data Parallelism
Pingali et al. [Pin+09] argue, that most irregular applications additionally exhibit a
behavior referred to as amorphous data parallelism:

Given a set of active nodes and an ordering on them, amorphous data parallelism
is the parallelism that arises from simultaneously processing active nodes and is
subject to neighborhood and ordering constraints. It is a generalization of standard
data parallelism in which

1. concurrent operations may conflict with each other

2. activities can be created dynamically

3. activities may modify the underlying data structure

These characteristics have already been briefly discussed in connection with Fig. 2.1.

While irregular applications are hard to reason about due to their pointer usage, they
are still a very interesting research topic, made more difficult by amorphous data
parallelism. But as we will show in Chapter 5, applications of this type are common
and widespread in different aspects of real world applications using shared state.

n4

n3

n1

n2

Fig. 2.1: Graph representation of an irregular application with active elements and their
neighborhoods. Adapted from Kulkarni et al. [Kul+09]
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2.2 Software Transactional Memory
With the invention of multi-threaded programming, a need for synchronization
primitives arose to allow safe parallelization of data-processing applications. Usually,
locks have been used by developers to guard access to pieces of shared data.

Lock-based programming however, has the fundamental drawback of easily produc-
ing deadlocks (i.e., a state where a number of threads may never again progress)
when acquiring locks in the wrong order, forcing developers to employ great care
when using them [Lee06]. This results in a lack of composability, as combining
several small lock-based modules into a larger program would require the imposition
of some sort of ordering on the locks, which frequently leads to problems. Even
when written correctly, lock-based programs tend to quickly become hard to read
and maintain due to the many rules that need to be enforced by the programmer
herself without any external checks. Another problem is lock contention. If a lock
is currently taken, all other threads seeking to acquire it have to wait. This opens
up a new set of problems, as frequent waiting leads to prolonged execution times.
Mitigating contention issues forces developers to consider the trade-off between the
overhead introduced by many fine-grained locks, resulting in a higher chance of an
accidental deadlock, and high contention.

Additionally, locking follows a pessimistic approach to parallelism, which is com-
pletely unsuitable for uncovering any viable parallelism in irregular applications.
This is due to the fact that, as we have shown in the previous section, the heavy use
of pointers in these programs hinders the efficient fine-grain use of locks, forcing
developers to employ a coarse-grain locking strategy. But at the same time, conflicts
due to parallelization in these programs may be rare, depending on the input data. It
is possible to work on a large graph data structure in parallel with multiple threads
without conflicts, when all threads work on non-overlapping portions of the program.
In the example from Figure 2.1 for instance, the nodes n1, n2 and n3 could be
processed in parallel without conflicts. Locking however is unable to provide this
type of speculative approach to parallel execution necessary to efficiently parallelize
these applications.

Therefore, Shavit et al. [ST97] proposed a concept called Software Transactional
Memory. This new approach to synchronization aimed to provide lock-free paral-
lelism abstractions that allow multiple threads access to a shared variable without
any form of blocking. Former critical sections are now regarded as transactions,
which operate similar to their namesake in databases: They ensure atomicity, con-
sistency and isolation for the code blocks they protect, only falling short in the
durability databases offer, as this is not required for data residing in memory. Each
transaction or atomic block, as they may also be referred to, ensures that the changes
made in the guarded code block take all effect at once, eliminating possible race
conditions. STM’s operating principle is outlined in Figure 2.2 along with a code
example in Fig. 2.2a. Every read and write operation to or from a piece of shared
data is conducted inside a transaction block and gets initially saved to a local trans-
action log, ensuring each transaction runs isolated. When the transaction block
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1 let data = TVar::new(12); // data is a transaction variable
2 thread::spawn(move || {

3 atomically(|trans| { // closure for transaction blocks
4 let local = data.read(trans)?;

5 data.write(trans, local + 2)

6 })});

7 thread::spawn(move || {

8 atomically(|trans| {

9 let local = data.read(trans)?;

10 data.write(trans, local * 2)

11 })});

(a) Rust code for both transactions.

12 14
data data

Transaction 1

Transaction 2

12 14

2412 • 2

read write

write conflictread

+ 2

(b) Sample execution of two parallel transactions where one transaction has to be rolled back due to a
write conflict.

Fig. 2.2: Example of two transactions modifying the same shared value in different transac-
tions.

comes to an end, the changes made to individual shared data sections are committed.
Therefore, the changes in the log are applied to the original shared values. In case
another transaction managed to commit in the meantime to a value our transaction
also touched, the conflict is detected and instead of committing the changes the
transaction is aborted and restarted. This is normally done until the transaction
committed successfully.

In our example in Fig. 2.2, the transactions 1 and 2 both read the same value and
modify it. But since the first transaction was able to commit earlier, the second
transaction now stands in conflict and has to be aborted and scheduled for re-
execution.

As the example already shows, a fundamental benefit of the Software Transactional
Memory model is that it retains serializability [SDD16]: All transactions seem to
execute serially, since the steps of one transaction never appear to be interleaved with
the steps of another transaction. Therefore, the results of an execution must be equal
to the result of a serial execution. This has been formalized by Swalens et al. [SDD16]
in their proposed operational semantics for a language with transactions.

2.2 Software Transactional Memory 7



Overall, STM takes an optimistic approach [Kul+07] to parallelism, because it can
be used to speculatively execute numerous computations in parallel, hoping for as
few conflicts as possible. This is beneficial to irregular applications, as parts of these
applications can only be efficiently parallelized using an optimistic approach. The
result of this is an underlying non-determinism that ensues everytime transactions
are employed in a multi-threaded environment. Problems in this strategy become
apparent when applied to high-contention scenarios. Since STM may work in parallel
over the same data structure or memory region, high contention always leads to a
significantly increased number of retries for individual executions, which in turn
leads to drastically reduced performance. Further shortcomings of this concept have
been discussed in detail by Caşcaval et al. [Cas+08]: On the one hand, exception
handling becomes impossible to do inside of a transaction without breaking its
semantics. On the other hand, I/O operations cannot be transactionalized, as well
as anything else that produces side effects outside of the transactions’ scope as these
effects may not be rolled back on error. Additionally, they reported large overheads
of STM applications for smaller worksets as well as no debuggability, since the
non-determinism makes a specific situation nearly irreproducible.

2.3 Ohua
As we have seen before, most solutions to state sharing in parallel programs offer
developers certain abstractions or data structures such as locks or transactions for
them to use when developing parallel programs. However, this forces programmers
to think within the boundaries of their chosen tools and produces code that is tailored
to a specific framework and therefore hard to migrate.

A completely different approach has been taken by Ertel et al. [Ert19] with the
proposition of Ohua, which is a framework that allows for the development of
implicitly parallel programs. It consists of three main components, as outlined in
Fig. 2.3: Algorithms, which are used to describe the program part that shall be
parallelized, a compiler that parses the algorithm and produces a parallelized version
of it combined with a runtime that will execute the parallel code.

An Ohua algorithm is what might come closest to the abstractions and tools used
by other paradigms. It describes the part of a program that should be parallelized.

ParserAlgorithm 

Definition

Expression IR

(λ calculus based)

Dataflow

Graph

Parallel

Program

Optimization &

Lowering

Code

Generation

Ohua Compiler

Fig. 2.3: Overview of the Ohua compiler and its components
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In early versions [EFF15] these algorithms were written in separate files using a
high-level language that closely resembled Lisp and OCaml. Over time, a Rust-
like syntax [Ada19] had also been added to allow for more imperative algorithm
definitions. By now, algorithms are not separately defined anymore and instead are
functions that are written in a host language which is supported by Ohua, such as
Rust and Go. Ohua comes with a standalone compiler called ohuac, which proceeds
to parse the algorithm into an Expression IR, optimizes it and eventually transforms
it into an optimized dataflow graph. These optimizations stem from a number of
transformations that are applied to uncover more parallelism opportunities. A host
language specific backend will then generate the parallel program together with
the runtime code based on the DFG. This runtime executes as regular part of the
program it is embedded in when the algorithm is called. As such, it may import and
use any function from the host code, allowing the developer seamless integration of
her existing code into the new parallel algorithm.

Ohua derives parallelism from executing independent nodes of the dataflow graph
in parallel (task-level parallelism) and running multiple invocations of dependent
nodes in a pipeline-parallel fashion. In order to rule out most of the common pitfalls
in parallel programming, the use of shared state is forbidden in Ohua. Instead, data
must be transferred explicitly by using arguments and function return values. This
also rules out mutable global values which often represent state in programs. To still
allow the convenient declaration of stateful algorithms, Ohua uses the concept of
so-called stateful functions [Ert+19]. A stateful function is a host function that is
associated with local state values which it is allowed to modify. Ohua encapsulates
this operation and the associated state to ensure it is not leaked or used in a shared
fashion.

1 let words = vec!["a", "test"];

2 let buffer = Buffer::new();

3 let _ = for w in words {

4 buffer.append(w);

5 };

6 buffer.get_message();

(a) Algorithm declaration in Rust

[“a”, “test”]

smap Buffer!"new()

append

collect

get_message

(b) The algorithm’s dataflow graph. Dependencies
in the control flow are dotted, state dependen-
cies dashed.

Fig. 2.4: Example of an Ohua algorithm using the smap primitive. Adaption of [Ada19].

Ertel et al. additionally proposed smap, a stateful map primitive that applies an
algorithm to a sequence of items [Ert+19] and is based on the insight, that loop
operations modifying shared state can be considered as fold operations on the state.
An example algorithm in Rust that outlines this is shown in Fig. 2.4. Functions
highlighted in orange are builtin functions of the Ohua runtime, all other nodes

2.3 Ohua 9



are host functions provided by the developer. In our example, the smap primitive
is represented by the for loop and its use of the buffer variable in the body. The
loop body is applied to a sequence of items, just as it would happen in a normal map

statement. But additionally, smap ensures that changes made to the encapsulated
state persist, as they would in a normal for loop. This allows the use of pipeline
parallelism for longer loop bodies and – if no state is used in the loop at all – the use
of data parallelism. So in Fig. 2.4, the newly initialized buffer is bound to the append

function, which is called like a method on the state repeatedly for the individual
loop iterations. Any results which would be produced by this loop, are then collected
and upon completion of the loop passed on to the next node in the dataflow graph.
In the small code snippet provided, an iteration simply produces a () literal1 and
hence the loop result itself is discarded. What remains, is the side effect of state
alteration that occured during the loop processing. After the loop completes, the
next function is executed. To avoid get_message being called too early, a control
flow dependency is added to the (otherwise useless) collect function.

The result of Ohua’s programming model is deterministic parallelism, as opposed to
Software Transactional Memory which aims to improve execution times by schedul-
ing possibly conflicting operations for parallel execution, completely forfeiting any
determinism in the process. Another advantage is the way in which Ohua is inte-
grated into existing code bases. In its current version, algorithms are defined as
normal functions within the code, allowing developers to first test their implemen-
tations without any parallelism before compiling them with Ohua. This offers the
advantage of producing framework agnostic code which can be easily reused in other
applications as well.

Challenging however, is the ban the framework places on the use of shared state.
Many applications encountered in the real world rely on the use of pointers and
shared, global state. Since Ohua currently only fosters the use of local state with
its stateful functions primitives, it is unclear whether it is possible to apply these
concepts to shared state programs, which the Software Transactional Memory frame-
work caters towards by design, and how good Ohua would perform compared to
speculative parallelism which it itself does not exhibit.

1The () type is called Unit literal in Rust. It is the result of a computation that returns nothing and
can be compared to the void type in C.

2.3 Ohua 10



3Preliminary Studies

In order to determine the usability of Ohua for implementing shared state applica-
tions and to identify any necessary modifications to the compiler or the runtime, we
first tried to implement a single such application with it. After successful implementa-
tion we wanted to compare its performance against a Software Transactional Memory
implementation of the same program and see, whether there are any shortcomings
of Ohua in terms of performance. Based on this initial study we then wanted to find
ways to improve Ohua’s performance, if necessary, e.g., by introducing new compiler
optimizations. The aim of these preliminary studies was to find out, whether Ohua
was usable for writing programs relying on shared state and if it could be a viable
alternative to STM in this setting.

3.1 Labyrinth Benchmark
As a first example application, we chose to implement the labyrinth benchmark
as presented by Swalens et al. [SDD16]. This program is a variation of Lee’s
Algorithm [Lee61] which solves path-connection problems often encountered when
searching for an optimal route or generating wiring diagrams where wires may
not overlap. We base our own implementation on the descriptions of Watson et
al. [WKL07], who presented an implementation for Transactional Memory.

Goal of the benchmark is to find a number of paths within a three-dimensional maze,
as depicted in Fig. 3.1. As input, the algorithm is provided with a maze and a set
of pairs of points, between which a path is to be found and mapped within the
maze. During execution, one pair of coordinates is removed from the list of points
(the worklist) and the program attempts to find a path between both points in the
maze. This is done using a breadth-first search. The maze itself may also contain

(a) Initial grid with 3
point pairs.

(b) Possible paths be-
tween the points.

(c) First two paths are
mapped into the
maze.

(d) Conflict for the
third path as it
goes through a
now-occupied
segment.

Fig. 3.1: Illustration of the operation of the labyrinth benchmark, showing the (attempted)
mapping of 3 paths in a 6 ◊ 5 two-dimensional grid. Black squares represent walls
that cannot be routed through.
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1 let (worklist, grid) = /* read from file */
2

3 for points in worklist {
4 atomically(|trans| {
5 let local_grid = create_working_copy(&grid);
6

7 if let Some(path) = find_path(points, &local_grid) {
8 // if path is found, write back results
9 update_grid(&grid, &path, trans)?;

10 }
11

12 Ok(())
13 });
14 }

Listing 3.1: Simple implementation of the labyrinth benchmarks using Software Transac-
tional Memory in Rust.

„walls“ (highlighted as black squares in Fig. 3.1), through which no path can be
routed. Also, each point in the maze may only be occupied by a single path to rule
out overlapping paths. The algorithm terminates once the worklist is empty and all
paths have either been mapped successfully or deemed unmappable by the absence
of a valid connection between both points.

This benchmark is a classic example for an irregular application: all operations
happen on the shared maze data structure which is modified in the process. Addi-
tionally, any data parallelism obtainable in the application is amorphous, as mapping
one path in the maze may render another pair of coordinates unroutable as both
points get cut off from one another. An example for this can be seen in Fig. 3.1d,
where the mapping of the orange path makes finding a path between the green
coordinates impossible as one point is part of the orange path. As we have learned in
Chapter 2.1, this specific class of problems can be parallelized easily using Software
Transactional Memory. Searching for a single path can be compartmented into
a transaction, treating all maze fields as transaction variables. Listing 3.1 shows
the resulting transactional implementation of the labyrinth benchmark using the
rust-stm library [@Ber20].

