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Abstract—Dynamic Partial Reconfiguration (DPR) can be
used for time-sharing of computing resources within Partially
Reconfigurable Regions (PRRs) in FPGA-based systems. The
heterogeneous partitioning in such systems allows the user to ex-
ploit the application-specific mapping of Partially Reconfigurable
Modules (PRMs) to PRRs to implement more efficient designs.
It offers increased opportunities in optimizing the reliability of
the system across multiple layers — from the low-level physical
one to the higher application layer. This method, called cross-
layer reliability, can potentially exploit the application-specific
tolerances to the quality of service (QoS) to tackle the increasing
device fault-rates more cost-effectively by distributing the fault-
mitigation to different layers. In this work, we propose a QoS-
aware cross-layer reliability-integrated design methodology for
FPGA-based DPR systems. Specifically, our methodology ana-
lyzes the requirements of the applications in terms of Functional
Reliability, System Lifetime and Makespan to determine the best
possible combinations of reliability-oriented design choices in
different layers. We report up to an average of 24% and
30% performance improvements for single and multi-objective
optimization-based system partitioning.

Index Terms—Cross-layer Reliability, Dynamic Partial Recon-
figuration, Field Programmable Gate Arrays, Embedded Systems

1. INTRODUCTION

The rapid developments in embedded technology have en-
abled the usage of smart devices in the majority of home and
workspace appliances. Such systems are also expected to be
flexible enough to adapt to changes in operating environments
such as performance and dependability requirements. Recon-
figurable systems, specifically FPGAs, along with Dynamic
Partial Reconfiguration (DPR) [1], have emerged as a key
concept to cope with such diverse application requirements.
Technology scaling and architectural innovations have been the
driving force behind this increasing ubiquity of FPGA-based
embedded systems. However, these approaches have also led
to an increased Soft Error Rate (SER) and aging-related fault-
rates in logic circuits [2, 3].

In contrast to traditional phenomenon-based approach using
hardware-only mitigation methods such as uniform Triple
Modular Redundancy (TMR), Error Correcting Codes (ECC)
etc., the cross-layer reliability (CLR) approach involves dis-
tributing fault-mitigation activities across multiple layers of
the system stack [4]. Such an approach results in a reduced
fault-mitigation effort at hardware layer leading to more cost
effective designs. Implementing an optimal CLR-integrated
system-design methodology requires efficient design space
exploration (DSE) for design decisions related to selection and
configuration of reliability methods across different layers of
the system stack.
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Further, designing for varied quality of service (QoS) re-
quirements — Makespan, Functional Reliability and System
Lifetime — can pose different and contrasting constraints on
the system. The joint optimization of CLR and QoS-aware
design can lead to a considerable increase in the design space
of DPR-based systems.

In the reconfigurable platforms, DPR allows time-sharing
of reconfigurable resources. It helps to improve the available
parallelism which can be leveraged to reduce the makespan
and/or increase the system lifetime by distributing the wear-
out across different Partially Reconfigurable Regions (PRRs)
[5]. However, the effectiveness of such an approach depends
on the available redundancy in the system which is determined
during the system partitioning at design-time. Most of the
research into DPR-based system design has been focused
on homogeneous PRRs where each PRR can accommodate
any Partially Reconfigurable Module (PRM). However, due to
the limited reconfigurable resources available in a system, a
homogeneous PRR-based approach may not be feasible for
every application.

Given the explosion in design space due to CLR, QoS-
awareness, and PRR heterogeneity, we propose a novel design
methodology for CLR-integrated DPR system design that
leverages the application specific tolerances to degradation in
one or more QoS metrics. Our contributions are listed below.
Contributions:

e We propose a design methodology for implementing CLR

in FPGA-based DPR systems. Specifically, we provide a
DSE approach that can incorporate the effect of distribut-
ing multiple reliability methods across different layers
of the system stack — Hardware, System Software, and
Application Software.
We propose a methodology for system partitioning in
heterogeneous PRR-based systems that integrates CLR
implementation. Specifically, we partition the available
reconfigurable resources into the application’s QoS-aware
heterogeneous PRRs.

The rest of the paper is organized as follows. In Section II
we provide a background of CLR and DPR and briefly survey
related work. We describe the system model and estimation
methods for the QoS metrics in Section III. The proposed
methodology for DPR-based system design is explained in
Section IV. In Section V we discuss the results of the evalua-
tion of the proposed methodology. We conclude the paper in
Section VI with a brief summary and discussions on the scope
for related future work.



