
Bachelor’s Thesis

Towards a Formalization of Implicit
Parallelism in Rust

Markus Walter

1. Reviewer Prof. Dr.-Ing. Jerónimo Castrillón
Chair for Compiler Construction
TU Dresden

2. Reviewer Dr.-Ing. Michael Roitzsch
Barkhausen Institut

1. Supervisor M.Sc. Andrés Goens
Chair for Compiler Construction
TU Dresden

2. Supervisor Dr.-Ing. Sebastian Ertel
Barkhausen Institut

Fakultät Informatik Institut für Technische Informatik, Professur Compilerbau

Task Description for Bachelors Thesis

for: Markus Walter

Major: Bachelor Informatik, 2018
Matriculation Nr.: 4767795

Title: Formal Verification of Semantic Preservation in the Ohua
compiler - A proof of concept

Ohua is a parallelizing compiler that transforms sequential stateful applications into (micro-)service-based
programs for micro-kernel-based operating systems and cloud infrastructures. The programming model of
Ohua integrates into many existing imperative languages. At the same time, the internal representation
of the compiler is the lambda calculus with transformations that provably preserve the semantics of the
application to be parallelized.

So far the argument of the compiler to preserve the semantics of the compiled application is only limited
and informal. First, the argument leaves out the second intermediate representation that essentially
introduces the parallelism into the resulting program. Second, the argument has so far only been proven
via a pencil-and-paper proof sketch that is disconnected to the current implementation of the compiler.
In order to remove these short-comings, we target a formal verification of the whole compiler that is
integrated into the development process. This will not only serve as certificate for the correctness of the
current development state but makes sure that extensions do not break the compilers foundations.

This thesis shall focus on a first proof of concept that encompasses the transformation of the Rust subset
into the the lambda calculus-based internal representation of the Ohua compiler. The implementation
and the proof of semantic preservation of the transformation shall be carried out in Coq.

In particular, this Bachelors Thesis shall include the following tasks. The student shall:

1. Become familiar with the Coq theorem prover and the proof of semantic preservation.

2. Use existing definitions of the Rust programming language in Coq to define the subset supported
by Ohua.

3. Define the Ohua’s lambda calculus-based intermediate representation in Coq.

4. Define denotational semantics for both program representations.

5. Define a lowering from the Rust into the lambda calculus-based representation.

6. Prove (in Coq) that this lowering preserves semantics.

7. As a bonus: investigate how the defined abstractions can be integrated into the development process
of the compiler using transpilers such as hs-to-coq.

Advisor: M.Sc. Andrés Goens, Dr.-Ing. Sebastian Ertel
1. Examiner: Prof. Dr.-Ing. Jeronimo Castrillon
2. Examiner: Dr.-Ing. Michael Roitzsch

Issued: 01.02.2021 Turn in by: 19.4.2021

Prof. Dr.-Ing. Jeronimo
Castrillon

Dr.-Ing. Michael Roitzsch

Abstract

Ohua is a source-to-source compiler for multiple languages that aims to exploit parallelism
by executing code that acts on separate state in parallel. The correctness of the transfor-
mation introducing parallelism has so far only been proven with a pencil-and-paper proof
sketch. Because this proof is disconnected from the implementation, the argument of
correctness is weak. In this thesis we take a new approach to proving semantic preservation
by mechanizing a proof using the Coq proof assistant. This has two advantages. First, our
proof is as correct and complete as our language models are. Second, it can be integrated
in the Ohua development process and continuously adapted. We verify the transformation
of a subset of Rust to Ohua’s first intermediate representation. To this end, we first
formally define the languages we transform from and to. We give semantic models for
both, discussing trade-offs between different approaches to defining semantics. Then we
show that the transformation preserves semantics for any correct Rust program.

iii

iii

Declaration

I hereby declare that I have written this thesis independently. I have acknowledged all
sources I used for writing this thesis. To my best knowledge, this work is original and
has never before been submitted by anybody at any university. I understand that any
violation of this declaration may lead to the withdrawal of the attained degree.

Markus Walter
Dresden, April 19, 2021

iv

iv

Contents

1 Introduction 1
1.1 Contributions . 2

2 Defining semantics in Coq 3
2.1 A Coq primer . 3
2.2 An example language . 4
2.3 A first proof of semantic preservation . 6

3 The Ohua framework 11
3.1 Implicit parallel programming . 11
3.2 Introducing the λ-IR . 16
3.3 Semantics for the λ-IR . 18

4 The Rust language 21
4.1 A tour of Rust . 21
4.2 Formalized models of Rust . 24
4.3 Choosing a Rust subset . 25
4.4 Operational semantics . 26
4.5 Evaluating an example program . 32

5 Transformation and Proof 36
5.1 λ-IR code from µRust . 36
5.2 Proof . 38

6 Conclusion 43
6.1 Future work . 43

Bibliography 47

List of Figures 50

List of Listings 51

v

v

Introduction 1

In the past two decades, computer architecture has shifted more and more towards
multi-core processors [BC11]. In order to obtain performance gains from this architecture,
programs have to be written for parallel execution [SL05]. Developing parallel applica-
tions comes with unique problems. Challenges arise e.g. in consistency and scheduling.
Debugging such applications is more complicated than debugging sequential ones because
of additional failure modes, such as deadlocks, race conditions and non-determinacy
[Lu+08].

A variety of language constructs have been developed or proposed to tackle common
challenges of parallel systems via automation. The programming models of those language
constructs can be classified by their respective levels of abstraction. These levels range
from threads, which are often a primitive of operating systems, to tasks, actors, dataflow
operators and stateful functions. Abstractions are inherently opinionated, which means
that by choosing which part to generalize they already make a decision which would
have been made manually without the abstraction. This constitutes a trade-off between
usability and freedom because more abstract programming models may restrict the
programmer but enable quicker and safer implementation. For many applications highly
abstract programming constructs suffice for implementation and eliminate certain error
cases. However, there are applications for which a level fine-grained control is necessary
that cannot be offered by high-level concurrency constructs.

This work focuses on Ohua, a source-to-source compiler that enables implicit concurrency.
Using our classification, Ohua is on a high level of abstraction, stateful functions. The
compiler, which is written in Haskell, currently supports subsets of Rust, Go, Java, Lisp
and Ocaml [Wit20]. Internally, Ohua uses an intermediate representation (IR) that is
based on the λ-calculus. Using this representation, a dataflow graph is constructed, on
which semantics-preserving optimizations that introduce parallelism are performed. One
advantage of Ohua is that no explicit language constructs or libraries for concurrency need
to be used in the source program. Instead, the compiler handles all the parallelizing. This
means that the source program can be written and debugged sequentially but executed
in parallel [EFF15].

As in any compiler, errors in Ohua are extremely costly, since they may introduce bugs
into correct source programs. Compiler bugs are usually hard to detect and have a
broad impact since most programs need to be compiled. A lot of research has gone
into minimizing compiler bugs, e.g. through automated testing, fuzzing and formal
verification. Of those approaches, formal verification is the only one that can guarantee
correct compilation [Yan+11].

1

1

Formally verifying the Ohua compiler would not only ensure the correctness of the
transformation, which has so far only been proven via a pencil-and-paper proof sketch,
but also guarantee that modifications of the compiler do not introduce any new bugs. In
this thesis we give a proof of concept of how such a verification could be achieved.

The language subsets supported by Ohua have so far only been defined informally via the
implementation. Going forward it would be useful to have formally specified subsets on
which Ohua operates. This will not only be valuable for documentation but could provide
a basis for tooling, such as a debugger. This thesis represents the first step towards having
a specification of the supported subsets. By showing that the compiler’s transformation
is correct on the specified subset, we give a "lower bound" for a subset which the Ohua
compiler can support.

1.1 Contributions

Verifying the entire compiler and integrating the proof into the development process is a
very ambitious undertaking and beyond the scope of this thesis. We limit our verification
to a small subset of Rust and Ohua’s first IR as a proof of concept. In our transformation
we make explicit use of Rust’s ownership type system. We mechanize our proof using the
Coq proof assistant [@21e]. Our proof of semantic preservation is not integrated into the
compiler development.

For our proof we first define the syntax and operational semantics for subsets of Rust
and Ohua’s first IR. We then prove that the operational semantics for every program
written in our Rust subset are equivalent to the operational semantics of the transformed
program.

This thesis is structured as follows: in the second chapter we introduce the Coq proof
assistant. We show how theorems are proved in Coq by giving a simple proof for an
example language. In the third chapter we give an overview of Ohua and define our model
of Ohua’s intermediate representation, which we use in our proof. In the fourth chapter
we explain Rust’s ownership type system. We discuss existing semantic models for Rust,
before specifying the syntax and semantics our supported Rust subset, µRust. In the fifth
chapter we outline the implementation of our transformation from Rust to Ohua and
give an overview of our proof of semantic preservation. Further, we detail certain caveats
of our proof and explain how these could be addressed. In the final chapter we give
our conclusion on the viability of verifying the Ohua compiler. We finish by discussing
avenues for future research, including more sophisticated semantic models and logics as
well as how our models of Rust and Ohua could potentially be extended.

1.1 Contributions 2

Defining semantics in Coq 2

In this chapter we give an introduction to the Coq proof assistant. We discuss usage
options and trade-offs of formal verification. Then we define both syntax and operational
semantics of an example language using Coq, introducing natural deduction with our
operational semantics. Finally, we show Coq’s proof system in action with a first proof of
semantic preservation.

We chose to implement our proof in Coq for two reasons. First, Coq is very mature and
has lots of tooling [@21e]. Second, Coq integrates with Haskell, the language Ohua is
written in, via code generation [@21f; Spe+18]. This is important for future work, where
we could target a direct integration of Coq with the main implementation.

2.1 A Coq primer

Coq is a proof assistant, which means that it can be used to prove the correctness of
mathematical theorems and programs written in its own functional programming language,
Gallina. Specifically, we prove invariants about the type system. It does so by transforming
both the program’s types and the proof into a small kernel of logical formulas which can
be mechanically checked on consistency. The logical framework underpinning this is the
Calculus of Inductive Constructions [BC04]. The fact that proofs in Coq are limited to
the type system may seem confusing at first. After all, in most programming languages,
the type system only captures a small part of the functionality. However, Coq’s type
system is very powerful, as it includes support for dependent types [Chl13]. This means
that values can be encoded in types. Therefore, we can extend proofs to values.

Coq imposes the restriction that every program written in its language must terminate.
This means that there are programs which can not be represented in Coq. However,
many programs can be adapted to fit Coq’s termination rules by slightly altering the
implementation. Programs written in Coq can be translated into Ocaml, Haskell or
Scheme, although more integrations exist [@21f].

In order to understand applications of proof assistants, it is worth comparing them to two
other approaches of ensuring program correctness: unit tests and pen-and-paper proofs.
Although they may seem similar at first, formal verification and unit tests are two very
different approaches to tackling program correctness. Unit tests are easy to implement but
can only guarantee that the correct output for one specific input is computed. In essence,
they give a lower bound for correctness. Formal verification, on the other hand, is difficult

3

3

Inductive Op :=
| AddOp
| SubOp
| EqOp
| LeOp
.

Inductive Lit :=
| Bool : bool -> Lit
| Int : Z -> Lit
.

Inductive Ex :=
| LitE : Lit -> Ex
| VarE : string -> Ex
| BinOpE : Op -> Ex -> Ex -> Ex
| LetE : string -> Ex -> Ex -> Ex
.

Listing 2.1: Syntax of Ex

to implement but can guarantee that the parts of the program we proved are indeed
correct. Although Coq can verify the correctness of the proof, all proofs, except very
simple ones, still have to be written by hand using Coq’s proof language, Vernac. This is
fundamentally different from a pen-and-paper proof, which can not rely on automatic
checking. Instead, it has to be checked by other humans, leaving the possibility of error.