All path pairs are collected in a worklist, through which the algorithm iterates (line
3). Inside the transaction that is started for each item (line 4), a working copy of
the maze is created as detailed in [SDD16] to reduce the number of repeated reads
from individual transaction variables. Then, the breadth-first search commences
in order to discover a route between the starting point and the target (line 7).
Note that since we’ve made a copy of the grid beforehand, this happens completely
locally. When a path is found, an update is run on the grid, inserting the path
(line 9). Should another transaction, which also happened to alter one or more
segments of the newly-found path, manage to commit in the meantime, the resulting
conflict is detected and the transaction rolled back and re-run until either the update
commits successfully or no path can be found anymore. Our transactional memory
implementation is a mere adaption of the algorithm outlined above, augmented with

3.1 Labyrinth Benchmark 12



1 fn fill(maze: Maze, to_map: Vec<(Point, Point)>) -> Maze {
2 let paths = for pair in to_map {
3 find_path(maze, pair)
4 };
5

6 let (remap_paths, new_maze) = update_maze(maze, paths);
7

8 // recursively call �fill� as necessary
9 }

Listing 3.2: Simplified first implementation of a recursive Ohua algorithm for the labyrinth
benchmark

concurrency by splitting the worklist into n parts, which are processed by n threads
in parallel.

In our first Ohua implementation, we described idiomatically, what the algorithm
should be doing. Listing 3.2 shows this simple program: First, all paths are searched
for individually (lines 2-4), before they are written to the grid (line 6). If a path
conflicts with a previously saved one (i.e., at least one segment of the path is not
free anymore), it is scheduled for re-computation by adding it to the remap_paths

vector. Until all paths have either been mapped or discarded as unroutable, these
steps are repeated recursively, although this invocation has been omitted from the
sample code for the sake of simplicity.

This implementation resembles an executable version of an Ohua algorithm that did
compile and run on the initial Ohua compiler framework with Rust support1 [@EWA19].
It deviated from the simple sequential implementation as well as STM’s approach.
But separating the update to the shared state from the search for paths was a delib-
erate choice to uncover parallelism opportunities for Ohua to begin with. We felt
that this was a fair choice to make as it still describes the same algorithm as before,
just slightly altered to match Ohua’s current abilities and philosophy of fostering
local state, as introduced in Chapter 2.3.

3.1.1 First Results
To establish a baseline for performance comparison, we measured the execution
time of both benchmarks and calculated the speedup in relation to a sequential
implementation, as explained in greater detail in Chapter 5.3. In an attempt to
achieve comparable results, we used the same input data that had also been used
previously by other authors and was originally proposed by Minh et al. [Min+08].
The chosen input maze for our test run had a size of 128 ◊ 128 ◊ 5 cells and required
the mapping of 128 paths, given as predefined coordinate pairs, into it. Resulting
speedup figures for a varying number of worklist splits are shown in Fig. 3.2.

1The Ohua version that fully integrates with the host language as described in Chapter 2.3 did not
exist when these preliminary studies were conducted and has been developed independently in
parallel to this thesis.
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Fig. 3.2: Measured speedups of the labyrinth application for the STM and Ohua implemen-
tations.

As one can see in the plot, Software Transactional Memory is able to achieve a
logistic growth in its speedup for 1 to 24 worklist splits, which converges at a
mean maximum speedup of about 4.3. Ohua on the other hand recorded only a
single measuring point for a run with no worklist splitting at all. This single run
exhibited a speedup of less than 0.5, meaning it took more than twice as long
to complete as the sequential reference implementation. The reason for this is
the absence of any configuration options for e.g. worklist splits. Hence, there is
no data parallelism in the Ohua algorithm, as the Rust runtime does not support
parallel loops yet. Effectively, this single measurement shows the performance of a
sequential algorithm executed with the Ohua runtime, revealing the overhead it has
compared to a normal sequential implementation. Most of the overhead stems from
the spawning of the threads each operator lives in and the resulting management and
movement of data between these threads. Our hope is to show that these overheads
amortise with increased data parallelism.

In order to achieve more data parallelism and an overall improved performance,
we were looking for modifications that could be made to the Ohua algorithm to
accomplish this. We first wanted to introduce manual changes to the algorithm
without making amendments to the compiler to test different approaches easily.
These manual changes simply emulate the changes a compiler pass would make
on the algorithm layer. After identifying the optimizations that indeed provide a
performance boost, we generalized them into compiler optimizations applicable to
all algorithms. The resulting transformations will be discussed in Chapter 4.

3.2 Parallel Loop Implementation
As Fig. 3.2 clearly showed, the most pressing issue with the existing Ohua imple-
mentation for Rust was the absence of any data parallelism facilities like parallel
loops. Our first assumption based on these results was, that most performance
could be gained simply by processing multiple labyrinth paths in parallel, as this
operation makes up for most of the execution time in the sequential implementation.
The idea was to split the worklist into n equally sized chunks and process them
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1 fn fill(maze: Maze, to_map: Vec<(Point, Point)>) -> Maze {
2 let (tm0, tm1) = splitup(to_map);
3 let part0 = for pair in tm0 {
4 find_path(maze, pair)
5 };
6 let part1 = for pair in tm1 {
7 find_path(maze, pair)
8 };
9

10 let paths = join(part0, part1);
11

12 let (remap_paths, new_maze) = update_maze(maze, paths);
13

14 // recursively call �fill� as necessary
15 }

Listing 3.3: Labyrinth implementation in Ohua using worklist splits for parallelism. High-
lighted parts have been added in this iteration.

in parallel, which is similar to what STM does. Listing 3.3 shows an exemplary
implementation for an algorithm splitting the worklist in two parts. Lines that were
changed compared to the previous iteration are highlighted.

The main difference to the previous iteration of the algorithm is the introduction of
two new operators, splitup and join. These are implemented in the user space for
this example but would become part of the runtime when this alteration is translated
into a compiler transformation. Their task is simply to split the worklist up into the
required number of parts and merge them back together, once results have been
produced. Data parallelism is introduced in a very verbose manner by the duplication
of the loop (lines 3-8). This change can be scaled for an arbitrary number of threads
by partitioning the worklist into as many parts as necessary for testing purposes.

Introducing a rudimentary form of data parallelism helped not only to obtain multiple
meaningful measurements for Ohua, but also led to better performance, as can be
seen in Fig. 3.3. It now also exhibits a performance growth behavior that can roughly
be described as logistic, though it only manages to achieve half as much speedup
as STM. Upon investigating this performance gap we determined two fundamental
problems resulting from our current algorithm: Retries and Stragglers.

Fig. 3.3: Measured speedup for an Ohua implementation using worklist splits.
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Besides data parallelism, another important factor influencing the execution time
of the benchmark2 is the number of repeated calculations that is necessary. As
described before, the labyrinth benchmark is designed to repeatedly attempt to find
a route between each coordinate pair until a path is either successfully mapped
or no valid path can be found anymore. In the sequential implementation, this
is not an issue as each path is searched for and updated individually without any
concurrency, guaranteeing that each coordinate pair will only ever be evaluated
once. Any concurrent implementation however, comes at the cost of potential write
conflicts that need to be resolved. STM for example uses n threads, always working
on finding n paths in parallel which are then written to the maze. This means that
from the perspective of one thread, in between its last access to the maze and an
attempted update, about n ≠ 1 changes will ideally3 have been made to the maze,
each possibly introducing a conflict provoking a recomputation of the given path. So
at worst, per iteration of n threads, n ≠ 1 results may become invalid due to a write
conflict, forcing recomputation.
For Ohua, this number is significantly higher. Its current approach is to update the
shared state as late as possible, after computing all paths. The negative side effect of
this is that in a run to map p paths, p ≠ 1 results may require a recomputation per
recursion step in the worst case, possibly leading to as much as

q
0Æi<p i conflicts,

which may in part explain the bad performance of Ohua.

The second relevant performance bottleneck is the straggler problem. In research,
when reasoning about parallel tasks it is often assumed that all tasks perform
uniformly, i.e., require the same time to complete. Real applications however rarely
fulfill this assumption. On the contrary, the tasks in these worklists are often wildly
heterogeneous, each requiring a different amount of processing time. This is also
the case in the labyrinth benchmark. The processing time for a single path depends
solely on the number of nodes the path finder has to inspect which is related to the
distance between the starting coordinates and the target. As result, the n threads
of our algorithm each take differently long to process their worklist, which means
that all threads finishing their work earlier have to wait at the synchronization point
for the slower threads to finish. This forced slack time is also present in the STM
algorithm implementation, yet not as severe as in the Ohua implementation, since it
synchronizes all threads only once when terminating them, while Ohua’s threads
synchronize once per recursion step.

3.3 Lowering the Retry Count
Initially, we abandoned the idea of updating the maze after every state update in
favor of a single update after processing all elements, to attempt solving the problem
using only local state and a simple algorithm structure that still offers parallelism
opportunities. Alas, these frequent updates are key to keep the execution time
low because the quick propagation of changes ensures that fewer computations are

2In fact, this holds true for any irregular application following this Calculate-Update Pattern.
3Assuming that all theads proceed equally fast.
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1 fn fill(maze: Maze, to_map: Vec<(Point, Point)>, frequency: usize) -> Maze {
2 let (points, still_to_map) = take_n(to_map, frequency);
3 let (tm0, tm1) = splitup(points);
4 let part0 = for pair in tm0 {
5 find_path(maze, pair)
6 };
7 let part1 = for pair in tm1 {
8 find_path(maze, pair)
9 };

10

11 let paths = join(part0, part1);
12

13 let (remap_paths, new_maze) = update_maze(maze, paths);
14 let to_remap = join(remap_paths, still_to_map);
15

16 // recursively call �fill� as necessary
17 }

Listing 3.4: Ohua algorithm using a fixed update frequency to lower the number of write
conflicts. Highlighted parts have been newly added in this iteration.

carried out based on outdated information. Therefore, we altered the algorithm such
that updates to the shared state are conducted after processing a fixed number of
elements, which we will refer to as the update frequency f . In our algorithm, which is
shown in Listing 3.4, this is reflected by introducing a new operator, take_n. Making
use of the existing recursion semantics, it caps the number of elements to process
per step to at most f elements (line 2). As before, all computations in a single step
are conducted on the same state and updated all at once after finishing mapping the
paths. Once the updates have been written to the maze or rejected due to a collision,
the list of failed updates gets merged again with the rest of the worklist that has not
been processed in this recursion step (line 14). Using this approach, the number
of possibly denied state updates is dramatically reduced to only maximally f ≠ 1
elements. With decreasing values for f , the overall probability of a write conflict is
also reduced.

In addition to the number of worklist splits, this change introduced the frequency f

as second parameter to the algorithm, which we wanted to fix to a specific value to

Fig. 3.4: Performance of various configurations of the Ohua-frequency algorithm.
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find a middle ground between processing as many elements as possible and keeping
the number of retries low. Small update frequencies imply fewer conflicts, but also
more recursions and hence more negative side effects from stragglers. Choosing
a too large value for f on the other hand might improve the parallel performance
but comes at the cost of more repeated calculations. We tested our implementation
with varying update frequencies. The results are shown in Fig. 3.4, which shows the
performances for Ohua algorithms using a update frequency of 1, 2, 4, or 6 times
the thread count, meaning that each thread will receive 1, 2, 4, or 6 work items. As
the plot shows, it is better to keep the update frequency low, as we have speculated
before. Best performance for larger thread counts is achieved by f = threadcount,
although this run exhibited the worst speedup for smaller thread counts, probably
due to the overhead we discussed as a potential limiting factor. Hence, we opted for
using a frequency of f = 2 · threadcount as this configuration continuously shows
an average to top performance in the pool of examined frequencies and we believe
it provides the best trade-off between update conflicts and straggler performance
penalties for the current benchmark.

3.4 Improving Resource Utilization
Stragglers are a common problem in applications processing data in parallel. Hence,
a lot of solutions have been proposed already to tackle this problem using different
techniques. One solution to this problem are work-stealing scheduling strategies,
which have been discussed as early as 1981 by Burton and Sleep [BS81] and later
by Halstead [Hal84]. The basic idea of a traditional work-stealing scheduler is that
each processor in a computer system is assigned a set of work items to process. Each
item consists of an isolated stream of instructions that is executed, possibly spawning
new items in the process. Work items are unordered and may be processed in any
order and in parallel. Should a processor run out of work, it can „steal“ work items
from other queues to avoid idle time. This concept has also been implemented in
software, usually providing a runtime consisting of a thread pool, a scheduler and a
set of tasks. Fig. 3.5 sketches how this approach could reduce the slack time for all
threads in a system by stealing work from the longest-running thread. By reducing
the time all threads spend idling, the overall execution time and resource utilization
improve.

To mitigate our straggler problem, we decided to move all data-parallel processing
to a work stealing runtime. Rust’s ecosystem offers multiple well-matured runtimes
for this purpose. We chose to use tokio [@con20] as it was the most popular runtime
at the time we implemented this, but we kept the code mostly library-agnostic to
make a later switch in libraries as easy as possible.

Listing 3.5 shows the Ohua algorithm after adding the work-stealing runtime. Now,
its setup in the algorithm run_algo (line 2) forms the initial step before running
any part of the algorithm itself. This runtime is then reused throughout all recursion
steps of fill to keep the added overhead low. Similar to previous iterations, f items
are first taken from the worklist and then split for processing (lines 8-10). These
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Fig. 3.5: Illustration of the straggler problem and how work-stealing scheduling can signif-
icantly reduce this problem. In the second illustration, the slack time is almost
completely removed by threads 1 and 2 stealing work from thread 3.

1 fn run_algo(maze: Maze, to_map: Vec<(Point, Point)>, frequency: usize, threadcount:
usize) -> Maze {Òæ

2 let rt = create_runtime(threadcount);
3

4 fill(maze, to_map, frequency, threadcount, rt)
5 }
6

7 fn fill(maze: Maze, to_map: Vec<(Point, Point)>, frequency: usize, threadcount:
usize, rt: Arc<Runtime>) -> Maze {Òæ

8 let (points, still_to_map) = take_n(to_map, frequency);
9

10 let worklist = split_evenly(points, taskcount);
11 let task_handles = spawn_onto_pool(worklist, maze, rt);
12 let paths = collect_work(task_handles);
13

14 let (remap_paths, new_maze) = update_maze(maze, paths);
15 let to_remap = join(remap_paths, still_to_map);
16

17 // recursively call �fill� as necessary
18 }

Listing 3.5: Ohua algorithm using a work-stealing runtime to schedule its tasks. Highlighted
sections have been altered or added in the current iteration.

work sets are then scheduled as tasks for execution on the threadpool (line 11).
Following the findings of Ousterhout et al. [Ous+13] we make individual tasks as
small as possible, each consisting of only a single coordinate pair for optimal load
balancing between all threads. After collecting the results from the runtime (line
12), the algorithm will proceed as in previous versions.

