
ADAPTIVE: Agent-Based Learning for Bounding
Time in Mixed-Criticality Systems

Behnaz Ranjbar, Ali Hosseinghorban, and Akash Kumar, Senior Member, IEEE
Chair of Processor Design, CFAED, Technische Universität Dresden, Dresden, Germany

{behnaz.ranjbar, akash.kumar}@tu-dresden.de, ali.hosseinghorban1394@sharif.edu

Abstract—In Mixed-Criticality (MC) systems, the high Worst-
Case Execution Time (WCET) of a task is a pessimistic bound,
the maximum execution time of the task under all circumstances,
while the low WCET should be close to the actual execution time
of most instances of the task to improve utilization and Quality-of-
Service (QoS). Most MC systems consider a static low WCET for
each task which cannot adapt to dynamism at run-time. In this
regard, we consider the run-time behavior of tasks and propose
a learning-based approach that dynamically monitors the tasks’
execution times and adapts the low WCETs to determine the ideal
trade-off between mode-switches, utilization, and QoS. Based on
our observations on running embedded real-time benchmarks on a
real platform, the proposed scheme improves the QoS by 16.4%
on average while reducing the utilization waste by 17.7%, on
average, compared to state-of-the-art works.

Index Terms—Mixed-Criticality, Mode Switching Probability,
Machine Learning, Service Adaptation, WCET Analysis.

I. INTRODUCTION

Mixed-Criticality (MC) systems integrate a large number of
real-time tasks with different criticality levels onto a common
hardware platform to meet stringent requirements such as cost,
space, and timing [1]–[4]. Medical devices, automotive, and
avionics are the most common safety-critical applications,
evolving into MC systems [2], where the successful execution
of tasks with Higher-Criticality levels (HC tasks) must be guar-
anteed in all circumstances to prevent catastrophic damages,
while a higher number of Low-Criticality (LC) tasks should be
executed to improve service requirements (i.e., Quality-of-
Service (QoS)) and consequently, the processor utilization [3].

From the MC tasks’ execution times perspective, multiple
WCETs are determined corresponding to the multiple criticality
levels [1]–[5]. A well-known type of MC system is a dual-
criticality system (consisting of LC and HC tasks) in which
two WCETs (low (𝐶𝐿𝑂) and high (𝐶𝐻𝐼)) are determined. The
𝐶𝐻𝐼 of a task is a pessimistic bound, the maximum execution
time of the task under all circumstances. However, this bound
is high, and considering it to schedule the tasks leads to poor
processor utilization and QoS (i.e., fewer LC tasks can be
scheduled) [3]. To this end, MC systems consider a 𝐶𝐿𝑂 for
HC tasks that should be close to the actual execution time of
most task instances to improve utilization and QoS. At run-
time, the system starts its operation in low-criticality mode (LO
mode), and if the execution time of at least one HC task exceeds
its 𝐶𝐿𝑂, the system switches to the high-criticality mode (HI
mode). To guarantee the correct execution of HC tasks in HI
mode, 𝐶𝐻𝐼 are considered to schedule HC task. Since HC
tasks may execute longer in HI mode compared to LO mode,
the LC tasks are dropped/degraded to their minimum service
requirements to guarantee the correct execution of HC tasks
before their deadlines [2], [5], [6].

As can be realized, the low WCETs (𝐶𝐿𝑂) play an important
role in improving the MC system’s QoS. Determining the high

This work is supported by a grant from Software Campus through the
German Federal Ministry of Education and Research, under the project SARA:
Safety-Aware Relocation of functions in a multi-core computer Architecture.

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)
Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100

(a) Input video with few objects to
detect

0
0.1
0.2
0.3
0.4
0.5
0.6

1 41 81 121 161 201 241Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 5 10 15 20 25

Absolute Frequency(#)
0 5 10 15 20 25

0
0.5

1
1.5

2
2.5

1 101 201 301 401 501Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

Frame ID

0 25 50 75 100

Absolute Frequency (#)
0 25 50 75 100

Ac
tu

al
 E

xe
cu

tio
n

Ti
m

e
(s

)

(b) Input video with few and many
objects to detect

Fig. 1: Execution time values for two different time recording videos as input
for Object Detection function during run-time and their time distribution. This
figure shows that both aspects of run-time and design-time behavior should be
considered in MC system design and task properties determination.

values for 𝐶𝐿𝑂s can minimize the mode switches but reduce the
processor utilization due to scheduling fewer tasks. On the other
hand, the utilization can be maximized by determining the
low values for 𝐶𝐿𝑂s, but with a high number of mode switches,
which is not desirable. Although there are many approaches like
what is presented in [7] and tools like OTAWA [8] to determine
the 𝐶𝐻𝐼 , there are few approaches for determining the 𝐶𝐿𝑂s
in MC systems. These few approaches [1], [3], [5], [6] analyze
the tasks at design-time, and set the constant WCETs for tasks
in LO mode, which remain unchanged during run-time. Such
static techniques can cause significant performance loss for LC
tasks or processor under-utilization if the 𝐶𝐿𝑂s are not close
to actual execution times. In general, the actual execution time
of tasks depends on their input values. Due to the spatial or
temporal correlation in the input data stream like video, the
execution times of the tasks are often temporally correlated.