2.2 An example language

Ex, as in Example or Expression, is a simple expression language. Its syntax definition
in Coq is given in Listing 2.1. The syntax rules are defined in terms of Coq’s inductive
data types. Many functional programming languages, such as Haskell or ML, feature
similar type constructors. The Ex language contains two data types, namely Int and
Bool. To represent Bool values, it uses Coq’s standard bool type and to represent Int
values, it uses Coq’s Z type, as implemented in the standard BinInt library. There exist
four kinds of expressions in Ex : literal expressions, variable expressions, binary operations
and let expressions. Some of the expressions use Coq’s standard string type to represent
variable names. Note that LetE takes two expressions, one for the value of the variable
and one as a continuation with the updated environment.

2.2 An example language 4

Definition eval_pure_op (op : Op) (x y : Z) : Lit :=
match op with

| AddOp => Int (x + y)
| SubOp => Int (x - y)
| EqOp => Bool (x =? y)
| LeOp => Bool (x <=? y)

end.

Fixpoint eval_with_env (env : Map Lit) (ex : Ex) : option Lit :=
match ex with

| LitE l => Some l
| VarE v => env v
| BinOpE op v1 v2 =>

match (eval_with_env env v1), (eval_with_env env v2) with
| Some (Int a), Some (Int b) => Some (eval_pure_op op a b)
| _, _ => None

end
| LetE v ex1 ex2 =>

match eval_with_env env ex1 with
| Some l => eval_with_env (add_item v l env) ex2
| _ => None

end
end.

Definition eval (ex : Ex) : option Lit := eval_with_env (empty_map Lit).

Listing 2.2: Operational semantics of Ex

2.2.1 Operational semantics for Ex

We now want to define semantics for Ex. There are several approaches to doing so, of
which we use the approach of defining operational semantics. In essence, operational
semantics are given by showing a valid transformation of the source language to a formal
target language. This can be achieved in Coq by implementing an interpreter. This allows
us to reason about our programming language, because the interpreter itself is a formal
Coq program. A simple interpreter implementation for Ex is shown in Listing 2.2.

The interpreter consists of three functions, eval_pure_op, eval_with_env and eval. We
assume that eval_pure_op is self-explanatory to our readers. eval is a simple wrapper,
which initializes eval_with_env with an empty environment. The actual interpretation
of the expressions is carried out in the function eval_with_env. This function is called
with two arguments: the root expression, to be evaluated, ex, and an environment,
mapping variable identifiers (i.e. strings) to literal values. Our implementation of this
data structure in Coq is given in Listing 2.3. It is essentially a stack of functions, which
either yield the value, if the key matches, or delegate evaluation to the next function
in the stack. The lowest function in the stack yields None for every key that has not

2.2 An example language 5

Definition Map (vt : Type) : Type := string -> option vt.

Definition empty_map (vt : Type) : Map vt := (fun _ => None).

Definition add_item {vt : Type} (k : string) (v : vt) (s : Map vt) : Map vt :=
(fun (x : string) => if x =? k then Some v else s x).

Listing 2.3: Map definition

matched any entry in the rest of the stack. Note that instead of updating an entry, we
can simply add a new one with the same key, since the map is ordered.

There is one case in which the evaluation can fail, which occurs when a variable is
referenced that has not been previously declared. If the evaluation does not fail, it should
return a single literal value, as all correct expressions can be reduced to one. Yet failure
is an option, so the return value of eval_with_env cannot simply be Lit. Instead, it
has to be wrapped in Coq’s standard option data type. One interesting detail is that
eval_with_env is declared as Fixpoint, whereas eval and eval_pure_op are declared
as Definition. This is because of the three functions, only eval_with_env is recursive,
an attribute that Coq requires to be explicitly annotated with the Fixpoint keyword.

2.2.2 Ex ’s type system

We can formally define a type system for Ex using natural deduction [Gen35], given in
Figure 2.1. Definitions in natural deduction are structured as a set of rules, each of which
is usually annotated with a short name. The central construct of each rule is a horizontal
bar, which has the same meaning as a mathematical implication (=⇒), where the top
element implies the bottom one. Natural deduction is very flexible in terms of what can
be written on both sides, as long as the implication holds. Note that implications in
natural deduction can again be part of the condition or the result. Multiple conditions or
results in a single rule are separated by a space, which corresponds to a mathematical
and (∧). Optionally, an environment for rules can be given before the ` symbol. The
environment usually represents already computed values or types. In most cases the
environment for the condition is the same as the environment for the result. If there is no
condition for the result, the horizontal bar is omitted.

2.3 A first proof of semantic preservation

We define a simple transformation on our programming language, for which prove, that it
does not alter the semantics of any program. To do so, we use Coq’s proof system. We
show that any transformed program evaluates to the same value as the non-transformed

2.3 A first proof of semantic preservation 6

` LitE (Int i) : Int (Int)

` LitE (Bool b) : Bool (Bool)

Γ ` v : τ

Γ ` VarE v : τ
(Var)

Γ ` ex1 : Int Γ ` ex1 : Int

Γ ` BinOpE AddOp ex1 ex2 : Int
(Add)

Γ ` ex1 : Int Γ ` ex1 : Int

Γ ` BinOpE SubOp ex1 ex2 : Int
(Sub)

Γ ` ex1 : Int Γ ` ex1 : Int

Γ ` BinOpE Eq ex1 ex2 : Bool
(Eq)

Γ ` ex1 : Int Γ ` ex1 : Int

Γ ` BinOpE Le ex1 ex2 : Bool
(Le)

Γ ` ex1 : τ1 Γ ∪ {ex1 : τ1} ` ex2 : τ2
Γ ` LetE v ex1 ex2 : τ2

(Let)

Fig. 2.1: Type system of Ex

Fixpoint const_fold (ex : Ex) : Ex :=
match ex with

| BinOpE op (LitE (Int l1)) (LitE (Int l2)) => LitE (eval_pure_op op l1 l2)
| LetE v ex1 ex2 => LetE v (const_fold ex1) (const_fold ex2)
| _ => ex

end.

Listing 2.4: Implementation of constant folding for Ex

program. This serves as a model for our proof of semantic preservation in Ohua, which is
essentially constructed the same way.

The transformation we want to prove semantic preservation for is simple constant folding.
Its implementation is given in Listing 2.4. The implementation checks for binary operations
operating on two literal integer values. On any such pattern it computes the resulting value.
In order to find all matching binary operations, it recursively searches sub-expressions of
LetE expressions. Note that we could have similarly matched sub-expressions of BinOpE
and checked if they can be transformed into integers. This would have had the effect of
propagating results that have been folded. Our transformation is only intended as an
academic example to showcase Coq’s proof system. We chose not to include propagating
folds, as this would have unnecessarily complicated our proof, which we outline now.

Proofs in Coq are composed of two parts: the Proposition, i.e. what we prove, and the
actual proof, i.e. how we prove it. Our proposition is going to be the following:

2.3 A first proof of semantic preservation 7

Lemma const_fold_correct_env : forall (ex : Ex) (m : Map Lit),

eval_with_env m (const_fold ex) = eval_with_env m ex.

We want to show that for all expressions ex and for all environments m, evaluating ex

with m yields the same result as evaluating const_fold ex with m. We enter proof mode
by writing:

Proof.

Proofs are realized by operating on given assumptions to produce a goal. Both are sets of
conjunctive terms. We show that our goals are implied by our assumptions. To do so we
apply sound transformations, called tactics, which operate on our assumptions and goals.
Tactics can introduce, modify and consume assumptions and goals. If all goals have been
consumed, the proof is complete. The usage of tactics guarantees, that the implication of
the "old" goals by the "old" assumptions is implied by the implication of the "new" goals
by the "new" assumptions. This principle is illustrated in Figure 2.2.

tactic
−→

Aold Anewwwww� ⇐=

wwww�
Gold Gnew

Fig. 2.2: Application of a tactic

We start our proof with empty assumptions the single stated goal:

forall (ex : Ex) (m : Map Lit),

eval_with_env m (const_fold ex) = eval_with_env m ex.

Our first assumption is ex : Ex, which essentially corresponds to the mathematical
definition "let ex be of type Ex". It is introduced by applying the tactic:

intro ex.

Because the Ex data type is defined inductively, our proof has to account for that property.
We initiate a structural induction by applying the tactic:

induction ex.

our original goal is consumed and four new goals are produced, one for each data
constructor of Ex. It also automatically produces inductions hypotheses as assumptions.
The base cases of LetE and VarE can each be handled using the tactic:

reflexivity.

2.3 A first proof of semantic preservation 8

This automatically expands definitions and consumes goals of the kind "x = x". Next up
is BinOpE. We are in luck, because const_fold does not operate on recursively defined
binary operations. This means that we simply have to do case analyses on both binary
arguments:

destruct ex1; destruct ex2; try destruct l; try destruct l0;

reflexivity.

The destruct tactic does just that: it produces a new goal for each possible data
constructor of a variable and consumes all previous goals containing this variable. We
destruct the variables ex1, ex2, l and l0, which have been automatically introduced
by previous tactics and represent the binary arguments. In every case we can use
reflexivity to easily show that semantics are preserved.

Finally, only LetE remains. This is where we make use of our inductions hypotheses. We
are trying to prove the term:

forall m : Map Lit,

eval_with_env m (const_fold (LetE s ex1 ex2)) =

eval_with_env m (LetE s ex1 ex2)

We use

intro m0.

to introduce the variable m0 and

simpl. rewrite IHex1.

to apply the fist induction hypothesis. Now we still have to prove the following term:

match eval_with_env m0 ex1 with

| Some l => eval_with_env (add_item s l m0) (const_fold ex2)

| None => None

end =

match eval_with_env m0 ex1 with

| Some l => eval_with_env (add_item s l m0) ex2

| None => None

end

This can easily be achieved by applying our induction hypothesis:

forall m : Map Lit,

eval_with_env m (const_fold ex2) =

eval_with_env m ex2

2.3 A first proof of semantic preservation 9

The complete proof is given in Listing 2.5. This particular proof only covers the function
eval_with_env, but we can trivially extend it to work with eval:

Theorem const_fold_correct : forall (ex : Ex),

eval (const_fold ex) = eval ex.

Proof.

intros. apply const_fold_correct_env.

Qed.

Because const_fold_correct_env is defined on all possible environments m, it can be
applied to the environment empty_map Lit, which is used in the eval Function.

Lemma const_fold_correct_env : forall (ex : Ex) (m : Map Lit),
eval_with_env m (const_fold ex) = eval_with_env m ex.

Proof.
intro ex.
induction ex; try reflexivity.
- destruct ex1; destruct ex2;

try destruct l; try destruct l0;
reflexivity.

- intro m0. simpl.
rewrite IHex1.
destruct (eval_with_env m0 ex1).
+ rewrite IHex2. reflexivity.
+ reflexivity.

Qed.

Listing 2.5: Proof of semantic preservation of constant folding in Ex

2.3 A first proof of semantic preservation 10

The Ohua framework 3

In this chapter we introduce Ohua. We first give an overview of the programming model
used by the Ohua framework. We illustrate how Ohua introduces parallelism to sequential
programs. Then we introduce the syntax and semantics of the language modeled after
Ohua’s first IR, which we use for our proof. We call this language the λ-IR.

3.1 Implicit parallel programming

Ohua is a framework for writing parallel applications that don’t require explicit use
of parallel language constructs. This kind of parallelism is called implicit parallelism.
Ohua consists of a compiler and runtime. The Ohua compiler is language independent,
but compiler bindings and the runtime are adapted for each supported language. The
program being parallelized is called algorithm. It can call into library functions that
are not effected by Ohua’s parallelization. These library functions are not restricted by
Ohua’s programming model. Algorithms used to be written in separate files, in a language
that resembles Lisp or OCaml. The compiler has in recent versions been adapted to work
with Rust and Go, where Algorithms are written directly in the respective host language
[Wit20]. In this thesis we focus on Rust, as this integration is now the main development
focus of the Ohua project.

