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Abstract

The data flow programming paradigm has been a significant area of research in FPGA
development. While FPGAs offer the potential for impressive performance gains alongside
reduced power consumption. Despite these advantages, hardware design using hardware
description languages presents considerable challenges, requiring expertise in both hardware
and software design. This has led to the creation of several Domain-Specific Languages aimed at
simplifying these complexities. Additionally, the MLIR infrastructure provides further support,
enabling the creation of custom DSLs across various abstraction levels.

This thesis explores an integrated approach, utilizing these technologies to establish an MLIR
dialect that encapsulates the Kahn Process Network model, along with a corresponding FPGA
backend. Achieving this needs extensive work on specification of the dialect and lowering
transformations within the CIRCT project, translating the DFG dialect down to a lower
level hardware compatible representation. Finally, thorough evaluation validates the backend’s
correctness and demonstrates the significant performance benefits provided through this
approach.
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1 Introduction

1.1 Motivation

Since Gordon Moore formulated Moore’s Law in 1965, predicting a doubling of integrated
circuit components approximately every 18 months, the electronics industry has witnessed
exponential growth in computational power. However, this prediction has faced significant
challenges as making the transistors smaller is reaching the physical limitations, signaling the
beginning of the post-Moore era. In this new situation, the conventional strategy of boosting
performance through transistor size reduction and increased transistor density is no longer
viable.

This paradigm shift has led to the rise of heterogeneous computing, characterized by using
different application-specific hardware designed to specific computational needs. Among
these, Field-Programmable Gate Array (FPGA) has become a key player as the solution,
distinguishing themselves in various high-performance computing domains, including specific
computer vision algorithms. Compared to traditional Central Processing Units (CPUs) and
Graphics Processing Units (GPUs), FPGAs demonstrate a better performance, particularly
in peak performance, power efficiency, and sustained operational capability, as highlighted
in the study [Qas+19|. Project EVEREST [Pil+21] presents a design environment tailored
for processing extremely large data sets, exemplifying the growing trend of heterogeneous
computing. This project effectively integrates various hardware platforms, including CPUs and
FPGAs, showcasing the ability to leverage the strengths of different computing architectures
to handle complex, data-intensive tasks.

Furthermore, the integration of High-Level Synthesis (HLS) tools and System on Chip (SoC)
technologies has streamlined the deployment of computational kernels onto FPGAs, making
the technology more accessible to developers. Leading vendors in this field, such as AMD Xilinx,
offer an extensive range of reusable Intellectual Property (IP) cores, significantly simplifying
the design and implementation process of FPGA-based solutions. These advancements make
FPGAs more attractive to the industry, positioning them as a strategic choice for specific high-
performance computing applications, ensuring both efficiency and performance optimization.

In the area of FPGA design, the data-flow acceleration kernel design appraoch is gaining
traction for its enhanced memory access efficiency, which is a critical advantage in modern
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computing. Data-flow applications are characterized by minimal data movement, directly
translating to significant energy savings as they bypass the instruction fetching and decoding
processes typically required in other programming methods. This approach’s energy efficiency
is particularly noteworthy, as highlighted in the paper [C P+19].

Data flow programming itself is not a new concept; its roots can be traced back to research
conducted in the 1970s. Over the years, it has found applications in various domains ranging
from big data processing to serving as the foundational principle behind certain visual
programming languages [Soul2]. There are also projects aiming to translate imperative
programs to data flow model, such as ConDRust [Suc+23]. A significant aspect of ConDRust
is its focus on deterministic concurrency, which checks if the compiler preserves the semantics
of the original sequential program. Today, numerous Model of Computations (MoCs) have
been established, each tailored to represent multi-core stream processing activities efficiently.
One such example is the Kahn Process Network (KPN).

Building on these developments, various programming languages have been developed, drawing
inspiration from the data-flow approach. This includes Lucid, a groundbreaking functional
programming language that implements the principles of data-flow programming. Through
these advancements, FPGA design continues to evolve, adopting the data-flow models for the
increasing demands for efficiency and performance in the computing world.

Taking advantage of the capabilities of FPGA hardware and innovative programming paradigms,
researchers have developed a range of Domain-Specific Languages (DSLs) for specific types of
application. Examples of such DSLs include OpenDF [Bha+08], OpenSpatial [Koe+18|, and
CAPH [SB14], each designed to make the programming for hardware-accelerated applications
easier and more efficient. These DSLs work together with the well-known Hardware Description
Languages (HDLs) and the C programming language, providing a diverse toolkit for developers
working in the field of FPGA design and programming.

In this context, Multi-Level Intermediate Representation (MLIR) [Lat+21] stands out as a
transformative technology, offering a unique approach to constructing compiler frameworks
that are both reusable and extensible. MLIR is characterized by its use of Static Single
Assignment (SSA)-based Intermediate Representation (IR), a structure that streamlines the
compiler design process while introducing new levels of programming abstraction. A particularly
noteworthy aspect of MLIR is its capacity to drive innovation, as evidenced by projects like
CIRCT that uses the MLIR infrastructure for HLS, bridging the gap between high-level
programming and hardware description. As a further possibility, the approach mentioned in
[Sol-+23| aims at efficiently moving data and fully exploiting CPU-FPGA bandwidth, which
uses an MLIR-based DSL called Olympus [SP23] as well, which has multiple useful analysis
and transformation passes. This project addresses the challenges in numerical simulations,
particularly those that are memory-bound and massively parallel, making them suitable for
FPGA acceleration.

In the scope of this thesis, the integration of MLIR with the KPN Model and FPGA hardware
stands as a central objective. The aim is to develop a practical method for transforming high-
level Data-Flow Graphs (DFGs) into designs that can be easily implemented on reconfigurable
hardware, taking advantages of the potential of data-flow programming and FPGA technology
to push forward the field hardware-accelerated computing.
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1.2 Goal

The initial step in the process involves the implementation of a specific MLIR dialect named
DFG, designed to express high-level data flow. This dialect makes it easier for the definition of
nodes, instantiations, and the First-In First-Out (FIFO) channels that establish connections
between each pair of nodes. A critical aspect of this implementation is the concurrent execution
of all instantiated nodes, allowing for simultaneous data processing and flow throughout the
network.

In the theoretical model of this system, channels are considered to be unbounded, providing
unrestricted capacity for data transmission between nodes. However, when transitioning from
the high-level representation to a practical FPGA implementation, it becomes necessary to
introduce channel size semantics. This addition is crucial for managing the finite resources
available on FPGA hardware, ensuring that the data flow can be accurately and efficiently
mapped onto the physical components of it.

In the scope of this thesis, clear and precise goals has been set to guide the research and
development efforts. These are crucial as they provide a road map for the study, ensuring that
each step taken is aligned with the ultimate goals. The objectives are as follows:

e Develop an MLIR Backend for DFG Dialect: The primary goal is to create a backend
within the MLIR framework specifically tailored for the DFG dialect. This backend will be
responsible for generating code that is capable of running on FPGA hardware. Our goal
is to incorporate this backend seamlessly into the existing CIRCT project, contributing
to its extensive set of tools and capabilities. By doing so, we aim to enhance the CIRCT
project with the ability to handle high-level data flow representations, smoothing their
transition to FPGA-compatible formats.

e Analyze and Adapt the DFG Execution Model: A critical component of this research
involves a thorough analysis of the DFG execution model. We intend to investigate its
semantics and operational principles to identify areas that require modification or
enhancement. The goal is to adapt the DFG execution model to ensure its compatibility
with both CPU and FPGA hardware environments. This adaptation is essential to create
a flexible system capable of fitting in the unique characteristics and requirements of
different hardware platforms.

e Performance and Correctness Evaluation: Once the MLIR backend for the DFG
dialect and the adapted execution model are in place, the next goal is to conduct a
comprehensive evaluation of the system’s performance and correctness. We will compare
the performance of FPGA-compatible implementation with a baseline implementation to
evaluate the effectiveness of our work. This comparison will provide valuable insights into
the efficiency and effectiveness of DFG system, allowing us to quantify the performance
gains achieved. Additionally, we will verify the correctness of the results generated by DFG
system, ensuring that the transformation to FPGA hardware codes does not compromise
the accuracy and reliability of the computations.
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1.3 Structure of the Work

In the forthcoming sections of this thesis, a detailed and structured exploration will be provided,
guiding the reader through the various stages and components of the research. The thesis is
organized into distinct chapters, each focusing on specific aspects and elements of the study.

Chapter 2 serves as an introduction, where the reader will be familiarized with the basic
concepts and foundational knowledge necessary for a comprehensive understanding of the
thesis.

Following this, Chapter 3 delves into an analysis of related works in the field. This chapter will
present case studies of similar research initiatives, highlighting their methodologies, outcomes,
and the key differences that set them apart from this thesis. This comparison will provide
context and demonstrate the unique contributions of the current study.

Chapter 4 represents the key part of the thesis, where the focus shifts to the implementation
approaches and key methodologies employed to perform the lowering of high-level data flow
representations to FPGA-compatible formats. This chapter will offer an in-depth examination of
the decision-making processes and techniques that have been applied to make the transformation
smoother and more efficient.

In Chapter 5, the thesis shifts from theory to practice, showcasing the experimental test kernel
and presenting the results obtained from both hardware platforms. This chapter aims to
validate the proposed methods and demonstrate their practical applicability.

Finally, Chapter 6 brings the thesis to a close with a summary of the key findings and discussions
of the research. This concluding chapter will reflect on the study as a whole, considering the
implications of the results and exploring potential future research and development.
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2.1 MLIR and CIRCT

MLIR [Lat+21| stands as a powerful and flexible tool in the field of compiler technology,
showcasing its strengths in two dimensions:

e Compiler Infrastructure: In its first role, MLIR serves as a robust compiler
infrastructure, offering developers a simple way to design, implement, and experiment with
DSLs. This capability of MLIR is extremely useful for those looking to tailor programming
languages to specific application domains, ensuring that the unique requirements and
challenges of these domains are well addressed. MLIR’s infrastructure is designed to
simplify the rapid development cycles, allowing for quick iterations and modifications,
which is crucial in the ever-evolving field of programming languages and compiler
technologies.

e Compiler Intermediate Representation: Beyond its role as a compiler infrastructure,
MLIR also functions as a form of compiler IR. In this character, MLIR shares a kinship
with traditional SSA representations, such as the Low-Level Virtual Machine (LLVM)
IR. This similarity is more than just an outlook, as MLIR embraces the fundamental
principles of SSA representations, ensuring a familiar and robust environment for compiler
developers. However, MLIR distinguishes itself by providing enhanced capabilities to
handle multiple levels of abstraction, making it a flexible tool for a wide range of compiler
optimization and code generation tasks.

At its core, MLIR is engineered to serve as a bridge between high-level Data-Flow Graph
code structure and target-specific code. This ability to seamlessly transition from abstract,
high-level representations to concrete, executable code is one of MLIR’s standout features, and
it plays a crucial role in enabling the efficient implementation of DSLs and other programming
constructs. [Lat-+21]

To unlock the full potential of MLIR and to design one’s own dialect within this framework, it
is important to understand some foundational concepts of MLIR. These concepts form the
building blocks of MLIR’s architecture, guiding developers through the process of creating,
manipulating, and optimizing IR. By mastering these concepts, developers can leverage MLIR’s
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capabilities to its fullest extent, encouraging innovation and efficiency in compiler design and
implementation.