Motivational Example: Fig. 1 shows the computational times
of the object detection function running on the ODROID XU4
board powered by ARM Cortex A7. Note that the object de-
tection function is one of the main functions in an autonomous
driving application – an MC system. For input, videos from
a road camera in the two different time slots, converted to
motion jpegs, are given to the function of detecting cars on
the road. The videos were recorded for a period of time when
it experienced both light and heavy traffic. Fig. 1 shows how
the computation times of detecting objects vary during run-
time. The computation time values in this function depend
on the number of objects to be detected. As we can see,
the times of multiple jpeg images are clustered due to the
temporal correlation between the subsequent inputs presented to
the application. For this example, static approaches such as the
one presented in [1], [3], [5] set the static 𝐶𝐿𝑂, considering
the execution time of the majority of instances. This static
WCET works fine for some time, but it may lead to frequent
mode switches when there are many objects to detect (e.g.,
heavy traffic) or poor utilization when there are few objects to
detect in this function (e.g., light traffic). As a result, propos-
ing an adaptive scheme to determine 𝐶𝐿𝑂 dynamically may
significantly improve the mode switches, QoS, and utilization.
Therefore, the system’s run-time behavior can be investigated

https://cfaed.tu-dresden.de/pd-research/sara
https://cfaed.tu-dresden.de/pd-research/sara

TABLE I: A brief overview on the state-of-the-art MC approaches.

Related Works Dynamic 𝐶𝐿𝑂 Design/Run Use of
QoS-Aware Adjustment Time ML

1 Baruah’12 [1], Liu’18 [5] × × ✓/× ×
2 Ranjbar’21 [3] × ✓ ✓/× ×
3 Gu’16 [4], Gu’18 [11]

Hu’19 [12] × ✓ ×/✓ ×
4 Su’16 [6] ✓ × ×/✓ ×
5 Ranjbar’22 [13] ✓ × ×/✓ ✓
6 ADAPTIVE ✓ ✓ ✓/✓ ✓

by monitoring the execution times and adjusting 𝐶𝐿𝑂.
In this work1, we propose a novel learning-based run-time

scheme for determining 𝐶𝐿𝑂 to 1) effectively reduce the
system mode switches, 2) have high processor utilization and,
consequently, a high value of QoS, 3) guarantee the system to
be schedulable in each criticality level, 4) not be affected and
varied by sudden changes of execution times. To the best of
our knowledge, there is no method yet to determine 𝐶𝐿𝑂 of
MC tasks at run-time based on the behavioral system changes
while making a trade-off between the QoS and mode switches.

Contributions: The main contributions of this paper are:
• Presenting a novel adaptive scheme to analyze and obtain

the low WCETs (𝐶𝐿𝑂) of MC tasks at run-time, and
manage the mode switching probability and QoS.

• Proposing a learning-based mechanism, called ADAP-
TIVE, to design an adaptive MC system, and improve its
timing behaviour at run-time.

• Presenting a dynamic QoS-aware scheduling algorithm
to improve the results’ quality at run-time based on the
system changes, while guaranteeing the minimum service
of LC tasks, even in the HI mode.

The rest of this paper is organized as follows. In Sections II
and III, we provide an overview of related works, and the MC
task and system operational models, respectively. The proposed
scheme is explained in Section IV. Then, we analyze the
experiments and conclude in Sections V, and VI, respectively.

II. RELATED WORKS

In the last decade, a significant number of papers have been
published in MC system design and task scheduling. Burns
and Davis [2] provided a comprehensive study in this field;
however, in this section, we mostly focus on the works with the
objectives of dynamic QoS improvement and WCET analysis
at both design- and run-time, which are summarized in Table I.

Many recent papers have designed the MC systems by setting
the 𝐶𝐿𝑂 at design-time which is not changing during the run-
time (row 1 of Table I). As an example, in [1], [5], [10], the
𝐶𝐿𝑂s are set as a percentage of 𝐶𝐻𝐼s. These estimations are not
accurate since WCET and actual execution times do not always
have a linear relationship. In addition to this, researchers in [3]
have recently proposed an approach to determine the 𝐶𝐿𝑂s
theoretically by using Chebyshev’s theorem (row 2). In this
paper, the author assumed that the inputs are random. However,
in many applications which interact with the environment, the
input remains the same for a while. So, since their approach
is static, it cannot adapt to actual execution times at run-time.
Besides, a few studies such as [4], [11], [12] (row 3) have
focused on determining the 𝐶𝐿𝑂s at run-time, based on their
overall processing requirements and actual execution times.
However, the goal of these methods is to postpone the mode
switches for a long time while only guaranteeing a minimum
QoS for LC tasks.