In employing this runtime, we hoped to reduce the slack time seen in our first parallel
implementation by moving work away from the longer-running threads to ones that
finished quicker. Figure 3.6 confirms this. Ohua now manages to achieve a threefold
speedup compared to a sequential implementation of the benchmark, closing in
on STM’s performance. It also benefits from its deterministic execution model,
exhibiting a lower variation in the measured values than STM. The higher variance
in STM’s results is mainly due to the non-deterministic execution model, leading to
a varying commit order for the mapped paths with each execution. This influences,
which paths can be mapped successfully in a single run and how many write conflicts
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Fig. 3.6: Measured speedup for an Ohua implementation using worklist splits, an update
frequency of 2 · threadcount and a work-stealing runtime.

occur during execution which in turn has a direct effect on the predictability of
the execution time. Ohua on the other hand is more deterministic. All paths are
mapped in parallel, but they are merged in the same order they were in before
being processed, yielding reproducible results that can be easily debugged and do
not underlie a similarly high deviation. Due to the scattering of STM’s results, one
can not with definitive certainty say whether it indeed outperforms Ohua for every
thread count value as the variances sometimes overlap, e.g., for 11, 13 and 15
threads.

All in all, these preliminary studies showed that in irregular applications, Ohua
can achieve performances similar to Software Transactional Memory if the right
transformations are applied to the algorithm. This warrants further investigation by
trying to find generalized dataflow graph transformations which can be applied to
Ohua algorithms in order to boost their performance at runtime.
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4Compiler Transformations

After discussing possible optimizations to the labyrinth algorithm in Chapter 3, we
will now attempt to generalize the changes we made into transformations to be
applied at compile time. The resulting transformations will be formally described
and their correctness discussed in this chapter, using an Expression IR that is based
on the lambda calculus. An implementation of the presented transformations will be
left for future work.

4.1 Expression IR Definition
During compilation, the Ohua compiler framework parses algorithms provided as in-
puts into an Expression IR on which it then runs a number of optimizations [Ert+18],
as we have shown in Figure 2.3 in Chapter 2.3. We are going to describe our trans-
formations in this intermediate representation, which we will therefore present now
briefly. The Expression IR we use is based on the call-by-need lambda calculus [AF97;
Ari+95] which prevents duplicated computations. Figure 4.1 defines our expression
language, which is building atop the language used in previous research on Ohua
optimizations [Ert+18] by Ertel et al. The language defines the basic terms of
the call-by-need lambda calculus for variables, abstractions, application and lexical
scoping. We additionally define conditionals and fixed-point combinators to realize
recursive expressions as well as free and state-modifying foreign functions. Using
the combinator fff , one can express the application of a function f which is not
defined as part of the calculus to an arbitrary number of arguments. This allows
us to integrate code written in other languages like Rust into the algorithm, which
is a key premise for Ohua’s concept as Embedded DSL. Furthermore, we expand
the definitions used in previous work by adding the combinator sff , which applies a
method f to a state value s and an arbitrary number of additional values. We made
this addition in order to model the state manipulations usually found in shared state
applications. Methods that are executed on a state value may alter it but are usually
also allowed to return another value (e.g., when reading from a piece of state).
This behavior is reflected in the sf combinator producing a list with two values as
result, where the first value is the the altered state value and the second value is the
ordinary value produced by the function f .

In order to complete the inclusion of legacy code into the Expression IR, values may
not only be abstractions or lists of values but also values in Vh, the value domain of
the host language. Aside from recursion, we also define the well-known higher-order
function nth to retrieve a particular element from a list of values. The function map

applies a term to a list of values. Depending on whether the term applied contains a
stateful function or not, the definition of the function differs as state updates need to
be applied during loop execution. Both the definition of the sf combinator and the
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Terms:
t ::= x variable

| ⁄x.t abstraction
| t t application
| let x = t in t lexical scope (variable binding)
| if(t t t) conditionals
| let f = ⁄x.t in t fixed-point combinator
| fff (x1 . . . xn) apply the free foreign function f to x1 . . . xn

with n Ø 0.
| sff (s x1 . . . xn) apply the state-modifying foreign function f

to state s and x1 . . . xn with n Ø 0.

Values:
v ::= o œ Vh value in host language

| ⁄x.t abstraction
| [v1 . . . vn] list of n values

Predefined Functions:
map(⁄x.t [v1 . . . vn]) © [(⁄x.t) v1 . . . (⁄x.t) vn]

given that sff /œ t

map(⁄s0 x.t [v1 . . . vn]) ©

let s1 y1 = (⁄s0 x.t) v1 in

. . .
let sn yn = (⁄sn≠1 x.t) vn in

[sn [y1 . . . yn]]
given that sff œ t

nth(n [v1 . . . vn . . . vp]) © vn

split(n [v1 . . . vp]) © [[v1 . . . v p
n

] . . . [v (n≠1)p
n +1 . . . vp]]

join([[v1 . . . v p
n

] . . . [v (n≠1)p
n +1 . . . vp]]) © [v1 . . . vp]

take_n(n [v1 . . . vn . . . vp]) © [[v1 . . . vn] [vn+1 . . . vp]]
len([v1 . . . vn]) © n

Fig. 4.1: Language definition of the Expression IR.

let f = ⁄xmaze xpoints.
let fbody = ⁄y z.

let xpath = fffind_path(y z) in

sfupdate(y xpath) in

let xresulting_maze xmap_results = map(fbody xmaze xpoints) in

let xunmapped = ffget_unmapped(xmap_results) in

if (ffcountxunmapped = 0
xresulting_maze
f xresulting_maze xnot_mapped) in

Fig. 4.2: Expression for our labyrinth algorithm.
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handling of it inside a map operation are based on the notion of state threads which
were introduced to Ohua by Ertel et al. in recent work [Ert+19]. The function split

separates an input list into equally sized chunks, while the function join reverses
this operation, flattening a list of lists into a single large list. Both functions cancel
each other out:

join(split(n [v1 . . . vp])) © [v1 . . . vp]

The function take_n splits the input list into two parts, where the first list contains
the first n elements (or the whole input list, whichever is smaller) and the second
list forms the remainder of the input list. len is a simple function to determine the
length of a list.

As a shorthand for writing more concise terms, we introduce a simple destructuring
syntax which has already been used in the definition of map and is defined as
follows:

let xresult = fff () in

let y z = fff () in © let y = nth(1 xres) in

let z = nth(2 xres) in

Using our defined calculus, we can now define an expression that describes our
labyrinth benchmark from Chapter 3.1. As point of origin, we use an idiomatic
declaration of the labyrinth algorithm which is more compact than any version in
the aforementioned chapter and resembles the algorithm as it would be written
by a developer. This version is shown in Listing 4.1. Notably, we removed the
loop split that allowed us to exploit some initial parallelism in Chapter 3. In the
corresponding Lambda Expression in Fig. 4.2 we bind the fill algorithm to a fixed-
point combinator f . In it, we bind the body of the loop to fbody, to which we then
apply the initial state value xmaze. The resulting partial binding is then mapped onto
the list of input values, namely xpoints.

1 fn fill(maze: Maze, points: Vec<(Point, Point)>) -> Maze {

2 let map_results = for pts in points {

3 let path = find_path(maze, pts);

4 maze.update(path)

5 }

6

7 let unmapped = get_unmapped(map_results);

8 if unmapped.len() == 0 {

9 maze

10 } else {

11 fill(maze, unmapped)

12 }

13 }

Listing 4.1: Idiomatic definition of the labyrinth algorithm.
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4.2 Transformation 1: Map Parallelization
The base idea of our first optimization developed in Chapter 3.2 was to execute
the path finding in parallel to make use of the multi-threading functionalities of
modern commodity CPUs. This was possible because the path-finding loop was
altered to not contain any state update and the loop iterations themselves were
therefore independent of one another. Since we want to have as few application
logic as possible in the code generation and the runtime, it makes sense to move
this optimization into the Expression IR optimization stage. To achieve a low-cost
parallelization that does not require any knowledge about parallel loops in the
runtime, we simply split the loop in question into a number of smaller loops. As
these small loops do not exhibit any data dependencies between one another, the
execution runtime can run them in parallel without having to understand, what
these operators are.

Although we did this in our specific example for the problem of pathfinding, this can
indeed be generalized. Each map combinator which does not modify state internally,
i.e., does not entail sf combinators, may be parallelized in this way. Using the
predefined functions split and join we define the transformation to adapt a map
operation for p threads:

let r = map(t [v1 . . . vn]) in ≠æ
p threads

let m1 . . . mp = split(p [v1 . . . vn]) in

let r1 = map(t m1) in

. . .
let rp = map(t mp) in

let r = join([r1 . . . rp]) in

Fig. 4.3: Transformation 1: Map Parallelization for p threads.

This transformation turns a single stateless map operation into p independent map
operations which can then be individually scheduled and executed. To prove the
semantic correctness of this transformation, we can show that the left and the right
expression are indeed equivalent by resolving the right expression bottom-up:

join([r1 . . . rp]) © join([map(t m1) . . . map(t mp)])
© join([[t v1 . . . t v p

n
] . . . [t v (n≠1)p

n +1 . . . t vp]]) by map definition

© join(split(p [t v1 . . . t vn]))
© [t v1 . . . t vn]
© map(t [v1 . . . vn])

Using this rather simple transformation we are now able to split state-free loops into
smaller chunks of work that can be executed in parallel due to the absence of data
dependencies.
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4.3 Transformation 2: State Decoupling
In its initial state, a loop containing a state update, i.e., a smap, cannot be executed in
parallel as the state update must occur sequentially to avoid locking and guarantee a
deterministic execution. In our labyrinth example, we circumvented this by splitting
the state update off and running it after the parallel path search from the start.
But to allow any parallelization and later transformations to occur in unaltered
applications like the algorithm in Listing 4.1, the state-free parts of such a loop must
be decoupled from the state update first, using a transaction which we will define
and discuss in this intermediate step first.

To formalize this, we let t be a non-empty term that does not contain any state-
modifying foreign functions. We require non-emptiness here because otherwise the
map function would only contain a sf combinator in which case no parallelization
can occur. Furthermore, we define a state-modifying foreign function sff and values
v1 . . . vn which are argument to sf and are bound either by the lambda expression
mapped over of within t. The initial state value s is bound outside the map combinator.
We can now define this preliminary transformation as follows:

≠æ

let xintermediate = map((⁄s x.t [v1 . . . vn])
map((⁄s x.t [x1 . . . xn]) in

sff (s v1 . . . vn)) map((⁄s y.let v1 . . . vn = y in

[x1 . . . xn]) sff (s v1 . . . vn)) s

xintermediate)

This transformation splits the sf combinator off from the rest of the loop body,
allowing the first to be parallelized using Transformation 1 from Section 4.2. It
represents a frequent pattern in shared state scenarios, where such loops often act
as a fold operation on the state value.

But while this transformation enables us to further optimize state loops, we also
have to discuss whether this is a legitimate optimization to make or whether it may
alter the semantics of the program in question. For the previous transformation,
showing the equivalence of both terms was simple and could therefore be done. For
this alteration however, this would unwind into a lengthy proof which would be
out of scope for this thesis and shall therefore be left for future work. Moreover,
one can see easily, that an expression can be constructed that, given the same input,
will not produce the same results before and after the transformation. An example
that immediately comes to mind is the labyrinth algorithm. When searching a path,
the find_path function reads the current state value which will ater the application
of the transformation at no point contain any of the previously found paths. This
produces numerous write conflicts, forcing recomputations and generating commits
in a different order than in the sequential version, eventually leading to different
results. However, this is also the case for other parallelism approaches like Software
Transactional Memory, which also does not preserve equivalence to a sequential
execution. This is due to the amorphous data parallelism often encountered in
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these shared state programs. There is just no way to efficiently parallelize these
applications without encountering their side effects and in particular while retaining
sequential equivalence. Hence, we argue that this transformation is nonetheless
valid, especially when migrating the application from a STM background. What’s
more, this approach manages to retain one of the core promises of Ohua: Deter-
minism. Even though the results from before and after applying the transformation
are not equivalent, they are both deterministic, which cannot be said about STM
whose model is founded on non-deterministic execution. On the other hand, when
attempting to parallelize such an application for the first time, developers should be
well aware of the fact that parallelizing amorphous data parallel programs comes
with trade-offs, making our approach still seem a good fit.

4.4 Transformation 3: Batch Updates
The second optimization we put forth in Chapter 3.3 considered itself with improving
execution times by batching state updates. Our general idea was that the state
update forms a sequential bottleneck which severely decreases performance. After
the application of the transformation described in Section 4.3 however, we found
that the isolated state updates gave way to the negative side effects of applications
exhibiting amorphous data parallelism which mainly manifested in increased write
conflicts due to infrequent updates. Hence, we wanted to introduce a way to vary
the frequency of state updates in order to have a way to reduce the number of
conflicts.

In our preliminary studies, we tackled this problem by only ever processing an
arbitrary but fixed number of elements before updating the state. Although we
mixed the retry semantics of the algorithm itself with the update frequency approach
in Chapter 3.3 by immediately appending any failed updates to the back of the work
set instead of putting them in a separate list, we can distill a generic transformation
from this approach. Basic idea for this transformation is to turn the stateful loop
into a recursive combinator that always takes up to n elements per recursion step
from the input set and processes them until all elements have been processed. To
formalize this we let n be the number of items to be processed per step. As for the
previous transformation, s defines the initial state value and is bound outside of the
map expression, while [x1 . . . xp] is the set of input values for the map operation. The
term t does not contain any sf combinators and the values v1 . . . vp are all bound
within the scope of the lambda expression mapped over.
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The transformation is then defined as follows:

map((⁄s y.t sff (s v1 . . . vp)) s [x1 . . . xp])

¿

let r = ⁄s0 x.

let xinput xrest = take_n(n x) in

let snew xresult = map((⁄s y.t sff (s v1 . . . vn)) s0 xinput) in

if(len(xrest) = 0
[snew xresult]
(let sres xres = r snew xrest in

sres join(xresultxres)) in

r s [x1 . . . xp]

Note that we used in this transformation a non-decoupled stateful loop for the sake
of brevity only. Transformation 2 may be applied either before or after this step to
expose the necessary loop parallelism that warrants this transformation in the first
place.

One can see easily, that this transformation also retains Ohua’s determinstic approach:
All elements are processed in the same order and state updates are also applied in
the same, fixed order for each value for n. But, as was the case for Transformation 2
in Section 4.3 and has been exhaustively discussed there, semantic equivalence is
not preserved by this operation either but is admissible as this is due to the basic
properties of amorphous data parallel programs.

4.5 Transformation 4: Straggler Reduction using
Work Stealing

The third modification we presented in Chapter 3 was the improving of resource
utilization by tackling the straggler problem we discovered after parallelizing state-
free map operations. Underlying cause for the straggler problem was the static
assignment of work to specific threads. Due to the non-uniform nature of most
map operations encountered in real-world applications and noise introduced by the
operating system itself [LWH16], static work set assignments can produce wildly
varying execution times per thread, as seen in Fig. 3.5. Hence, we applied a work-
stealing task scheduling runtime to improve performance.