Listing 2.1 MLIR High-Level Structure
// A function operation has one Region.
func.func @foo(fargd: i32, %argl: i32) -> i32 {
// Block in function region (implicit ~bb0)
// Operation returns Value
%0 = arith.cmpi eq, %argO, %argl : i32
// Multiple Regions in one Operation
w1 = scf.if %0 -> (i32) {
scf.yield %arg0 : 132
} else {
scf.yield %argl : 132

}

return %1 : 132

e High-Level Structure: uses a graph-like composition of nodes, known as Operations,
and edges, named Values, to represent computations and the flow of data. Operations
are the computational tasks, each capable of producing multiple results, possessing a
unique set of attributes and operands, and are categorized into different functionalities
across various upstream dialects. Values, serving as the edges in this graph, are generated
either as the result of an operation or as a block argument, each bound to a specific Type
defined by MLIR’s extensive type system. Operations exist within Blocks, which are
ordered sequences of operations representing straight-line code with the ability to branch
to other blocks, all encapsulated within Regions, which is containers maintaining an
ordered collection of blocks. The transformation and optimization of these components are
managed through compiler Passes, routines designed to analyze, optimize, or transform
the operations and their organizational structure. A visual representation of these
interrelations and the overall structure of MLIR would be shown in Listing 2.1.

e Dialect: serves as a powerful and flexible means of interaction and expansion within the
MLIR ecosystem, allowing users to define new Operations, Attributes and Types. Each
dialect has its own unique namespace. For instance, the Func dialect has the namespace
func. As shown in Listing 2.1, different dialects can coexist harmoniously within a single
module. MLIR also makes it easier to switch between and within these diverse dialects
through the use of Passes-routines. In this thesis, a variety of MLIR upstream dialects,
including Arith, Func, as well as some from the CIRCT project, are used as target
dialects in the process of lowering from the DFG dialect.

e Attribute: plays a crucial role in MLIR, especially in scenarios where variables are not
permitted. They act as a vessel for defining constant data on operations, enhancing the
expressiveness and functionality of the dialect. For example, the arith.cmpi operation
needs a comparison predicate, which is stored within its own attribute dictionary. MLIR
has a wide range of built-in attributes for common needs, such as IntegerAttr for
operations involving integer numbers and boolean values. However, when these built-in
attributes fall short of meeting the specific requirements of a dialect design, MLIR gives
users the capability to define their own custom attributes.
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e Type: is another fundamental aspect of MLIR, with every Value being assigned a Type
by its extensive type system. Much like attributes, the type system is highly open-ended
and customizable, enabling the definition of application-specific custom types to suit
various needs. Importantly, there are no restrictions on the number of types that can be
defined, nor on the level of abstraction they represent. In the context of this thesis, two
custom types are introduced for the DFG dialect, details of which will be elaborated in
Chapter 4.

e Pass: is crucial for implementing transformations both within the same dialect and
across different dialects, similar to to the optimization passes found in LLVM. These
passes can include both analysis and transformation functionalities, providing a robust
infrastructure for rewriting operations that don’t follow specified rules into so called
legal ones. Chapter 4 of this thesis is dedicated to providing a detailed explanation to
the various passes employed in the transformation process from DFG dialect to FPGA
hardware code.

Upstream frontends (selection) Input languages

1 4 ¥

Upstream MLIR
| SCF | | Affine | Arith

| = &1\\ <o

Scheduling /
/
1

Moore MIR.

LoopSchedule

‘ Handshake

FIRRTL Parser PyCDE

(Calyxnam‘ez‘ FSM F‘ FIRRTL EsI ‘ HWaArith

%

Core dialects

MSFT ‘ Pipeline

| Seq | Interop Comb | ‘ HW ‘
‘ sV ‘ | Arc SystemC |
| ExportVerilog | ‘ Arcilator | ExportSystemC | Ilhd-sim |

T 1
‘ Simulation Binary (obj) SystemC (c++) / \

| SystemVerilog I)I ‘ Trace(vcd) ESI?’;gﬁg:;:gn on Placements (tcl)

Figure 2.1: CICRT Project Overview [gro23|

The arrival of MLIR has inspired the development of numerous innovative open-source projects,
each tailored to work in different scenarios and applications. A notable example of such
innovation is the CIRCT project, which stands as a cornerstone for this thesis, particularly in
the implementation of the FPGA backend. The acronym CIRCT encapsulates its meaning,
standing for Circuit IR Compilers and Tools, and it is dedicated to providing various dialects
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designed for representing hardware circuits across multiple levels of abstraction. These dialects
play a crucial role in different stages of the hardware design process.

As shown in Figure 2.1, CIRCT offers a comprehensive top-level overview, demonstrating a
selection of its most frequently used dialects. These include Comb for combinational logic, FSM
for finite state machines, Handshake for high-level synthesis, HW for hardware description,
Seq for sequential logic, and SV for SystemVerilog representation. This collection of dialects
ensures that users have access to a flexible toolkit for hardware design, satisfying a wide range
of requirements and preferences.

Beyond the dialects, CIRCT is also equipped with a variety of functional Passes, extending
its utility and adaptability. These Passes are useful for users aiming to construct a complete
development workflow, making the transition from high-level programming languages to the
hardware circuits much easier. CIRCT supports this process through its compatibility with
different front-ends and backends, ensuring that users can customize their development flows
according to the specific needs.

For those deciding to use upstream MLIR as their input, CIRCT takes it a step further
by providing hlstool: an executable binary capable of running HLS and generating split
SystemVerilog files. This feature highlights CIRCT’s role to bridging the gap between high-
level design and hardware implementation, establishing its importance in the field of hardware
design and development.

2.2 Dataflow MoC and KPN

In the domains of computer science, particularly within the area of computability theory
and computational complexity theory, a MoC plays a important role. It serves as a
conceptual framework that describes the process by which the output of a mathematical
function is derived from its given input. A MoC outlines the organization and interaction
of various fundamental elements, including units of computation, memory components, and
communication mechanisms.

Communication / ‘ Shared Memor

‘ Message Passing
organization of components ‘ Y

‘ Synchronous ‘ Asynchronous

Undefined components ‘ Plain text or graphics, use cases
Communicating

Finite State Machine StateCharts SDL

Data Flow ‘ Scoreboarding ‘ N/A ‘ KPN, SDF
Petri Nets ‘ N/A ‘ C/E nets, P/T nets, ...

Table 2.1: Overview of MoC [Mar21]

The book [DLa23| sheds light on this subject, providing insights and classifications of different
MoCs. These classifications are based on distinct communication methods and the specific ways
in which the components within the system are arranged and interact with one another. To
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understand and give an easy comparison of these various MoCs, they have been systematically
categorized and presented in Table 2.1.

In the context of this thesis, the data flow MoC is chosen, specifically the KPN, as the core
conceptual framework for developing the DFG dialect. Originally proposed by G. Kahn in
1974 |Gil74], the KPN presents a simple yet robust schema for parallel computing. At its
core, a KPN is visualized as a directed graph, consisting of processes represented as nodes,
and communication channels shown as edges. Each process operates independently of the
others, encapsulating its own data and following a singular, sequential flow. Communication
between these processes is exclusively conducted through messages sent over the channels,
with direct data sharing between processes being strictly prohibited. These channels function
as limitless FIFO queues, capable of handling multiple input and output channels for every
process. Importantly, each channel is characterized by a unique sender and receiver process at
its each end, as detailed in [Vrb+09].

Channel

Figure 2.2: KPN Structure

While the theoretical model of KPN abstracts channels with infinite storage, this presents
a practical challenge in real-world applications. To address this, capacity semantics is
introduced to the channels, providing a more feasible and hardware-friendly approach for
their implementation. This adaptation is crucial for the process of hardware lowering, which
is explained in details in Chapter 4 of this thesis. For a clearer understanding of the KPN’s
structure, Figure 2.2 is helpful. In this figure, directed edges with dots on them represent the
data flow, circles symbolize the processes, and the square represents a FIFO channel.

2.3 FPGA Basics and Elastic Circuit

Introduced to the world in 1985, FPGAs have become increasingly popular due to their
great reusability and flexibility. When compared with CPUs, FPGAs wins with its higher
performance and configurability. On the other hand, they hold a clear advantage over
Application-Specific Integrated Circuits (ASICs) in terms of development time, significantly
reducing both engineering costs and time to market. Additionally, when compared to GPUs,
FPGASs show greater power efficiency. [GK19].

To provide a comprehensive overview of FPGA architecture, Figure 2.3 shows a high-level
overview. Generally speaking, regardless of different vendors, an FPGA consists of the following
critical components:

e Programmable Logic Block: serves as the base of logic implementation, where the
primary computational and logical functions are executed, which consists normally
Look-Up Tables (LUTs) and Flip-Flops (FFs).

¢ Routing Interconnect: is inclusive of Interconnect and Switch Boxes, establishes the
necessary connections between various Logic Blocks, ensuring seamless communication
and data flow.
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Figure 2.3: FPGA Architecture [BP21]
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e Input/Output (I/0) Block: acts as the interface between the FPGA and external
peripherals, enabling the FPGA to interact with, receive data from, and send data to
external devices and systems.

PROCESSING SYSTEM

PROGRAMMABLE LOGIC =

ULTRARAM VIDEO CODEC

16G & 33G 5 N
TRANGGEITET l PCle® GEN4 100G ETHERNET [ 150G INTERLAKE!

Figure 2.4: ZYNQ UltraScale+ Architecture [Xil23]

In the contemporary field of FPGAs, the resource on board extends beyond the conventional
Programmable Logic. Leading vendors in the industry, such as AMD Xilinx and Intel, have
revolutionized FPGA capabilities by incorporating ARM cores directly onto the chips, effectively
creating SoCs. Taking the test board used in Chapter 5 as a reference, and specifically focusing
on the core demonstrated in Figure 2.4, Xilinx has integrated different components for different
applications. This includes a quad-core ARM Cortex-A53 applications processor, a dual-core
Cortex-Rb real-time processor, a Mali-400 MP2 graphics processing unit, a 4KP60 capable
H.264/H.265 video codec, and 16nm FinFET+ programmable logic, as documented in [Xil23].

This SoC architecture, when compared to traditional FPGAs that only contain programmable
logic, opens the door to more possibilities. Using Xilinx’s comprehensive suite of tools: Vivado,
Vitis, and Vitis HLS, developers can engage in hardware-software co-design, allowing for a simple
control of data on the programmable logic via data transfers to and from the processing system.
This is made possible through advanced technologies such as Direct Memory Access (DMA).

Furthermore, the adoption of Dynamic Function eXchange (DFX) in this architecture greatly
increases flexibility, and holds the potential to enhance energy efficiency across various
applications. This integration of ARM cores and advanced design tools represents a significant
step forward in the evolution of FPGA technology, encouraging both innovation and efficiency.

10
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Figure 2.5: Handshake Protocol

When it comes to the implementation of data flow circuits on FPGAs, the concept of an elastic
circuit interface, as shown in Figure 2.5, often serves as a foundational element [Ulm22|. This
interface is characterized by the incorporation of two signals: valid and ready. These signals
play a crucial role in controlling the transfer of data across the interface.

For a successful data transfer to occur, both the valid and ready signals must be simultaneously
asserted. Interestingly, this assertion can transpire within the same clock cycle or span across
different clock cycles, providing a degree of flexibility in the timing of data transfers.

On one end of the interface, there is the master or transceiver component. This entity is
responsible for initiating the data transfer, and it is vital that it waits for the ready signal
to be asserted before proceeding. On the other end, there’s the slave or receiver component,
which is in a position to accept the data. However, this can only happen when the valid signal

is in an asserted state.

This mechanism of conditional data transfer, governed by the valid and ready signals, stands
as a critical component of the implementation strategy for DFG dialect, as detailed in Chapter
4. By using this protocol, a synchronized and reliable exchange of data within the data flow
circuit is ensured, aligning with the main goal of the FPGA-based implementation.
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3 Related Work

3.1 Handshake Dialect

In the CIRCT project, the handshake dialect [NJ20| has been introduced with the goal of
representing asynchronous, independent processes that communicate data through FIFO
channels, drawing theoretical inspiration from the KPN model. As per ARM’s specifications
for the AXI-4 Stream Protocol [ARM10], the handshake dialect encapsulates all of its inputs
and outputs within a handshake interface, incorporating two 1-bit signals, valid and ready, as

shown in Figure 2.5.

The handshake dialect is currently implemented to define a set of data flow operators, assisting
the transformation from a Control-Flow Graph (CFG) model to a data flow abstraction. Here
is a list of some of the most commonly used operations within the handshake dialect:

e BufferOp: functions as a storage unit capable of holding a specified number of elements,
serving a similar purpose to registers.

e ForkOp: takes input data and distributes it to all ready receivers. The fork operation
will not accept new input until all receivers have consumed the current input.

e JoinOp: is a control-only operation that relies solely on valid and ready signals. It waits
for all inputs to arrive before producing an output.

e BranchOp: is similar to a control flow branch, which has two outputs. It produces a
token on the output port that matches the boolean condition.

e MergeOp: serves as a counterpart to BranchOp. It non-deterministically directs any
input to its output.

e SinkOp: continually consumes inputs, drops them, and asserts the ready signal.