1An extended abstract of this article has been published in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2023, with the title
‘Motivating Agent-Based Learning for Bounding Time in Mixed-Criticality
Systems’ [9].

Some works such as [6], [13] (row 4) have considered the
𝐶𝐿𝑂 as a percentage of 𝐶𝐻𝐼 and improved the QoS at run-
time by exploiting the accumulated dynamic slack generated
by early completion of HC tasks. Since the dynamic slack is
considered as a wrapper task with a deadline [6] and cannot be
used anytime, these approaches do not use system utilization
optimally to improve the QoS.

Therefore, a run-time system investigation and WCET anal-
ysis of MC tasks is needed to improve the confidence in WCET
values, service adaptation, and utilization [2]. In this work,
we propose an adaptive scheme based on machine-learning
techniques to not just analyze the WCETs in LO mode but also
monitor and control the system’s behavior at run-time to make
an ideal trade-off between processor utilization, QoS, and mode
switches with the assumptions made during static analysis.

III. MIXED-CRITICALITY TASK MODEL

We consider real-time MC applications consisting of pe-
riodic independent tasks, executed on a preemptive uni-
processor. Analogous to [1], [3], [5], [10], a dual-criticality
system is considered, in which a number of independent MC
tasks {𝜏1, 𝜏2, ..., 𝜏𝑛} are executed. Each task 𝜏𝑖 is characterized
as {Z𝑖 , 𝐶𝐿𝑂

𝑖
, 𝐶𝐻𝐼

𝑖
, 𝐷𝑖 , 𝑇𝑖}, where:

• Z𝑖 denotes the criticality level of 𝜏𝑖 (Z𝑖 ∈ {𝐿𝐶, 𝐻𝐶})
• 𝐶

𝐿𝑂 (𝐻𝐼)
𝑖

denotes the WCET of 𝜏𝑖 in the LO (HI) mode
• 𝐷𝑖 and 𝑇𝑖 denote the deadline and period of 𝜏𝑖 , respectively,

where 𝐷𝑖 = 𝑇𝑖 in this article, analogous to [3], [5], [10]
In these MC systems, analogous to most of MC works, for

each HC task, 𝐶𝐿𝑂
𝑖

≤ 𝐶𝐻𝐼
𝑖

. Since we use the task utilization
values to check the MC task schedulability on processor, the
utilization of task 𝜏𝑖 at criticality mode LO (HI) is defined as
𝑢𝐿𝑂
𝑖

= 𝐶𝐿𝑂
𝑖

𝑇𝑖
(𝑢𝐻𝐼

𝑖
= 𝐶𝐻𝐼

𝑖

𝑇𝑖
).

Initially, the system starts its operation in LO mode, where
all HC tasks and LC tasks must be executed successfully before
their deadlines. In this mode, if the execution time of at least
one HC task exceeds its 𝐶𝐿𝑂, the system switches to the HI
mode. In this HI mode, the LC tasks are dropped/degraded to
their minimum service requirements to guarantee the correct
execution of HC tasks before their deadlines. If there is no
ready HC task in the processor’s queue, the system switches
back safely to LO mode [1], [3], [5]. From the perspective
of LC tasks’ service adaptation, the QoS can be adjusted by
controlling the rate of LC tasks’ execution, i.e., the tasks’
periods. In general, the system should release and execute the
LC tasks by considering their actual period to improve the QoS
and functionality with high precision of outputs [6]. The QoS
is defined as

𝑛𝑠𝑐ℎ𝑑
𝐿𝐶

𝑛𝑚𝑎𝑥
𝐿𝐶

[13], [14], where 𝑛𝑠𝑐ℎ𝑑
𝐿𝐶

and 𝑛𝑚𝑎𝑥
𝐿𝐶

are the
number of LC tasks, that can be scheduled, and the number
of all LC tasks in the system, respectively. Note that 𝑛𝑚𝑎𝑥

𝐿𝐶
corresponds to the state that all LC tasks can regularly release
with their actual period. Therefore, the minimum QoS can be
employed by releasing the LC tasks with a larger period.

IV. PROPOSED METHOD: ADAPTIVE
The goal of the proposed scheme is to improve QoS as

the system utilization while reducing the number of mode
switches (𝑀𝑆𝐻𝐶) at run-time. The 𝐶𝐿𝑂 values of HC tasks
have a crucial role in improving the system objectives. There-
fore it is a challenge to set 𝐶𝐿𝑂 for each HC task to draw
a trade-off between the objectives: system utilization and the
number of mode switches. To address the challenge, we monitor
the run-time execution times of HC tasks and adapt their 𝐶𝐿𝑂

at run-time to achieve a higher QoS while having fewer mode

switches based on the variation in execution times due to the
input and environmental changes. Fig. 2 shows an overview
of ADAPTIVE, which consists of design- and run-time phases.
Here, the task schedulability must be guaranteed at both phases,
and the 𝐶𝐿𝑂 adaptation is done at run-time. In the following,
we explain them in detail.