Admittedly, this optimization step is hardly a transformation but a mere engineering
solution. It can be applied by changing the code generated for the set of map

combinators produced by Transformation 1 presented in Section 4.2. Instead of
generating a number of loop operators as originally intended, we can instead create
a work-stealing runtime and schedule the loop operations as tasks in the runtime.
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5Experimental Setup

In order to compare the performance of Software Transactional Memory against
Ohua in the context of shared state applications, we employ a set of benchmarks
originally proposed by Minh et al. [Min+08]. In this chapter, we will categorize
the benchmarks introduced by the authors and present a representative selection of
applications which we will use to compare Ohua’s performance against STM. To be
able to better understand the behavior of the different implementations later on, we
will briefly analyze, where each application has potential for parallelization and how
this could be leveraged using Ohua and STM. Additionally, we will explain, which
values we measured during execution of the benchmarks and how they are relevant
for our evaluation.

5.1 Benchmark Choice
After presenting our transformations for Ohua in Chapter 4, we now wanted to
compare its performance against STM in order to evaluate if Ohua could indeed
be used as a suitable replacement for developing shared state applications. To
provide a comprehensive comparison, we chose to use the Stanford Transactional
Applications for Multi-Processing suite [Min+08]. Introduced by Minh et al., it
was designed as a set of benchmarks for testing software transactional memory
frameworks. The authors included 8 applications from different application areas in
their suite, which are supposed to resemble the diverse landscape of parallelism in
applications developers might face. In particular, the STAMP suite contains examples
from different application domains and varying use cases for transactional memory
such as high-contention and low-contention scenarios.

Application Instructions per tx (mean) Time spent in transactions
labyrinth 219,571 100%
bayes 60,584 83%
yada 9,795 100%
vacation 3,223 86%
genome 1,717 97%
intruder 330 33%
kmeans 117 7%
ssca2 50 17%

Tab. 5.1: A basic characterization of STAMP applications, comparing the mean number of
instructions per transaction and the overall percentage of time the application
spends in transactions. These numbers stem from a C implementation and have
been adapted from Minh et al. [Min+08]
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Application tx length r/w set tx time Contention
labyrinth long large high high
bayes long large high high
yada long large high medium
vacation medium medium high low/medium
genome medium medium high low
intruder short medium medium high
kmeans short small low low
ssca2 short small low low

Tab. 5.2: A qualitative summary of each STAMP application’s runtime transactional charac-
teristics. The length of a transaction is determined by the number of instructions
it encompasses. The characteristics are ranked relative to the other applications
in the suite. Adapted from Minh et al. [Min+08]

The tables 5.1 and 5.2 give a basic characterization of the benchmarks in terms of
their usage of transactions. As can be seen in table 5.1, the length of individual
transactions varies greatly per application, as does the overall time that is spent by
the benchmark executing transactions. Even though the numbers in the table have
been adapted from Minh et al. and represent values measured for their C-based
implementation, they still outline the general characteristics of the respective STM-
based algorithms. Some applications suffer so badly from the irregular properties
outlined in Chapter 2.1 that exploiting their parallelism requires them to spend more
than 80 % of their overall execution time in transactions. This is for example the
case in the labyrinth benchmark, where fields of a dense 3-dimensional matrix have
to be continuously updated, as we explained in Chapter 3.1. Other applications
such as kmeans or ssca2 have relatively short transactions, meaning their data
parallelism is easier to exploit or they generally do not feature as much opportunities
for parallelism as other applications.

Another relevant and perhaps the most limiting factor for programs relying on
optimistic parallelism principles such as STM is contention. This characteristic is
visualized in table 5.2 along with other properties. When facing high contention sce-
narios, STM implementations are usually unable to achieve the near-linear speedups
Minh et al. reported for other benchmarks. Contention is a byproduct of frequent
reading and writing accesses to the shared data structure that inevitably lead to
frequent conflicts which require a rollback of all affected transactions except for
the one that committed its changes first. Hence, the relative amount of reads
and writes per transaction is also reported in table 5.2. Long transactions, large
read/write sets, more time spent in transactions and high contention are all factors
promoting conflicts. The results of conflicts are frequent rollbacks and accompanying
recomputations, which reduce the overall performance.

Based on the analysis provided by the authors, we selected a representative range
of benchmarks for our comparison between Ohua and STM. We chose applications
with varying transaction lengths and frequency of transaction use as well as different
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levels of contention. The next sections will briefly outline the details of the chosen
benchmarks and explain, how they were implemented.

Since the authors only provided a C-based reference implementation for their pro-
grams, we had to re-implement them in Rust to rule out language-specific perfor-
mance changes when comparing to Ohua’s Rust implementation. We chose to use the
rust-stm library written by Bergmann et al. [@Ber20] for these implementations.
Upon inspecting the original source code, it turned out that the authors adapted
the code in order to improve the performance of STM in some benchmarks. For
instance, they provided their own implementation of a HashMap

1 that offered the use
of transactions on a per-bucket basis, effectively exposing fine-granular paralleliza-
tion opportunities that normal HashMaps cannot provide. In Rust, no corresponding
STM-specific data structures existed prior to this work. We debated, whether or
not we should use these optimizations in our own implementation but ultimately
decided in favor of doing so. First, one could argue that these optimizations would
be made by developers anyway after deciding to use the STM framework in an
attempt to tailor the program code towards the library used. Secondly, we wanted to
remain as close as possible to the original implementations from Minh et al. in the
hopes of achieving similar results for STM as they did. Therefore, we contributed a
small library [@Wit20f] which provides data structures like HashMaps and HashSets
augmented for the use with transactions. Both the library and the benchmarks
were implemented from scratch based on the descriptions provided by the authors,
literature they cited and the code they supplied. We did so in an idiomatic way,
applying both concepts to the problems using the tools the frameworks and the STM
data structure library provide natively. As implementing the Ohua transformations
proposed in Chapter 4 has been left for future work, we applied these transforma-
tions manually to the algorithms. The code for all benchmarks we wrote for this
thesis may be found online [@Wit20c].

When implementing the labyrinth benchmark, we found that two transactions may
deadlock. We have reported this issue [@Wit20g] and resorted to forking and
patching the library [@Wit20d] in question to move on with our tests.

5.1.1 Parallelism Opportunities
When presenting each benchmark, we will provide a short assessment of the opportu-
nities for parallelism it provides and how they can be exploited when using Ohua and
STM. Goal of this analysis is to detect structural limitations within the benchmarks
which one of the frameworks cannot overcome to exploit the full available paral-
lelism. For this analysis, we produced an abstract prepresentation of each selected
application which aims to point out a program’s structural parallelism opportunities.
To keep this representation concise and simple, we simplified each algorithm by
removing loop conditions, abort conditions and any unnecessary computations. The
resulting abstracted code snippets only contain the main operations performed on
the input data to produce the end result as well as any shared state used.

1A dynamic key-value store allowing fast lookups by hashing the keys and organizing them in different
buckets.
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1 let mut maze = Maze::initialize();
2 for pair in points {
3 let path = find_path(maze, pair);
4 maze.update(path);
5 }

Listing 5.1: Abstract description of the labyrinth algorithm

5.1.2 Labyrinth Path Mapping
The labyrinth benchmark we presented in Chapter 3.1 based on the work of Swalens
et al. [SDD16] was originally proposed by Minh et al. as possible benchmark for
Software Transactional Memory. Since we have already analyzed and implemented
this application, it was apparent for us to adduce it for our concluding comparison.
Additionally, it is one of few benchmarks in the suite exhibiting amorphous data
parallelism, a trait the authors did not consider when compiling their benchmark list
but which they happened to include by coincidence, as it is frequently encountered in
real-life applications using shared state, the main use case for transactional memory
applications. Another interesting property of the benchmark was its frequent use
of transactions (the whole algorithm is executed within transactions) and the high
contention on the shared data structure, which puts the synchronization primitives
under heavy stress, as described before.

As can be seen in Listing 5.1, the labyrinth application consists of a state-modifying
loop. After finding a path for each input coordinate pair, the maze gets updated ac-
cordingly. This intertwining of calculation and state update is customary to programs
exhibiting amorphous data parallelism, as it creates these dependencies between
separate calculations in the first place. When using STM for concurrency control, one
can execute the whole loop in parallel, guarding each individual iteration using a
transaction, resulting in the 100 % transaction coverage reported in Table 5.1. Ohua
is also able to exploit the parallelism in this loop due to the Transformations 2 and 3,
allowing both approaches to possibly exploit the maximal available parallelism.

5.1.3 Intruder Detection
The intruder application implements a signature-based Network Intrusion Detection
System (NIDS) and is used in networking to detect attacks or malicious activities in
an active network as well as policy violations. It is based on design proposal number
five of Haagdorens et al.’s work on „Improving the Performance of Signature-Based
Network Intrusion Detection Sensors by Multi-Threading“ [HVG04].

The basic function of this application is to scan incoming network packets and match
them against known intrusion signatures. This happens in three distinct stages, as
outlined in Fig. 5.1. Incoming network traffic is captured and queued for inspection.
Due to the architecture of modern network protocols, individual data flows have
to be split into several packets that are transmitted individually and may reach the
recipient out of order. Attackers have used this in the past by splitting malicious
flows and sending them out of order to avoid detection. To counter this, the second
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Fig. 5.1: Workflow of the intruder benchmark. Processing of incoming data is conducted in
three stages.

1 let mut flows = State::new();
2 for packet in input {
3 flows.add(packet);
4 }
5

6 for flow in flows {
7 analyze(flow);
8 }

Listing 5.2: Abstract description of the intruder algorithm

step in the algorithm is to deploy stateful detection avoidance countermeasures,
which involve preprocessing the received packets and reassembling the original flows.
These flows can then finally be matched against known attack patterns, filtering any
malicious packets from the stream of incoming data.

In this application, no amorphous data parallelism may be found. Instead, we
encounter two loops of which one is stateful and the other state-free, as shown in
Listing 5.2. The flow reassembly phase (step two) happens in parallel in the STM
implementation, using a transaction-aware HashMap. Since the loop body does not
contain any other state-free functions, there are no parallelization opportunities for
Ohua as no transformations from Chapter 4 are applicable. Also, it would not make
sense to attempt to exploit parallelism from this loop using any workarounds, so it is
executed sequentially. This shows that Ohua may only extract non-trivial parallelism
from irregular applications that fit certain criteria, i.e., contain loops that do not
solely consist of state-modifying operations, as its main approach is to exploit data
parallelism by the use of certain transformations to uncover it. Both approaches
manage to implement the state-free analysis loop (step three) in parallel as again
no concurrency control is necessary. Ohua does this using Transformations 1 and 4.
Our evaluation will show, if it is more performant to attempt exploiting parallelism
from the stateful loop or if a sequential approach as done in Ohua performs better.

This benchmark was chosen because it is mostly similar in its properties to the
labyrinth application as it also features short transactions and high contention on
the shared data, but does only spend about 33 % of the overall execution time in
transactions. We mainly wanted to see, how this slight difference in properties is
reflected in the performance results.
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1 let mut centers = initialize(input);
2 loop {
3 // data parallelism
4 for item in input {
5 item.find_center(centers);
6 }
7 // fold
8 centers = recompute(input);
9 }

Listing 5.3: Abstract description of the kmeans algorithm

5.1.4 K-means Clustering
Proposed as benchmark by Narayanan et al. [Nar+06] the k-means clustering
algorithm partitions a set of n observations into k clusters. It was originally put
forth by MacQueen et al. in 1967 [Mac+67] and still is a very popular algorithm for
cluster analysis in data mining which is often used to classify data.

The inner workings of the algorithm are rather simple: It takes a set of n obser-
vations and a desired number of clusters to sort the observations into. Then the
k cluster centroids are initialized. Many ways exist to realize this but we chose,
akin to our C reference implementation, to select the coordinates for each cluster
centroid randomly from the coordinates preset by the input data set. Following this
initialization, each observation is assigned to its nearest cluster based on the squared
multi-dimensional spatial euclidian distance between both points. Afterwards, new
centroids are computed by calculating the means of all observations now assigned to
a certain cluster. These last two steps now get repeated iteratively until the algorithm
either reaches an upper bound of iterations or converges, i.e., less than a certain
percentage of observations change per iteration.

In the kmeans application, all parallelizable calculations happen within the single
state-free innermost loop, which assigns all observations to a new centroid before
the new centroids are calculated sequentially. This is shown in Listing 5.3. The STM
implementation introduces some shared state for deciding on the convergence of
the algorithm (not depicted in the abstract representation) and for updating the
centroids during the inner loop iteration, executing the whole body of the outermost
loop in parallel using transactions. Ohua exploits the data parallelism of the inner
loop using Transformations 1 and 4 to exploit data parallelism. As both approaches
are able to exploit all opportunities for parallelism, though each does it differently,
we expect similar performances for both implementations.

k-means is very much like the intruder benchmark in the regard that its parallelism
opportunities are limited to a single state-free loop but unlike the aforementioned
benchmark k-means features low contention on shared data structures while pre-
senting a similar transaction utilization, making this an interesting benchmark to
look at.
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Fig. 5.2: Visualization of the overlap matching found in the genome benchmark. The blue
match is stronger as it has seven matching elements and has hence been found
first.

1 let mut nucleotides = Hashset::new();
2 for segment in input {
3 // deduplication
4 nucleotides.insert(segment);
5 }
6

7 loop {
8 for item in nucleotides {
9 item.find_neighbor(nucleotides);

10 }
11 }

Listing 5.4: Abstract description of the genome algorithm

5.1.5 Genome Sequencing
This benchmark implements a „whole-genome shotgun sequencing“ algorithm as
outlined by Pop et al. [PSS02] in their work. Its goal is to sequence a (fictional)
genome, i.e. to reassemble a nucleotide sequence from a set of snippets which is
something frequently done in genetics.

The first step in the algorithm is to deduplicate the DNA segments that have been
provided as inputs, since there are usually many duplications. The second phase is
then concerned with finding neighboring segments in the remaining pool of DNA
parts by utilizing overlap matching. By reducing the overlap size each iteration, the
best possible fit is chosen for each neighbor search. Figure 5.2 provides visualization
of how this matching works. Starting from a match length of n ≠ 1, the algorithm
attempts to find a matching predecessor-successor pair for all loose ends. With each
iteration, the match length is reduced, until it ends with an overlap of one. In our
example, the blue overlap match is found first due to seven matching nucleotides.
Three iterations later, the green match is established, fully connecting the centered
genome segment. After this phase has finished, all but two segments have a pre-
decessor and successor assigned. Starting from the one element in the set with no
predecessor, the chain of nucleotides can be rebuilt by simply following the links.
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genome consists, as outlined in Listing 5.4, mainly of two separate loops. The first
loop expression to deduplicate the input set is again a purely state-modifying loop,
as seen before in the intruder benchmark. All operations in the loop body are directly
accessing the shared state, making parallelization difficult. The second loop on the
other hand is state-free, allowing for the simple exploiting of the parallelism within
without the need for concurrency control.
Providing a parallel implementation for the first loop however, is more challenging.
Only by using a transaction-aware HashMap with k buckets, the STM implementation
is able to exploit the loop’s parallelism for up to k conflict-free accesses. Ohua, again
unable to use any transformations for leveraging parallelism, may also exploit a
certain part of parallelism by emulating the same behavior as STM and partitioning
the input set beforehand into k parts, so that the compiler may break the resulting
state-free loop using the first transformation:

1 fn dedup(segments: Segments, threadcount: usize) ->

Vec<SequencerItem> {Òæ

2 let parts = partition(segments, threadcount);

3 for p in parts {

4 deduplicate(p)

5 }

6 }

This application example shows, that even when using Ohua, code sometimes has to
be written in a certain way to expose the parallelism opportunities of a computation
to the compiler. Nevertheless, the resulting Ohua algorithms can still be executed as
a sequential program while the resulting STM code, which is even more optimized
by the use of special data structures, is unable to do so. Overall, we expect differing
results for both implementations, as they try to exploit the parallelism hidden in the
first stateful loop in different ways, probably with varying degrees of success.