Ohua internally distinguishes between two kinds of functions. Functions that operate
on state, i.e. mutable input data, are called stateful functions. Functions which operate
on immutable data are called pure or stateless functions. Programs in Ohua are first
transformed into an expression IR, which is loosely based on the λ-calculus and then
lowered into a dataflow graph representation. Nodes in the dataflow graph represent
function calls or helper nodes with control flow information for the runtime. Edges indicate
data flow between function calls. Ohua achieves parallelism by executing independent
nodes in the dataflow graph, i.e. nodes that do not share state, in parallel. This form of
parallelism is called task parallelism [Ert+19b]. The dataflow graph is executed by the
Ohua runtime, which dynamically schedules the nodes [Ada16] [Ada19]. In a compiled
language such as Rust execution with the runtime would correspond to linking against
the runtime and compiling both using a Rust Compiler. This process is visualized in
Figure 3.1. The semantic preservation of Ohua’s compiler and runtime execution has
been proven on paper for a λ-calculus-like language [Ert+19a]

To safely parallelize the program, Ohua’s programming model imposes the following
restrictions on data-flow graphs. First, no state may be shared between independent

11

11

compiling

and linking

Libraries ↘
parsing lowering code gen

Algorithm −→ λ-IR −→ Dataflow Graph −→ Parallel Program −→ Executable

Runtime ↗

Fig. 3.1: Compilation stages of Ohua

nodes in the dataflow graph. This implies that mutable global variables are not allowed.
All function calls that operate on one state have to be dependent on each other. This
property rules out the possibility of arising deadlocks or race conditions and is already
enforced through Rust’s ownership type system, which we introduce in section 4.1. State
has to be passed explicitly though arguments and return values. This means that mutable
global variables or closures are not allowed. Immutable data can be shared across
independent nodes. Our current implementation of Ohua for Rust works with a restricted
version of stateful functions in which only mutable structs are recognized as state which
can be parallelized on, other mutable data is not allowed within the algorithm part of the
program. Each stateful function can only operate on one state, though this is a restriction
that could be relaxed in future versions of the compiler [Ada19]. These restrictions are
visualized in Figure 3.2, where s represents a single state, im represents immutable data
and f represents a simple stateful function.

im
↙ ↘
f f

s
↙ ↘
f f

s s
↘ ↙

f

s im
↘ ↙

f

Rust X
Ohua X

Rust −
Ohua −

Rust X
Ohua −

Rust X
Ohua X

Fig. 3.2: Dataflow restrictions in Rust and Ohua

3.1.1 smap

Ohua provides another tool for achieving implicit parallel programming: smap. smap can
be thought of as a combination of the functional map and fold or reduce operations. It
folds input state over an input vector and produces both a new state and a modified
output vector. This construct is general enough to be applied to both functional and
imperative programming patterns. The corresponding imperative programming construct
would be a loop over the input vector, where each iteration operates on an input vector
element and the input state.

3.1 Implicit parallel programming 12

smap exploits two patterns for parallelization: data parallelism and pipeline parallelism.
Data parallelism is achieved when the input state is not modified in the computation, i.e.
when smap is used as a simple map operation. In this case all elements of the input vector
are mapped over in parallel. Pipeline parallelism is achieved when smap operations with
different states are chained on one input vector [Ada19]. In this case the computation
can be carried out in pipeline fashion. The three types of parallelism are shown in Figure
3.3 [Ert+19b].

f g

(a) pipeline parallelism

f

f

(b) data parallelism

f

g

(c) task parallelism

Fig. 3.3: Types of parallelism in Ohua

To show Ohua’s parallelization opportunities in action, consider the Rust algorithm in
Listing 3.1 as an example. Pipeline, data and task parallelism can be achieved here. All
three iterations are represented as smap operations in Ohua. The first iteration over l
corresponds to a pure map operation, so it can be executed in a data-parallel manner.
The other two iterations, operating on the separate states c1 and c2 but on the same
data, are executed with pipeline parallelism. The final two statements can be executed in
a task parallel manner, since they are state independent.

The corresponding dataflow graph is shown in Figure 3.4. Control flow dependencies are
dotted edges, state dependencies are dashed ones. smap and collect are helper nodes to
initialize and exit iterations. The type of parallelism is indicated by a nodes’ color. Yellow
represents data parallelism, green represents pipeline parallelism and blue represents task
parallelism.

Ohua is at the time of writing being rewritten to improve error handling and adapt the
programming model to microservices [Ert+18]. The λ-IR, though general and language-
independent, has proven insufficient for error handling. This is because a lot of information
needed for good error behavior, such as type information, is being evicted while lowering
the host language into the λ-IR. Enriching the IRs with more information means losing
some generality. With the rewrite it will become harder to adapt Ohua for new host
languages. With Rust being the language that Ohua is best adapted to and one of
the premier languages for microservices [@21c], the rewrite currently focuses on Rust
as a host language. Abandoning the λ-IR means that we lose our proof of semantic

3.1 Implicit parallel programming 13

let mut c1 = Counter::new(); // 0
let mut c2 = Counter::new(); // 0
let mut l = vec![1, 2, 3];

let mut l1 = Vec::new();
for i in l {

l1.push(i + 1);
};
l = l1;

let mut l1 = Vec::new();
for i in l {

c1.increment(i);
l1.push(i + 1);

};
l = l1;

for i in l {
c2.increment(i);

};

c1.get_value(); // 9
c2.get_value(); // 12

Listing 3.1: Example algorithm in Rust

3.1 Implicit parallel programming 14

vec![1, 2, 3]

smap

Counter::new()increment

collect

get_value

Counter::new()

smap

Increment

get_value

collect

+

smap

collect

+

Fig. 3.4: Dataflow graph of the example algorithm

3.1 Implicit parallel programming 15

Functions:

Fun ::= PureFun string (list string) pure function with function identifier
and parameter identifiers

| STFun string string (list string) stateful function with
function identifier, state identifier and parameter identifiers

Expressions:

Expr ::= Lit value literal value of the host language
| Var string
| Let string Expr Expr
| FunApp Fun (list Expr) function application with

list of arguments
| Lambda string Expr a lambda abstraction
| App Expr Expr a lambda application
| Smap string Expr Expr a smap construct
| Cond Expr Expr Expr an if expression

Fig. 3.5: Grammar of the λ-IR

preservation. This thesis is partly motivated by that consequence, as a new proof of
semantic preservation is needed and the type-based nature of the rewritten Ohua compiler
aligns itself well with the type system of proof assistants such as Coq.

3.2 Introducing the λ-IR

In Figure 3.5 we give the grammar of the λ-IR. It is defined in a BNF-like notation,
as are all other grammars we define in this thesis. The grammar gives rules for two
non-terminal symbols, Fun and Expr. Every program of the λ-IR is an expression. This
means that Expr represents a node in the λ-IR AST. Fun represents a function in the
source language. The main point of the λ-IR is that opportunities for parallelism are
made explicit, i.e. they have already been determined in the transformation to the IR.

This explicitness can be observed in the two function types, PureFun and STFun. PureFun
is used to represent pure functions, i.e. functions that only operate on immutable data. It
is composed of a function name and a list of identifiers of parameters. STFun represents a
simple state thread, i.e. a function that can operate on one mutable state. In addition to
the function name and pure parameters it has one data field for a state identifier. In a
previous version of this proof, functions would be inlined. This was done by making the
function body of the host language part of the STFun or PureFun data type. However,
the function representation which simply uses identifiers is easier to prove correct. This is
because our Rust subset also has function call semantics using identifiers, as discussed in
section 4.4.

3.2 Introducing the λ-IR 16

The grammar is generic, meaning that no language constructs of one host language are
part of it. It needs to be generic because Ohua aims to integrate with more than on
host language. Code of the host language can be embedded in the λ-IR using Lit. This
embedded code is not operated on by Ohua, only the statements that have been lowered
into the λ-IR are. In the following paragraphs we describe the meaning of the different
data constructors for Expr. Keep in mind that Ohua itself assigns no values to the
embedded code of the host language and, therefore, does not evaluate any expression.

Var represents a reference to a value of the host language. Note that this value could
be located both in the global environment and in the local environment. The global
environment is known at compile time and consists of the definitions which the algorithm
operates on. The local environment is constructed at run time from variables introduced
by Let.

Any Let expression consists of three parts: a variable identifier, a value expression and a
continuation expression. The value expression is evaluated to a value of the host language
and bound to the identifier in the local environment. Then the continuation expression
evaluated with the new local environment. Let has another use: by giving a variable
identifier that is never referenced in the continuation, we can simulate statements with
no return value.

FunApp represents a function call. Its constructor takes a STFun or a PureFun and
argument expressions as parameters.

The Lambda expression creates a new lambda abstraction, i.e. an anonymous function with
one parameter. Lambda expressions are used in combination with App or Smap expressions.
App applies a given Lambda expression to an argument. It evaluates the argument, binds it
to the lambda parameter and evaluates the lambda expression body. Note that a Lambda

and a App expression in combination have the same effect as a Let expression, as both
simply introduce a new variable for a continuation. Lambda expressions can be nested.
When the body of a lambda expression is another lambda expression, then is can be seen
as an anonymous function with two parameters.

The Smap expression represents an smap invocation. This has been described in detail in
section 3.1.1. It takes three arguments, the first being the identifier of the state it acts
on, the second being a lambda abstraction, which is folded over the third argument, a
sequence of the host language, embedded via a Lit expression.

Cond represents an if-condition. The first argument evaluates to a boolean of the host
language. If this result is true, then the second expression argument is evaluated, else
the third one is. This data constructor is only an annotation to construct Ohua’s
dataflow graph. Recall that none of the expressions are evaluated in Ohua, they are only
transformed to introduce parallelism. However, they are evaluated with in the operational
semantics we need to define for our proof of semantic preservation.

3.2 Introducing the λ-IR 17

3.3 Semantics for the λ-IR

Having loosely described the semantics of our λ-IR in the previous section, we are now
going to give a detailed view of the implementation of the operational semantics in Coq-
like pseudocode. We define semantics for Lit, Var, Let, FunApp, but not for Lambda, App,
Smap or Cond because our Rust subset is too small to allow any meaningful applications
of these constructs.

Our evaluation function is parameterized with a global environment and a local environ-
ment. These map identifiers to values of the host language, in our case Rust. The global
environment does not change during evaluation, while the local environment is empty
at first and is built up during the evaluation. The environments are implemented using
the same data structure as Ex ’s and Rust’s evaluation functions, which is introduced in
section 2.2.1.

Furthermore, the evaluation function for the λ-IR takes an evaluation function for the
host language as an argument. This is because the λ-IR is generic, but the operational
semantics need to evaluate any program in the λ-IR to a value of the host language.
The evaluation function for our Rust subset, which we define in section 4.4, also takes
these environment arguments, but needs additional ones for type checking. For the λ-IR,
type checking has already been performed during the transformation from Rust. This is
covered in detail in section 5.

Any Lit expression can simply be evaluated by applying the Rust evaluation function to
the embedded Rust value. This is illustrated in Listing 3.2.

lambda_eval global_env local_env rust_eval (Lit value) :=
rust_eval global_env local_env value.

Listing 3.2: Evaluation of a literal value

Var expressions are evaluated by looking up the value of the variable in the local and
global environments. This is shown in Listing 3.3. Note that the local environment
has a higher precedence than the global one, so we attempt to look up the value in the
local environment first. The function’s return type is an option, or Maybe in Haskell’s
terminology, to represent a possible failure of evaluation. This has been excluded from
the other evaluation definitions for readability. If the variable is not present in our
environments, the function returns None.

Listing 3.4 gives the evaluation of Let expressions. As described in the previous section,
the evaluated value expression is added to the local environment before the continuation
is evaluated.

Finally, let’s look at the operational semantics of function calls. Function calls in the
λ-IR are simply mapped back to Rust’s function calls. This is because of the model of

3.3 Semantics for the λ-IR 18

lambda_eval global_env local_env rust_eval (Var ident) :=
match local_env ident with
| Some value => value
| None => global_env ident
end.