A. Design-Time Exploration
To analyze and schedule the HC and LC tasks in the system,

first, the WCETs, required by the tasks must be obtained. Here,
the 𝐶𝐻𝐼 of HC tasks are computed by using the OTAWA
tool [8], which provides a safe and conservative execution time-
bound. The WCETs of LC tasks can also be determined by
using the OTAWA. In addition, to obtain the initial 𝐶𝐿𝑂, we
run the benchmarks with various data set inputs and set the
maximum value of these actual execution times, as 𝐶𝐿𝑂 for
each HC task. These analyzed data have been used to check
the task schedulability by the Utility Checker Unit, which is
shown in the design-time phase of Fig. 2.

In this paper, the existing MC scheduling technique, EDF-
VD [1], [3], [5] (which has been used in many studies in the last
decade), is applied. However, the proposed scheme is applicable
to any scheduling algorithm. If 𝑈𝑘

𝑙
denotes total utilization of

tasks with the same criticality level 𝑙 (𝑙 ∈ {𝐿𝐶, 𝐻𝐶}) in the
mode 𝑘 (𝑘 ∈ {𝐿𝑂, 𝐻𝐼}), where 𝑈𝑘

𝑙
=
∑

𝑖∈{𝐿𝐶,𝐻𝐶 }
𝐶𝑘

𝑖

𝑇𝑖
, Eq. (1)

must be satisfied to guarantee schedulability by EDF-VD. This
equation presents the necessary and sufficient conditions to
guarantee the task schedulability in both LO and HI modes and
meeting the deadlines, even if the system switches to the HI
mode [5], [14]. The utilization (𝑈𝑀𝐶) which is the maximum
value of two phrases shown in Eq. (1), must be always less than
one in EDF-VD, which is checked by Utility Checker Unit.

𝑈𝐿𝑂
𝐻𝐶 +𝑈𝐿𝑂

𝐿𝐶 ≤ 1 & 𝑈𝐻𝐼
𝐻𝐶 +𝑈𝐻𝐼

𝐿𝐶 +
𝑈𝐿𝑂

𝐻𝐶
× (𝑈𝐿𝑂

𝐿𝐶
−𝑈𝐻𝐼

𝐿𝐶
)

1 −𝑈𝐿𝑂
𝐿𝐶

≤ 1

(1)
B. Run-Time Adaptation

The crucial research questions that should be addressed in the
run-time phase are: 1) How to vary 𝐶𝐿𝑂 of HC tasks with no
adverse effect on meeting the other tasks’ deadlines, 2) How to
design a scheme for determining the 𝐶𝐿𝑂 at run-time, to not be
affected and varied by sudden changes of execution times, 3)
How to design a scheme with low timing overheads during run-
time to have no impact on task scheduling and deadline misses,
4) What are the best 𝐶𝐿𝑂 for the tasks to effectively keep the
system away from mode switching while having high processor
utilization and consequently, a high QoS value. Following the
above questions, machine learning techniques can effectively
help to design an adaptive MC system to make a reasonable
trade-off between the objectives according to environmental
changes (i.e., input values variation).

At run-time, MC tasks are executed on the platform, con-
trolled by MC Task Scheduler Unit on the OS, shown in Fig. 2.
The system monitors the tasks from two aspects:
1) Each task execution finishes or not: The actual execution

times are stored in the case of complete execution. Besides,
in the case of task overrun, the system switches to HI mode,
and MC Task Scheduler Unit executes HC tasks by con-
sidering their 𝐶𝐻𝐼 and LC tasks with their 𝑄𝑜𝑆𝑚𝑖𝑛. The
Processor Queue Checker Unit keeps track of the processor
queue when the system can switch back to LO mode.

2) The system reaches the task set hyper-period or not: At the
end of each hyper-period, the agent starts its operation by
employing the data like actual execution times, the number

Run-Time PhaseDesign-Time Phase

LC
Benchmarki

HC
Benchmarki

OTAWA

14/03/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Run-Time Phase

Hardware Platform & its FloorPlan

Aging & MTTF
Estimator Unit

MCS Overload
Controller Unit

Temperature Data
 freq. & Volt.

DVFS Goveror
Unit

Adjust
 V-f Levels

Application
Monitoring

Re-Mapping Unit

while a taskfinishes itsexecution

while a task released

Cluster
Selection

Core
Selection Remap/Swap

Based on
dynamic slacks

Desing-Time Phase

- #Cores

 - #BIG Cores

 - #LITTLE Cores

 - FloorPlan

 - Available V-f Levels

Benchmarks

Data Profiling

 - WCETs

 -Power Cons.