II. BACKGROUND AND RELATED WORK

For all intents and purposes in the current article, we express
the QoS requirements of an embedded systems in terms of
(1) functional reliability — the probability of correctness in
computation results, (2) average makespan — the average time
taken for execution of an application and (3) system lifetime —
the expected duration of predictable fail-free system operation.
Additional metrics, such as power and energy, can be easily
integrated into our methodology.

A. Cross-layer Reliability

In contrast to the single-layer phenomenon-based design ap-
proach, the cross-layer approach provides a more application-
specific and cost-efficient method for QoS-aware system de-
sign. As discussed in [6], implementing separate fault toler-
ance stages at different layers can result in reduced power
and area overheads. Further, distributing fault tolerance tasks
to higher layers enable the designer to take advantage of the
masking effects of more layers [7]. For reconfigurable systems,
CLR-based runtime adaptation approaches were proposed in
[8, 9]. While in [9], the authors propose a methodology to
adapt to changes in the operating environment by switching
between spatial and temporal redundancy-based methods, in
[8] a reactive approach to detect and mitigate the effect of
SEUs is proposed.

B. Dynamic Partial Reconfiguration

DPR offers a method for mitigating permanent faults [35,
10, 11]. Most of the proposed approaches for reliability im-
provement focus on increasing system lifetime by pro-actively
reducing the stress on PRRs by both design-time and run-
time methods. In [11], a cross-layer aging-aware placement
method for accelerators in FPGA-based runtime reconfigurable
architectures is proposed. The described methodology involves
module diversification, as proposed in [10], during synthesis
and stress-aware placement at runtime to reduce wear-out.
Similarly, in [5], the authors use scheduling and system
partitioning to improve system lifetime by wear-leveling and
providing more redundancy to PRMs that induce faster aging.

Most of the state-of-the-art CLR techniques overlook the
application-specific QoS requirements [12—14]. Further, most
research works for CLR implementation in FPGA-based sys-
tems do not consider multiple QoS metrics and only focus
on runtime adaptation. Similarly, the majority of the proac-
tive approaches to system partitioning of DPR-based systems
assume homogeneous PRRs. Such an assumption simplifies
the PRM to PRR mapping and reduces the complexity of
designing application-specific reliability. However, as shown
in [5], if the PRMs have a large variation in their resource
requirements, this approach can lead to degradation in results.
Further, the effect of transient errors on the application and
the corresponding effects of using different fault mitigation
methods on system lifetime have not been investigated in
related research.

III. SYSTEM MODEL

A. Architecture model

We use a PR-HMPSoC architecture [15] architecture model
similar to that used in related works [5, 16].

B. Application model

We model the application as a task-graph represented by
the tuple Gopp  (Tapp, Eapps Papp), the set of task nodes,
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TABLE I: Cross-layer Reliability Model

Abstraction  Redundancy Sample Task-level Performance
Layer Type Methods Metrics of Impl, i
| Hardware | Spatial | HWFM | E‘e;(grce req;;i;;rzs\n;s: H.w);(é 17’)) |
‘ ‘ Partial TMR, | <7780 BAAMS @0, 080,05 ‘
Partial DMR Mini 1 execution time: MinExT(; ;)
| System | Tempora | SSWFM | |
N poral ) P
‘ Software Scrubbing, ‘ Average execution time: AvgExT(, ;) ‘
Checkpointing, Probability of error during
| Application | Information | ASWFM | execution: ErrProb ;) |
Software P —
?\;‘;jls‘;g;‘;l‘; Mean time to fui!ur.s: ]Y’[TTI:‘(“)
‘methods Average power dissipation: W, ;)

TABLE II: System-level QoS Metrics Estimation

Metric

Estimation Method

Average Makespan
(Sapp)
Lifetime Reliability

)

Sapp = _max {SeT,}
PP Ty €Tapy t

Papp
AvgBaecT(y
&2 MTTF(,

prrMTTEF, =

(Lapp) ()

min

Lapp = MTTFgys = N

(prrMTTE})

Functional Reliability
Fi =1— ErrProby ;),

where Impl(, ;) is used for Tj
Fapp = Z Ft X Gt

T,eT

where (i

(Fapp) (3)

Normalized criticality of Ty

the directed connectivity of the nodes representing task de-
pendencies, and the periodicity of the application respec-
tively. Each task T; € 1T,,, is represented by the tuple
(ID¢, Typey, Impl;): denoting the task index, the function-
ality and the set of implementations of the task respectively.