Listing 3.3: Evaluation of a variable

lambda_eval global_env local_env rust_eval (Let ident expr cont) :=
let value := lambda_eval global_env local_env rust_eval expr
in lambda_eval global_env (add_item ident value local_env) rust_eval cont.

Listing 3.4: Evaluation of a Let binding

function calls, which we use in our λ-IR as well as in our Rust subset. Here function calls
which are represented by simply giving the function identifier and argument expressions,
as explained in section 4.4.

Pure functions are mapped to Rust’s pure functions. State threads are transformed to the
corresponding method calls, as both operate on mutable state. As described in section
4.3.1, the first argument of a state thread call is the mutable state it operates on. This
is why when evaluating the FunApp of an STFun, we have to deconstruct the argument
list.

Normally a semantic model for function calls would have to do a type check. We would
have to check if the argument types match the parameter types. For the state thread we
would have to additionally check if the type of the first argument, our state, matches the
state type in the STFun data constructor. This type check is already performed during
the transformation from Rust to the λ-IR, which is described in section 5.

Here we can see that our specific implementation of operational semantics is not entirely
generic, since we directly return a Rust value. Because our evaluation function returns
Rust expressions and function calls in Rust are not evaluated to a more fine-grained
degree than giving the function identifier and arguments, we have to use a Rust value
directly. If we evaluated function bodies, and thus gave a more fine-grained operational
semantics, our evaluation function could be generic, since we could use rust_eval directly
on the function body.

3.3 Semantics for the λ-IR 19

lambda_eval global_env local_env rust_eval
(FunApp (PureFun ident params) args) :=
rust_eval global_env local_env (Rust.Call ident args).

lambda_eval global_env local_env rust_eval
(FunApp (STFun ident state params) args) :=
match args with
| s :: args' => rust_eval global_env local_env (Rust.MethodCall ident s args')
| _ => Rust.Err
end.

Listing 3.5: Evaluation of a function call

3.3 Semantics for the λ-IR 20

The Rust language 4

In this chapter we give an overview of the Rust language and its type system. We
discuss existing formal semantic models of Rust. Then we define the syntax of a Rust-like
language, which we use for our proof and which we call µRust. We discuss why certain
language features have been included in µRust. Having defined the syntax we give a
specification of its operational semantics.

4.1 A tour of Rust

Rust is a systems programming language which aims to offer safety and control at the
same time. For almost all widely used languages, programmers have to choose between
the two. Take memory management as an example. In Java memory is managed via
garbage collection. This offers safety, as memory leaks are not as common as in C++
and no dangling references can exist. At the same time, the programmer has less control
over the memory layout that they would when using a language with manual memory
management such as C++. For example, in Java all non-primitive values are boxed, so it
is hard to optimize compound data for cache efficiency. Furthermore, it is hard to predict
when and for how long Java’s garbage collector will run. In C++ the programmer has
control over these issues. They can freely choose a memory layout for their data and they
can choose when to allocate and deallocate data. However, this level of control comes at
the cost of safety. The unchecked use of interior pointers, i.e. pointers that point into
a data structure, can lead to dangling pointers and use-after-free errors. As for manual
memory management, it is not uncommon to have memory leaks if data is incorrectly
deallocated. Rust offers both the safety of garbage collection and the control of manual
memory management through its system of compile-time checked automatic deallocation.
This is possible because Rust enforce the correct use of pointers in its type system.

Types in Rust do not just annotate the class of values a variable can hold, they also show
a property called ownership. Ownership is the central concept for ensuring correct use
of references in Rust. The underlying idea of Rust’s ownership system is that values
may either have a single mutable reference or multiple immutable references, but not
both at the same time. This concept is sometimes called mutability XOR aliasing. This
prevents data races as no shared state is permitted between threads, a feature that is
also the central requirement to Ohua’s parallelization. Here we can already see that the
restrictions enforced by Rust resemble the ones enforced by Ohua [Jun20].

21

21

To illustrate this principle, we give the program in Listing 4.1. Examining the use of the
variable x, we can see Rust’s borrow semantics in action. There can exist either multiple
read-only references of x, as shown in the function call of add, or one mutable reference,
as shown in the call of inc. If we had attempted to call inc with two mutable references
of x then Rust’s borrow checker would have rejected our code, even if it would not have
led to a run time conflict in this case.

fn add(a: &i32, b: &i32) -> i32 { *a + *b }
fn inc(a: &mut i32, b: &mut i32) { *a = *a + *b }
let mut x: i32 = 1 + 2;
let mut y: i32 = add(&x, &x);
inc(&mut x, &mut y);

Listing 4.1: Mutable and immutable references

Let’s look at how ownership works in practice. Having a plain variable v means you
own it fully. v is called the owner of its value. When the owner goes out of scope, its
lifetime ends and its value is automatically deallocated. When copying v a distinct owner
for the new value with no relation to v is created. This process is called cloning. This
happens for example when passing stack-allocated values as arguments, returning them
from functions or assigning them to a new variable. Heap-allocated values can be cloned
using a clone function [Jun+21].

When heap-allocated values are passed as arguments, returned from functions or assigned
to a new variable without being explicitly cloned, the are moved. This is a process in which
the full ownership is transferred to another variable. The original owner is invalidated.
Consider the example given in Listing 4.2. v is moved into a when calling f. This means
that after calling f, v can no longer be used to refer to the Vector. If it were not for that
rule, v[0] would be an invalid memory access, because a and, therefore, v get deallocated
with the use of drop in f [Jun+21].

fn f(a: Vec<i32>) {
drop(a);

}
let v = vec![1, 2, 3];
f(v);
v[0]; // error: borrow of moved value: `v`

Listing 4.2: Access after move

Moving heap-allocated values every time they are passed to or from a function is quite
cumbersome. This is why ownership can be temporarily transferred to a different owner.
This is called borrowing. "Temporarily" in this contexts means that the lifetime of the
borrowing owner must not exceed the lifetime of the original owner. If the original owner
is used, the lifetime of the borrowing owner expires. In other words, the original owner
may not be used while the borrowing owner exists [Jun20]. Two kinds of borrowing exist

4.1 A tour of Rust 22

in Rust: mutable and immutable borrows. At any point in the program a value can
either have at most one mutable borrow or multiple immutable borrows, but not both.
In Listing 4.3 we can observe the restriction that the original owner may not be moved
while the borrowing owner’s lifetime is active. This again prevents an invalid memory
access [Jun+21].

fn f(a: &mut Vec<i32>) {
drop(*a); // error: cannot move out of `*a` which is behind a mutable reference

}
let mut v = vec![1, 2, 3];
f(&mut v);
v[0];

Listing 4.3: Move of a borrowed value

Borrow restrictions are not only useful in multi-threaded environments, where they control
data accesses. They also eliminate errors related to interior pointers in single-threaded
environments. Examples for such errors are iterator invalidation and use-after-free. In
Listing 4.4, we see a use-after-free bug. The bug occurs because push_back reallocate the
buffer for v. In this scenario, vptr would not hold the intended value anymore [Jun+21].

std::vector<int> v {1, 2};
int *vptr = &v[1];
v.push_back(3);
*vptr; // bug: use after free

Listing 4.4: Use after free bug in C++

This invalid memory access is prevented by Rust, as shown in Listing 4.5. vptr, which is
a mutable borrow, as indicated by &mut, is used before and after push. vptr’s lifetime is
active on push. We attempt to create a second mutable borrow of v as an argument for
push, which leads to an error.

let mut v = vec![1, 2];
let vptr = &mut v[1];
v.push(3);
*vptr; // error: cannot borrow `v` as mutable more than once at a time

Listing 4.5: Use after move error

The borrow restrictions can be disabled in unsafe blocks. This is discouraged outside of
standard library modules that absolutely need such behavior, e.g. Mutex. These modules
can be integrated in safe code without restrictions. The verification of unsafe libraries
and its inclusion in safe code is an ongoing area of research [Jun+19]. Ohua does not
allow unsafe code.

4.1 A tour of Rust 23

4.2 Formalized models of Rust

The formal verification of Rust is an ongoing effort coordinated by the formal verification
working group [@18]. For our proof to work as outlined in chapter 5, we need to have
operational semantics of Rust implemented in Coq. In this section we cover proposed
formal semantic models of Rust and evaluate their use for our proof of semantic verification.
In order to be a valid option for our proof, a semantic model would have to fulfill three
requirements: it would have to work with a source-level representation of Rust, it would
have to implement the entire subset of Rust supported by Ohua and it would have to be
implemented in a proof assistant.

Patina [Ree15] is a formal semantics with a special focus on Rust’s ownership system. It
was for an early (pre 1.0) version of Rust. As such it’s ownership semantics are outdated
at this point. Furthermore, no implementation is available, since Patina is defined in
purely syntactic terms [Wei+20].

KRust [Wan+18] and RustSem [Kan+20] are independent projects with define executable
operational semantics for Rust in the K framework [@21b]. RustSem was previously
called K-Rust, but is not related to KRust. Both define semantics for source-level Rust
and implement a subset large enough for our needs. Unfortunately, the K framework does
not integrate Coq, or with any proof assistant for that matter. This rules it out for use in
our proof.

Oxide [Wei+20] gives formally semantics for a language close to source-level Rust. Al-
though it is a simplified version of Rust, for example it does not implement traits, it
covers the subset supported by Ohua. Oxide is currently being implemented in OCaml,
which means that it could be integrated with our proof via coq-of-ocaml [@21a]. However,
so far only the type checker has been implemented [@21d]. This is insufficient for our
proof as we need full operational semantics.

RustBelt [Jun+17] gives a complete semantic specification for an intermediate repre-
sentation of the Rust compiler, the Mid-level Intermediate Representation (MIR), is
given. In MIR many high-level syntactic structures have already been lowered to a
continuation passing representation. RustBelt is implemented in Coq, which means that
it could be seamlessly integrated with our proof. Rust’s semantics are specified through
a transformation from Rust to a core language. The transformation is verified with a
separation logic.

For our purposes RustBelt does not fit the required criteria since we need a Rust subset
that is aligned with Rust’s AST and not MIR. Many high-level constructs that are critical
for Ohua to function effectively have already been decomposed in MIR. For example,
loops, which are used in Ohua to create parallelism via smap, have already been lowered
to continuations in MIR [Jun+17].

4.2 Formalized models of Rust 24

None of these semantic models fulfill all our requirements. Interestingly, none of these
models attempt to cover all of Rust, for example the trait system is absent in all of them.
It is still subject of research, if and how the trait system can even be modeled. This
means that there is a possibility that the Rust language may never be fully formalized.
However, for Ohua’s algorithms we only need a small subset, for which a formalization
seems attainable.

4.3 Choosing a Rust subset

As shown in section 4.2, none of the existing semantic models of Rust satisfy our
requirements for the proof of semantic preservation in the Ohua compiler. This is why, as
part of our proof of concept, we define the syntax and operational semantics for our own
subset of Rust, µRust.

One of the objectives of the initiative to verify the Ohua compiler is to establish clearly
defined subsets of the supported languages. And while µRust is too restrictive to serve
any practical purpose other than for a proof of concept it is a first step towards specifying
Ohua’s Rust subset. Originally our subset was closely aligned with RustBelt’s λRust,
which we detail in section 4.2. This would have allowed us to use λRust’s type system
and, in future work, allowed for easy integration with RustBelt’s operational semantics.
However, we ended up modeling our subset directly after the Rust AST. We made this
decision to be aligned more closely with the Ohua compiler, which operates on the Rust
AST directly since as a source-to-source compiler it needs to generate Rust code again.
Defining our own subset instead of using an established one means that we also have to
define our own type system, which we detail in chapter 5.