-Memory/Compute Intensive

-Calculate WCETs for
each task on all cores
-Calculate power traces for
each task on all cores

Thermal-Aware Task Mapping
Unit & Schedulability Test

HW Level Parameters

Per Core MTTF

Per Core MTTF

Remap for ever
 HC Tasks

Scheduling
Management Unit

Taski

??

CHIs

CLOs

Data Training
Set

U
tility Checker U

nit

QoSmin

Tasks’
Periods

HW Platform

14/03/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Run-Time Phase

Hardware Platform & its FloorPlan

Aging & MTTF
Estimator Unit

MCS Overload
Controller Unit

Temperature Data
 freq. & Volt.

DVFS Goveror
Unit

Adjust
 V-f Levels

Application
Monitoring

Re-Mapping Unit

while a taskfinishes itsexecution

while a task released

Cluster
Selection

Core
Selection Remap/Swap

Based on
dynamic slacks

Desing-Time Phase

- #Cores

 - #BIG Cores

 - #LITTLE Cores

 - FloorPlan

 - Available V-f Levels

Benchmarks

Data Profiling

 - WCETs

 -Power Cons.

-Memory/Compute Intensive

-Calculate WCETs for
each task on all cores
-Calculate power traces for
each task on all cores

Thermal-Aware Task Mapping
Unit & Schedulability Test

HW Level Parameters

Per Core MTTF

Per Core MTTF

Remap for ever
 HC Tasks

Scheduling
Management Unit

Taski

??

Environm
ent

State
Determination

Reward
Calculation

Q-learning
Agent

Action
Selection

a1 a2 … ak
s1
s2
..

Actions

States

Q-Tables

Agent
O

perating System

MC Task
Scheduler

Upon End of
Hyper-Period

Upon Overrunning
an HC task

Observation: (Actual-times, App. Monitor)

Actuator

- QoSmin

- CHI for HC tasks

States Actions

Processor Queue
Checker Unit

AETs, QoSLCt , MSHCt

Virtual-Deadline
Update Unit

✓

14/03/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Run-Time Phase

Hardware Platform & its FloorPlan

Aging & MTTF
Estimator Unit

MCS Overload
Controller Unit

Temperature Data
 freq. & Volt.

DVFS Goveror
Unit

Adjust
 V-f Levels

Application
Monitoring

Re-Mapping Unit

while a taskfinishes itsexecution

while a task released

Cluster
Selection

Core
Selection Remap/Swap

Based on
dynamic slacks

Desing-Time Phase

- #Cores

 - #BIG Cores

 - #LITTLE Cores

 - FloorPlan

 - Available V-f Levels

Benchmarks

Data Profiling

 - WCETs

 -Power Cons.

-Memory/Compute Intensive

-Calculate WCETs for
each task on all cores
-Calculate power traces for
each task on all cores

Thermal-Aware Task Mapping
Unit & Schedulability Test

HW Level Parameters

Per Core MTTF

Per Core MTTF

Remap for ever
 HC Tasks

Scheduling
Management Unit

Taski

??

14/03/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Run-Time Phase

Hardware Platform & its FloorPlan

Aging & MTTF
Estimator Unit

MCS Overload
Controller Unit

Temperature Data
 freq. & Volt.

DVFS Goveror
Unit

Adjust
 V-f Levels

Application
Monitoring

Re-Mapping Unit

while a taskfinishes itsexecution

while a task released

Cluster
Selection

Core
Selection Remap/Swap

Based on
dynamic slacks

Desing-Time Phase

- #Cores

 - #BIG Cores

 - #LITTLE Cores

 - FloorPlan

 - Available V-f Levels

Benchmarks

Data Profiling

 - WCETs

 -Power Cons.

-Memory/Compute Intensive

-Calculate WCETs for
each task on all cores
-Calculate power traces for
each task on all cores

Thermal-Aware Task Mapping
Unit & Schedulability Test

HW Level Parameters

Per Core MTTF

Per Core MTTF

Remap for ever
 HC Tasks

Scheduling
Management Unit

Taski

??

14/03/2021 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

Run-Time Phase

Hardware Platform & its FloorPlan

Aging & MTTF
Estimator Unit

MCS Overload
Controller Unit

Temperature Data
 freq. & Volt.

DVFS Goveror
Unit

Adjust
 V-f Levels

Application
Monitoring

Re-Mapping Unit

while a taskfinishes itsexecution

while a task released

Cluster
Selection

Core
Selection Remap/Swap

Based on
dynamic slacks

Desing-Time Phase

- #Cores

 - #BIG Cores

 - #LITTLE Cores

 - FloorPlan

 - Available V-f Levels

Benchmarks

Data Profiling

 - WCETs

 -Power Cons.