Each i*" implementation of T}, I mpl(q € Imply, repre-
sents a possible choice of PRM for the task. These choices
may result due to variations in the algorithm implemented for
the task’s functionality and the CLR configuration.

C. Cross-layer Reliability Model

For our current work, we consider fault-mitigation methods
across three layers — Hardware (HWFM), System Software
(SSWFM) and Application Software (ASWFM).

1) Hardware-based Fault Mitigation (HWFM): Improving
reliability at the hardware layer usually involves some form
of spatial redundancy. Partial Triple Modular Redundancy
for fault-mitigation and Partial Dual Modular Redundancy for
fault-detection are examples of such methods.

2) System Software-based Fault Mitigation (SSWFM): One
of the most common fault-mitigation approaches at the system
software level is to utilize the temporal redundancy tech-
niques such as Checkpointing with rollback/forward recovery
[17]. Additionally, Scrubbing [18], with corresponding timing
and power overheads, can affect the reliability of SRAM
FPGA-based systems.

3) Application Software-based Fault Mitigation (ASWFM):
For the application software layer, we consider methods that
are usually application-specific and try to vary the levels
of information redundancy to obtain different task-level
performance metrics [19], as described in TABLE 1.

D. System-level QoS Metrics Estimation

For any given execution schedule, the relevant system-level
QoS metrics are estimated as shown in TABLE II.
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Fig. 1: Overall Design Methodology

IV. QOS-AWARE CROSS-LAYER RELIABILITY-BASED DPR
SYSTEM DESIGN METHODOLOGY

The overall proposed design methodology is shown in
Fig. 1. The design steps are categorized into two phases.
The first phase, Application-specific DSE, involves task-level
exploration to determine the set of Pareto-front design points
w.r.t. the multiple task-level performance metrics. Each Pareto
point represents a set of cross-layer reliability configuration
applied to the implementation choices for the task. In the
second phase, System-level DSE, the appropriate partitioning
and scheduling strategies of PRMs to PRRs are explored for
both heterogeneous (HetDPR) and homogeneous (HomDPR)
DPR system. It also analyses the set of Pareto-front points
generated after the Application-specific DSE phase to find the
suitable PRMs for each task. The design steps associated with
each phase are briefly described below.

A. Application-Specific DSE

1) Application Analysis: This step estimates the tolerable
limits to task-level performance metrics.

2) Layer-wise Pareto-filtering: This stage involves succes-
sive stages of DSE to find the Pareto-point implementations
w.r.t. the task-level metrics, shown in TABLE I, for each task
type. As shown in Fig. 1, the DSE for each layer involves using
the Pareto-point implementations from the previous layer’s
DSE, the results from application analysis and the models of
the reliability methods in the current layer as inputs.

B. System-Level DSE

We design a QoS-aware scheduling methodology and add
additional constraints for available reconfigurable resources in
the system to implement system partitioning.

1) PRM-PRR Scheduling in DPR-based Systems: Opti-
mization of CLR-integrated PRM-PRR scheduling involves
executing the appropriate PRM with optimal CLR configura-
tions on an appropriate PRR at the right time for each of the
tasks in the application. Given the set of implementations for
each task, obtained from the application-specific DSE phase,
this translates to scheduling the right implementation for each
task on the available PRRs. We use Genetic Algorithms (GA)-
based QoS-aware multi-objective scheduling optimization for
both HetDPR and HomDPR systems.

2) System Partitioning for DPR-based Systems: System
partitioning of the DPR-based system involves creating an
optimal number of PRRs with appropriate resources allocated
to each of them. The various implementations for each task,
I'mpl(; s, obtained from application-specific DSE, may vary
in their reconfigurable resource requirements, Rsrc( ;). For
a HomDPR system, resource allocation for each PRR must
satisfy the resource requirements of every implementation.
Hence, PRMs with higher Rsrc(; ;) than that available for
creating the specified number of PRRs are filtered out. This
may lead to degraded system-level performance. In contrast,

Pareto-front
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Fig. 2: Distribution of task-level performance metrics of
noF'M, hwF M and clr F'M implementation sets for each IP.

for the HetDPR systems, the resource allocations for each PRR
is allowed to vary from that of other PRRs, and hence all
the implementations can be used during the optimization for
PRM-PRR scheduling.