While it is possible for users to directly write MLIR code in the handshake dialect, it is
important to note that not all code written this way may be executable. Alternatively, code
can be written in the upstream MLIR, followed by the use of the -lower-cf-to-handshake
pass in CIRCT once the code is transformed to the cf dialect, which functions as control flow.
The handshake group has not only defined the dialect but also provided a suite of passes as
the solution for generating a correct data flow model.
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Among these passes, the -handshake-insert-buffers transformation is one of the most
important. By default, this transformation inserts size-two buffer operations into the graphs,
aiming to prevent deadlocks and enhance performance. However, this introduces a notable
consideration: the number of buffers. Too many FIFOs can lead to increased area usage,
potentially becoming a resource constraint.

The challenge is, when utilizing the passes that the handshake group provides, including the
-handshake-insert-buffers transformation, developers may not have the flexibility to adjust
the number of buffers. This underlines the importance of careful design and optimization,
particularly when working with resource-intensive applications and aiming to create a balance
between performance and resource utilization on FPGA architectures.

Listing 3.1 Handshake Example
handshake.func @foo(%arg0: i32, %argl: i32, %arg2: none, ...)
-> (132, none)

{
%0 = buffer [2] seq %arg2 : none
%1 = buffer [2] seq argl : i32
%2 = buffer [2] seq %arg0d : i32
%3:2 = fork [2] %1 : 132
%4 = buffer [2] seq %3#1 : i32
%5 = buffer [2] seq %3#0 : 132
%6:2 = fork [2] %2 : i32
%7 = buffer [2] seq %6#1 : 132
%8 = buffer [2] seq %6#0 : 132
%9 = arith.cmpi eq, %8, %5 : 132
%10 = buffer [2] seq %9 : il
%»11:3 = fork [3] %10 : i1
%12 = buffer [2] seq %11#2 : i1l
%13 = buffer [2] seq %11#1 : il
%14 = buffer [2] fifo %11#0 : il
%trueResult, %falseResult = cond_br %12, %7 : i32
%15 = buffer [2] seq %falseResult : 132
%16 = buffer [2] seq %trueResult : i32
sink %15 : i32
%trueResult_0, %falseResult_1 = cond_br %13, %4 : i32
%17 = buffer [2] seq %falseResult_1 : 132
%18 = buffer [2] seq %trueResult_0 : i32
sink %18 : 132
%19 = mux %22 [%17, %16] : index, i32
%20 = buffer [2] seq %19 : 132
%21 = arith.index_cast %14 : il to index
%22 = buffer [2] seq %21 : index
return %20, %0 : i32, none

To transform a code snippet, such as the foo function shown in Listing 2.1, into a workable
handshake dialect representation, several steps need to be followed. Initially, the code needs
to be lowered into the cf dialect using the -convert-scf-to-cf pass. Following this, the
-lower-cf-to-handshake and -handshake-insert-buffers passes are applied to transform
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the code into the workable handshake dialect, with additional buffer operations included to
ensure functionality and enhance performance.

When applying the handshake dialect passes, it’s crucial to be careful, as simply inserting
buffers might not be sufficient to ensure the correctness and optimal performance of the code.
In the transformed code, listed in Listing 3.1, the handshake dialect introduces two control
signals of none type for the inputs and outputs of the func operation. Additionally, a buffer is
inserted for each parameter of the function and for the forked value. These buffers are crucial
as they will later be lowered into handshake signals during the -lower-handshake-to-hw pass,
ensuring the proper functioning of the code in a hardware context.

Moreover, the control flow within the transformed code is now expressed through a combination
of cond_br, fork and sink operations. This transformation is essential for converting a general
CFG into a data flow model, preserving the semantics of the original program while adapting
it to the FPGA architecture.

The handshake dialect plays a key role in the CIRCT HLS workflow due to its features. However,
it’s important to point out that the handshake dialect implicitly uses FIFO channels, providing
no direct control over channel operations such as pull and push. Despite this, the handshake
dialect remains an integral part of the thesis and its methodologies, with its significance and
applications further explained in Section 4.3.

3.2 laRa Dialect

The TaRa compiler and dialect stands out as a significant data flow compiler within the field
of MLIR, focusing specifically on the abstraction of Synchronous Data Flow (SDF) model. It
takes programs formatted based on the Dataflow Interchange Format (DIF) and transforms
them into executable code through a series of lowering processes within MLIR, followed by
scheduling.

If a developer has a kernel written in C/C++ language, they can use Polygeist [Mos+21],
a tool that converts C/C++ code into MLIR representation. This conversion enables the
integration of the kernel into the module as a DFG, opening up possibilities for co-optimization
passes. This also allows for the potential application of low-level LLVM optimizations, such as
function inlining.

MLIR

Kernel - Kernel
(C) PO'@_’ (builtin)

Co-optimization Flattening
Dead code elimination A .
Scheduling & L3 LLVM IR

Bufferization
Graph - Graph Graph+Kernel
(DIF) "‘E’@_’ (iara) >\ (iara + builtin)

Figure 3.1: IaRa High-Level Structure [Cia22]

Furthermore, IaRa supports the external linking of kernels. This means that developers are
not limited to using kernels converted from C/C-+-+ within the MLIR environment; they can
also make use of pre-compiled libraries. This flexibility is a significant advantage, as it allows
for the integration of well-tested and optimized code from external sources.
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To provide a comprehensive understanding of IaRa’s capabilities and workflow, a high-level
overview is presented in Figure 3.1. This overview shows the various stages and components
involved in the IaRa compilation process, showcasing how it takes a program from its initial data
flow representation all the way to an executable form, while providing options for optimization
and external integration along the path.

The IaRa compiler introduces an innovative approach to DFG representation through its DIF
front-end, which translates the human-readable textual format of SDFs into the IaRa MLIR
dialect. This dialect has similarity to the DIF format, setting IaRa apart as a declarative
implementation, different from the typical SSA IR. In the TaRa dialect, every element is
referenced by name, using SymbolName attributes, creating a more straightforward generation
process directly from the Abstract Syntax Tree (AST) of the input code. The IaRa abstraction
for a SDF contains several key operations:

o GraphOp: represents a single hierarchical level of a SDF, encapsulating KernelOps,
NodeOps, and EdgeOps within its block to detail the graph’s structure. It also encodes
the name and I/O ports, especially if sub-graphs are utilized. Notably, a single MLIR,
module can include multiple GraphOps, allowing for coexistence and interaction.

e KernelOp: functions as an external function, symbolizing one or more nodes within the
SDF. It incorporates the name and I/O interface of the function, with the potential for
parameterization to accommodate various use cases.

e NodeOp: serves as an abstraction for an SDF actor, encoding both a name and set of
parameters. Within this operation, a reference is made to either a KernelOp, modeling a
function, or a GraphOp, modeling a sub-graph, providing flexibility in representation.

o EdgeOp: represents a simple edge that connects two NodeOps, with the capability
to carry SDF delay duration and value attributes, enhancing the expressiveness and
functionality of the SDF representation.

Together, these operations can make a robust and flexible abstraction for representing and
manipulating SDFs within the IaRa compiler, satisfying a wide array of data flow programming
needs and scenarios. However, laRa project offers a unique perspective on DFG modeling,
giving a distinct approach compared to the KPN model utilized in the DFG dialect.

With this difference, the DFG dialect maintains the capability to represent models at a higher
level than those in TaRa, as all SDF's can essentially be expressed as KPNs. Besides, IaRa’s
choice of a declarative format stands in contrast to the more conventional approach of using
SSA for IR representations. These differences in design philosophies are crucial, especially in
the context of integration with the CIRCT project. For a seamless integration and consistency
across different parts of the project, it has been decided to adopt the standard SSA format
within DFG dialect.

All these fundamental differences led to the conclusion that considering the broader context
and the overarching goals of the project, the potential for extensive interactions with IaRa is
limited.

16



3.3 Chisel and FIRRTL

3.3 Chisel and FIRRTL

FIRRTL, which stands for Flexible Intermediate Representation for Register Transfer Level
(RTL), is a highly robust IR that plays a crucial role in simplifying hardware design. Developed
under the [LIB16] specification, FIRRTL serves as a connecting bridge between Chisel [Bac+12|,
a hardware construction language, and CIRCT. Chisel itself is implemented using the Scala
programming language, consisting of a set of libraries that define various hardware data types.
Through Chisel, users can describe their hardware designs, which can then be converted into a
hardware simulator written in C++, low-level FIRRTL IR, or Verilog HDL. FIRRTL represents
the hardware circuit at an abstraction level immediately following Chisel’s elaboration process,
capturing the design before any simplification or optimization has been applied.

Function Chisel | FIRRTL
Representation of module Module | module
Register Reg reg

Wire for combinational logic | Wire wire

A group of signals Bundle | bundle
I/O ports for modules 10 input /output
Connection of signals = <=
Multiplexer Mux mux
Addition + add
Subtraction - sub
Multiplication * mul
Bitwise and & and
Bitwise or ] or

Table 3.1: Comparison of Chisel and FIRRTL Semantics

Similar to Chisel, FIRRTL offers a variety of high-level data types such as Vector and Bundle,
providing users with rich expressive capabilities for describing complex hardware structures.
These high-level constructs can later be transformed into a more canonical form through
a series of lowering transformations, enabling further optimization and analysis. Table 3.1
within the associated specification documentations highlights some of the most commonly
used components of both Chisel and FIRRTL.

Listing 3.2 FIRRTL Dialect Overview
firrtl.circuit "bar" {
firrtl.module @bar(in %clock: !firrtl.clock, in %reset: !firrtl.uint<i>,
in %io_i: !firrtl.uint<1>, out %io_o: !'firrtl.uint<1>)
attributes {convention = #firrtl<convention scalarized>}

firrtl.strictconnect %io_o, %io_i : !'firrtl.uint<1>

Delving deeper into the FIRRTL MLIR dialect within CIRCT requires the use of firtool for the
conversion of FIRRTL IR to FIRRTL MLIR dialect. As listed in Listing 3.2, which presents
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a straightforward function of a 1-bit stream 1/O in the FIRRTL dialect, there are several
significant aspects to take note of.

Firstly, firtool distinguishes between signed and unsigned integers by representing them as
two distinct types. This differentiation is crucial as it ensures the generation of accurate and
appropriate operations corresponding to the specific type of integer in use. This level of type
specification contributes to the robustness and precision of the hardware description and
subsequent synthesis.

Secondly, firtool incorporates clock and reset signals into the hardware description. This
automatic insertion is a vital feature, as these signals are fundamental for the synchronous
operation of digital circuits, ensuring that all components operate in a coordinated manner
according to the clock cycles and can be reset to a known state when necessary.

Despite these beneficial features, the differentiation between signed and unsigned integers
in FIRRTL’s type system is one of the reasons for us not to use FIRRTL as a backend, a
decision that is explained in Section 4.3. However, it is crucial to acknowledge the influence and
inspiration drawn from Chisel and FIRRTL, particularly in the design of the FIFO channel
are discussed in Section 4.6.1.
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4.1 Overview

In Chapter 3 several related works are presented and discussed. It was found out that none of
them could fully be the target implementation for the DFG dialect. However, some of them

does provide useful design ideas and reusable components.

First Stage = histool
| »his_calc miir
h i "5V
<>
Second Stage CIRCT passes
source.mlir i i

» inter.mlir . » targetmiir ———»

"8V

Figure 4.1: FPGA Backend Workflow

In this chapter the implementations are explained step by step, from the design of DFG dialect
to the generation of target files. Figure 4.1 provides an overview of how the FPGA backend
operates within the DFG dialect context. The process begins with the source code, which
describes a KPN using the specific dialect in question. As a result several SystemVerilog files
are generated, which can be directly used as the input of other design tools from any vendor,
such as Vivado or Quartus.