-Memory/Compute Intensive

-Calculate WCETs for
each task on all cores
-Calculate power traces for
each task on all cores

Thermal-Aware Task Mapping
Unit & Schedulability Test

HW Level Parameters

Per Core MTTF

Per Core MTTF

Remap for ever
 HC Tasks

Scheduling
Management Unit

Taski

??

Fig. 2: An overview of design-time and run-time phases in ADAPTIVE.

of mode switches, and the QoS of LC tasks in the last hyper-
period. Based on these historical data, the agent outputs are
the new 𝐶𝐿𝑂 values of HC tasks, used in the next hyper-
period. Since the utilization of HC tasks in LO mode would
be changed by updating 𝐶𝐿𝑂s, the new virtual deadlines (to
be used in the EDF-VD algorithm) are determined by the
Virtual-Deadline Update Unit.

Hence, the learning process is separate from the task sched-
uler, and we do not use learning techniques for task scheduling.
The EDF-VD schedulability formulae are checked for each
WCET change (at the end of each hyper-period). Although this
time is in the order of `Seconds and can be negligible, we count
this time as part of learning time. This timing overhead is con-
sidered as a task with the WCET equal to the maximum timing
overhead to ensure it does not impact other tasks’ deadlines.
This learning overhead is reported in Section V-A. We describe
below how the agent is designed to update the 𝐶𝐿𝑂.

1) Learning-Based System Properties Improvement: Rein-
forcement Learning (RL) could be applied to systems with con-
siderable dynamism through trial-and-error. By using historical
data and learning from past events, it can improve performance
based on dynamic changes [15]. The Q-learning/SARSA tech-
nique, which is recently used in many applications, such as
robotics, and Unmanned Aerial Vehicles, uses the RL to per-
form the run-time management of the system properties. This
technique is a value-based algorithm that iteratively collects the
current system state and determines the next action to change
the state. The process is repeated until meeting the predefined
criterion or objectives are no longer significantly improved.

RL technique consists of the three main components [15]:
1) a discrete set of States = {𝑠1, 𝑠2, ..., 𝑠𝑙}, 2) a discrete set
of Actions = {𝑎1, 𝑎2, ..., 𝑎𝑘}, and 3) reward function 𝑅𝑀𝐶 .
To reach the favorable reward, the technique learns a lookup
table (i.e., Q-table) with (𝑠𝑡 , 𝑎𝑡) pairs (𝑎𝑡 ∈ Actions and 𝑠𝑡 ∈
States). The states and actions determine the rows and columns
of the Q-table of the learning-based algorithm, respectively
(shown in Fig. 2). As mentioned, a value-based algorithm
is utilized, represented with 𝑄(𝑠𝑡 , 𝑎𝑡) in the Q-table, and
determines the quality of the action taken at the particular
state. In every iteration, the Q-values are updated based on
the corresponding computed reward according to Eq. 2, which
is based on the SARSA technique, one of the RL methods for
objective improvement [16].

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑅𝑀𝐶 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) −𝑄(𝑠𝑡 , 𝑎𝑡))
(2)

𝑠𝑡 , and 𝑎𝑡 represent the state and action of the system at time 𝑡,
respectively. 𝑠𝑡+1 and 𝑎𝑡+1 also indicate their values at time t+1.
The 𝛼 (0 < 𝛼 ≤ 1) determines the learning rate of overriding
the old data in the table by the new acquired data. 𝑅𝑀𝐶 is the

reward function, and 𝛾 is the discount rate to determine the
importance of the future reward (0 < 𝛾 < 1).

State Determination: There are various criteria for deter-
mining the system states. In ADAPTIVE, the system states (i.e.,
the rows of the Q-table) indicate the rate of LC tasks’ execution,
i.e., the tasks’ periods at run-time, to the minimum tolerable
period in LC tasks. We define 10 ranges to determine the rate
of LC tasks’ execution. As a result, States={0.1, 0.2, ..., 1}.

Learning Action Determination: In this paper, the well-
known 𝜖-greedy policy (a method for determining the optimal
action) has been exploited, where a random action is selected
from the action set with the probability of 𝜖 , i.e., the best action
is selected with the largest Q-value with the probability of
1 − 𝜖 . We first use a dynamic 𝜖-greedy policy [17] with the
maximum value of 0.5 to prevent the probability of learning
being stuck at a few Q-values. Afterward, the fixed 𝜖-greedy
policy is used to ensure that the system reaches the optimum
state and chooses the best action based on the Q-values. We
have assumed k actions, where the action space in the Q-table
illustrates an increase and/or decrease in 𝐶𝐿𝑂

𝑖
of some/all HC

tasks according to a coefficient of WCET’s prediction accuracy.
To limit the number of feasible actions and reduce the com-
plexity and convergence issues, we have considered three sce-
narios of increase (𝑊𝐶𝐸𝑇 𝑖𝑛𝑐

𝑁𝑢𝑚𝑇
), decrease (𝑊𝐶𝐸𝑇𝑑𝑒𝑐

𝑁𝑢𝑚𝑇
), and

increase-decrease (𝑊𝐶𝐸𝑇
𝑖𝑛𝑐,𝑑𝑒𝑐

𝑁𝑢𝑚𝑇
) (𝑜𝑝𝑟 = {𝑖𝑛𝑐, 𝑑𝑒𝑐, 𝑖𝑛𝑐/𝑑𝑒𝑐}).