All in all we chose this application to complete our benchmark selection as it provides
similar properties as the kmeans benchmark in terms of transaction length and
contention but spends nearly all its execution time in transactions, a stark change
compared to the 7 % of transaction time in kmeans.

5.1.6 Summary
In summary, we found in our analysis that only the labyrinth application contains
amorphous data parallelism and is the only application where Ohua’s Transforma-
tions 2 and 3 are applicable. All other benchmarks contain loops that are state-free,
while possibly occuring state modifications exist in separate loops. While STM
can be used to exploit parallelism from the latter, Ohua has to execute this type
of loop sequentially to avoid handling shared state. Therefore, we expect to see
different behavior in the labyrinth application than in the other applications for
Ohua’s performance compared to STM.
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5.2 Reference Measurements
Minh et al. proposed their STAMP suite in 2008. Since then, hardware (e.g., clock
speeds of CPUs) as well as compile-time optimizations have evolved significantly,
rendering the results provided in their paper outdated. Hence, we decided to run the
benchmarks relevant to our investigation again, on the same hardware and under
the same conditions as our Rust benchmarks to have a reference we can compare our
STM implementations to. Although the authors themselves only measured results
for the smaller two of their three suggested input sets, we tested all three to have a
more comprehensive set of results to compare our STM implementation against.

Upon building and executing the benchmarks with the included tl2 STM imple-
mentation [@Min13], a number of issues with the STAMP suite became apparent,
which we already briefly touched upon in Chapter 1. The genome benchmark could
not be built from the original source code, due to conflicts caused by compile-time
memory allocation patching. We reported this issue [@Wit20a] and employed a
workaround to be able to use the benchmark nonetheless. Additionally, we found
that the implementation of the labyrinth benchmark sometimes does not yield a
correct solution, causing the program to crash [@Wit20b]. Similar behavior was
found for the intruder application, although we did not investigate this further,
instead discarding failed runs in both cases, lowering the effective number of test
results slightly below 30. These issues cement some of the drawbacks of STAMP and
STM in general, which we discussed in the beginning of this thesis.

For comparability and in order to provide a more complete performance graph, we
intended to run the selected four benchmarks for the same range of threads as our
own applications but the suite only supports thread counts which are a power of two,
leaving us with 1, 2, 4, 8 and 16 threads as test parameters. Due to this limited result
range, we will only be able to draw vague general comparisons between STAMPs
STM and our own STM implementation as the sparse result coverage for higher
thread counts leaves us unable to reliably identify trends in the performance of
STAMP.

5.3 Measurements
In our experiments, we tried to achieve reproducible and plausible results so that we
can make an educated comparison between both STM and Ohua. This section will
briefly explain our benchmarking setup to enable others to reproduce our results.

5.3.1 Input Data
For each STAMP application, Minh et al. [Min+08] additionally provided three
sets of parameters to model small, medium and large workloads. We adopted
these parameters with only minor modifications, as intended by the authors. A
change was made to the parameters of the genome benchmark as the input data
that was randomly created using the original input parameters proved faulty in our
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Application Arguments Description
genome -g 256 -s 16 -n 16384

n gene segments of length s are first sampled from a gene
consisting of g nucleotides and then reassembled again.genome+ -g 510 -s 32 -n 32768

genome++ -g 16384 -s 64 -n 16777216
intruder -a 10 -l 4 -n 2048 -s 1 From seed s, n traffic flows are generated, a% of which

contain attacks. Each flow consists of up to l packets, which
are assembled and inspected by the program.

intruder+ -a 10 -l 16 -n 4096 -s 1
intruder++ -a 10 -l 128 -n 262144 -s 1
kmeans-high -n 15 -t 0.05 -i random-n2048-d16-c16.txt

The input file i containing n points in d dimensions gen-
erated about c centers is loaded and then clustered into n
clusters. A convergence threshold of t is used.

kmeans-high+ -n 15 -t 0.05 -i random-n16384-d24-c16.txt
kmeans-high++ -n 15 -t 0.00001 -i random-n65536-d32-c16.txt
kmeans-low -n 40 -t 0.05 -i random-n2048-d16-c16.txt
kmeans-low+ -n 40 -t 0.05 -i random-n16384-d24-c16.txt
kmeans-low++ -n 40 -t 0.00001 -i random-n65536-d32-c16.txt
labyrinth -i random-x32-y32-z3-n96.txt The input file i describes a maze of dimensions x ◊ y ◊ z

and n paths to map.labyrinth+ -i random-x48-y48-z3-n64.txt
labyrinth++ -i random-x512-y512-z7-n512.txt

Tab. 5.3: Input data sets for the benchmarks presented in this thesis. Adapted from Minh et
al. [Min+08] and adjusted to mitigate flaws in the original algorithms.

re-implementation. Also, a unnecessary parameter was removed from the kmeans
benchmark.

Table 5.3 gives a full overview over all parameters we used. Input sets marked with
a + indicate a larger input and an appended ++ marks the largest of the three input
sets for a benchmark. The kmeans benchmark inputs are additionally labeled as high
and low, which refers to the relative amount of contention produced by the inputs.

5.3.2 Measured Values
For the purpose of our comparison between Ohua and STM, two values are of
importance and have hence been measured. As we are calculating the speedups of
both implementations in reference to a sequential implementation, the execution
time in milliseconds, i.e., the time it takes the algorithm to complete, is relevant.
Moreover, we were interested in the power consumption of both algorithms. But
since measuring the power consumption of the algorithms would have been to
complicated and time-consuming, we opted for measuring the total CPU time used
by the programs, as the amount of power used while processing is resulting from the
utilization of a PCs individual components. Since all these programs are performing
purely in-memory computations, we figured that measuring the CPU time would be
a sufficient approximation to draw some general conclusions regarding the power
usage.

For both measured values, the setup phase (parsing input arguments and reading
input files) and teardown phase (writing the results to a file) where not included in
the measurements. This was done in order to reduce potential noise from Operating
System calls resulting from the I/O operations performed in these stages. Research
has shown in the past that this noise, as well as different contention scenarios can
severely impact the measured time values, leading to variations in the measured
time values. To take this into account and produce more realistic results, each
measurement has been done 30 times, so that statistical outliers do not carry as much
weight. From the resulting measured values the geometric mean was calculated per
data point to compile all measurements into a single data point.
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Using the measured execution times in Milliseconds, we calculated the speedup
using the following equation:

Sc = tseq

tf

where Sc is the speedup of the configuration under investigation, tseq is the mean
execution time of the sequential implementation and tf the mean execution time of
the framework in question.

5.3.3 Running Configuration
All benchmarks conducted for this work were run on an Ubuntu 18.04 server
with 128GB RAM and two Intel Xeon E5-2630 v2 processors which have a base
frequency of 2.60 GHz and offer combined 12 cores with 24 threads. At all times,
the program under inspection was running exclusively on the machine, meaning
that aside from background operating system jobs, no other tasks ran on the system
simultaneously.
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6Results and Evaluation

In this section, we will present and interpret the results of our experiments as
presented in Chapter 5. This involves firstly a brief analysis of the results of the
original STAMP benchmark to establish them as a baseline to legitimize or discuss
the results of our Rust-based STM implementation of the algorithm as we will use
the latter to evaluate Ohua’s performance. Subsequently, we will analyze the results
of our Ohua benchmarks in detail to see, whether it could be used as a suiting
replacement for STM in terms of performance.

6.1 Reference Measurement Results
Benchmark results for the reference measurement runs we conducted can be found in
Figure 6.1. We will compare our achieved speedups to the original benchmark runs
from Minh et al. [Min+08], namely to the results of their Eager STM implementation
to see, how performance of the framework changed over the years. This allows us to
set realistic expectations for the performance of our STM-based implementations.

In the labyrinth benchmark, we observed an increasing speedup for up to 8 threads
in the small and medium sized problem sets, maxing at about 3.0 speedup and
followed by declining performance for 16 threads. The largest input data set on the
other hand exhibits a steadily increasing curve, achieving a speedup of about 6.0
for 16 threads. This deviates from the original results, where both the labyrinth and
the labyrinth+ benchmark showed behavior similar to our labyrinth++ curve form:
A continuously increasing performance, achieving a speedup of about 4.0 at best.
The form of the curve and the overall reduced performance may indicate that either
the sequential implementation is performing better now than it did back in 2008 or
that the overhead of the tl2 STM framework increased. Our first theory is backed
as possible cause by the fact that compiler optimizations have improved in the past
years along with CPU clock speeds, making a better sequential performance not
unlikely. An increased framework overhead on the other hand would also support
the performance drop for 16 threads, which the better sequential performance does
not explain. This was also discussed previously by Perfumo et al. [Per+08] who
reported similar performance drops for STM applications with higher thread counts.
Another explanation for this decline would be our used hardware architecture, as it
consists of two CPUs. While all runs up to 8 threads can be executed on a single CPU,
the 16 thread version requires the utilization of both cores, requiring more complex
memory and resource management which in turn takes more time and may also
be an explanation since we do not know if Minh et al. had similar hardware. But
since we only made this and the following measurements as reference points for the
data we acquired in our own experiments, we did not investigate the causes for this
behavior beyond speculations to possible reasons and leave this to future work.
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Fig. 6.1: Speedup achieved by STM in the original STAMP benchmarks.
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A similar deviation from the original measurements can be seen for the intruder
application. Our own results show a curve that peaks at 4 or 8 threads respectively,
before declining again. Maximum speedups are as low as 0.3 for the small, about 0.2
for the medium and 0.8 for the largest input set. The original results on the other
hand show Eager STM achieving a speedup slightly below 1 for both intruder and
intruder+1 meaning that our results are again remotely similar, taking into account
our previous assumptions about possible changes in the execution environment
compared to the original benchmarks.

For its high-contention scenario, our kmeans measurements show a similar behavior
as the previous applications. Both smaller benchmarks achieve peak performance
for 8 threads while performance decreases for 16 threads or stagnates in the case
of kmeans-high++. In the original measurements however, the authors achieved
steadily increasing near-linear speedups like our high++ version did with speedups
of up to 4.0 for both input sets while we only achieved a maximal speedup of 1.0 for
both high+ and high++.
A more stark deviation is visible in the low-contention variant of the benchmark:
The original speedup grew linearly with increasing number of threads used due to
the low contention, maxing out at execution times 9 or 10 times faster than the
sequential version respectively. We again have a peak performance at 8 threads
for the kmeans-low variant but steadily increasing speedups for low+ and low++,
achieving a 3.5 speedup.

In genome, we achieved for the first time curve shapes similar to the original results
from Minh et al., although the original results showed peak performance at 4 threads
while our results peak at 8 threads before decreasing again. Also, our total achieved
speedup is slightly below the originally reported numbers. The solid performance
of genome++ might be due to the fact that the overhead of the used framework
amortized for this large input set.

Overall, our results are remotely similar to the original results, although we consis-
tently observed lower speedups than reported in the original. We identified either a
better sequential performance, increased framework overhead or hardware overhead
as possible sources, in reality it may even be a combination of all these factors. Due
to the fact that both result sets vary greatly, we opted to discard the original results
reported by Minh et al. in favor of using our own measurements as reference for our
Rust-STM implementations.

6.2 Rust-based Benchmark Results
labyrinth. We already discussed in detail the performance of the labyrinth applica-
tion for Ohua and STM, which is shown in Fig. 6.2, in Chapter 3. Notably, Ohua
performs slightly worse than STM, but shows the same overall scaling behavior for
more cores while exhibiting less variance in the results. For labyrinth++, one can
not state clearly, which benchmark performs better due to the comparatively large

1Hardware-based Transactional Memory approaches perform generally better in this benchmark.
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Fig. 6.2: Speedup in the labyrinth application relative to a sequential implementation.

0

100

200

300

0 5 10 15 20 25
# cores

C
PU

 ti
m

e 
in

 m
s

labyrinth

0

200

400

600

0 5 10 15 20 25
# cores

C
PU

 ti
m

e 
in

 m
s

labyrinth+

0e+00

1e+05

2e+05

3e+05

0 5 10 15 20 25
# cores

C
PU

 ti
m

e 
in

 m
s

labyrinth++

algorithm ohua−futures stm

Fig. 6.3: CPU time used by both frameworks in the labyrinth application.

variance in the STM results. The Software Transactional Memory implementation
itself performs just as the original STAMP implementation by Minh et al. [Min+08],
reinforcing the validity of our implementation.

When comparing the CPU time used by both Ohua and STM as shown in Figure 6.3,
we unsurprisingly see an overall growing demand for computation time as creat-
ing more threads and moving data between them in itself takes more time. One
can observe the correlation between the time spikes for both applications in the
labyrinth+ benchmark and a degraded performance for the respective thread counts.
Due to Ohua’s algorithm structure, low thread counts become even less performant
for smaller input sets, as fewer threads require more loops of the algorithm, creating
a non-negligible runtime overhead. This becomes irrelevant for larger inputs such as
labyrinth++, though.

intruder. For the intruder program, both frameworks deliver extremely different
results: STM performance for the small input set (as seen in Fig. 6.4) is similar to
the performance showcased in the reference measurements in Fig. 6.1, although
the curve shape is different, the Rust version showing a slow and steady increase in
performance. The medium sized input set however, produces a rise so flat it almost
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Fig. 6.4: Speedup in the intruder application relative to a sequential implementation.
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Fig. 6.5: CPU time used by both frameworks in the intruder application.
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Fig. 6.6: Speedup in the kmeans-high application relative to a sequential implementation.

becomes invisible due to the graph scaling. We suspect this to be caused by the slow
reassembly phase of the benchmark, which operates on a shared HashMap. Even
though we augmented the standard libraries’ HashMap implementation with basic
transaction handling capabilities like Minh et al. did, there is still a lot of contention
on these shared data instances, impacting execution times. This assumption is
supported by the immense amount of CPU time used by the STM implementation.
Because of these long execution times we did not measure STM’s speedups for the
significantly larger intruder++ input set.