Many features of the Rust AST, such as SpanData or TokenStream, are implementation
specific, we excluded those completely. For our transformation we restrict ourselves to
features that allow the creation of basic state threads. We tried to keep µRust as simple
as possible while still largely aligning with the Rust AST. Naturally trade-offs arose
between simplicity and strictly adhering to the Rust AST. For many of those trade-offs
we ultimately chose the simple version. For example, in the Rust AST assignment is an
expression whereas in µRust it is a statement. Making this change did not significantly
reduce the number of programs we could model with µRust but greatly improved the
simplicity of both our operational semantics and our proof of semantic preservation.

Another reason for choosing simplicity were restrictions imposed by Coq’s termination
checker. Every function in Coq must be shown to terminate. This implies that Coq is not
Turing-complete. The termination checker’s rules by which termination is decided are
very rigid, a fact that often resulted in us having to adapt our definitions to accommodate
for those restrictions. One such example is the extensive use of identifiers in expressions.
Originally many of those used to be sub-expressions but because the termination checker

4.3 Choosing a Rust subset 25

did not accept the recursive structure of some functions operating on these expressions we
chose to use identifiers instead. For trade-offs where choosing the simplified solution could
have restricted extensibility for future work we chose the extensible version. This applies
for example to Lit, which each only have one data constructor but could be extended in
future versions of this proof.

4.3.1 Syntax of µRust

The grammar of µRust is given in figure 4.1. It makes use of the Coq standard library
types string, list and int, as implemented in BinInt. At its core, µRust is an expression
language on integers. One minor difference to the original Rust abstract syntax tree (AST)
is the continuation style of statements. This aligns closely with Ohua’s λ-calculus-based
IR. A µRust program is a tree with a Stmt as its root node. Only one primitive datatype,
Int, is included for simplicity and because more are not needed for our argument. For
the same reason, several binary operations are left out. Support for modules and libraries
is not included. Furthermore, const, macros, generics, impls, traits, tuples, enums and
unions are not part of this work. While structs are part of the type system, they can’t
be created with a struct expression. Instead, as Ohua’s programming model commands,
they can be created as return values from functions and are then operated on by methods.
Functions and structs exist only on the type level and not as expressions. Because of the
syntactic nature of method and function call semantics, which we describe in section 4.4,
struct and function expressions are not needed.

Identifiers are simplified as well to exclude paths and namespaces. All patterns in µRust

are identifiers, which means that matches are not possible. Variable assignment is only
supported as a standalone statement and not as a static assignment or (sub-)expression.
Because control flow structures such as conditionals and loops are excluded, our subset is
not Turing-complete. Note that the lack of these structures means that useful applications
of STCLang’s smap cannot arise from µRust. Our subset includes two kinds of functions:
pure ones and methods operating on structs.

Each µRust program has two parts: the environment, given as a map of identifiers to types
and the algorithm, the actual program. This reflects Ohua’s separation of libraries and
algorithms. For our transformation only a function’s type signature is needed. µRust does
not support closures so any mutable state has to be passed as a struct argument to a
method call.

4.4 Operational semantics

Because µRust is an expression language designed to be evaluated in Coq, we define our
semantic model directly by implementing an evaluation function, as described in section

4.4 Operational semantics 26

BinOp ::= Add | Sub

Type ::= Int
| Fn (list string) (list Type) Type function with

parameter identifiers, parameter types and return type
| Struct (list string) (list Type) struct with member identifiers

and types
| Unit for functions with no return value
| Err

Lit ::= Int int

Expr ::= Lit Lit
| BinOp BinOp string string
| Path string variable
| Call string (list Expr) function call with arguments
| MethodCall string Expr (list Expr) method call

with struct identifier, member identifier and arguments
| Err

Mutability ::= Mut | NotMut

Stmt ::= Expr Expr expression
| Let string Mutability Type Expr Stmt variable binding

with continuation statement

Fig. 4.1: Grammar of µRust

4.4 Operational semantics 27

2.2.1. This evaluation function has as arguments the program to be evaluated, given by a
single Stmt, as well as the environments for mutability, type, variable definitions. The
data structure implementing an environment is a map that is ordered by the order of
entry. For an in-depth look at how the environment is implemented, see section 2.2.1.
Our evaluation makes use of mutability and type analysis, which we introduce before
defining the operational semantics.

4.4.1 Mutability analysis

Mutability inference is the process of determining whether a value may be mutated or not.
It is essentially a helper function for type checking and evaluation. In Rust, mutability
information is part of the type system, so mutability analysis is done entirely on the type
level. In Rust, each variable declaration has mutability information associated. In µRust

this has to be annotated explicitly. In Rust, if no annotation is given, the value is treated
as immutable by default. In µRust only values that can be operated on by state threads
may be mutable. There exists only one mutable type in our implementation: Struct. In
this thesis, we use the term state to refer to struct values. Structs can only be created
by function or method calls. This means that the mutability analysis only has to check
function and method calls as well as variables, which could hold the result of a call.

To determine mutability, we simply have to do a lookup in our mutability environment.
This is done on function calls, to ensure that no argument is mutable, on method calls,
to ensure that no argument other than the state is mutable, and on Let statements, to
check whether the declared mutability of the new variable and matches the mutability of
the assigned value.

A previous version of our implementation had Pointers as part of the type system. This
resulted in another use case of mutability analysis: ensuring the correct construction of
mutable and immutable pointers. Pointers were ultimately excluded from µRust, because
Ohua does not have support for pointers. If arrays are implemented in a future version if
µRust, they too may be mutable. This is because they can be operated on by smap state
threads.

4.4.2 Type analysis

Type analysis is the process of assigning types to expressions. In our implementation it
is used on function and method calls, to determine if the types of the arguments match
the types of the function parameters, on binary operations, to check if the operands are
integers, and on let statements to check if the declared type annotation matches the type
of the value.

4.4 Operational semantics 28

Type analysis can be formalized as a set of rules, as shown in section 2.2.2. Figure 4.2
gives the typing rules for µRust. Here E stands for the global type environment, while Γ

stands for the local one. Functions cannot be defined in Ohua’s algorithms, which is why
their types can only be located in the global environment. Variables on the other hand
can be in located in the local or global environments, as they can be defined in Ohua’s
algorithms. In the current implementation, variables can only have the type integer, struct
or error. Each type check evaluates to one of these types. Wrongly typed expressions all
have the error type. These are not shown in our rule system, only correctly types ones
are.

The first rule, Lit, is straightforward: there exist only integer literals, which are of the
type Int. The underscore in the type rule stands for any integer value. The rule for
Err expressions is similarly simple: any error expression is of the error type. Binary
operations on integers are themselves of the type Int, since our implementation so far
only supports operations on integers. Here the underscore can stand for either of the Add
and Sub operations. A Path expression has the same type as the variable it looks up. If
the variable is not present in the environment, the Path expression has the type Err. If
the argument and parameter types match, then the type of any Call expression is the
return type of the called function. The same goes for MethodCall expressions, with the
state being the first of the function arguments.

Note that through calling the method with the state as a bare argument, we move the
full ownership of the state into the function. If we want to use the state after the method
call, we have to return it from the method. This corresponds to Ohua’s restriction, that
state may only be passed to and from methods as an argument and return value. Note
that any method not returning the state "consumes" it. The state can then not be used
after the method call. This is different from other values, e.g. integers, which are copied
when passed as arguments.

From the typing rules given in Figure it is almost trivial to derive a Coq implementation.
However, there is one caveat. When the type check a function call, we check if the
argument and parameter types match. To do so, we implement a function, ty_eq, which
checks the equality of two types. This is not trivial. Type is a co-inductive definition,
because the data constructor of Fn contains the field (list Type). This means that (list

Type) and Type are inductively defined in terms of each other. Not only that, because
the data constructor of Fn also has a Type field, Type is inductively defined on itself.
The same goes for (list Type). If the list is not empty, it is defined as a tuple of a Type
element, the head, and a list of Types, the tail. Therefore, (list Type) is also inductively
defined in terms of Type, in the head, and itself, in the tail. These relationships are
visualized in Figure 4.3.

When we define a function ty_list_eq, it recursively calls itself and ty_eq. ty_eq again
recursively calls itself and ty_list_eq. Coq’s termination checker can’t handle this

4.4 Operational semantics 29

` Lit (Int _) : Int (Lit)

E, Γ ` x : Int E, Γ ` y : Int
E, Γ ` BinOp _ x y : Int

(BinOp)

E, Γ ` x : τ

E, Γ ` Path x : τ
(Path)

E ` f : Fn [τ1; · · · ; τn] τret E, Γ ` x1 : τ1 · · · E, Γ ` xn : τn
E, Γ ` Call f [x1; · · · ;xn] : τret

(Call)

E ` τs :: f : Fn [τs; τ2; · · · ; τn] τret E, Γ ` s : τs E, Γ ` x2 : τ2 · · · E, Γ ` xn : τn
E, Γ ` MethodCall s f [x2; · · · ;xn] : τret

(MethodCall)

` Err : Err (Err)

Fig. 4.2: Typing rules of µRust

Type 	
↓ ↑

(list Type) 	

Fig. 4.3: Inductive definitions with Fn

construct, because a cyclic implication, or equivalence, exists. If ty_list_eq terminates,
then ty_eq terminates and if ty_eq terminates, then ty_list_eq terminates.

To deal with this paradox, we introduce a helper argument, commonly called fuel

[VLP17]. fuel is of type nat, a natural number, and is given as a parameter to ty_eq and
ty_list_eq. Each invocation of ty_eq or ty_list_eq decreases it by one. If it reaches
zero, we run out of fuel and ty_eq or ty_list_eq return false. This causes our type
check to return an error type. Because this argument is always decreasing, it satisfies the
termination checker.

This workaround, which our implementation also uses for the recursive Stmt and Expr

evaluation, has one drawback: we have to have a fuel argument in all functions which call
functions with a fuel argument. This means that we have to carry fuel through all the
implementation. Our proof too has to be adapted to fuel. We have to parameterize it
with the quantifier forall (∀) fuel. To make our proof work, we have to ensure that
ty_eq and ty_list_eq are called exactly as many times in the operational semantics of
µRust as they are called in the transformation and the operational semantics of the λ-IR.
Otherwise there exists (∃) a value for fuel, where one of the semantics of µRust and the
λ-IR returns an error value while the other does not.

4.4 Operational semantics 30

4.4.3 Evaluation

Now we have all the tools to define the evaluation functions for Expr and Stmt. Both
return a maximally evaluated expression. Evaluating a maximally evaluated expression
again yields the same expression. We look at the evaluation function for expressions
first.

Evaluating Lit is trivial. It is already maximally evaluated, so we don’t have to perform
any transformations on it. The same applies to Err. The evaluation function for Path
looks up the variable in the value environment and returns the associated value. If no
value is found it returns Err.

The semantics function of BinOp is simple. First it performs a type check on the operands.
If both are of the type Int, it computes the binary operation and returns a Lit with
the computed integer value. Else it returns Err. Here we see an instance of how our
operational semantics differs from Rust’s actual ones. We use Coq’s built-in arithmetic,
which uses a different integer type than Rust. However, such details are not critical to
our proof and do not significantly weaken our results.

Call expressions are where the type and mutability checkers comes into action. If the
parameter types do not match the argument types or if at least one argument is mutable,
Err is returned. If the arguments are well-typed and immutable, they are evaluated one
by one. The function body is not evaluated. Call expressions operate on pure functions.
Pure functions are referentially transparent. This means that it makes no difference to
the outcome of the computation if they are evaluated or not. We chose not to implement
function evaluation, because it would not have contributed to the argument of semantic
preservation and have made the proof more complex.

The type check in function signatures serves another purpose. Structs are heap allocated.
Every time they are passed as mutable state to a method or as an immutable argument
to a function or method, their ownership is moved into the function or method. For
out implementation of syntactic function and method calls, this means that they are
invalidated in the global scope. This invalidation can be achieved by setting their their
type to Err. The ownership of the struct can be returned to the global scope by returning
the (modified) struct. If the called function of method returns no value, the struct is
"consumed". Note that no information has to be lost through this restriction, because
even for multiple argument structs, which are "consumed", one could build a single struct
of a type which aggregates all the consumed input information and return it. This state
consumption is modeled entirely on the type system and done at compile time, which in
our case corresponds to the µRust evaluation and the transformation to the λ-IR. In Rust
this is also done at compile time. After all, mutability information is part of the type
system.