V. EXPERIMENTS AND RESULTS

A. Experiment Setup

The experiments were run on a computer with two CPUs —
Intel”™ Xeon™™ E5-2609 v2 @ 2.50GHz (each CPU is quad-
core) and 32 GB of memory running Ubuntu 18.04 LTS 64-bit.
The results are reported for FPGA-based systems implemented
on Virtex-6 XC6VLX240T. However, the proposed methodol-
ogy is generic for all Xilinx FPGAs. The DSE methodologies
were implemented in Python using the DEAP [20] package
for GA. Probability parameters of 0.7 and 0.1 were used for
crossover and mutation respectively. Optimization experiments
were conducted for synthetic task-graphs generated using Task
Graphs For Free (TGFF) tool [21]. The number of tasks in the
task-graphs was varied between 10 to 100 in increments of
10. Additionally, 10 real-world hardware accelerators from the
CHStone benchmark [22] were used to represent the task type
for the constituent tasks. Models of the methods mentioned in
Section III-C, based on [17, 23] were used for CLR.

B. Layer-wise Pareto-filtering

The application-specific DSE phase of the proposed
methodology involved generating a set of successively Pareto-
filtered implementation set for each task type, Type;. Three
sets of implementations types were used in the experiments —
noF M, hwF M, and clrF'M - representing the PRMs with
no additional fault-mitigation, only HWFM-based and cross-
layer fault-mitigation respectively. The relative distribution of
the resulting metrics — ErrProb ; and AvgExT, ;- for
the IPs of CHStone benchmark used in the experiments are
shown in Fig. 2. The values on the horizontal axis represent
the number of implementations in the corresponding set. Using
CLR resulted in a higher number of Pareto implementations
and a larger variation in the task-level metrics.



TABLE III: Optimization problems used for evaluation

Single Objective

Multi-objective

Symbol  Description | Symbol Description
Os min Sapp Or.F maz Lapp, max Fapp
O, maz Lapp | Os 7 ~ min Sapp, maz Fapp
Oan min Sapp, max Lapp, max Fapp
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Fig. 3: Comparing Pareto fronts in an application with 40 tasks
C. Evaluation of System Partitioning Methodology

The different set of implementations obtained from the
application-specific DSE phase were used in the system parti-
tioning experiments. We investigated the impact of — (1) Im-
plementing cross-layer reliability (2) PRRs’ heterogeneity — on
design complexity and resulting performance of the proposed
methodology. The experiments for evaluating the proposed
QoS-aware system partitioning methodology involved compar-
ing the results across 5 different optimization problems — 2
single-objective and 3 multi-objective — shown in TABLE III.

1) Effect of Cross-layer Reliability: The use of CLR-
integrated implementations resulted in an average of up to
13.5%, 29.9% and 34.2% improvements in the hyper-volume
in Os 7, Or,7 and Oy respectively. Fig. 3 shows the
resulting Pareto-fronts for an application with 40 tasks. The
clr F'M approach results in considerably improved metrics for
both objectives in 2-objective optimization.

2) Effect of PRR Heterogeneity: The average performance
improvement in the optimization problems using HetDPR
systems over HomDPR ones are shown in TABLE IV. The
subscript in single-objective optimization results denotes the
corresponding average increase in the number of PRRs in the
DPR system of the optimization solution. The experiments
were performed for both hwF M and clrF M-based opti-
mization. The corresponding results for the 10 applications
with an increasing number of tasks for all the optimization
problems are shown in Fig. 4. The amount of improvement is
positively correlated to the additional number of PRRs (AR)
in the HetDPR system optimization over that in the HomDPR
systems. These AR values for each application are shown in
the bar-charts.

VI. CONCLUSION

CLR provides a cost-efficient approach for tolerating the
increasing susceptibility of hardware to physical faults. Simi-
larly, DPR provides an attractive methodology for time-sharing
of reconfigurable resources for adapting to varying demands
of embedded system applications. A QoS-aware design ap-
proach that can leverage both these techniques and exploit the
application-specific tolerances to one or more QoS metrics can
result in highly efficient system designs. A methodology for
efficient joint optimization across all these factors in FPGA-
based DPR systems was proposed. We report up to an average
of 24% and 30% performance improvements for single and
multi-objective optimization-based system partitioning.
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TABLE IV: Average Performance improvements with HetPRR
systems for hwF' M and clr F'M implementations

Problem Single Objective Multi-objective
Type (in average %Aqa ) | (in average %Ahyper — volume)
| Impl Type | Os | Or | Os,7 | OgF | Ouaun \
| hwFM | 19617 | 43121 | 115 | 354 | 48.0 |
| drFM | 17000 | 2395 | 47 | 226 | 29.6 \
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