Ohua on the other hand achieves in both smaller cases relatively good speedups
of about 1.5 and 1.3 respectively, outperforming Software Transactional Memory.
Particularly interesting is the performance plateau that is reached by Ohua for a
medium amount of threads and which is best visible in the smallest input set. Source
of this is the fact that a not insignificant portion of the algorithm runs sequentially
in Ohua, as explained in Chapter 5.1.3. Hence, only a certain speedup may be
achieved by parallelizing the application, thus creating a plateau that transitions
into declining performance later on when the framework overhead becomes too
large. But as was the case with STM, the intruder+ version performs slightly worse
than the smaller input set and Ohua’s intruder++ results are even worse, below 1.0.
This can be attributed to the increasing input set sizes, which take longer to process
during the sequential flow reassembly phase, impairing the speedup achieved by the
parallel detection phase. The aforementioned performance difference is also clearly
seen in the use of CPU time which is shown in Figure 6.5, where Ohua uses orders
of magnitude less CPU time than STM.

kmeans Our kmeans results show no clear winner in terms of performance. Al-
though there were differences in the performance behavior between the high con-
tention and low contention versions of the STAMP benchmark, the STM version
written in Rust showcases in Figures 6.6 and 6.8 similar curve shapes for both sets
of input data which are completely different from the results in Fig. 6.1. This is most
likely due to differences in the implementations of both benchmark versions. C-based
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Fig. 6.7: CPU time used by both frameworks in the kmeans-high application.

1 unsigned long data[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

2

3 pid_t pid = fork();

4 if (pid != 0) {

5 int lower = 0;

6 int upper = 4;

7 // changes elements at indices 0 to 4
8 modify_elements(data, lower, upper);

9 } else {

10 int lower = 5;

11 int upper = 9;

12 // changes elements at indices 5 to 9
13 modify_elements(data, lower, upper);

14 }

Listing 6.1: Example for memory sharing that is possible in C, but impossible in Rust.

programs allow ways of memory sharing that are irreproducible in Rust, forcing us
to change some aspects of the program, probably causing these differences.

An example for the differences in what is considered legal memory sharing can
be seen in the snippet of C code shown in Listing 6.1. There, an array of data (in
this example integers, but in kmeans it would be observations to classify) is to be
manipulated by two concurrent threads. Since the developer wants to split the work
evenly between both threads, she can assign both threads non-overlapping ranges to
iterate over and let both threads work directly on the array. Without any locking,
this is risky, as there is no control mechanism ensuring that both threads don’t alter
the memory regions of the other thread due to a bug in an index calculation or
by writing too large portions of data to the array. Nonetheless, this is the fastest
possible implementation (due to the absence of safeguards). In Rust however, this is
impossible. The language itself does not allow this type of fast yet unsafe memory
sharing, as the type system ensures that data shared across threads without locks is
read-only. So, if one wants to implement the same algorithm shown in above listing
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Fig. 6.8: Speedup in the kmeans-low application relative to a sequential implementation.

without locks in Rust, the data must either be copied2 and sent to the respective
threads (making a later consolidation of the changes made necessary) or the vector
has to be split apart, each part moved into the scope of the respective thread. Both
approaches are time-consuming, as in both cases new memory must be allocated for
the new vectors and the data has to be copied or moved, not to mention the time it
takes to consolidate the changes made afterwards.

Overall, both benchmark sets show that there is no clear pattern for Ohua’s per-
formance with respect to the size of the input set. Each individual set of input
data requires a specific number of iterations before the algorithm converges. In the
Software Transactional Memory version this number is completely unpredictable,
fluctuating due to the order in which the elements are processed, as floating point
addition offers only a limited precision and is hence not commutative. Minor
differences in the calculation of new centroids therefore can lead to missing the
convergence threshold which in turn leads to more computations. Ohua does this
in a fixed amount of iterations as it performs all additions deterministically. This
becomes visible in Ohua’s fairly level performance for each input set. As its deter-
minism guarantees that the computations performed are always in the same order,
stripped of any fluctuations caused by non-determinism, speedups and slowdowns
mark where the framework either helps to improve performance or where it weighs
down execution times.

When comparing the utilized CPU times by both frameworks in Figs. 6.7 and 6.9,
we see that Ohua uses a relatively steady amount of computation time throughout
all measurements for kmeans, while STM needs linearly more computation times
with increasing thread count. This can be attributed to an increased number of
conflicts due to higher contention, the latter also showing in degrading speedups
with increasing thread counts. All in all, Ohua is on par or outperforms Software
Transactional Memory in the smaller two of both kmeans input sets and performs
steadily for both large inputs, all while utilizing only a fraction of the CPU time STM
needs, meaning it is also using significantly less energy to produce its results.

2In Rust jargon, this is called a clone.
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Fig. 6.9: CPU time used by both frameworks in the kmeans-low application.
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Fig. 6.10: Speedup in the genome application relative to a sequential implementation.
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Fig. 6.11: CPU time used by both frameworks in the genome application.
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genome. In genome, the curve shapes of our STAMP results from Fig. 6.1 and the
results from the STM version in Rust in Fig. 6.10 are similar in the way that they
exhibit peak performance for a medium amount of threads before it declines. What’s
striking is the difference in absolute speedups achieved by our Rust implementation.
Likely causes for this include a by comparison more performant sequential imple-
mentation, which is possible as we developed these binaries independently from
the other implementations which use one of the two frameworks while Minh et al.
basically reuse the STM implementation, only removing any TM and threading code
from it. Alternatively, it could be because of higher overheads of the rust-stm library,
for reasons we have outlined above. To test this theory, we profiled a STM genome+

run using 8 threads and analyzed the resulting flamegraph [Gre16]. We found
that the cloning of data amounts for about 23,75 % of the whole execution time of
the benchmark3. While a more efficient library implementation using Rust’s unsafe
features that allow circumventing certain safeguards could may help to improve
performance, we deemed time-consuming improvements on a STM framework out
of scope for this work. Ohua manages to achieve clearly better speedups in all three
test cases. The execution times remain relatively similar, indicating a steady amount
or overhead, although we see an increasing CPU usage in Figure 6.11, indicating
the increasing framework overhead. But due to the large portions of still sequential
code, i.e., the nucleotide sequence deduplication, no real performance gains can be
made.

6.3 Summary
In general, the experiments we’ve conducted have shown that Ohua’s deterministic
execution model does indeed lead to less variance in execution times. Our achieved
results are on par with those of STM in applications like the labyrinth benchmark,
where it was able to break up the stateful loop using Transformation 2 and 3.
Technically, we also outperformed Software Transactional Memory in the intruder
and genome benchmarks but as STM achieved in both cases subpar results, it should
be evaluated whether the STM library used can be optimized for a performance
comparable to the C-based version or whether this is not an implementation-related
but rather a framework-related issue before judging about this.

With the kmeans and genome benchmarks, it became apparent that not all shared
state applications offer the same amount of parallelism exploitable using the trans-
formations we proposed in Chapter 4. In fact, it became apparent that of the various
forms of irregular applications tested, the one exhibiting amorphous data parallelism
could be parallelized best: the labyrinth benchmark. This is the only one of the
four algorithms we implemented that displays the characteristics of amorphous data
parallelism we explained in Chapter 2.1.1. That may indicate that Ohua would be
most effective when targeting this type of applications in particular, as our batching

3For this analysis we profiled the whole application execution. Of the overall execution time, only
46,06 % of all samples were attributed to the execution of the benchmark itself. 10,94 % of the
total sample count were attributed to data cloning and also within the benchmark execution part of
the program. Hence, roughly 23,75 % of the benchmark execution time is spent duplicating data.
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Transformation 2 and 3 presented in chapters 4.3 and 4.4 enable us to handle the
state updates found in this type of applications. To verify this, future work should
implement other programs from the STAMP suite that contain amorphous data paral-
lelism such as the yada and ssca2 algorithms. But even in the non-amorphous cases
we tested Ohua on, we saw a significantly lower CPU usage, and by extension power
consumption, for Ohua than for STM. The absence of contention in Ohua’s model is
the key reason for this conservation of resources. Hence, the fact that the framework
is more limited in what parallelism may be exploited does not seem to be a downside
but rather an advantage. Such state-modification-only loops contain usually more
contention as transactions are much shorter and commits occur more frequently.
Exploiting parallelism from these loops hence has the potential of yielding a negative
instead of a positive performance impact, as more write conflicts and recomputations
occur.

Overall, Ohua would indeed seem to be a promising replacement for STM-based
shared state applications. While it is clearly not suited to be used for every type of
shared state program, so is STM. Performance-wise Ohua will not always outperform
Software Transactional Memory but manages to at least be on par with it, while
yielding other positive properties like a deterministic execution model, often better
energy efficiency, and easier to work with code bases due to the elimination of
parallelism abstractions. Based on the benchmark results we assume, that Ohua will
showcase the best performance behavior when used in applications with amorphous
data parallelism as this allows it to not just parallelize state-free loops but also
stateful loops using Transformation 2 and 3.
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7Related Work

Before Ohua, various other frameworks for parallel programming have been pro-
posed that could serve as a replacement for Software Transactional Memory in a
shared state scenario to mitigate some of the shortcomings of the original proposal
by Shavit et al. [ST97]. This chapter will briefly present some of this related work.

7.1 Chocola: Combining multiple concurrency
models

According to Van Roy et al. [VH+04], most concurrency models can be grouped
into three different categories: deterministic, message-passing and shared memory
models. In a study, Swalens et al. [SDD18] found that developers often employ
multiple concepts from different categories to solve their tasks. They regard this
interleaving of multiple concepts as highly dangerous, as each concurrency model
comes with its own set of restrictions on what may or may not be done in the
program in order to uphold their individual guarantees. Mixing two or more models
in an application may void some of these guarantees, a fact most developers are not
aware of, as the semantics of this nesting are usually not well-defined. For example,
transactions (a shared-memory model) provide isolation1 as a guarantee. However,
if futures (a deterministic model) are used inside of transactions, this guarantee is
voided, unbeknownst to the developer.

As a solution, and to account for this culture of mixing several concurrency models,
the authors propose Chocola [SDD18], a unified framework of futures, transactions
and actors (a message-passing model). Chocola is a fork of the Clojure programming
language that comes with native support for all three concepts. In their work,
Swalens et al. provide well-defined semantics for the combination of two concurrency
models. When defining and implementing their language, they attempted to uphold
as much of the original guarantees the individual models offered as possible when
combining them, e.g., by altering how futures behave inside a transaction. For the
most part they succeeded, although determinacy was a guarantee they could often
not retain.

To evaluate their work the authors also re-implemented a subset of the STAMP
benchmark suite using Chocola. However, they only tested 4 out of 8 benchmarks, as
they argue that only the four selected ones offered any potential for enhancements
by combining transactions with another concurrency model. Swalens et al. reported
speedups of 2.3 for a Chocola-based labyrinth implementation, as compared to a

1Isolation ensures, that one transaction can never see the changes made by another transaction until
the latter has committed. Various levels of isolation have been defined, but Swalens et al. [SDD18]
were only interested in serializability.
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Fig. 7.1: Speedups of Ohua and STM for the labyrinth benchmark with different baselines.

speedup of 1.3 for a conventional STM implementation. Nevertheless, it remains
unclear how the authors achieved these measurements, as this is not discussed in
their work. Judging from their references to previous work [SDD16; SDD17], these
speedups most likely refer to a single-threaded run of their STM implementation.
But as McSherry et al. [MIM15] pointed out in their work, choosing the performance
of another implementation as reference point gives no indication of the real perfor-
mance of both approaches. In real application scenarios, parallelism is introduced
to supercede an existing sequential implementation because the latter can usually
only be optimized to a certain point before reaching its performance limit. When
setting a single-threaded run of any framework as baseline, one can only make a
comparison between relative speedups to other frameworks, leading to distorted
plots as can be seen in Fig. 7.1.

Both plots show the results of the labyrinth+ benchmark as explained in Chap-
ter 5.1.2 and evaluated in Chapter 6.2. Figure 7.1a shows our original speedups,
comparing both implementations to a seuential baseline implementation. Fig. 7.1b
on the other hand shows the same results but with the single-threaded STM run as
baseline, nearly doubling the apparent speedups. Hence, to obtain realistic speedups
and account for the potential overheads of various frameworks, it is favorable to
compare against a sequential baseline. Swalens et al. probably decided against
doing so as it would have required them to write a third, sequential version of their
benchmarks. This demonstrates another strength of Ohua: Due to its implicit nature,
any algorithm definition may simultaneously serve as sequential implementation by
simply executing the application as-is, without invoking the Ohua compiler first. But
due to this bad baseline choice, we cannot compare our results to those Chocola
achieves.

A significant advantage of the authors’ approach is, that it allows the combination
of several different concurrency models while offering well-defined and formalized
semantics. This makes the development of complex software easier for developers as
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they do not have to put too much thought in the ramifications of this combination.
On the other hand side is this offering of multiple concurrency models also the frame-
works’ hugest disadvantage. Developers now don’t have to learn how to correctly
use one, but three different concepts with different guarantees attached. Resulting
code is so extremely tailored towards the use of these different concepts and their
interaction between one another that migrating the code to another framework
becomes virtually impossible, depending on how many of Chocola’s features are
used. Applications developed with this framework also contain many (potentially
different) concurrency abstractions. In that regard, developing parallel programs
might become easier, but understanding and reasoning about them becomes much
harder, especially compared to Ohua, which does not expose any abstractions and
shields the developer completely from having to reason about concurrency, as this is
exploited at compile-time.

7.2 Software Lock Elision
Roy et al. [RHH09] detail in their work the problems of migrating lock-based code
to a Transactional Memory framework. If done incorrectly, the semantics of the
code may change due to the different behavior of transactions compared to locks,
leading to different results. Hence, they propose a Software Lock Elision runtime that
builds upon lock-based code and allows threads to speculatively execute lock-based
critical sections in parallel. This framework features an optimistic execution model
and detects conflicts between accesses by concurrent threads dynamically. In this
regard, it functions similar to Software Transactional Memory. But additionally,
Software Lock Elision takes a best effort approach on its implementation: A fallback
to acquiring locks without any speculation is possible, e.g., when the speculative
state overflows the cache, when using nested locks or when performing an operation
that only works non-speculatively (such as waiting for a condition variable). Roy et
al. state that their system is only tailored towards workloads with high contention
and a low number of conflicts, as only then using locks becomes a liability, producing
too much overhead.

As can be seen in Fig. 7.2, their design features both the automatic and the manual
use of SLE. A developer may either annotate her lock-based code to explicitly use
Software Lock Elision at certain points or profile the locks in her binary and apply
binary rewriting systems to add a SLE runtime to the application2. The runtime is
designed to retain maximal fairness towards non-speculative locks by prioritizing
them over threads holding the same lock speculatively. The authors also tried to
ensure the isolation between speculative and non-speculative work and to add
support for application-specific lock types.

2In their work, Roy et al. discuss the design for an automated SLE runtime but left an actual
implementation to future work. As of today, no follow-up work detailing an actual implementation
has been provided.
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To evaluate their work, Roy et al. implemented 6 out of 8 STAMP benchmarks3 using
manually-annotated SLE code. For the kmeans, intruder and ssca2 benchmarks the
authors reported speedups 1.5 to 2 times higher than those of the original STM
implementation. However, the SLE runtime failed to achieve good results for genome,
labyrinth and vacation, sometimes only reaching 25-50 % of the STM speedup.
Interestingly, the framework only achieved good performances in benchmarks with
short transactions and at most a medium amount of time spent in transactions, as
can be seen in table 5.2.