4.2 DFG Rationale

The DFG dialect based on MLIR aims to represent a KPN, consisting of various nodes, edges,
and their interconnections. The primary goal of this thesis is to develop an FPGA backend
for the DFG dialect, as detailed in Section 1.2. To achieve this, it’s really important to fully
understand the fundamental components of the DFG dialect, including its custom operations
and type system. Additionally, utilizing the FPGA backend requires a specific syntactical
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structure, which may differ slightly from that needed for a CPU backend due to the constraints
imposed by hardware design principles and the application of DFG lowering passes.

Compared to IaRa, as discussed in the previous chapter, the DFG dialect also provides operations
to describe a DFG model in MLIR. However, unlike IaRa, it uses the standard SSA format,
aligning with the conventions of most MLIR dialects. To manage the data flow direction,
two custom types are defined: !'dfg.input<type> and !'dfg.output<type>. These types
encapsulate a built-in MLIR type and are used to represent the types at both ends of an edge,
as well as the I/O of any node in the graph. In the context of FPGA, these could correspond
to any integer type.

Key operations within the DFG dialect include:

e OperatorOp: defines a node in a KPN, which can be linked to other operators through
FIFO channels. It is marked as IsolatedFromAbove, creating a closed scope for its
region, and it has a NoTerminator trait. It includes two argument lists, inputs and
outputs, connected to channels, which are omitted if empty. The input types are all
!dfg.output<type>, connecting to the output ports of channels, and vice versa for the
outputs. The parser and printer assist in constructing the required types when defining
this operation.

e LoopOp: defines a list of input or output ports to be closed later, terminating the
operator and propagating to other operators for a complete shutdown. It must be the
first operation within an OperatorOp if there is one and can only exist as a child of an
OperatorOp. The types of ports are resolved by the parser and printer as well. Without
LoopOp, the graph should shut down after the first execution; without ports as arguments
of LoopOp, it monitors all ports of the parent operator. Hardware lowering only supports
LoopOp for input ports for now.

e PullOp: pulls a data from a FIFO channel.

e PushOp: pushes a data into a FIFO channel.

e ChannelOp: creates a FIFO channel with a given type, returning an input port and an
output as two results. Due to the lack of support for dynamic allocation in hardware, a
capacity integer attribute must be added during creation. This operation is akin to the
BufferOp in the handshake dialect but can be manipulated via PullOp and PushOp.

e InstantiateOp: instantiates an operator as a node in the graph with given inputs and
outputs, which must match the operator’s type and quantity. It can only be used in the
top function definition.

Listing 4.1 lists the implementation of an addition function utilizing the DFG dialect, providing a
example structure for the development of a KPN with an FPGA backend. The OperatorOp, as
defined, creates operators with a variable number of inputs and outputs. Within this structure,
a LoopOp is included as the first operation, containing other operator’s logic. It is important
to point out that the operator’s logic follows the workflow of Pull — Calculation — Push
operations. The DFG dialect is able to co-exist various other operations defined in upstream

MLIR and CIRCT dialects.

Upon defining a sufficient number of operators at the top-level, they can be instantiated and
interconnected within a func.func, which has to be the concluding operation in the module.
The data streams are implicitly represented through the inputs and outputs of FuncOp, and
these are linked to ChannelOp via PullOp and PushOp. This particular code fragment describes

20



4.3 Lowering Methodologies

Listing 4.1 DFG Dialect Overview
dfg.operator Qadd
inputs(%in0: 132, %inl: i32) outputs(%out: i32)

{
dfg.loop inputs(%inO: 132, %inl: i32)

{
%0

dfg.pull %in0 : i32
%1 = dfg.pull %inl : i32
%2 arith.addi %0, %1 : 132
dfg.push(%2) Y%out : i32

}

func.func @top(%in0: i32, %inl: i32) -> i32

{
%q0_in, %qO_out = dfg.channel(4) : 132
%ql_in, %ql_out = dfg.channel(4) : 132
%q2_in, %qg2_out = dfg.channel(4) : 132
dfg.push(%in0) %qO_in : i32
dfg.push(%inl) %qi_in : i32
dfg.instantiate @add inputs(’%qO_out, %ql_out)

outputs(%q2_in) : (i32, i32) -> i32

%0 = dfg.pull %q2_out : 132
return %0 : i32

a KPN comprising three FIFO channels, each with a capacity of four elements, interconnected
to an addition operator. From an external perspective, the top module expresses as a black
box with two input ports and a single output port.

4.3 Lowering Methodologies

This section delves into key aspects necessary for the transformation of a DFG program, as the
example provided in Listing 4.1, into SystemVerilog files for FPGA deployment. Throughout
the development process, there are three main design stages, transitioning from Handshake,
progressing through FIRRTL, and resulting in the present approach that uses a variety of
CIRCT dialects. Besides, several strategies have been implemented to make the transformation
process more efficient, while also ensuring the integrity and correctness of the implementation
during the lowering stage.

4.3.1 Target Dialects

In Section 3.1, the use of various operations in handshake, which are utilized to transform a
CFG into its DFG equivalent, are detailed. Researchers who implemented the handshake dialect
have assumed that any DFG abstraction within this context can be interpreted as a KPN.
Additionally, the handshake dialect and DFG dialect share a commonality in their adoption
of elastic circuit design principles. Given these similarities, handshake became the primary
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candidate for the initial phase of this study, with the intention of lowering the DFG dialect to
it. The initial hypothesis was that each operator in DFG program would correspondingly be
lowered to a handshake.func, and each channel would be represented as a handshake.buffer.
Successfully achieving this transformation would then make it easier to use various optimization
and transformation passes to generate the SystemVerilog files for FPGA deployment.

Despite these initial prospects, challenges arose in relation to handshake’s handling of buffers.
Handshake is capable of associating function arguments with buffers and, during the lowering
process, can convert these associations into a combination of data, valid, and ready signals,
eventually generating a distinct hardware module for the buffer. However, a critical limitation
exists in handshake’s implicit expression of pull and push operations for FIFO channels,
resulting in an imposed signal rate on any given port within the KPN represented in handshake.
This is in contrast to DFG dialect, which gives users the flexibility to read from or write data
to a channel. The difference of design in functionality finally led to reevaluation of this
approach, resulting in the decision to move away from handshake to the search of alternative
methodologies that more closely align with the unique characteristics and requirements of DFG
dialect.

The second potential approach, a lowering from DFG dialect to FIRRTL dialect was explored,
which serves as the IR for the Chisel hardware construction language. FIRRTL stands out in
several aspects, notably due to its comprehensiveness and the availability of the firtool utility
within the CIRCT ecosystem, which simplifies the direct conversion of FIRRTL programs
into HDL code. Additionally, the possibility of reusing Chisel’s FIFO implementation was an
attractive prospect, potentially prevent the need to reinvent the wheel.

Despite these initial attractions, a deeper exploration of FIRRTL revealed certain redundancies
that prompted this research to consider other options. FIRRTL, like Chisel, differentiates
between signed and unsigned integers in its representations, a distinction that makes sense in
the context of computation, as these two types of integers are handled differently. However,
when lowering FIRRTL to core CIRCT dialects, it’s true that both signed and unsigned
integers are eventually converted to the signless integers used in both MLIR and DFG dialect.
Utilizing FIRRTL would thus result in a loss of the flexibility provided by signless integers,
and create ambiguity in distinguishing between signed and unsigned integers.

Another critical factor was the absence of Finite State Machine (FSM) abstractions in FIRRTL.
While Chisel allows for the definition of EnumType to store FSM states and the creation of
FSM logic in a manner similar to traditional HDL, FIRRTL does not provide the same level of
flexibility for defining FSM logic. CIRCT, on the other hand, offers a dedicated FSM dialect
designed specifically for such scenarios. The lack of FSM abstraction in FIRRTL means a
significant challenge because when working directly with the FIRRTL MLIR dialect, it is
unable to seamlessly mix it with other dialects. But FSMs play a crucial role in the FPGA
backend for controlling the handshake interface. The FSM dialect in CIRCT not only solves
this challenge but also enhances the flexibility by allowing for integration with other dialects,
thereby simplifies the development of lowering passes.

A final point of conflict with FIRRTL was the needs to translate all operations into FIRRTL’s
built-in operations. Given that all operations would eventually be translated into core dialects,
obtaining the hardware code for all operations present in the DFG dialect program through
this intermediary step appeared both troublesome and redundant.
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Despite these challenges, it is worth noting that the implementation of Queue class in Chisel
did provide valuable insights for the custom channel implementation, as discussed in Section
4.6.1. After evaluating and deciding against the two approaches mentioned above, it is finally
chose to lower the DFG dialect directly to the following CIRCT dialects: Comb for combinational
logic, FSM for finite state machine creation, HW for hardware module definition, and SV for
SystemVerilog syntax composition. Additionally, by utilizing the hlstool from CIRCT, it’s
possible to avoid the need for re-implementing HLS, the specifics of which are detailed in
Section 4.4.1.

4.3.2 Intermediate Operations

As shown in Listing 4.1, when defining the top-level function, the input and output arguments
of the FuncOp are treated as implicit data streams. These streams are represented using
PullOp and PushOp, which interact with channels defined within the same scope. In the
process of converting FuncOp to HWModuleOp, which is an abstraction of a hardware module in
the HW dialect, the types in FuncOp are transformed into a trio of signals, establishing the
specifications for the handshake interface.

However, this conversion is not straightforward. In Section 4.4.1, the lowering of OperatorOp
was discussed, where the calculation part within the Pull — Calculation — Push workflow is
encapsulated into a new operation, subsequently instantiating it. Attempting to complete this
entire conversion in a single pass would be impractical and goes against good design principles.
This is because these steps should ideally be executed at different stages of the conversion
process.

The MLIR group suggests maintaining the atomicity of each dialect and pass. In line with this
guidance, a two-stage lowering process is proposed. In the first stage, the computational part
within the operator is wrapped and FuncOp will be converted into HWModuleOp, altering
only the types to an intermediate format using DFG unique type system. In the second stage,
each port is unpacked to create the handshake interface, subsequently lowering the entire
structure into the target dialects.

To facilitate this two-stage lowering process, two intermediate operations are introduced
into DFG dialect, prefixed with dfg.hw instead of dfg, to distinguish them within the MLIR
framework. The details of these two stages and the associated lowering processes will be
explained in the subsequent sections.

e HWIlnstanceOp: represents the instantiation of the program encapsulated during the
first lowering stage. It acts as a placeholder for what will eventually be transformed into
an InstanceOp in the HW dialect.

¢ HWConnectOp: denotes the connections between the arguments of HWModuleOp
and FIFO channels, ensuring type consistency across the connections.

4.3.3 Handshake Signals Transformation

Following the first stage of transformation, all child operations within ModuleOp adopt
!dfg.input and !dfg.output as their input and output types. This transformation significantly
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simplifies the subsequent conversion to the handshake interface, a process detailed in Section
2.3 and planned for execution during the second stage of transformation.

The top-level function is configured to receive 'dfg. input types for its inputs and !'dfg. output
for its outputs. In contrast, as discussed in Section 4.2, OperatorOp exhibits reversed type
configurations due to its connections to the channel’s I/O. While this arrangement may seem
bit puzzling at first, it is intentionally designed to ensure the correct direction of data flow, and
it does not pose any challenges during the transformation from DFG dialect type to handshake
signals.

The method applied for this transformation is straightforward. Regardless of the DFG type
assigned to a port, if it serves as an input, two input ports (valid and bits) and one output port
(ready) are generated. Conversely, for output ports, the original is replaced with one input port
(ready) and two output ports (valid and bits). Each operation undergoing this transformation is
as a result to become a HWModuleOp. To make this easier, the hw: : PortInfo class is used to
create the ports, specifying the name, direction, and data type for each. Following their creation,
these ports are added to a Collection, which can subsequently be converted into an MLIR
ArrayRef, ensuring seamless integration into the build functions of the HWModuleOp.

By following this approach, a consistent and efficient transformation process is ensured,
setting the base of the successful implementation of the handshake interface in the second
transformation stage.