4.4 Operational semantics 31

MethodCall expressions are treated similarly as Call expressions. Its arguments are type
and mutability checked and evaluated. The state is also type and mutability checked. If
the type does not match the parameter type, Err is returned. If the state is immutable,
the MethodCall is transformed into a Call. The method body is not evaluated. This
behavior makes sense not just for pure functions, but also for our restricted stateful ones.
The ownership type system, of which we implement moves by state invalidation, gives a
strong enough semantics for our proof. This is because state invalidation simulates that
a struct is mutated method by reassigning it as the return value. For this to hold, we
impose the additional restriction that mutable structs must have globally unique names.
This ensures that the order of moves and, therefore, of possible mutations is made explicit.
We make use of this property in our proof when showing that the order and arguments of
stateful method calls are unaffected by the transformation.

There are two kinds of statements. Expr simply wraps around an expression and acts
like a return statement because it has no continuation attached. The value of an Expr

statement is the value of its expression.

Let statements are used to introduce new variables and to chain multiple statements.
When a new variable is created, the annotated type and mutability is checked against the
type and mutability of the assigned expression. If the type does not match or an immutable
expression is assigned to a variable declared as mutable, the statement evaluates to Err.
Reassignment of variables can be simulated by creating a new binding with the same
name. Just as with function calls, if Let is used to assign a struct, the ownership is
moved to the assignee and the original owner is invalidated. µRust’s statements are similar
to Rust’s blocks. The fact that each statement must be terminated with an expression,
which is the return value, supports this notion.

4.5 Evaluating an example program

Listing 4.6 shows a valid Rust program that uses only primitives included in our Rust
subset. This program contains four functions: two pure ones, add and Counter::new,
and two that operate on state, Counter::increment and Counter::get_value. This
example has been adapted from Listing 3.1.

We can transform this program by hand into the µRust AST representation, which is shown
in Listing 4.7. Note that the program has been split into two parts: the environment
and the algorithm. The algorithm contains the function body of main represented by
statements linked by continuations. The environment holds a map from identifiers to
types. Note that the order in which the types have been added to the environment reflects
the environment’s stack structure. The value and mutability environments are empty at
the beginning of the algorithm.

The evaluated program is given in Listing 4.8.

4.5 Evaluating an example program 32

fn add(a: i32, b: i32) -> i32 { a + b }
struct Counter { c: i32 }
impl Counter {

fn new() -> Counter { Counter {c: 0} }
fn increment(mut self, i: i32) -> Counter { self.c += i; self }
fn get_value(self) -> i32 { self.c }

}
fn main() {

let n: i32 = 2;
let m: i32 = 3;
let mut c1: Counter = Counter::new();
let x: i32 = add(1, n+m);
let mut c1: Counter = c1.increment(x);
c1.get_value();

}

Listing 4.6: µRust example program

4.5 Evaluating an example program 33

Type environment:

(add_item
"Counter::get_value"
(FnTy [(StructTy ["c"] [IntTy])] IntTy)

(add_item
"Counter::increment"
(FnTy [(StructTy ["c"] [IntTy]), IntTy] (StructTy ["c"] [IntTy]))

(add_item
"Counter::new"
(FnTy [] (StructTy ["c"] [IntTy]))

(add_item
"add"
(FnTy [IntTy, IntTy] IntTy)

(empty_map Ty)))))

Mutability environment:

(add_item "Counter::get_value" NotMut
(add_item "Counter::increment" Mut
(add_item "Counter::new" Mut
(add_item "add" NotMut
(empty_map Mutability)))))))

Algorithm:

(Let "a" false IntTy
(LitE (Int 2))

(Let "b" false IntTy
(LitE (Int 3))

(Let "c1" true (StructTy ["c"] [IntTy])
(CallE "Counter::new" [])

(Let "x" false IntTy
(CallE "add" [(LitE (Int 1)), (BinOpE AddOp "a" "b")])

(Let "c1" true (StructTy ["c"] [IntTy])
(MethodCallE "Counter::increment" (PathE "c1") [(PathE "x")])

(ExprS
(MethodCallE "Counter::get_value" (PathE "c1") [])))))))

Listing 4.7: µRust example program AST

4.5 Evaluating an example program 34

Type environment:

(add_item "c1" Err
(add_item "c1" (StructTy ["c"] [IntTy])
(add_item "c1" Err
(add_item "x" Int
(add_item "c1" (StructTy ["c"] [IntTy])
(add_item

"Counter::get_value"
(FnTy [(StructTy ["c"] [IntTy])] IntTy)

(add_item
"Counter::increment"
(FnTy [(StructTy ["c"] [IntTy]), IntTy] (StructTy ["c"] [IntTy]))

(add_item
"Counter::new"
(FnTy [] (StructTy ["c"] [IntTy]))

(add_item
"add"
(FnTy [IntTy, IntTy] IntTy)

(empty_map Ty)))))

Mutability environment:

(add_item "x" NotMut
(add_item "c1" Mut
(add_item "Counter::get_value" NotMut
(add_item "Counter::increment" Mut
(add_item "Counter::new" Mut
(add_item "add" NotMut
(empty_map Mutability)))))))

Value environment:

(add_item "c1"
(MethodCall "Counter::increment" (Call "Counter::new" [])

[(CallE "add" [(Lit (Int 1)), (Lit (Int 5))]))
(add_item "x" (CallE "add" [(Lit (Int 1)), (Lit (Int 5))])
(add_item "c1" (Call "Counter::new" [])
(empty_map Expr))))))

Algorithm:

(RD.MethodCallE "Counter::get_value"
((MethodCall "Counter::increment" (Call "Counter::new" [])

[(CallE "add" [(Lit (Int 1)), (Lit (Int 5))]))))

Listing 4.8: µRust example program AST

4.5 Evaluating an example program 35

Transformation and Proof 5

In this chapter we cover the transformation from µRust to the λ-IR and the proof of
semantic preservation. The proof’s outline is given in Figure 5.1. We show that for every
µRust program the semantics are equal to the semantics of the transformed program. The
semantics for the λ-IR have already been defined in section 3.3. Similarly, the semantics
of µRust have been defined in section 4.4.

µRust
transformation σ−−−−−−−−−−→ λ-IRy semantics

ysemantics

evaluated µRust = evaluated λ-IR

Fig. 5.1: Proof outline

5.1 λ-IR code from µRust

Because the features of the λ-IR and µRust largely overlap, deciding which parts of the
λ-IR should be mapped to which parts of µRust is straightforward. However, this mapping
is only one of two functions the transformation serves. The other function is to determine,
which programs are correct in Ohua’s programming model and which ones are not.

As mentioned in section 3.1, Ohua is currently being rewritten. This is partly motivated
by the fact, that Ohua’s error handling has so far been done in all stages of the compiler.
The rewrite aims to alter this so that all errors in the program being transformed are
detected in the first stage if the compiler. This is useful for extensibility, because we have
a single source of truth of which Rust program are supported.

For this it is crucial to have a clear notion of which programs can be transformed and
which can not. One of the motivations for this thesis is to determine a small subset of Rust,
for which it is certain that it is supported. This information can be used to implement
the front-end of the compiler. We define the subset supported in our implementation
in two different ways. First, we give purely syntactic constraints, simply by choosing
the rules for our grammar. Second, out semantics, in particular the type checker rejects
ill-formed programs, evaluating them to an error expression.

Our transformation is a mapping from µRust to the λ-IR. Its informal rules are given
in Listing 5.2. Data constructors of µRust are annotated with a R, data constructors of

36

36

µRust
transformation σ−−−−−−−−−−→ λ-IR

ErrR 7−→ Litλ ErrR
LitR i 7−→ Litλ (LitR i)
BinOpR op e1 e2 7−→ Litλ (BinOpR op e1 e2)
PathR s 7−→ Varλ s
CallR f [e1; . . . ; en] 7−→ FunAppλ (PureFunλ f [p1; . . . ; pn])

[σ(e1); . . . ; σ(en)]
est immutableMethodCallR f est [e1; . . . ; en] 7−→ FunAppλ (PureFunλ f [ps; p1; . . . ; pn])

[σ(est);σ(e1); . . . ; σ(en)]
est mutableMethodCallR f est [e1; . . . ; en] 7−→ FunAppλ (STFunλ f ps [p1; . . . ; pn])

[σ(est);σ(e1); . . . ; σ(en)]
ExprR e 7−→ σ(e)
LetR s m t eval scont 7−→ Letλ s σ(eval) σ(scont)

Fig. 5.2: Mapping from µRust to the λ-IR

the λ-IR with a λ. The transformation re-uses many components of the rust semantics
implementation, e.g. type and mutability checking. These components are covered in
section 4.4. Our transformation is parameterized with environments for mutability and
for type information. We do not evaluate any expressions, which is why we do not need a
value environment. This is the complement to the evaluation function of the λ-IR. The
λ-IR in our implementation does not have any type or mutability information embedded,
as those are checked during the transformation. Therefore, the evaluation function for
the λ-IR only has the value environment as a parameter.

The transformation of Err, Lit and BinOp is a simple embedding. We embed BinOp as
a whole Rust expression, because the λ-IR does not contain any data constructor for
it. This is a simple solution, but has the drawback that our operand sub-expressions
are not transformed. This is because the expression is evaluated as a whole by the µRust

evaluation function.

An alternative to this embedding would have been to define a pure function for each
binary operation. In this representation we could transform the operand expressions.
However, the question arises of how the transformed function is evaluated. Simply defining
a function "+" for example won’t suffice because in our implementation function bodies
are neither implemented nor evaluated. We could match against literals with embedded
binary operations in the λ-IR evaluation, but that would go against the principle of
excluding a BinOp data constructor in the λ-IR. We excluded BinOp in our formalized
λ-IR, because it is not present in Ohua.

Transforming Path expressions is a trivial case of switching data constructors. Transform-
ing Call is more involved. The representation for functions in the λ-IR differs from the one
in µRust in one way: the parameter identifiers are explicitly annotated. In µRust they are
part of the function type, stores in the type environment. To transform a Call expression,

5.1 λ-IR code from µRust 37

(LetL "a" (LitL (LitR (Int 2)))
(LetL "b" (LitL (LitR (Int 3)))
(LetL "c1" (FunAppL

(PureFun "Counter::new" [])
[])

(LetL "x" (FunAppL
(PureFun "add" ["a", "b"])

[LitL (LitR (Int 1)), LitL (BinOp AddOp "n" "m")])
(LetL "c1" (FunAppL

(STFun "Counter::increment" "s" ["i"])
[VarL "c1", VarL "x", nil]

(FunAppL
(STFun "Counter::get_value" "s" [])

[VarL "c1", nil])))))))

Listing 5.1: Transformed example program

we look up its parameter identifiers in the type environment and construct a function
application of a pure function. We also transform the arguments. The transformation of
a MethodCall is similar to the one of Call but has one extra step: checking if the state
arguments is mutable. If it is, the method call is transformed to a stateful function call,
else to a pure one. If the transformation fails, it returns a Lit Err value to indicate the
error.

To transform an Expr statement, we just have to transform the embedded expression.
For Let statements we first transform the value expression. Then we check its type
and mutability against the annotated ones. We add them to the type and mutability
environments. Finally, we transform the continuation statement with the updated
environments.

As an example for a transformation, consider the µRust program in Figure 4.7. Trans-
forming this program to the λ-IR yields the one in Figure 5.1.

5.2 Proof

In Coq, we prove invariants about our programs, and in this thesis the semantics of µRust

and the λ-IR is the invariant prove. Our argument of semantic preservation can only be
as complete as the semantic models. For example, function calls are not evaluated beyond
the type and borrow system in our implementation. This relies on the assumption, that
only the state arguments of method calls, whose ownership is moved into the method, are
mutated. This is ensured by Rust’s type system. If we wanted our proof to hold without
this assumption, we would have to implement function evaluation.