Overall, this type of automated approach to enhance lock-based code with specu-
lation looks very promising. It allows the use of STM concepts within lock-based
code, which enables developers to easily improve performance of their existing code.
But this requires the use of lock-based code. The authors make the correct usage of
locks a prerequisite in their work, although this is the hardest aspect of lock-based
programming, as we discussed in Chapter 2.2. Therefore, an abstraction-free ap-
proach to concurrent programming, like Ohua, might be preferable to avoid having
developers write locking code manually.

7.3 Heterogeneous Parallelism
Fluet et al. [Flu+07b] argue, that currently, no parallel programming language
exists, that can be adequately used for general purpose programming, as most of
these languages are tailored towards research purposes. Additionally, they lament
the missing parallelism features in general purpose programming languages. In
their opinion, parallel languages need to provide mechanisms for multiple levels
of parallelism, since most applications exhibit parallelism at multiple levels that

3They reported 2 benchmarks, yada & bayes, to not run on their systems anymore.
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could be exploited for performance and since most commodity hardware achieves
optimal performance only when exploiting these multiple parallelism levels (e.g.,
by employing both threads and SIMD parallelism). In response, the authors pro-
pose Manticore [Flu+07b; Flu+07a; Flu+09; Flu+10], a parallel language for
heterogeneous parallelism.

The language belongs to the family of statically-typed strict functional languages
and bases its concurrency mechanisms on Concurrent ML. Coarse-grain parallelism
in Manticore is achieved using explicit mechanisms like spawn for thread creation
and typed channels. An important feature of the language is the absence of shared
state. Instead, threads may only use message passing via aforementioned channels
for communication and synchronization. As opposed to coarse-grain parallelism,
the fine-grain parallelism is achieved using implicit mechanisms, because Fluet et al.
argue that this type of parallelism is cumbersome to implement by hand and can
easily pose large overheads when done incorrectly. For this, they use constructs like
parallel arrays (immutable sequences that can be computed in parallel), which are
all created or invoked using special annotations.

1 fun imgToGray img =

2 [: [: rgbToG pix | pix in row :]

3 | row in img :]

4 fun convert img = let
5 val replCh = channel()

6 in
7 spawn (send (replCh, imgToGray img));

8 recvEvt replCh

9 end

Listing 7.1: Code example showcasing implicit and explicit parallelism in Manticore,
adapted from [Flu+07b].

Listing 7.1 features parallel comprehension syntax as an example for such annota-
tions in the function imgToGray, also showing that these parallel list comprehensions
can also be nested. The function convert on the other hand shows the use of explicit
parallelism for coarse-grain parallelism. To efficiently harness the resulting parallel
code, Manticore includes a continuation-based runtime that caters to the different
scheduling needs of explicit and implicit threads.

Although Fluet et al. have been continuously working on Manticore and published
several follow-up works, no benchmarks have been conducted with the language yet.
Nonetheless is the author’s proposition very interesting as it is also relying on finding
and extracting implicit parallelism, like Ohua. Unfortunately, they only employ this
idea for lower-level parallelism, leaving much of the parallelization effort to the
developer, who may not be able to parallelize the code as efficient as automated
approaches. Another shared approach with Ohua is the elimination of shared state,
by which many types of errors in parallel code can be ruled out.
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7.4 Flexible Parallel Execution
The approach that is perhaps the most similar to Ohua’s approach is Parcae [Ram+12]
by Raman et al. Like us, they opted for an automatic approach for their work, elimi-
nating the need for explicitly managing threads. Though, their motivation lies within
the fact that most parallelization efforts target only a static, anticipated number
of environments, outside which a programs performance may decrease drastically.
Parcae was designed to circumvent that issue by allowing it to automatically tune
the program dynamically to react to any changes in the environment at runtime.
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Fig. 7.3: Architecture and Workflow of the Parcae framework, adapted from [Ram+12].

These flexible parallel programs, as the authors call them, are generated by the Nona
compiler, one of the three components comprising the Parcae framework, which is
shown in Fig. 7.3. The compiler takes a sequential program as input and identifies
parallelizable regions within it by building a program dependence graph, to which
some node reordering and regrouping operations are applied, which might require
further annotations from the developer to highlight commutative operations. It then
applies the parallelizing transforms to reach of these regions, although currently only
loop nests are in scope for this step. Such transformations encompass data-parallel
transforms with critical sections and pipeline transforms but developers may expand
this list at their choosing. Nona then creates several tasks, each containing a loop
body, which are marked either for parallel or sequential execution. The resulting
program contains numerous hooks for profiling and a set of tasks which are to be
executed. At runtime, the Morta executor takes care of executing the program and
finding a parallelism configuration that is optimal for the execution environment.
This happens by first executing a sequential version of the parallel regions and
monitoring the execution using the third component, the Decima Monitor. Based
on the gathered information, the execution scheme of the program is adjusted to
optimize performance, which becomes a continuous process throughout execution.
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To evaluate their work, Raman et al. chose applications from a variety of benchmark
suites and implemented them using Parcae. In the kmeans benchmark, which
was chosen as representative from the STAMP suite, Parcae was able to improve
performance by about 42 % compared to a baseline parallel execution while only
consuming 84 % of the power a baseline parallel implementation consumed.

When comparing Parcae with Ohua, one can find many similarities in the languages
approaches, although the initial motivation behind both concepts is different. One
of the most prominent differences between both frameworks on the other hand is
that Parcae requires much scheduler knowledge and has a high degree of dynamicity
in the runtime, imposing non-negligible overheads during execution, which the
authors also acknowledged. Ohua solves most of these issues as compile time by
creating a runtime where data dependencies dictate when a tasks has to be executed
sequentially or whether a parallel execution with other operators is possible. For
scheduling, we currently mostly rely on the Operating System scheduler, avoiding
costly reconfigurations at runtime. Also, we do not require annotations of any
sort in the source code, but rather deduce all necessary information from the Data
Flow Graph. While we do not achieve as good performance improvements for the
kmeans application, we manage to only use about 5-20 % of the CPU time STM uses,
indicating higher energy savings than reported for Parcae.
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8Future Work

In this work, we put the Rust backend to the Ohua framework to test for the first
time, to see whether it could be developed into a sustainable alternative to Software
Transactional Memory. This chapter will list some interesting directions for future
work we have discovered in this thesis.

First and foremost, our work provided a theoretical description of four transfor-
mations that were only implemented manually for the benchmarks shown in the
Chapters 5 and 6. Hence, as a first step these transformations should be incorporated
in the compiler framework to allow further work building on them.

One of the first main discoveries we have made was that Ohua introduces overheads
into the runtime that can become quite significant when an application only contains
little parallelism to exploit. When large portions of the data flow graph are sequential,
it does not make sense to introduce a new operator for each of these sequential steps.
Hence, future work should focus on identifying these sequential groups of operators
at compile time and potentially fuse them into a single operator in the Ohua runtime,
thus reducing the number of created threads. This could directly help to reduce
overhead of the Ohua runtime while also addressing a problem that Cascaval et
al. [Cas+08] put forth in their article as they argued that high framework overheads
among other things make STM only suitable as „a research toy“.

In Chapter 4 we presented a number of transformations for Ohua to conduct on
Expression IR level. We briefly discussed the correctness of our propositions but
future work should also work to provide a formal proof for these transformations
where possible in order to verify their properness.

Using the Transformations 2 and 3 we presented in Chapter 4.3 and 4.4 we were
able to uncover opportunities for implicit parallelism in applications by isolating
state-free loops. Our results showed that this was key to improve Ohua’s performance
in applications exhibiting amorphous data parallelism but was not applicable to
other irregular applications. Therefore, future work could investigate whether it is
possible to extract more implicit parallelism opportunities from these non-amorphous
irregular programs to allow Ohua to achieve better results in applications like
kmeans or genome. We believe that further research in this direction can improve
the understanding for Ohua’s limits as well as its model of implicit parallelism and
local state as many of the targeted applications build heavily on shared state which
hinders simple parallelization efforts.

Another direction for future research should be the reinforcement of the results we
saw in Chapter 6.2. The STAMP suite contains more applications with amorphous
data parallelism like ssca2 and yada, which should be implemented in Ohua to
attempt to reproduce the performance we saw in the labyrinth benchmark and verify
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the applicability of our Transformations 2 and 3. At the same time, one could also
check, whether the rust-stm library [@Ber20] used by us could be optimized to yield
performances comparable to the C implementation in benchmarks like intruder and
genome.

Finally, future work could discuss the question whether the STAMP benchmark suite
is still adequate to use today. Many other researchers draw on these benchmarks
when evaluating their work on transaction-related research or irregular applications.
But as we have found, many of these applications today yield speedups below 1,
even when using the original code base for testing. This raises the question whether
it actually still makes sense to use this suite as is. Minh et al. prided themselves
on having chosen real-world applications to compile STAMP, which is a good idea
and the selection made sense back then as STM and HTM were indeed able to
overcome the more limited clock speeds and speed up program execution. Today
however, no one would use STM for most of these algorithms anymore, given the
latest benchmark results. Hence, we propose that a new benchmark suite should
be compiled, building on the principal idea of Minh et al. and potentially salvaging
some of their applications. Special consideration should be put into the fact that
most, if not all, shared state applications are irregular applications, meaning that
some of them will exhibit amorphous data parallelism. To allow for better test
coverage, this property should be incorporated into a potential new suite.
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9Conclusion

The Ohua framework presents a novel approach to writing parallel programs. By
relieving the developer of the burden of having to use abstractions for introducing
parallelism into the program, she is able to write concise and less complex algorithms
which are easier to maintain and verify. Parallelism is instead introduced into the
application by the Ohua compiler itself, which extracts it from the algorithm using
a set of transformations. State sharing however poses a challenge for Ohua, as its
programming model only fosters local state and offers no synchronization primitives
whatsoever.

In this thesis, we have shown that the framework nonetheless may also be used
for implementing shared state applications. After showing that Ohua is able to
extract non-trivial parallelism from such a program in a preliminary study, we
proposed a set of compiler transformations that could help leverage parallelism in
stateful loop operations which are often encountered in shared state environments.
Using these transformations, we implemented a selection of benchmarks from
the STAMP benchmark suite. We chose a representative subset of applications
based on the authors’ categorization and used them to compare Ohua against
Software Transactional Memory, a widely adopted framework for writing shared
state applications. Our benchmark results showed that Ohua could indeed be a
viable alternative to STM. Its performance was widely on par with STM, although
results varied per application, while offering advantages in terms of code conciseness
and verifiability. We found that in many examined shared state applications Ohua is
unable to break up loops using shared state to exploit parallelism beyond state-free
loops, as these loops are often only consisting of state modifications. STM is able to
break these patterns up using its speculative nature, but often at the cost of many
retried computations. Ohua’s determinism and reduced contention improved the
applications’ execution times, managing to compensate the missing parallelism in
these sections. However, the most performance gains and the best scaling behavior
for Ohua were seen in applications exhibiting amorphous data parallelism. As these
programs change their behavior when parallelizing them anyway, Ohua may apply
slightly more aggressive transformations, allowing it to extract more parallelism
than in non-amorphous applications. Hence, we hypothesize that Ohua will be the
most effective when used on amorphous data parallel shared state applications.

Future work should mainly focus on validating this theory while also proving the
formal correctness of our proposed transformations.

59



Acknowledgements

This work would not exist, if it were not for the extensive support I received while
writing it. First and foremost, I want to thank my supervisor, Sebastian Ertel, for
supporting me while I researched this topic, encouraging me to continuously question
the results I achieved and getting me back on track when I got lost in situations
where nothing seemed to work.

My supervisors, Jeronimo Castrillon and Michael Roitzsch, who both encouraged
me to take the time I needed to finish this thesis when I fell into the low that was
the unexpected working from home situation that costed me more time than I had
anticipated.

Nancy for her continuous unconditional support while I worked through many nights
when creativity struck me and I remained absent from numerous joint evenings.

And finally, the people at the chair for compiler construction for offering refreshing
and creative inputs to my thesis, for showing me that research is fun and also for
providing me with an office space to work in.

60



Bibliography

[Ada19] Justus Adam. „Ohua-powered, Semi-transparent UDF’s in the Noria Database“.
MA thesis. TU Dresden, Nov. 2019 (cit. on p. 9).

[AF97] ZENA M. ARIOLA and MATTHIAS FELLEISEN. „The call-by-need lambda
calculus“. In: Journal of Functional Programming 7.3 (1997), pp. 265–301
(cit. on p. 21).

[Ari+95] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip
Wadler. „A Call-by-Need Lambda Calculus“. In: Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’95. San Francisco, California, USA: Association for Computing Machinery,
1995, pp. 233–246 (cit. on p. 21).

[BS81] F Warren Burton and M Ronan Sleep. „Executing functional programs on a
virtual tree of processors“. In: Proceedings of the 1981 conference on Functional
programming languages and computer architecture. 1981, pp. 187–194 (cit. on
p. 18).

[Cas+08] Calin Cascaval, Colin Blundell, Maged Michael, et al. „Software transactional
memory: Why is it only a research toy?“ In: Queue 6.5 (2008), pp. 46–58
(cit. on pp. 1, 8, 57).

[EFF15] Sebastian Ertel, Christof Fetzer, and Pascal Felber. „Ohua: Implicit Dataflow
Programming for Concurrent Systems“. In: Proceedings of the Principles and
Practices of Programming on The Java Platform. PPPJ ’15. Melbourne, FL, USA:
ACM, 2015, pp. 51–64 (cit. on pp. 2, 9).

[Ert+18] Sebastian Ertel, Andrés Goens, Justus Adam, and Jeronimo Castrillon. „Compil-
ing for concise code and efficient I/O“. In: Proceedings of the 27th International
Conference on Compiler Construction. 2018, pp. 104–115 (cit. on p. 21).

[Ert+19] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo
Castrillon. „STCLang: State Thread Composition as a Foundation for Monadic
Dataflow Parallelism“. In: Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell. Haskell 2019. Berlin, Germany: ACM, Aug. 2019,
pp. 146–161 (cit. on pp. 9, 23).

[Ert19] Sebastian Ertel. Towards Implicit Parallel Programming for Systems. Dresden,
2019 (cit. on p. 8).

[Flu+07a] Matthew Fluet, Nic Ford, Mike Rainey, et al. „Status report: the manticore
project“. In: Proceedings of the 2007 workshop on Workshop on ML. 2007,
pp. 15–24 (cit. on p. 54).

61



[Flu+07b] Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao.
„Manticore: A heterogeneous parallel language“. In: Proceedings of the 2007
workshop on Declarative aspects of multicore programming. 2007, pp. 37–44
(cit. on pp. 53, 54, 68).

[Flu+09] Matthew Fluet, Lars Bergstrom, Nic Ford, et al. „Programming in Manticore, a
heterogenous parallel functional language“. In: Central European Functional
Programming School. Springer. 2009, pp. 94–145 (cit. on p. 54).

[Flu+10] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. „Implicitly threaded
parallelism in Manticore“. In: Journal of functional programming 20.5-6
(2010), pp. 537–576 (cit. on p. 54).