4.4 Intermediate Lowering

4.4.1 Calculation Wrapping

The OperatorOp follows a specific workflow pattern: Pull — Calculation — Push. In the
Calculation phase, DFG dialect is designed to be highly flexible, supporting nearly all other
MLIR and CIRCT dialects, regardless of whether they possess their own regions. The primary
strategy involves encapsulating everything apart from PullOp and PushOp, subsequently
replacing them with HWInstanceOp of DFG dialect, which was introduced in the previous
section. This approach is adopted to avoid the need for duplicating efforts in implementing
HLS. Instead, this critical task is handed over to the hlstool tool provided by CIRCT, thereby
simplifying the process. By employing this method, the concentration is the efforts on creating
the FSM during the second stage of the lowering process. This stage is crucial as it involves
translating the high-level abstract operations into a more concrete representation that can be
directly synthesized into hardware.

Listing 4.2 shows the outcome of the first lowering stage applied to the operator listed in
Listing 4.1. In this stage, all data acquired from the input channel via the PullOp operation is
used as input arguments for a newly established FuncOp. This data is subsequently stored
in a distinct MLIR file, named his_ {Operator Name} _calc, ensuring uniqueness due to the
operator’s unique nature.

Data derived from calculation operations, which are required to be pushed into the output
channel through the PushOp operation, are generated as the return values for the new FuncOp.
There is, however, a single exception to this rule: if the data to be output is acquired directly
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Listing 4.2 Wrapped Operator
// The HWMOduleOp will be produced from wrapped calculation
hw.module.extern @hls_add_calc(%inO: i32, %inO_valid: itl,

%inl: i32, %inl_valid: i1, %in2_valid: i1,

%hclock: il, Yreset: il, Y%outO_ready: il)

-> (inO_ready: il, inl_ready: il, outO: i32, outO_valid: il)
// Wrap all the calculation operations into hls_add_calc.mlir
dfg.operator @add inputs(farg0 : 132, %argl : i32)
outputs (arg2 : i32)

{
dfg.loop inputs (%argO : i32, %argl : i32)
{
%0 = dfg.pull %arg0 : i32
»1 = dfg.pull Yargl : i32
%2 = dfg.hw.instance @hls_add_calc(%0, %1) : (i32, i32) -> i32
dfg.push (%2) %arg2 : i32
}
}

through the PullOp, it will not be included in the return values of the FuncOp. All other
operations within the Operator remain unchanged during this process.

A noticeable change post-lowering is the addition of a HWModuleExternOp of HW dialect at
the module’s top. This operation serves to represent an external hardware module, not present
in the current file. Given that all calculations have been encapsulated into a new file and are
subject to HLS via the hlstool, this external module becomes necessary to represent the module
instantiated during the operator’s second stage of lowering. With the knowledge of how the
input and output signals become post-HLS, creating such a module becomes a straightforward
task.

As previously discussed regarding the handshake interface, all 1/O ports are converted into
three distinct signals. In this specific scenario, for the two inputs and one output of the
encapsulated FuncOp, three sets of signals are created. Additionally, clock and reset signals
are automatically included during the HLS process. Post-HLS, an extra valid signal is added
to the module, standing for the module’s start. This valid signal is set to high (represented as
a true boolean value in code) during instantiation, as will be detailed in Section 4.5.1.

4.4.2 Top Function Connection

When focusing exclusively on the inputs and outputs of the top function, it can be entirely
perceived as a black box module. This module possesses one or more FIFO input ports as
its inputs, while its outputs are connected to other FIFO output ports. In the resultant
SystemVerilog program later shown in Section 4.7, the top function’s primary role is to
instantiate various hardware modules, which in this specific context, are the channels and
operators.

The program listed in Listing 4.1 demonstrates the use of PullOp and PushOp operations to
establish connections between the inputs and outputs of the FuncOp and the requisite channels.
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Listing 4.3 Intermediate Top Function

// Argquments type are FIFO channels I/0 port type
hw.module @top(%inl: !'dfg.input<i32>, %in2: !dfg.input<i32>)
-> (out: !dfg.output<i32>)

{
%in_chan, %out_chan = dfg.channel(4) : i32
%in_chan_0, Y%out_chan_1 = dfg.channel(4) : i32
%in_chan_2, %out_chan_3 = dfg.channel(4) : 132
// Connect arquments with channels input port
dfg.hw.connect %inl, %in_chan : 132
dfg.hw.connect %in2, %in_chan_0 : i32
dfg.instantiate @add inputs(jout_chan, %out_chan_1)

outputs(%in_chan_2) : (i32, i32) -> i32

// Connect channel's output port to output
hw.output %out_chan_3 : !dfg.output<i32>

}

These operations represents the data flows between the channels and the top function, ensuring
that the inputs and outputs are correctly linked for the intended hardware interactions. This
setup underscores the modular nature of the design, where the top function serves as a central
hub, handling the interactions between different hardware components.

In the first stage of lowering code shown in Listing 4.3, the FuncOp is replaced with
HWModuleOp, which is the target operation for the complete lowering transformation process.
The PullOps are replaced with HWConnectOp, which serves to denote the actual connections
of the input ports within the final top module. The output ports utilized in PushOp are
directly used as operands for a newly created OutputOp, establishing a connection to the
output ports of the top module.

Given that this is the top module, it is crucial to ensure the accuracy of both the type and
the data stream direction post-lowering. The two ports connected via HWConnectOp must
possess the type !'dfg.input, and the OutputOp must be of the type !'dfg.output.

It is worth pointing out that during this initial stage of lowering, no modifications are applied
to either the ChannelOps or the InstantiateOps. However, with the intermediate OperatorOp
and the top module operation now in place, the second stage of lowering can be proceeded,
which will delve deeper into the transformation process, refining the hardware representation
and moving closer to the final hardware description.

4.5 Operator Lowering

During the second stage of lowering, the operator undergoes a significant transformation,
resulting in an HWModuleOp of HW dialect. This involves converting all its inputs and outputs
into handshake interface signals, a process detailed in Section 4.3.3. Additionally, if there is a
LoopOp within the operator that monitors the closing of certain input channels, a close signal
is appended to each of those channels. Regardless of the presence of a LoopOp, a done signal
is integrated into the output ports to propagate the closing behavior throughout the system.
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Listing 4.4 Final Operator 1/0O
hw.module Qadd(%clock: il, Y%reset: iil,
%inl_valid: i1, %inl_bits: i32, %inl_close: i1,
%in2_valid: i1, %in2_bits: i32, %in2_close: iil,
%hout_ready: il)
-> (inl_ready: il, in2_ready: itl,
out_valid: i1, out_bits: i32, out_done: il1l) {}

Furthermore, both a clock and a reset signal are included into the 1/O ports, ensuring the
operator is fully equipped for synchronous operation. The operator, as shown in Listing 4.2,
after this stage of transformation, resulting in a module that follows the handshake protocol
and is ready for the subsequent stages of hardware synthesis and implementation as shown in
Listing 4.4. This process is crucial for ensuring that the operator can properly interact with
other hardware components and maintain correct data flow and synchronization across the
system.

Due to the replacement of arguments during the transformation of the operator into an
HWDModuleOp, it is important to update the values that are used within this new module to
ensure consistency and proper functionality. A crucial step in this process is the creation of a
hw: :ConstantOp that holds a boolean value of true. This operation is placed within the region
of the operator module, and its purpose is to set the start control signal to a high state.

This action, as previously discussed in Section 4.4.1, is essential for initiating the module’s
operation, effectively signaling that the module is ready to start processing data.

4.5.1 Calculation Instantiation

The uniqueness of the calculation module wrapped during the second stage of lowering enables
this backend to efficiently locate and instantiate the external module required using the
hw: : InstanceOp through a unified MLIR function, which is walk. The walk function navigates
through the operation scope, accepting a lambda expression as its argument. For this specific
scenario, a closure is crafted, aiming to identify the HWModuleExternOp that bears the
designated name.

However, the instantiation process of the calculation module is complicated and requires careful
handling. Initially, data necessary for calculations is retrieved via the PullOp. Furthermore, in
scenarios where a LoopOp is included, it becomes important to determine the precise method
to reset it, which is key to subsequent executions. It’s important to point out that all these
data and signals are controlled by a FSM, meaning they are essentially outputs generated
by the FSM. In a scenario where the program is natively written in HDL, registers could be
employed to establish connections. However, in MLIR, the entire structure is comprised of
operations, with all the values being outcomes of these operations.

Given the sequential nature of the lowering process, wherein operations are transformed
individually, a challenge arises when attempting to instantiate the calculation module. This is
because the values needed from the FSM results are yet to be generated. To solve this issue,
placeholders are introduced to serve as temporary values for these data. Following the creation
of the FSM, the MLIR function replaceAllUsesWith is applied to revert these placeholders
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back to their original intended values and then prune them in final lowering using erase
function.

This approach ensures the accurate and timely availability of all crucial values, despite
the transformations being executed in distinct stages throughout the lowering process. The
placeholder strategy proves to be equally effective when applied to the FSM creation process,
particularly when there is a need to use the results of the calculation module as outputs. This
approach maintains the integrity of the data flow and signal control, giving a much easier way
to handle the operator transformation.

4.5.2 FSM Creation

Given the handshake protocol’s key role in ensuring synchronized communication between
hardware components, it becomes crucial to establish a mechanism that guarantees the validity
and readiness of signals before proceeding with any data read or write operations. The FSM
serves as a highly efficient solution to address this requirement.

The Moore FSM model, shown in Figure 4.2, serves as a representation of the FSM that will
be generated during the lowering process of a DFG operator. This FSM is important to the
management of the state transitions and ensures the correctness of the handshake protocol.
As following will delve into a detailed analysis of the states and transitions within this Moore
FSM model:

lin_valid & Iclose lcalc_done lout_ready & Iclese
out ready & Iclose

in_valid & lclose calc_done

Figure 4.2: Operator FSM Model

o INIT: This is the initial state of the FSM, where all registers undergo an initialization
process, being set to their default values. Following this initialization, there is an
immediate transition to the READ state, with no conditions applied. Concurrently,
a reset signal is generated and dispatched, intended for the usage by the calculation
module, as discussed in last section.

e READ: In this state, the FSM awaits the opportunity to read from a channel. If the valid
signal is not asserted, the FSM remains in this state, in a state of idleness. Conversely,
if a valid signal is present and a closing signal is not, the FSM proceeds to extract the
data from the channel and transition to the CALC state. If, however, a closing signal is
asserted, a transition to the CLOSE state occurs, a scenario that is exclusively possible
with the presence of a LoopOp monitoring this specific channel.

e CALC: This state is dedicated to awaiting the completion of the calculation module
and the assertion of the corresponding signal indicating completion. It is crucial to note
that this state operates independently of the close signal. This is because, once the input
data is secured, the computation process can be executed, regardless of the state of the
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closing signal, which propagates from the top. Therefore, there is always the potential to
transmit the result into the channel subsequent to this state.

e WRITE: This state adopts a similar approach to the READ state, but with its focus
shifted to awaiting the ready signal from the output channel. In the event that a LoopOp
is present and no closing signal is asserted, a transition back to the INIT state is triggered,
setting the stage for the next execution cycle. If this is not the case, the FSM transitions
to the CLOSE state.

e CLOSE: Representing the terminal state of the FSM, once entered, the machine halts
its operations. The FSM remains in this state until a reset signal is received, indicating
a re-initialization of the machine.

For the implementation phase, the FSM dialect is used, which is a specialized dialect within
CIRCT, engineered to represent abstractions tailored for an FSM. This dialect stands out
due to its ability to: 1. Offer a clear, structural description of states, transitions, and internal
variables relevant to an FSM, thereby simplifying the analysis and transformation processes. 2.
Present a target-neutral representation of FSM, ensuring compatibility and seamless integration
with other dialects. 3. Collaborate efficiently with conversion passes, thereby enabling the
FSM abstractions to be seamlessly lowered into hardware dialects, a crucial step for simulation
and code generation activities later. [gro23]

Within the FSM dialect, several operations play key roles in the second stage of the lowering
process, which are:

e MachineOp: represents a finite-state machine, encapsulating essential details such as
the machine’s name, the typology of machine states, and the input-output types. An
attribute within this operation is designated for specifying the initial state. MachineOp
contains a region in which internal variables and states can be created.

e VariableOp: serves to represent an internal variable within the state machine, complete
with an initialization value. This is similar to a register in the HDLs.

e StateOp: describes a particular state within the state machine. It features an output
region, terminated by an OutputOp of FSM dialect, to define the machine’s outputs when
in this state. Furthermore, it includes a transitions region, encapsulating all possible
transitions from this state.

e OutputOp: expresses the outputs of a machine when it is in a specific state, ensuring
that the operand types align with the output types specified for the state machine.

e TransitionOp: characterizes a state transition, including a symbol reference pointing to
the subsequent state. It may contain an optional guard region, concluded by a ReturnOp
of FSM dialect, which yields a boolean value representing the transition’s guard condition.
Additionally, it may also contain an optional action region, detailing the actions to be
executed when taking this transition.

e ReturnOp: marks the conclusion of a region within a TransitionOp, returning values if
the parent region functions as a guard region.

e UpdateOp: is employed to update a variable with a specific Value. The variable in
question must be defined through a VariableOp of FSM dialect, and this operation is
exclusively utilized within the action region of a transition.