5.2 Proof 38

Theorem transform_stmt_correct :
forall (s : Stmt) (fuel : nat)
(val_env : Map Expr) (type_env : Map Ty) (mut_env : Map Mutability),
eval_expr val_env (transform_stmt fuel type_env mut_env s) = eval_stmt fuel val_env type_env mut_env s.

Listing 5.2: Theorem of semantic preservation in Coq

Note that for transformations over multiple internal representations, only the semantics
for the first and last representation have to be implemented. Ohua is a source to source
compiler, so a complete proof would have to implement just one operational semantics,
Rust’s. The transformation parallelizes the input program using the Ohua runtime. For
this it makes use of concurrency constructs from Rust’s standard library. Our semantics
would have to implement some definition of execution of these concurrent constructs.

One way to do this is to look at the data flow graph. Recall that independent nodes
can be executed in parallel. The data flow graph for Ohua is a directed acyclic graph
(DAG). This is because all loops, which would introduce back-edges, are resolved to an
smap application that is represented as a single node. Szpilrajn’s extension theorem states
that every DAG can be linearized [Szp30]. This means that we could look at all possible
linearizations of the transformed program and prove semantic equivalence for each of
them.

A simpler approach would use the theorem that Rust’s type system disallows any invalid
use of the standard libraries’ concurrency modules [Jun+19]. This result means that it
may be enough to show that there exists one linearization, for which the semantics are
equivalent to the semantics of the input program. For our formal proof we don’t have
to consider concurrent execution yet, because at the stage of the λ-IR, Ohua has not
introduced any parallelism.

The result we are trying to prove is that evaluating a Stmt with µRust’s evaluation function
yields the same result as transforming it and the evaluating it with the λ-IR’s evaluation
function. This theorem is shown in its formalized version in Listing 5.2.

Our proof is by structural induction over statements. We also have to perform nested
inductions over expressions and the helper variable fuel. As explained in section 4.4.2,
the co-inductive definitions of our Type and Expr types are impossible to recursively
reason about in Coq without a helper variable. This is why we introduced fuel. We
found no way to entirely prove the correctness of the transformation for these recursive
definitions. We give a proof sketch in the implementation.

We implemented a complete proof for a slightly modified version of µRust. In this version,
expressions do not directly contain sub-expressions. Instead, they are defined using
variable identifiers. Any program of the original µRust can be transformed into a program
in the modified µRust without loss of semantics by introducing a new variable for each
sub-expression.

5.2 Proof 39

In the simplified version of µRust, only the Let data type is defined inductively. This
means that we have to perform a structural induction over Let. The base case is Let’s
non-inductive Expr data constructor. Here we have to prove that the transformation
is correct for the embedded expression. In the induction step, we have to prove the
correctness for the statement:

Let name mutability type expression cont

The induction hypothesis is given in Listing 5.3. Note that the continuation statement
cont is not quantified with forall. The continuation statement, for which the induction
hypothesis holds, has to be precisely the one in our Let statement of the induction step.

forall (fuel : nat)

(val_env : Map Expr) (type_env : Map Ty) (mut_env : Map Mutability),

eval_expr val_env (transform_stmt fuel type_env mut_env cont) =

eval_stmt fuel val_env type_env mut_env cont

Listing 5.3: Induction hypothesis

We do not give the entire proof in this section, because it is too large. To show how our
proof works, consider the example:

Let name mut type (Path var) cont

For this we have to prove the goal given in Listing 5.4. In this goal, some proof steps have
already been performed. For example, we have already proven the mutability check.

eval_expr val_env

(let (type_env', expr') := transform_expr type_env mut_env (Path var) in

Let name expr'

(transform_stmt fuel

(add_item name type type_env')

(add_item name mut mut_env)

cont)) =

let (type_env', expr') := eval_expr val_env type_env mut_env (Path var) in

eval_stmt fuel

(add_item name expr' val_env)

(add_item name type type_env')

(add_item name mut mut_env)

cont

Listing 5.4: Initial goal

5.2 Proof 40

It can be simplified into the goal in Listing 5.5 by unfolding the definitions of transform_expr
and eval_expr.

eval_expr

(add_item name

(match val_env var with

| Some expr' => expr'

| None => Err

end)

val_env)

(transform_stmt fuel

(add_item name type type_env')

(add_item name mut mut_env)

cont)) =

let (type_env', expr') :=

(match val_env var with

| Some expr' => (type_env, expr')

| None => (type_env, expr')

end)

in

eval_stmt fuel

(add_item name expr' val_env)

(add_item name type type_env')

(add_item name mut mut_env)

cont

Listing 5.5: Goal with unfolded definitions

We do a case analysis on val_env var. If there is no entry in the value environment,
both sides of the equation yield an error expression. If an entry exists, we get the goal
shown in Listing 5.6.

5.2 Proof 41

eval_expr (add_item name expr' val_env)

(transform_stmt fuel

(add_item name type type_env')

(add_item name mut mut_env)

cont) =

eval_stmt fuel

(add_item name expr' val_env)

(add_item name type type_env')

(add_item name mut mut_env)

cont

Listing 5.6: Goal after case analysis

We can apply our induction hypothesis to yield the final goal in Listing 5.7, which is
obviously true.

eval_stmt fuel

(add_item name expr' val_env)

(add_item name type type_env')

(add_item name mut mut_env)

cont =

eval_stmt fuel

(add_item name expr' val_env)

(add_item name type type_env')

(add_item name mut mut_env)

cont

Listing 5.7: Final goal

No more subgoals.

5.2 Proof 42

Conclusion 6

In this thesis we have demonstrated one approach to formal verification in the Ohua
compiler. Our approach involves defining semantics for the host language and for the IR
we want to prove semantic preservation for. This is fundamentally constrained by the
semantic model of the host language. Because, as we showed in section 4.2, no suitable
semantic model for Rust exists, we set out to define our own. For this thesis we spent an
estimated 80% of the coding time on defining µRust’s syntax and semantics. Part of the
reason for that was that Ohua has an imprecise definition of the subset of Rust it works
on, given through the implementation. For the definition of µRust we had to find a subset
that is both large enough to serve for a reasonable proof of concept but is small enough
to fit the scope of this thesis. Defining operational semantics for Rust’s semantic model is
more complicated than for most languages, because of the unique ownership type system
and the borrowing semantics. These features make Rust a perfect suitor for Ohua but
complicate the implementation of the operational semantics.

We found theorem proving in Coq to be effective for reasoning about programs. Thanks
to the interactive IDE tooling, it is surprisingly intuitive. Gallina is simple to learn if you
have experience in a statically typed pure functional programming language, like Haskell
or ML. The Ohua compiler is implemented in Haskell, which resembles Coq’s Gallina.
This meant that we could translate Ohua’s source code easily when needed. The discrete
nature of compilers makes them well suited for the use with theorem provers, such as
Coq. The biggest challenge in working with Coq is satisfying the termination check. This
is especially complicated for co-inductive data types. In multiple instances we had to
adapt our implementation and even specification to account for Coq’s behavior. However,
in no such case had the changes much impact on the project, small "hacks" sufficed.

6.1 Future work

We have concluded that proving Ohua’s semantics by defining a semantic model of Rust
is too much work to be a single project. That does not mean that all is lost, as there are
approaches to verifying semantic properties of Ohua, which we cover in this section.

6.1.1 Extend features of µRust

One way to build on the work of this thesis is to gradually add features to µRust and thus
to increase the scope of this thesis’ proof. The most critical feature missing is control flow,

43

43

i.e. if and/or loop expressions. In this scenario we would have to extend our λ-IR model
with if and/or smap constructs. Especially introducing loop expressions is a prerequisite
to making our proof more meaningful as we could extend it to cover smap’s parallelization
capabilities.

6.1.2 Pre-defined semantic models

As we laid out in section 4.2, there currently exists no sufficient semantic model to prove
semantic preservation for all of Ohua. Still, in the future more complete models of Rust
might become available which we could use for our proof. For example, the RustBelt
project might be extended to operate on High-level IR (HIR), which is close to the AST.
Or, if Oxide’s implementation continues, we could use it once the operational semantics
have been implemented. As Rust’s type system is well suited for Ohua, we believe a proof
using a pre-defined model of Rust is achievable with reasonable effort. Note that Ohua’s
algorithms are implemented in only a small subset of Rust, so the semantic model would
not have to encompass all of Rust, but only our subset. Traits for example are a complex
language feature of Rust, that has not been formalized in any semantic model known to
us, but it is not needed for Ohua.

Although we ruled out RustBelt’s semantic model as a basis for our proof of semantic
preservation of the complete Ohua compiler, we could use it for a limited proof. RustBelt’s
semantics are defined on the Rust compiler’s Mid-level IR (MIR), which represents a
control-flow graph. For our proof we could translate the MIR directly to Ohua’s dataflow
IR, which gives us a tool to prove the correctness of optimizations on the dataflow IR. In
order to exploit the full potential of Ohua’s parallelization we would have to implement
an analysis pass on the MIR which can recognize instances of smap.

Contrary to our own approach of using Coq’s intrinsic functions for operational semantics,
Rust’s semantics are specified through a transformation from Rust to a core language.
This approach has the advantage that the entire Rust language can be semantically
modeled. Our own approach of defining operational semantics is bound to run into
Coq’s language limitations, for example when defining a semantic model for pointer
arithmetic.

6.1.3 Implement more transformations

Another approach of future work would be to implement Ohua’s dataflow graph repre-
sentation in Coq. We could then extend the proof to work on the entire Ohua compiler,
including optimization and code generation. This was the initial motivation of this thesis
and continues to be a valid research goal.

6.1 Future work 44

6.1.4 Proof workflow

Once we have extended our proof to work on all stages of the Ohua compiler, we can
work on integrating the certified version of Ohua with the actual implementation. This
could be done in two different ways.

First, we could generate Haskell code from our Coq source using Coq’s integrated code
generator [@21f]. We could then link our generated Haskell against IO libraries, e.g.
custom parsers and code generators. This approach has the advantage that our code is
written from the beginning with Coq’s restrictions, which makes the proof less invasive.

Second we could use hs-to-coq [Spe+18] to generate Coq code from our Haskell source.
This approach has the advantage that we can prototype more quickly in Haskell than in
Coq and only adapt the proof for milestone releases. The proof itself would require more
work than in our first approach because hs-to-coq requires custom annotations for the
translation.

In both cases we are limited to using total (i.e. provably terminating) functions. This
restriction is imposed Coq and by extension by hs-to-coq.

6.1.5 Other host languages

Instead of Rust, for which defining semantics in complex, we could choose a host language
supported by Ohua for which semantics are simple to define. This could work for example
for Ohua’s Lisp-like language or OCaml. Operational semantics for Lisp would be easier
to define than for Rust, since the type system alone is less complex. Operational semantics
for a large subset of Ocaml have already been defined [Owe08]. This means that the
biggest challenge of our proof, defining semantics is already accomplished.

Unfortunately proofs for Lisp or OCaml would not hold as much value as a proof for Rust.
In the current version of Ohua, OCaml and Lisp are already deprecated. This means
that our goal of integrating the mechanized proof into the compiler development process
cannot be achieved easily.

Still, proving semantic preservation in the Ohua compiler for one of these two languages
would suffice as a proof of concept. Proving semantics for a different host language than
Rust has another advantage: part of the proof can be reused for other host languages, as
Ohua’s IRs and optimizations are language independent. If we want to adapt the proof
for a different host language, we just need to implement the transformations of the new
host language to and from Ohua’s IR’s and give a semantic model. For our new proof we
could reuse existing lemmas that prove propositions on the language-independent IR’s
and transformations.