𝑊𝐶𝐸𝑇 𝑖𝑛𝑐
𝑁𝑢𝑚𝑇

(𝑊𝐶𝐸𝑇𝑑𝑒𝑐
𝑁𝑢𝑚𝑇

) shows an increase (decrease) in
𝐶𝐿𝑂
𝑖

of 𝑁𝑢𝑚𝑇 HC tasks, where the value of 𝑁𝑢𝑚𝑇 can
be {1, 2, ..., 𝑛𝐻𝐶 } (𝑛𝐻𝐶 is the total number of HC tasks).
𝑊𝐶𝐸𝑇

𝑖𝑛𝑐/𝑑𝑒𝑐
𝑁𝑢𝑚𝑇

presents that the 𝐶𝐿𝑂
𝑖

for half of HC tasks is
increased and for others decreased. In fact, in this scenario,
𝑚𝑎𝑥(𝑁𝑢𝑚𝑇)= 𝑛𝐻𝐶

2 . Thus, there are 𝑘 = 2.5 × 𝑛𝐻𝐶 actions in
the system. The step of increase/decrease in 𝐶𝐿𝑂

𝑖
is determined

based on a coefficient of WCET’s prediction accuracy.

Actions = {𝑊𝐶𝐸𝑇
𝑜𝑝𝑟

𝑁𝑢𝑚𝑇
} 𝑜𝑝𝑟 ∈ {𝑖𝑛𝑐, 𝑑𝑒𝑐, 𝑖𝑛𝑐/𝑑𝑒𝑐} (3)

To select the tasks to do the actions, we first sort the
tasks in increasing order of 𝐶𝐿𝑂

𝑖
− 𝐴𝐸𝑇𝑖 values in the last

hyper-period (𝐴𝐸𝑇𝑖 is the actual execution time), then the
increase (decrease) action applies to the 𝑁𝑢𝑚𝑇 tasks with
smaller (greater) 𝐶𝐿𝑂

𝑖
− 𝐴𝐸𝑇𝑖 . Since a task may release several

times in a hyper-period and the actual execution time is
different in each release, we have to predict the actual execution
time according to the previous task’s execution times. This
prediction is based on Eq. 4, where 𝐴𝐸𝑇𝑖 (𝑡+1) is the predicted
execution time of task 𝜏𝑖 , 𝑟𝑐𝑖 is regression coefficient, and 𝑒𝑟 is
the error. For evaluations, 𝑥 is assumed to be eight due to vari-
ous experiments that we performed to achieve lower prediction
error with no timing overhead that can impact tasks’ timeliness.
For example, for a task, (𝑥,𝑒𝑟,time[`Second])=(2,0.110,0.86),
(4,0.094,1.12), (8,0.077,1.59), (10,0.071,1.92). Since the er-
ror (𝑒𝑟) does not change much from 8 to 10, compared to 4
to 8, 𝑥= 8 is a good value with less timing overhead.

𝐴𝐸𝑇𝑖 (𝑡 + 1) =
𝑥∑︁

𝑘=0
𝐴𝐸𝑇𝑖 (𝑡 − 𝑘) × 𝑟𝑐𝑘 + 𝑒𝑟 (4)

Reward Computation: The reward indicates how well the
learning procedure has performed in the previous step. We cal-
culate the reward at the end of each hyper-period. The number
of mode switches should be reduced while increasing the num-
ber of scheduled LC tasks to improve the QoS. Eq. (5) shows
the reward function based on these objectives. 𝑀𝑆𝐻𝐶 indi-
cates the mode switches (computed by the number of overrun

Algorithm 1 Run-Time Adaptation Scheme

Input: Task Set, QoS𝑀𝑖𝑛

Output: Scheduled Tasks, QoS, 𝐶𝐿𝑂
𝐻𝐶

s
1: procedure ADAPTIVE FUNCTION()
2: for t = 1 to Time do
3: [𝑀𝑜𝑑𝑒

𝑆𝑦𝑠

𝑀𝑆
,ReadyTasks] = TaskStatusCheck (Tasks,𝑀𝑜𝑑𝑒

𝑆𝑦𝑠

𝑀𝑆
)