¢ HWInstanceOp: represents a hardware-style instantiation of a state machine, including
an instance name and a symbol reference to the machine. The inputs and outputs of this
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operation must be the same of the instantiated machine, during which, it is important
to assign the clock and reset as well.

In scenarios where an operator includes multiple PullOps and PushOps, it becomes necessary to
introduce additional READ and WRITE states to fit the data fetching and output requirements.
The sequencing of these states must align with the order specified in the operator’s use of
PullOp and PushOp. Moreover, the complexity increases when dealing with multiple close
signals associated with different input channels. To address this, CLOSE transitions should
be added appealing from the READ state, activated upon the assertion of a close signal for
the monitored input channel this state are fetching data from. Similarly, transitions from the
WRITE state should be introduced to handle scenarios where any of the monitored channels
enter a closed state.

The calculation module, essential in this process, may produce multiple results. This translates
to potentially having multiple out_valid and out_bits values appealing from the instance
described in the preceding section. In the CALC state, it becomes important to ensure the
capture of every valid signal and its corresponding data. However, a challenge arises as these
values might become available at different clock cycles, and yet, once available, they persist
for only a single clock cycle. To navigate this challenge, the following solution is proposed:

e Logic OR Operation: Execute a logic OR operation between the existing valid signal
and the incoming valid signal. This ensures that, once the valid signals have arrived,
they keep at a high state.

e Multiplexer Utilization: Employ a multiplexer to selectively route data from either
the existing data or the incoming one, based on the state of the preceding valid signal.
This design ensures that the data are updated exclusively when the valid signal from the
instance is asserted, preventing data corruption or loss.

Listing 4.5 Simplified FSM Machine
fsm.machine Qadd_controller(input_types) -> (output_types)
attributes {initialState = "INIT"}

{
%valid = fsm.variable "valid" {initValue = false} : il
// define variables and constants
fsm.state GREAD output {
fsm.output // the output list
} transitions {
fsm.transition @CALC guard {
fsm.return // the guarding value
} action {
fsm.update // the wariables
}
// other transitions
}
// other states
}
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Upon applying this mechanism, the final step involves instantiating the designed machine
within the operator using the HWInstanceOp of the FSM dialect. A simplified machine
operation generated from Listing 4.2 is shown in Listing 4.5.

4.6 Top Function Lowering

Similar to the operator lowering process, the second stage of lowering involves a complicated
transformation of the types present in the top module, as shown in Listing 4.3. Each type
will undergo a conversion, resulting in the generation of three distinct handshake signals.
In addition to this transformation, the creation of clock and reset ports becomes essential,
alongside the introduction of close signals corresponding to each input channel, which is
monitored by the LoopOp.

The creation of close ports comes from the practices of vendors such as AMD Xilinx, which
provide IPs that come equipped with a tlast signal. Ensuring that when this signal serves
as an input of Xilinx IP, it does not remain in a dangling state is of great importance, as a
missing of these signals could result in unforeseen failures. It is crucial to acknowledge that in
cases where an input channel isn’t direct monitored by the LoopOp within the top module, a
creation of close port for that channel in the argument list is unnecessary. For the top module
will eventually terminate there will be always a done port appended in the outputs.

4.6.1 FIFO Queue Implementation

The second stage of lowering is important, with two of its most crucial components being:
1. the creation of the FSM machine as detailed in Section 4.5.2, and 2. the implementation
of a lightweight and efficient FIFO queue to represent the ChannelOp at a low-level. As
previously mentioned in Section 3.3, Chisel provides a high-level Queue class capable of
generating a module in HDL. After discussions, it was decided to adopt this implementation
while introducing some custom modifications into it. A queue characterized by a specific type
and capacity will be generated by the lowering of ChannelOp, unless an identical queue has
already been created. Listing 4.6 offers a simplified overview of the queue module derived from
the ChannelOp defined in Listing 4.3, with comments indicating omitted code.

Breaking down the module, the I/O ports mirror those of the handshake interface, with the
addition of close and done ports to simplify the propagation of closing behavior. Initially,
constants are defined within the module, including true and false to set the i1 value, as well
as integers 0 and 1 with a bitwidth of [loga(capacity)| to reset and increment the index of
the read and write pointer. If the capacity is not a power of 2, an additional value equal to
capacity — 1 is defined to manage the behavior of pointers at the queue’s end.

In terms of register definition, the SV dialect is utilized to create registers with RegOp, resulting
in a 'hw.inout<built-in type> type. Unlike HDL, these registers cannot be used directly.
Instead, the ReadInOutOp is applied to access the stored value, a requirement in the SV
dialect’s specifications. For array register definition, the register is created with the given
type enclosed in an UnpackedArrayType, offering a more flexible array representation than
packed arrays and typically used to model memories. The ArrayIndexInOutOp enables reading
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Listing 4.6 Queue Example
hw.module Q@queue_4xi32(%clock: il, Yreset: il, Y%close: il,
%hio_enq_valid: il, %io_enqg_bits: 132, %io_deq_ready: il)
-> (io_enq_ready: il, io_deq_valid: il, io_deq_bits: i32, done: il1) {
// constants definition
%want_close = sv.reg : 'hw.inout<il>
Jwant_close_value = sv.read_inout %want_close : 'hw.inout<il>
%ram = sv.reg : !'hw.inout<uarray<4xi32>>
%ram_read = sv.array_index_inout %ram[Y%ptr_read]
'hw.inout<uarray<4xi32>>, i2
Jram_data = sv.read_inout Yjram_read : 'hw.inout<i32>
// Same definition for ptr_write, ptr_read, maybe_full
Jptr_match = comb.icmp eq Jptr_write, %ptr_read : i2
hempty_T = comb.xor %maybe_full, %true : il
hempty = comb.and Y%ptr_match, %empty_T : il
%full = comb.and %ptr_match, %maybe_full : il
%do_enq = comb.and %not_full, %io_enq_valid : il
%do_deq = comb.and %io_deq_ready, %not_empty : il
Jnext_write = comb.add %ptr_write, %cl_i2 : i2
%next_read = comb.add %ptr_read, %cl_i2 : i2
%not_same = comb.icmp ne %do_enq, %do_deq : il
// use zor to flip empty, full, want_close
%heng_ready = comb.and %not_full, %not_want_close : il
%is_done = comb.and %want_close, %empty : il
sv.always posedge %clock {
sv.if Yreset { // use sv.passign to reset registers
} else {
sv.if %do_enq { // write do_enqg_bits to ram and ptr_write increse
} sv.if %do_deq { // ptr_read increase
} sv.if Ynot_same { sv.passign Ymaybe_full, %do_enq : il
} sv.if Y%close { sv.passign %want_close, %true : il }

}

}
hw.output %enq_ready, %not_empty, %ram_data, %is_done : il, il, i32, il

a single value, maintaining the type of a scalar register. Using these mechanisms, the following
registers are defined:

want _close: stores the close signal until all data in the queue is flushed.
ram: holds all enqueued data.

ptr__write: keeps track of the write pointer position.

ptr_read: tracks the read pointer position.

maybe full: indicates whether the queue might be full, utilized to check for fullness
upon data enqueueing and prevent blocking situations when the queue is at capacity.

With the established registers, it’s efficient to determine the queue’s status, whether it is empty
or full. This determination is crucial as it directly influences the ability to enqueue new data
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Figure 4.3: Queue Module Overview

into or dequeue existing data from the memory. Figure 4.3 shows a visual overview of the
initial queue module listed in Listing 4.6 and its connections.

e Enqueue Operation: Whenever there is a data enqueue operation, the ptr _write (write
pointer) will increment, indicating the addition of new data to the queue. However, if
the want close register has stored a close signal, the queue will stop accepting any more
data from the input port, essentially locking the queue for new entries.

e Dequeue Operation: For data dequeue operations, the ptr _read (read pointer) will
increment, indicating that data is being retrieved and removed from the queue. The
queue will continue to output data until it is empty, at which point the done signal will
be asserted. It is critical to note that even if a close signal has been received, the queue
can still output remaining data until it becomes empty.

e AlwaysOp and Sequential Logic: The AlwaysOp is used to create a SystemVerilog
always block, essential for implementing the clocked logic of the queue module. This
block ensures that register values are updated synchronously at the rising edge of the
clock signal, providing consistency and predictability throughout the circuit. The rising
edge of the reset signal is also used for initializing the module, aligning with the rest
of the DFG modules and differing from the conventional falling edge reset used in AMD
Xilinx IP cores. This alignment is crucial as the hlstool used for the calculation module’s
HLS produces code that utilizes the rising edge for reset. Adapting to this rising edge
reset mode avoids any potential issues.

e IfOp and PAssignOp: The IfOp creates an if-else region, similar to SystemVerilog’s
if-else structure, simplifying conditional logic within the hardware design. The PAssignOp
is equivalent to a non-blocking procedural assignment statement (e.g. x <= y;), ensuring
that assignments within the always block do not block the execution of subsequent
statements, maintaining the integrity of the synchronous design.

To ensure the correct functionality of the created queue module, it is subjected to verification
using simulation software. This process involves evaluating the SystemVerilog file that defines
the queue module, checking the waveform of various signals and data relevant to this FIFO

queue.

Figure 4.4 is expected to demonstrate the simulation results, showing the behavior of the I/O
ports within the queue module. Before delving into the simulation, it’s crucial to note that a
global reset is active for the initial hundred nanoseconds, which is a safety measure to prevent
any potential logic failures according to AMD Xilinx. During the simulation, all signals are
applied at the falling edge of the clock cycle. This strategy is deliberately chosen to eliminate
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Figure 4.4: Queue Simulation Result

the risk of race conditions, as the logic within the module updates on the rising edge of the
clock. The simulation proceeds as follows:

o Reset: Initially, a reset signal is applied to bring the queue module to its initial state,
clearing any previous data or states.

¢ Enqueue Operations: Next, five valid signals are sent along with five 32-bit integers
to be enqueued. Considering the queue’s capacity is limited to four elements, upon
enqueuing the fourth data element, the enq_ready signal transitions to low, preventing
further data inputs.

e Dequeue Operations: At the start, the queue is empty, resulting in a low deq_valid
signal until data is present in the memory. After the valid data starts populating the
queue, dequeue operations start. Then in the next clock cycle the pointer will increment.

e Close Signal: Alongside the fifth element, a close signal is sent. Since the enqueue port
is closed, the eng_ready signal remains low. This ensures that no more data can be
enqueued, even though dequeue operations can continue until the queue is empty.

e Done Signal: After four successful dequeue operations, the queue is empty once again.
At this point, a done signal is asserted, indicating that the queue has successfully flushed
all its data, and the closing semantics are propagated.

By following this procedure, the simulation validates the functionality of the queue module,
ensuring that it behaves as expected as a FIFO queue module.