6.1 Future work 45

Because Ohua is internally language-independent, it may be possible to define language-
independent semantics directly for its intermediate representations, without needing any
host language. The parts of our proof working with only generic semantics are exactly
the same as the parts that could be reused for new host languages. Although with this
approach our certification would not cover all of the compiler, it would be a basis for
future work, since it can be adapted for any host language.

6.1.6 Other proof approaches

One low-hanging fruit to prove the (partial) correctness of the Ohua compiler might be
to mechanize the pen-and-paper proof of semantic preservation for the λ-calculus-like
languages [Ert+19a] in a proof assistant such as Coq. While not directly integrated
in the compiler, such a proof could increase the confidence in Ohua’s optimizations
conceptually.

We could also prove the partial correctness of the Ohua compiler by limiting our proof
of semantic preservation to the type level. An implementation in Coq of Rust’s type
system exists within the Oxide project [Wei+20]. Proving type preservation may provide
a sufficient guarantee of semantic preservation as Rust’s type system enforces correct use
of mutable state.

Extending the development of Ohua in Haskell with refinement Types via Liquid Haskell
[Vaz+14] is another option for partly certifying the correctness of the Ohua compiler.
Although it is not likely to verify the entire compiler via automatic deduction, it does give
partial correctness guarantees without much effort. For this reason it is already being
integrated in the Ohua development process.

6.1 Future work 46

Bibliography

[Ada16] Justus Adam. “Control Flow and Side Effects Support in a Framework for Automatic
I/O Batching”. BA Thesis. Dresden, Germany: TU Dresden, Oct. 2016 (cit. on p. 11).

[Ada19] Justus Adam. “Ohua-powered, Semi-transparent UDF’s in the Noria Database”.
MA thesis. Dresden, Germany: TU Dresden, Nov. 2019 (cit. on pp. 11–13).

[BC04] Yves Bertot and Pierre Castéran. Interactive theorem proving and program develop-
ment. Coq’Art: The Calculus of inductive constructions. Jan. 2004 (cit. on p. 3).

[BC11] Shekhar Borkar and Andrew A. Chien. “The Future of Microprocessors”. In: Commun.
ACM 54.5 (May 2011), pp. 67–77 (cit. on p. 1).

[Chl13] Adam Chlipala. Certified Programming with Dependent Types: A Pragmatic Intro-
duction to the Coq Proof Assistant. The MIT Press, 2013 (cit. on p. 3).

[Ert+19a] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo
Castrillon. Category-Theoretic Foundations of "STCLang: State Thread Composition
as a Foundation for Monadic Dataflow Parallelism". 2019. arXiv: 1906.12098
[cs.PL] (cit. on pp. 11, 46).

[Ert+19b] Sebastian Ertel, Justus Adam, Norman A. Rink, Andrés Goens, and Jeronimo
Castrillon. “STCLang: State Thread Composition as a Foundation for Monadic
Dataflow Parallelism”. In: Proceedings of the 12th ACM SIGPLAN International
Symposium on Haskell. Haskell 2019. Berlin, Germany: Association for Computing
Machinery, 2019, pp. 146–161 (cit. on pp. 11, 13).

[EFF15] Sebastian Ertel, Christof Fetzer, and Pascal Felber. “Ohua: Implicit Dataflow Pro-
gramming for Concurrent Systems”. In: Proceedings of the Principles and Practices
of Programming on The Java Platform. PPPJ ’15. Melbourne, FL, USA: Association
for Computing Machinery, 2015, pp. 51–64 (cit. on p. 1).

[Ert+18] Sebastian Ertel, Andrés Goens, Justus Adam, and Jeronimo Castrillon. “Compiling
for Concise Code and Efficient I/O”. In: Proceedings of the 27th International
Conference on Compiler Construction. CC 2018. Vienna, Austria: Association for
Computing Machinery, 2018, pp. 104–115 (cit. on p. 13).

[Gen35] Gerhard Gentzen. “Untersuchungen über das logische Schließen. I”. In: Mathematische
Zeitschrift 39 (1935), pp. 176–210 (cit. on p. 6).

[Jun20] Ralf Jung. Understanding and evolving the Rust programming language. Saarbrücken,
Germany, 2020 (cit. on pp. 21, 22).

[Jun+19] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. “Stacked Borrows:
An Aliasing Model for Rust”. In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019)
(cit. on pp. 23, 39).

[Jun+17] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “RustBelt:
Securing the Foundations of the Rust Programming Language”. In: Proc. ACM
Program. Lang. 2.POPL (Dec. 2017) (cit. on p. 24).

47

47

https://arxiv.org/abs/1906.12098
https://arxiv.org/abs/1906.12098

[Jun+21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. “Safe
Systems Programming in Rust”. In: Commun. ACM 64.4 (Mar. 2021), pp. 144–152
(cit. on pp. 22, 23).

[Kan+20] Shuanglong Kan, Zhe Chen, David Sanan, Shang-Wei Lin, and Yang Liu. An Exe-
cutable Operational Semantics for Rust with the Formalization of Ownership and
Borrowing. 2020. arXiv: 1804.07608 [cs.PL] (cit. on p. 24).

[Lu+08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. “Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug Characteristics”. In: Proceed-
ings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XIII. Seattle, WA, USA: Association
for Computing Machinery, 2008, pp. 329–339 (cit. on p. 1).

[Owe08] Scott Owens. “A Sound Semantics for OCamllight”. In: Programming Languages and
Systems. Ed. by Sophia Drossopoulou. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 1–15 (cit. on p. 45).

[Ree15] Eric Reed. “Patina: A Formalization of the Rust Programming Language”. MA thesis.
Seattle, WA, USA: University of Washington, Feb. 2015 (cit. on p. 24).

[Spe+18] Antal Spector-Zabusky, Joachim Breitner, Christine Rizkallah, and Stephanie Weirich.
“Total Haskell is Reasonable Coq”. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs. CPP 2018. Los Angeles,
CA, USA: Association for Computing Machinery, 2018, pp. 14–27 (cit. on pp. 3, 45).

[SL05] Herb Sutter and James Larus. “Software and the Concurrency Revolution: Leveraging
the Full Power of Multicore Processors Demands New Tools and New Thinking from
the Software Industry.” In: Queue 3.7 (Sept. 2005), pp. 54–62 (cit. on p. 1).

[Szp30] Edward Szpilrajn. “Sur l’extension de l’ordre partiel”. In: Fundamenta Mathematicae
16 (1930), pp. 386–389 (cit. on p. 39).

[VLP17] Niki Vazou, Leonidas Lampropoulos, and Jeff Polakow. “A Tale of Two Provers:
Verifying Monoidal String Matching in Liquid Haskell and Coq”. In: Proceedings of
the 10th ACM SIGPLAN International Symposium on Haskell. Haskell 2017. Oxford,
UK: Association for Computing Machinery, 2017, pp. 63–74 (cit. on p. 30).

[Vaz+14] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton
Jones. “Refinement Types for Haskell”. In: Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. ICFP ’14. ACM, Sept. 2014,
pp. 269–282 (cit. on p. 46).

[Wan+18] Feng Wang, Fu Song, Min Zhang, Xiaoran Zhu, and Jun Zhang. “KRust: A Formal
Executable Semantics of Rust”. In: 2018 International Symposium on Theoretical
Aspects of Software Engineering (TASE). 2018, pp. 44–51 (cit. on p. 24).

[Wei+20] Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal
Ahmed. Oxide: The Essence of Rust. 2020. arXiv: 1903.00982 (cit. on pp. 24, 46).

[Wit20] Felix Wittwer. “Ohua as an STM Alternative for Shared State Applications”. MA
thesis. Dresden, Germany: TU Dresden, Aug. 2020 (cit. on pp. 1, 11).

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Understanding
Bugs in C Compilers”. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’11. San Jose, California,
USA: Association for Computing Machinery, 2011, pp. 283–294 (cit. on p. 1).

Bibliography 48

https://arxiv.org/abs/1804.07608
https://arxiv.org/abs/1903.00982

Webpages

[@18] Announcing the Formal Verification Working Group. 2018. url: https://internals.
rust-lang.org/t/announcing-the-formal-verification-working-group/
7240 (visited on Apr. 2, 2021) (cit. on p. 24).

[@21a] coq-of-ocaml. 2021. url: https://clarus.github.io/coq-of-ocaml (visited on
Apr. 5, 2021) (cit. on p. 24).

[@21b] K Semantic Framework. 2021. url: https://kframework.org (visited on Apr. 5,
2021) (cit. on p. 24).

[@21c] Networking - Rust Programming Language. 2021. url: https://www.rust-lang.
org/what/networking (visited on Apr. 1, 2021) (cit. on p. 13).

[@21d] Oxide. 2021. url: https://github.com/aatxe/oxide (visited on Apr. 5, 2021)
(cit. on p. 24).

[@21e] The Coq Proof Assistant. Version 8.13.1. 2021. url: https://coq.inria.fr (visited
on Apr. 6, 2021) (cit. on pp. 2, 3).

[@21f] The Coq Reference Manual. Version 8.13.1. 2021. url: https://coq.inria.fr/
distrib/current/refman (visited on Apr. 6, 2021) (cit. on pp. 3, 45).

Webpages 49

https://internals.rust-lang.org/t/announcing-the-formal-verification-working-group/7240
https://internals.rust-lang.org/t/announcing-the-formal-verification-working-group/7240
https://internals.rust-lang.org/t/announcing-the-formal-verification-working-group/7240
https://clarus.github.io/coq-of-ocaml
https://kframework.org
https://www.rust-lang.org/what/networking
https://www.rust-lang.org/what/networking
https://github.com/aatxe/oxide
https://coq.inria.fr
https://coq.inria.fr/distrib/current/refman
https://coq.inria.fr/distrib/current/refman

List of Figures

2.1 Type system of Ex . 7
2.2 Application of a tactic . 8

3.1 Compilation stages of Ohua . 12
3.2 Dataflow restrictions in Rust and Ohua . 12
3.3 Types of parallelism in Ohua . 13
3.4 Dataflow graph of the example algorithm . 15
3.5 Grammar of the λ-IR . 16

4.1 Grammar of µRust . 27
4.2 Typing rules of µRust . 30
4.3 Inductive definitions with Fn . 30

5.1 Proof outline . 36
5.2 Mapping from µRust to the λ-IR . 37

50

50

List of Listings

2.1 Syntax of Ex . 4
2.2 Operational semantics of Ex . 5
2.3 Map definition . 6
2.4 Implementation of constant folding for Ex . 7
2.5 Proof of semantic preservation of constant folding in Ex 10

3.1 Example algorithm in Rust . 14
3.2 Evaluation of a literal value . 18
3.3 Evaluation of a variable . 19
3.4 Evaluation of a Let binding . 19
3.5 Evaluation of a function call . 20

4.1 Mutable and immutable references . 22
4.2 Access after move . 22
4.3 Move of a borrowed value . 23
4.4 Use after free bug in C++ . 23
4.5 Use after move error . 23
4.6 µRust example program . 33
4.7 µRust example program AST . 34
4.8 µRust example program AST . 35

5.1 Transformed example program . 38
5.2 Theorem of semantic preservation in Coq . 39
5.3 Induction hypothesis . 40
5.4 Initial goal . 40
5.5 Goal with unfolded definitions . 41
5.6 Goal after case analysis . 42
5.7 Final goal . 42

51

51

	Titlepage
	Task
	Abstract
	Declaration
	Contents
	1 Introduction
	1.1 Contributions

	2 Defining semantics in Coq
	2.1 A Coq primer
	2.2 An example language
	2.3 A first proof of semantic preservation

	3 The Ohua framework
	3.1 Implicit parallel programming
	3.2 Introducing the -IR
	3.3 Semantics for the -IR

	4 The Rust language
	4.1 A tour of Rust
	4.2 Formalized models of Rust
	4.3 Choosing a Rust subset
	4.4 Operational semantics
	4.5 Evaluating an example program

	5 Transformation and Proof
	5.1 -IR code from Rust
	5.2 Proof

	6 Conclusion
	6.1 Future work

	Bibliography
	List of Figures
	List of Listings