[Gre16] Brendan Gregg. „The flame graph“. In: Communications of the ACM 59.6
(2016), pp. 48–57 (cit. on p. 48).

[Hal84] Robert H Halstead Jr. „Implementation of Multilisp: Lisp on a multiproces-
sor“. In: Proceedings of the 1984 ACM Symposium on LISP and functional
programming. 1984, pp. 9–17 (cit. on p. 18).

[HVG04] Bart Haagdorens, Tim Vermeiren, and Marnix Goossens. „Improving the per-
formance of signature-based network intrusion detection sensors by multi-
threading“. In: International Workshop on Information Security Applications.
Springer. 2004, pp. 188–203 (cit. on p. 31).

[Kul+07] Milind Kulkarni, Keshav Pingali, Bruce Walter, et al. „Optimistic parallelism
requires abstractions“. In: Proceedings of the 28th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2007, pp. 211–222
(cit. on pp. 1, 5, 8).

[Kul+09] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and
Calin Casçaval. „How much parallelism is there in irregular applications?“ In:
ACM sigplan notices 44.4 (2009), pp. 3–14 (cit. on pp. 1, 4, 5).

[Lee06] Edward A Lee. „The problem with threads“. In: Computer 39.5 (2006), pp. 33–
42 (cit. on pp. 1, 6).

[Lee61] Chin Yang Lee. „An algorithm for path connections and its applications“. In:
IRE transactions on electronic computers 3 (1961), pp. 346–365 (cit. on p. 11).

[LWH16] Adam Lackorzynski, Carsten Weinhold, and Hermann Härtig. „Decoupled: low-
effort noise-free execution on commodity systems“. In: Proceedings of the 6th
International Workshop on Runtime and Operating Systems for Supercomputers.
2016, pp. 1–8 (cit. on p. 27).

[Mac+67] James MacQueen et al. „Some methods for classification and analysis of
multivariate observations“. In: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967,
pp. 281–297 (cit. on p. 33).

[MIM15] Frank McSherry, Michael Isard, and Derek G. Murray. „Scalability! But at
what COST?“ In: 15th Workshop on Hot Topics in Operating Systems (HotOS
XV). Kartause Ittingen, Switzerland: USENIX Association, May 2015 (cit. on
p. 51).

Bibliography 62



[Min+08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.
„STAMP: Stanford transactional applications for multi-processing“. In: 2008
IEEE International Symposium on Workload Characterization. IEEE. 2008,
pp. 35–46 (cit. on pp. 1, 13, 28, 29, 36, 37, 39, 42).

[Nar+06] Ramanathan Narayanan, Berkin Ozisikyilmaz, Joseph Zambreno, Gokhan
Memik, and Alok Choudhary. „Minebench: A benchmark suite for data mining
workloads“. In: 2006 IEEE International Symposium on Workload Characteriza-
tion. IEEE. 2006, pp. 182–188 (cit. on p. 33).

[Ous+13] Kay Ousterhout, Aurojit Panda, Joshua Rosen, et al. „The case for tiny tasks in
compute clusters“. In: Presented as part of the 14th Workshop on Hot Topics in
Operating Systems. 2013 (cit. on p. 19).

[Per+08] Cristian Perfumo, Nehir Sönmez, Srdjan Stipic, et al. „The limits of software
transactional memory (STM) dissecting Haskell STM applications on a many-
core environment“. In: Proceedings of the 5th conference on Computing frontiers.
2008, pp. 67–78 (cit. on pp. 1, 39).

[Pin+09] Keshav Pingali, Milind Kulkarni, Donald Nguyen, et al. „Amorphous data-
parallelism in irregular algorithms“. In: The University of Texas at Austin,
Department of Computer Sciences, Austin, TX, USA (2009) (cit. on p. 5).

[PSS02] Mihai Pop, Steven L Salzberg, and Martin Shumway. „Genome sequence
assembly: Algorithms and issues“. In: Computer 35.7 (2002), pp. 47–54 (cit.
on p. 34).

[Ram+12] Arun Raman, Ayal Zaks, Jae W Lee, and David I August. „Parcae: a system for
flexible parallel execution“. In: ACM SIGPLAN Notices 47.6 (2012), pp. 133–
144 (cit. on p. 55).

[RHH09] Amitabha Roy, Steven Hand, and Tim Harris. „A runtime system for software
lock elision“. In: Proceedings of the 4th ACM European conference on Computer
systems. 2009, pp. 261–274 (cit. on pp. 52, 53).

[SDD16] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. „Transactional
Tasks: Parallelism in Software Transactions“. In: 30th European Conference
on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2016 (cit. on pp. 7, 11, 12, 31, 51).

[SDD17] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. „Transactional
actors: communication in transactions“. In: Proceedings of the 4th ACM SIG-
PLAN International Workshop on Software Engineering for Parallel Systems.
2017, pp. 31–41 (cit. on p. 51).

[SDD18] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. „Chocola:
integrating futures, actors, and transactions“. In: Proceedings of the 8th ACM
SIGPLAN International Workshop on Programming Based on Actors, Agents, and
Decentralized Control. 2018, pp. 33–43 (cit. on p. 50).

[ST97] Nir Shavit and Dan Touitou. „Software transactional memory“. In: Distributed
Computing 10.2 (1997), pp. 99–116 (cit. on pp. 1, 6, 50).

[VH+04] Peter Van-Roy, Seif Haridi, et al. Concepts, techniques, and models of computer
programming. MIT press, 2004 (cit. on p. 50).

Bibliography 63



[WKL07] Ian Watson, Chris Kirkham, and Mikel Luján. „A study of a transactional
parallel routing algorithm“. In: 16th International Conference on Parallel Ar-
chitecture and Compilation Techniques (PACT 2007). IEEE. 2007, pp. 388–400
(cit. on p. 11).

Web pages
[@Ber20] Gunnar Bergmann. rust-stm: Software transactional memory. July 2020. URL:

https://github.com/Marthog/rust-stm (cit. on pp. 12, 30, 58).

[@con20] The tokio contributors. Tokio - The asynchronous run-time for the Rust pro-
gramming language. Apr. 2020. URL: https://tokio.rs (visited on Apr. 24,
2020) (cit. on p. 18).

[@EWA19] Sebastian Ertel, Felix Wittwer, and Justus Adam. ohua-rust-runtime: A runtime
for Ohua in Rust. July 2019. URL: https://github.com/ohua-dev/ohua-

rust-runtime (cit. on p. 13).

[@Min13] Chi Cao Minh. stm: STAMP source code and tl2 library. Sept. 2013. URL:
https://github.com/robert-schmidtke/stm (cit. on p. 36).

[@Wit20a] Felix Wittwer. Genome benchmark from STAMP suite not working (anymore).
May 2020. URL: https://github.com/robert-schmidtke/stm/issues/1

(cit. on p. 36).

[@Wit20b] Felix Wittwer. Labyrinth application sometimes yields incorrect results. July
2020. URL: https://github.com/kozyraki/stamp/issues/2 (cit. on pp. 1,
36).

[@Wit20c] Felix Wittwer. ohua-rust-benchmarks: Benchmarks to measure the performance
of the ohua-rust runtime. Apr. 2020. URL: https://github.com/Feliix42/

ohua-rust-benchmarks (cit. on p. 30).

[@Wit20d] Felix Wittwer. rust-stm: Software transactional memory. Mar. 2020. URL: https:

//github.com/Feliix42/rust-stm (cit. on p. 30).

[@Wit20e] Felix Wittwer. Segmentation fault within the intruder benchmark. July 2020.
URL: https://github.com/kozyraki/stamp/issues/3 (cit. on p. 2).

[@Wit20f] Felix Wittwer. stm-datastructures: Datastructures specifically tailored for use
with STM. Mar. 2020. URL: https://github.com/feliix42/stm-datastructures

(cit. on p. 30).

[@Wit20g] Felix Wittwer. Two transactions may deadlock. June 2020. URL: https://

github.com/Marthog/rust-stm/issues/17 (cit. on p. 30).

Web pages 64

https://github.com/Marthog/rust-stm
https://tokio.rs
https://github.com/ohua-dev/ohua-rust-runtime
https://github.com/ohua-dev/ohua-rust-runtime
https://github.com/robert-schmidtke/stm
https://github.com/robert-schmidtke/stm/issues/1
https://github.com/kozyraki/stamp/issues/2
https://github.com/Feliix42/ohua-rust-benchmarks
https://github.com/Feliix42/ohua-rust-benchmarks
https://github.com/Feliix42/rust-stm
https://github.com/Feliix42/rust-stm
https://github.com/kozyraki/stamp/issues/3
https://github.com/feliix42/stm-datastructures
https://github.com/Marthog/rust-stm/issues/17
https://github.com/Marthog/rust-stm/issues/17


List of Figures

2.1 Graph representation of an irregular application with active elements
and their neighborhoods. Adapted from Kulkarni et al. [Kul+09] . . . 5

2.2 Example of two transactions modifying the same shared value in differ-
ent transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Overview of the Ohua compiler and its components . . . . . . . . . . . 8
2.4 Example of an Ohua algorithm using the smap primitive. Adaption

of [Ada19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Illustration of the operation of the labyrinth benchmark, showing the
(attempted) mapping of 3 paths in a 6 ◊ 5 two-dimensional grid. Black
squares represent walls that cannot be routed through. . . . . . . . . . 11

3.2 Measured speedups of the labyrinth application for the STM and Ohua
implementations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Measured speedup for an Ohua implementation using worklist splits. . 15
3.4 Performance of various configurations of the Ohua-frequency algorithm. 17
3.5 Illustration of the straggler problem and how work-stealing scheduling

can significantly reduce this problem. In the second illustration, the
slack time is almost completely removed by threads 1 and 2 stealing
work from thread 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Measured speedup for an Ohua implementation using worklist splits,
an update frequency of 2 · threadcount and a work-stealing runtime. . 20

4.1 Language definition of the Expression IR. . . . . . . . . . . . . . . . . . 22
4.2 Expression for our labyrinth algorithm. . . . . . . . . . . . . . . . . . . 22
4.3 Transformation 1: Map Parallelization for p threads. . . . . . . . . . . 24

5.1 Workflow of the intruder benchmark. Processing of incoming data is
conducted in three stages. . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Visualization of the overlap matching found in the genome benchmark.
The blue match is stronger as it has seven matching elements and has
hence been found first. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1 Speedup achieved by STM in the original STAMP benchmarks. . . . . . 40
6.2 Speedup in the labyrinth application relative to a sequential implemen-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 CPU time used by both frameworks in the labyrinth application. . . . . 42
6.4 Speedup in the intruder application relative to a sequential implemen-

tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

65



6.5 CPU time used by both frameworks in the intruder application. . . . . 43
6.6 Speedup in the kmeans-high application relative to a sequential imple-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.7 CPU time used by both frameworks in the kmeans-high application. . . 45
6.8 Speedup in the kmeans-low application relative to a sequential imple-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9 CPU time used by both frameworks in the kmeans-low application. . . 47
6.10 Speedup in the genome application relative to a sequential implementa-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.11 CPU time used by both frameworks in the genome application. . . . . . 47

7.1 Speedups of Ohua and STM for the labyrinth benchmark with different
baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 The workflow of the Software Lock Elision runtime. Adapted from Roy
et al. [RHH09]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 Architecture and Workflow of the Parcae framework, adapted from [Ram+12]. 55

List of Figures 66



List of Tables

5.1 A basic characterization of STAMP applications, comparing the mean
number of instructions per transaction and the overall percentage of
time the application spends in transactions. These numbers stem from
a C implementation and have been adapted from Minh et al. [Min+08] 28

5.2 A qualitative summary of each STAMP application’s runtime transac-
tional characteristics. The length of a transaction is determined by the
number of instructions it encompasses. The characteristics are ranked
relative to the other applications in the suite. Adapted from Minh et
al. [Min+08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Input data sets for the benchmarks presented in this thesis. Adapted
from Minh et al. [Min+08] and adjusted to mitigate flaws in the original
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

67



List of Listings

3.1 Simple implementation of the labyrinth benchmarks using Software
Transactional Memory in Rust. . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Simplified first implementation of a recursive Ohua algorithm for the
labyrinth benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Labyrinth implementation in Ohua using worklist splits for parallelism.
Highlighted parts have been added in this iteration. . . . . . . . . . . . 15

3.4 Ohua algorithm using a fixed update frequency to lower the number of
write conflicts. Highlighted parts have been newly added in this iteration. 17

3.5 Ohua algorithm using a work-stealing runtime to schedule its tasks.
Highlighted sections have been altered or added in the current iteration. 19

4.1 Idiomatic definition of the labyrinth algorithm. . . . . . . . . . . . . . 23

5.1 Abstract description of the labyrinth algorithm . . . . . . . . . . . . . . 31
5.2 Abstract description of the intruder algorithm . . . . . . . . . . . . . . 32
5.3 Abstract description of the kmeans algorithm . . . . . . . . . . . . . . . 33
5.4 Abstract description of the genome algorithm . . . . . . . . . . . . . . . 34

6.1 Example for memory sharing that is possible in C, but impossible in Rust. 45

7.1 Code example showcasing implicit and explicit parallelism in Manticore,
adapted from [Flu+07b]. . . . . . . . . . . . . . . . . . . . . . . . . . 54

68



Declaration

I hereby certify that this thesis has been composed by me and is based on my own
work, unless stated otherwise. No other person’s work has been used without due
acknowledgement in this thesis. All references and verbatim extracts have been
quoted, and all sources of information, including graphs and data sets, have been
specifically acknowledged.

Dresden, July 20, 2020

Felix Wittwer


	Cover
	Titlepage
	Contents
	1 Introduction
	2 Background and Motivation
	2.1 Irregular Applications
	2.1.1 Amorphous Data Parallelism

	2.2 Software Transactional Memory
	2.3 Ohua

	3 Preliminary Studies
	3.1 Labyrinth Benchmark
	3.1.1 First Results

	3.2 Parallel Loop Implementation
	3.3 Lowering the Retry Count
	3.4 Improving Resource Utilization

	4 Compiler Transformations
	4.1 Expression IR Definition
	4.2 Transformation 1: Map Parallelization
	4.3 Transformation 2: State Decoupling
	4.4 Transformation 3: Batch Updates
	4.5 Transformation 4: Straggler Reduction using Work Stealing

	5 Experimental Setup
	5.1 Benchmark Choice
	5.1.1 Parallelism Opportunities
	5.1.2 Labyrinth Path Mapping
	5.1.3 Intruder Detection
	5.1.4 K-means Clustering
	5.1.5 Genome Sequencing
	5.1.6 Summary

	5.2 Reference Measurements
	5.3 Measurements
	5.3.1 Input Data
	5.3.2 Measured Values
	5.3.3 Running Configuration


	6 Results and Evaluation
	6.1 Reference Measurement Results
	6.2 Rust-based Benchmark Results
	6.3 Summary

	7 Related Work
	7.1 Chocola: Combining multiple concurrency models
	7.2 Software Lock Elision
	7.3 Heterogeneous Parallelism
	7.4 Flexible Parallel Execution

	8 Future Work
	9 Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Declaration