4.6.2 Instantiation and Connection

In the top module shown in Listing 4.3, the main operations that need to be transformed and
connected are ChannelOps, InstantiateOps, HWConnectOp, and OutputOp. These operations
are vital for establishing the necessary connections between the queue module and the top
module, as well as for instantiating the required components in the HW dialect.

e Transforming ChannelOps: Each ChannelOp is lowered into an InstanceOp, resulting
in the instantiation of the queue module that was generated based on the channel. As
shown in Figure 4.3, a channel is connected to either other operators or the 1/O ports
of the top module. If the input ports of a ChannelOp are connected directly to the top
module’s inputs (as indicated by HWConnectOp), these top module input ports are used
in the argument list of the instantiation. If the input ports of the ChannelOp are not
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connected to the top module’s inputs, they are connected to the appropriate operator
module within the InstantiateOp.

e Handling Top Module Outputs: For outputs of the top module that are connected
to a channel, an OutputOp is created at the end of the scope, with the results of the
output channel. Other output ports of a channel, if any, are connected to the inputs of
operator modules.

e Converting InstantiateOps: Each InstantiateOp is also transformed into an
InstanceOp. The inputs and outputs of this InstanceOp are all connected to channels,
following the KPN definition.

By following these transformation and connection steps, the top module is effectively set up to
interact with the queue module and other components of the system, ensuring that data flows
smoothly and that all components are properly instantiated and connected.

Listing 4.7 Generated Top Module
hw.module @top(’%clock: il, Y%reset: il, %inl_valid: i1, %inl_bits: i32,
%inl_close: i1, %in2_valid: i1, %in2_bits: i32, %in2_close: iil,
%hout_ready: il) -> (inl_ready: il, in2_ready: il,
out_valid: il, out_bits: i32, out_done: il)

{
// queuel, queuel and queuel instances
%add.inl_ready, %add.in2_ready, %add.out_valid, %add.out_bits,
%add.out_done = hw.instance "add" @add(clock: %clock: iil,
reset: jreset: il, inl_valid: Jqueue0O.deq_valid: il,
inl_bits: %queueO.deq_bits: 132, inl_close: %queue0O.done: il,
in2_valid: J%queuel.deq_valid: il, in2_bits: J%queuel.deq_bits: i32,
in2_close: %queuel.done: il, out_ready: ’queue2.enq_ready: il)
-> (inl_ready: il, in2_ready: il,
out_valid: i1, out_bits: i32, out_done: il)
hw.output ’%queueO.enq_ready, ’%queuel.enq_ready, %queue2.deq_valid,
%queue2.deq_bits, JYqueue2.done : il, i1, il, i32, il
}

When managing the connections between various transceiver and receiver modules, the same
placeholder methods described in Section 4.4.1 are applied. As shown in Figure 2.5, the
receiver module generates a ready signal, which is then sent to the transceiver. This signal can
subsequently be produced by the InstanceOp during the instantiation process.

To ensure accurate and reliable connections, multiple vector-like Collection objects are employed
to store and manage the connection information. This approach simplifies the tracking of
connections and ensures that all signals are correctly routed between different modules.

A snippet of the final top module, as listed in Listing 4.1, is shown in Listing 4.7. Within
which, the instance of the add module takes signals from queue0 and queuel (specifically, the
valid and bits signals) as input handshake signals. Additionally, the ready signal from queue2
is utilized as an output. The results generated by the add instance are then used to control
the handshake interface of the queue module instances, and to propagate the closing behavior
throughout the system. The outputs of this configuration consist only of the outputs from the
queue instances.
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4.7 Workflow

As mentioned in Section 4.1, Figure 4.1 demonstrates an overview of the FPGA backend of
DFG dialect. The detailed workflow process is as follow:

e First Stage of Lowering: This initial phase takes the source code and transforms it
into an intermediate form. Alongside this, it generates a code that wraps around the
calculation functions of the operators present in the source code. Depending on the
number of operators in the source, this process could result in multiple files.

e Parallel Work Lines:

— HLS Tool Utilization: The wrapped calculation functions are then processed
using the hlstool, which performs HLS to generate code that is optimized for
hardware implementation.

— Second Stage of Lowering: Simultaneously, the process undergoes a second stage
of lowering, converting the entire program into a combination of CIRCT dialects.
Following this, multiple built-in passes from CIRCT are utilized to generate separate
SystemVerilog files.

These two sets of HDL programs collectively represent the circuit as described by the original
MLIR program. The generated files can then be used in design tools from any vendor to create
a RTL design. This approach ensures a seamless transition from high-level descriptions to
hardware-ready code, constructing the FPGA backend for DFG dialect.
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Upon acquiring the SystemVerilog files through the workflow introduced in Section 4.7, the
next step is to encapsulate these files into a single RTL module. This encapsulation allows for
a more structured, efficient approach to testing and evaluation. For the purpose of evaluation,
an inversed Discrete Cosine Transformation (iDCT) kernel has been designed. The iDCT is a
critical operation in signal processing and image compression, and it serves as a suitable test
case to evaluate the performance and precision of the DFG FPGA backend. To perform the
tests, a mature tool set provided by AMD Xilinx is used. These tools are specifically designed
to aid in the development, simulation, and deployment of FPGA-based applications.

5.1 Experiment Setup

5.1.1 Streamlt and iDCT kernel

Streamlt, developed by the Massachusetts Institute of Technology, is a specialized programming
language made to enhance productivity within the domain of stream data flow programming.
The language introduces several abstraction layers and representations aimed at simplifying the
complexities associated with data flow programming [TKA02]. One of the primary components
of Streamlt is the filter class, which is used to describe individual nodes within a DFG. This
concept has the similarity to the OperatorOp within DFG dialect in terms of functionality
and application. Additionally, Streamlt introduces the pipeline class, which represents the
connections established between different filters. This is akin to the top module of DFG in this
scenario, where data streams flow implicitly, much like the connections created by ChannelOp
in the system.

The research group behind Streamlt has also provided a variety of examples of different
application areas, all programmed in Streamlt language. These examples are valuable resources
for understanding the practical applications and potential of the language. Given the similarities
in the conceptual models and the availability of numerous examples, it’s convincing that it is
feasible to reuse one of these Streamlt examples for testing DFG FPGA backend. This would not
only validate the system but also potentially speed up the testing process, as some pre-existing
and proven code bases could be utilized.
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i

8
channels

Figure 5.1: iDCT Test Kernel

Despite the constraints inherent in the work flow within an operator, following a sequence of
Pull — Calculate — Push, and the needs for integer numbers in hardware design, a highly
compatible algorithm is identified for test purposes. An iDCT algorithm is selected, which
conforms to IEEE specifications. Figure 5.1 provides an overview of the kernel developed using
DFG dialect. For clarity, all the channels in this figure are the arrows between nodes. The
kernel is designed to process an 8 x 8 matrix, represented as a 1-D array, and outputs the
computational results into another matrix of the same shape. The operators of the kernel is
structured as follows:

e ROW: takes one row from the input matrix, which is instantiated eight times in this
kernel. After processing, the results are sent to the COL process via eight different FIFO
channels.

e COL: receives the results from the ROW processes. The output from COL is then
distributed into eight channels, with each channel storing the results for one column of
the result matrix.

e GATHER: collects the results from the eight channels and assembles them back into a
1-D array, constructing the result row by row.

5.1.2 Vivado and Vitis Setup

After completing the workflow whoen in Figure 4.1, the task at hand is collecting multiple
SystemVerilog programs aiming to evaluate them in terms of both precision and performance,
setting the generated code from the CPU backend as the benchmark for comparison. The
hardware platform selected for these tests is the ZCU104 test board, a product of AMD Xilinx,
which contains various hardware resources. These resources are detailed in Figure 2.4. However,
it is worth pointing out that creating the test hardware design for this specific use case isn’t
straightforward.

To shed light on this complicated task, Figure 5.2 provides a visual representation of the final
circuit as configured in the Vivado software, showing the block design of the test kernel. In
this section, there will be a step-by-step walkthrough, detailed unpacking each phase of the
construction process.
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UliraSCALE*

Figure 5.2: iDCT Test Circuit

In the block design, various RTL modules play critical roles, each serving a specific function

in the overall system. Below is a detailed description of these modules:

e iDCT wrapper: serves as a wrapper, instantiating the top module generated by DFG

backend. The creation of this wrapper is due to Vivado’s lack of direct support for adding
SystemVerilog modules into the block design, requiring users to re-wrap them in Verilog
for integration.

Round-Robin distributor: manages the distribution of incoming data into eight
different channels, aligning with the ROW operators shown in Figure 5.1. Each channel
is designed to receive eight data (which is also the capacity) from the input data stream,
sourced directly from the memory on the processing system via DMA.

Xilinx to Module converter: is functioning to adjust the timing of the tlast signal
generated by Xilinx IP cores, this module delays the signal by one clock cycle. This
ensures alignment with the close signal usage in the custom queue module, because the
tlast signal is asserted with the last set of data from Xilinx IP, whereas the generated
module requires the close signal asserted post the last data input.

Module to Xilinx converter: operates in reverse to the Xilinx to Module Converter,
this module ensures the synchronization of output data, valid and done signals from the
queue module. It delays them by one clock cycle, ensuring that the last set of data and
the done signal are asserted in the same clock cycle, ensuring the correct processing of
the tlast signal by Xilinx IP and preventing the DMA from becoming endlessly busy.

In this scenario, the DFG FPGA-based setup is similar to a CUDA program, where the CPU
controls data transfer, and the GPU carries out the calculations. Here, the iDCT wrapper

operates on the FPGA, and the data transfer interfaces will be managed on the processing

system powered by an ARM Cortex processor. To implement this, various Xilinx IP Cores are

integrated into the block design:

e ZYNQ UltraScale+ MPSoC: acts as a software interface around the processing system,
creating a logic connection between the processor and the FPGA. It allows a customization
of the used resources, including Universal Asynchronous Receiver /Transmitter (UART)
for debugging via a serial port and a high-performance port for DMA operations.
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e AXI Direct Memory Access: offers high-bandwidth DMA and is suitable for AXI4-
Stream type target peripherals. It supports both Stream to Memory (S2MM) and Memory
to Stream (MM2S) streaming directions, and includes an optional scatter-gather mode. It
allows customization of data bitwidth to align with custom design, and its initialization
status and management registers are accessible through an AXI4-Lite slave interface.

o AXI4-Stream Data FIFO: simplifies memory-mapped access to an AXI Streaming
Interface, allowing for the writing or reading of data packets to or from a device,
abstracting the AXI Streaming Interface. This IP allows modifications to data bitwidth,
FIFO depth, and certain I/O ports like tlast to ensure compatibility with the design.

e Processor System Reset: provides a synchronized external reset input, with the reset
signal being selectable between active high or active low.

e AXI Interconnect: is crucial for connecting one or more AXI memory-mapped master
devices to one or more slave devices. In this setup, it is used to link two DMA IPs to
the processing system for both read and write directions.

e Concat: is added for concatenating bus signals of varying widths.

By introducing these Xilinx IP Cores, it’s possible to create a smooth and efficient data flow
between the ARM Cortex processor and the FPGAs, enabling the iDCTs wrapper to run
effectively. After integrating all the necessary IP cores and RTL modules into the block design,
the next crucial step is to manually establish connections between the custom RTL modules,
as well as between the FIFO IPs. Additionally, it’s required to set up the connections between
the FIFOs and the DMA, linking one FIFO to the S2MM port and the other to the MM2S
port port. Once these manual connections are made, Vivado’s capabilities to run an automatic
connection process are applied. During this phase, Vivado takes care of connecting all the
reset and clock ports to the processing system. The AXI Data Stream is also connected to the
ZYNQ IP through the AXI Interconnect, establishing a data pathway.

A Concat IP core is then used to concatenate the two interrupt signals from the DMA IP,
transforming them into a single signal before directing it to the ZYNQ IP. This is a critical
step for ensuring that interrupt signals can be properly managed and delivered in later design.
The final step in this phase is to validate the design. This involves a check by Vivado to ensure
that all connections are correctly established, and that there are no errors or issues in the
design. Only when the design passes this validation check one can proceed to the next step.
This approach to validate is crucial for ensuring the success of an FPGA-based application, as
it helps to identify and resolve any potential issues early in the development process.

To generate the final bitstream, a file similar to an executable binary, it is required to sequentially
execute three distinct processes in Vivado: Synthesis, Implementation and Bitstream Generation.
The Synthesis process in Vivado adopts the Out-Of-Context (OOC) method. This approach
involves synthesizing different hierarchy levels separately from the top-level design. In the
context of this thesis, shown in Figure 5.2, all the components represented by blue boxes will
undergo synthesis using the OOC workflow. This method significantly reduces the compilation
time for subsequent synthesis runs as it only re-synthesizes the modules that are modified,
leaving the rest unaffected. However, there is a crucial aspect that requires careful consideration
during this process: the memory size. Prior to initiating the Synthesis process, Vivado lets
the user to specify the number of cores to be used for the task. Based on this input, Vivado
proceeds to run the OOC Synthesis in parallel. This parallel execution has the potential
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to exhaust the available memory on the working machine, which needs cautious resource
allocation to prevent system overloads.

After the successful completion of the Synthesis process, the HDL code is translated into
a netlist. This netlist is a crucial representation of the design, describing the specific logic
gates and their interconnections, essentially laying out the design’s logical structure. The
subsequent stage in the FPGA design flow is the Implementation phase. This phase is critical
as it translates the logical representation provided by the netlist into a physical layout on
the FPGA hardware. The Place € Route process, a core component of Implementation, is
responsible for mapping the elements of the netlist onto the actual physical components of the
FPGA, such as the logic blocks and switch box interconnections.

Resource | Used Available Util%

LUT 86439 230400  37.52
LUTRAM 850 101760 0.84
FF 211401 460800  45.88
BRAM 3 312 0.96
DSP 300 1728 17.36
BUFG 22 544 4.04

Table 5.1: Resource Utilization of iDCT Kernel

Upon the completion of the Implementation phase, Vivado provides an exhaustive report on
the resource utilization of the FPGA for the given design. This report is displayed in a tabular
format, referred to as Table 5.1. A noteworthy point in Table 5.1 is the considerable utilization
of FFs and Digital Signal Processors (DSPs) in this iDCT design. This high utilization
percentage is due to the calculation programs generated by the hlstool, which may contain too
many operations in the same clock cycle. Additionally, a significant percentage of LUTs are
utilized, a consequence of the data and valid updating checks taking place within the FSM, as
detailed in 4.5.2.

It is important to highlight that the success of the Implementation phase heavily depends on
the availability of sufficient resources on the FPGA board. If the board lacks the necessary
resources to fit the design, the Implementation phase will not succeed, subsequently failing in
the generation of the bitstream.

Upon the successful generation of a design encapsulated in a bitstream file, it’s possible to
export the design into an Xilinx Support Archive (XSA) file. This XSA file is essential because
it contains all the necessary information for building a platform customized for a specific target
device. Subsequent to this exportation, the workflow transitions to the Vitis software, which
can be launched directly from Vivado. Within the Vitis environment, it’s capable to create an
application specifically for the processing system of the ZCU104 board, with the previously
generated XSA file as base.

Figure 5.3 shows the workflow and interactions within the created application. The XSA
package contains various header files, each serving the key role of defining macros, among
which are those denoting memory addresses presently occupied by the system, and useful
functions to utilize in the application design. In scenarios where data is being actively written
to and read from the memory on the processing system, it becomes important to cautiously
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Figure 5.3: Vitis Program Control Flow

select memory addresses that are currently unoccupied by the system to avoid any potential
conflicts or errors. To initialize the DMA module needs a sequential approach, as listed in the
following order:

e Look up configuration: This initial step to use the DMA device ID, as specified in the
header files, is a lookup operation. The result of this operation is a pointer to the DMA
configuration, which is essential for the subsequent steps in the initialization process.

e Initialize with configuration: Armed with the configuration pointer acquired in
the previous step, this phase involves initializing the DMA core. This core is a crucial
component, as it is required for any later interactions with the DMA.

e Disable interrupts: In this final step of the initialization process, interrupts associated
with the DMA are disabled. This is a important, as implementation of this thesis utilizes
the polling mode of the DMA, as opposed to the scatter-gather mode. By disabling
interrupts, a smoother operation in the polling mode is ensured, reducing the risk of
interruptions that could potentially lead to errors or inefficiencies in data transfer.

In the event that the initialization process is unsuccessful, the program is designed to terminate
immediately to prevent any further issues. However, if the initialization is successful, the
program proceeds to write data into the memory at the predefined addresses, and it needs
the caches to be flushed to eliminate any potential errors that may arise. Subsequent to
these initial steps, it’s proceeded to configure the DMA using the XAxi_Dma_SimpleTransfer
function, which applies data transfer in both directions. Once the DMA settings are in place,
the program enters a waiting state, monitoring the DMA device for any signs of busyness. A
non-busy state of the DMA device indicates the completion of data transfers, signaling that

the result data is now stored in the memory.

At this point, it’s important to invalidate the data to make sure that the cache is not
accidentally enabled, which could potentially compromise the integrity of the results. To
gauge the execution time of the kernel under test, a rough estimation technique is employed,
measuring the time elapsed from the moment the DMA begins the data transfer to the instant
it concludes. Utilizing the XTime_GetTime function both before and after setting the DMA it’s
convenient to capture the clock cycle counts, subsequently calculating their difference to obtain
an integer value. This value, when divided by the predefined macro COUNTS_PER_SECOND, yields
the execution time in seconds.

For the purposes of debugging and performance evaluation, the xil_printf function is utilized
to print program status and kernel execution time to the serial debug port. It is worth noting
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that xil_printf is a lightweight version of the standard printf function and does not support
floating-point numbers, which is not used in this case. All the debug information printed
through this function is logged for evaluation in the subsequent section of analysis. Additionally,
the Vitis software provides functionality to export data stored in the memory to a binary file,
a feature used to output the results generated by the iDCT kernel.

5.2 Results

The test program is executed, as discussed in the preceding section, a total of thirty-two times,
recording the time counts and the divider through the serial debug port. Additionally, the
resultant data are exported into binary files utilizing the Vitis software. Remarkably, the data
remained consistent across all test iterations, thereby following the deterministic nature of the
kernel designed using DFG dialect, which is also a essential characteristic of a KPN.
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Figure 5.4: Execution Time on Hardware

Upon conducting an analysis of the results yielded by programs generated using a base C-
program and the FPGA backend of DFG dialect, yet subjected to the same test data, different
sets of completely same results are observed. This finding indicates that the integrity and
correctness of the program is successfully upheld throughout the lowering transformation
processes.

The ARM processor, by default, operates with a clock speed of 100MHz, resulting in a divider
value of one hundred million. Through subsequent calculations, it’s possible to convert the time
measurements into seconds, and by multiplying by one million, the time in microseconds is
obtained, as shown in Figure 5.4a. Across the thirty-two identical tests conducted independently,
the kernel demonstrated an exceptional performance, clocking in at 10.30 microseconds on
the FPGA. Notably, the difference between the maximum and minimum values was a mere
0.11 microseconds, which is a minor deviation in practical applications. The data shown in the
figure makes clear that the execution time for the majority of the tests is around the mean
value, showcasing the robust stability of the iDCT kernel.

Conversely, a evaluation of the performance of the code generated by the CPU backend is
performed on a machine, which CPU is an AMD Ryzen 9 with 12 physical cores and 4.5 GHz
frequency. Employing the same dataset for testing, the results are different from base program
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and FPGA backend. Besides, the performance were less than optimal. As shown in Figure
5.4b, the execution time of this code is quantified at the millisecond level, showcasing a marked
decrease in efficiency when compared to the FPGA backend. It is clearly observable from the
figure that the execution times are distributed between a maximum of approximately 6ms and
a minimum of 1ms. Considering the current erroneous results, there appear to be underlying
issues in the implementation of the provided CPU backend.

Despite these, in the FPGA design, using a Round Robin Distributor introduces a serial part
to the system. This can slow things down, especially if people are dealing with a lot of data or
tasks. To try and speed things up, one might think about adding more DMA IPs, which help
move data between the processing system and iDCT kernel faster. If it’s possible to add as
many as there needs, it could actually make the gap between the CPU and FPGA performance
even bigger. However, it should be conservative considered, since this test has already utilized
a lot resources on the board. As a result, comparing FPGA backend and CPU backend in
this particular scenario, regardless of result consistency, an average speed up of approximately
170x is achieved, even when the frequency of FPGA is much lower than CPU.

This expected significant difference in performance can be because of the architectural
differences between CPU and FPGA. The CPU, being a general-purpose processor, is designed
to handle a broad variety of tasks, but it may not be as proficient in executing specific,
computation-intensive operations as an FPGA. FPGAs, with their concurrent nature and the
reconfigurable hardware, allow for the tailoring of their architecture to optimize the execution
of particular tasks, resulting in much better performance for such applications.
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6.1 Conclusion

In this thesis, we have conducted an extensive exploration of the data flow programming
model and FPGA hardware design. With MLIR, we have investigated various open-source
projects and delved into different design methodologies. The main goal of this research is
the development of an MLIR dialect and its associated FPGA backend, interacting with the
core dialect defined in CIRCT project. This innovative backend is engineered to translate an
abstract representation of a KPN into low-level HDL programs.

To evaluate the effectiveness of this backend, we designed a custom iDCT kernel, combinedly
used with a set of RTL modules and various Xilinx IP cores, implemented on a ZCU104 SoC
board. We conducted a comparison between the FPGA backend and the CPU backend, using
the latter as the benchmark. This analysis focuses on both the computational precision and

performance.

The obtained results clearly demonstrated that, when subjected to identical test kernels and
input data, the FPGA outperformed the CPU in terms of computational efficiency, while
upholding the integrity of the results at the same time. This great performance of the FPGA
can be attributed to its hardware characteristics, which are optimally suited for such concurrent
computational tasks using less power consumption.

In light of these findings, this thesis finds out the potential and viability of the DFG dialect
in abstracting KPNs, as well as its capability to generate target code that is both efficient
and reliable. This work not only showcases the advantages of FPGA in specific computational
scenarios but also lays a solid foundation for future research and development in this domain,
setting the base of more innovative and optimized hardware-software co-design strategies.

Despite the promising potential demonstrated by our DFG dialect in simplifying the construction

of KPN models and its flexibility in deployment across different hardware platforms, there are
several aspects for further exploration and development that needs optimization as well.
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6.2 Future Work

In the pursuit of enhancing the flexibility and performance of the DFG dialect, we have identified

several potential areas of future work. Each of these aims to extend the capabilities of the DFG

dialect, ensuring its applicability in a broader range of scenarios and improving its integration

with existing tools and hardware components.

Pull — Calculation — Push: The current semantics of our dialect limit the scenarios
that can be described, particularly when it comes to pulling data from channels within
a specific region of an upstream operation, such as an scf.for loop. To overcome this
limitation, it is crucial to introduce intrinsic operations into our intermediate operation
set. This will simplify the analysis and transformation of control flow, similar to what is
achieved through handshake dialect.

Compatibility with Xilinx IP: To better integrate with Xilinx IP, we need to refine
the lowering transformation process from our operations to the hardware module. This
includes addressing issues such as the activation of the falling edge of the reset, modifying
close and done signals of lowered modules to adjust the tlast signal usage, and possibly
generating scripts to automate the production of circuits in Vivado and control code of
processing system in Vitis.

Parameterizable Queue Module: By making our queue module more flexible and
parameterizable, we can enable its instantiation at the top module level with various
parameters. Achieving this will require utilizing the 'hw.int<size> type and parameter
semantics of HW dialect.

Integration with BASE2 dialect: The BASE2 dialect [FBC23| aims to provide abstraction
of arbitrary precision arithmetic. When paired with our DFG dialect, which can be used
to generate custom computation kernels, the potential for BASE2 is greatly amplified.
The integration of DFG dialect could lead to a robust framework capable of handling
a wide variety of computational tasks. However, given that MLIR is rapidly evolving,
careful attention must be paid to version control to ensure seamless integration with our
CIRCT-based dialect.

Support for Single-Rate Operator: Introducing support for single-rate operators
could enhance flexibility and potentially improve performance. While our current design
ensures integrity and correctness for multi-rate operators, single-rate operators could
benefit from unordered pull or push operations, triggered as soon as the data is ready.
This approach needs additional logic in the FSM and new types or attributes to the DFG

dialect specification.

By addressing these areas, we are confident that the DFG dialect can go beyond its current

status as a research project, potentially becoming an integral part of the CIRCT project or

any others that could take advantage of our design. The journey towards these improvements

promises to be both challenging and rewarding, with the potential to significantly impact the

field of data flow programming and FPGA hardware design.
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