4: [𝑆𝑐ℎ𝑡𝑎𝑠𝑘𝑠] = EDF-VD (ReadyTasks)
5: 𝐹𝑙𝑎𝑔𝑜𝑢𝑡 𝑝𝑢𝑡=TaskOutputCheck(Tasks)
6: if 𝐹𝑙𝑎𝑔𝑜𝑢𝑡 𝑝𝑢𝑡 == 1 then Update QoS & 𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
;

7: end if
8: if mod(t,𝐻𝑃)==0 then
9: State= Deter-State (#Scheduled-LCTasks)

10: k= rand (1); //(0<𝑘<1)
11: //𝜖 -Greedy Policy
12: if 𝑘 < 𝜖 then 𝑎𝑡 = argrand (Actions)
13: else 𝑎𝑡 = argmax (𝑠𝑡 , Actions)
14: end if
15: Set the new tasks’ 𝐶𝐿𝑂s based on the action
16: 𝑅𝑀𝐶 = CompRward (𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
,QoS)//Eq.(5)

17: 𝑄 (𝑠𝑡 , 𝑎𝑡) = 𝑄 (𝑠𝑡 , 𝑎𝑡) + 𝛼(𝑅𝑀𝐶 + 𝛾𝑄 (𝑠𝑡+1, 𝑎𝑡+1)
−𝑄 (𝑠𝑡 , 𝑎𝑡)) //Eq. (2)

18: UMC(t)=CompUtil (Tasks)
19: if UMC(t)>1 then //based on the new 𝐶𝐿𝑂s
20: Tasks = Deter-ExeJobs (Tasks);
21: end if
22: Tasks = Deter-VirtualDeadline (Tasks);
23: end if
24: end for
25: end procedure

HC tasks), and 𝛽1 and 𝛽2 are constants, and set to 0.5 (𝛽1+𝛽2 =
1) in this work.

𝑅𝑀𝐶 = 𝛽1 × 𝑀𝑆𝐻𝐶 + 𝛽2 × QoS (5)

To compute the number of mode switches, Eq. (6) considers
three scenarios. If the percentage of overrun HC tasks falls into
the unsafe zone that may cause frequent mode switches, the
decision is penalized. Accordingly, it results in a negative value
for the reward function, which decreases the Q-value in Eq. (2).
Eq. (7) shows how to compute the percentage of overrun tasks.

𝑀𝑆𝐻𝐶 =

{
+Γ(−Γ) 𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
= 0(𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
= 1)

1 − 1
10×(1−𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
) 0 < 𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
< 1 (6)

where Γ > 0, and has a constant value (set to one in this work).

𝑃𝑇𝑜𝑣𝑟
𝐻𝐶 =

#HC-Tasks| 𝐶𝐿𝑂
𝑖

−𝐴𝐸𝑇𝑖

𝑇𝑖
<0

𝑛𝐻𝐶

(7)

𝑛𝐻𝐶 is the number of HC tasks and 𝐴𝐸𝑇𝑖 is the actual execution
time of 𝜏𝑖 during a hyper-period (computed by Eq. (4)).

2) Algorithm: Algorithm 1 presents the pseudo-code of
ADAPTIVE, including the task scheduling and learning proce-
dures. As inputs, tasks and the minimum QoS are taken. QoS
improvement, analyzed 𝐶𝐿𝑂s, and the scheduled tasks are
outputs. At each time, the scheduler checks the task’s sta-
tus, whether they are released or overrun (results mode
switching) (line 3). Tasks are scheduled based on the EDF-
VD (line 4). In the case of mode switching to HI, the LC tasks
are executed based on their minimum service requirements.
Line 5 checks whether each task output is ready, and in the
case of being ready, the task is removed from the core queue,
and the value of 𝑄𝑜𝑆 and 𝑃𝑇𝑜𝑣𝑟

𝐻𝐶
are updated (lines 6,7).

The learning process is conducted at the end of each hyper
period (lines 8-23). The number of scheduled LC tasks is used
to determine the state (line 9). In 𝜖−Greedy policy, if a random
number is less than 𝜖 , random action is selected (line 12, learn-
ing exploration phase); otherwise, the action with the maximum
value in the Q-table is selected for that particular state (line 13,

TABLE II: System performance at run-time for different scenarios
𝐴𝑣𝑔 (𝑄𝑜𝑆)∗ 𝐴𝑣𝑔 (#𝑀𝑆𝑆𝑦𝑠)∗∗ 𝑈𝑡𝑖𝑙𝑊𝑠𝑡 ∗∗ 𝑚𝑎𝑥 (𝑈𝐿𝑂

𝐿𝐶
)∗

Liu’18 [5] _ = 1
4 50.0% 0 43% 50%

Liu’18 [5] _ = 1
8 49.3% 5.81 28% 65%

Ranjbar’21 [3] 58.1% 1.16 33% 63%
ADAPTIVE 68.9% 2.12 16% 58%
∗ Higher is better ∗∗ Lower is better

Q
oS

Fig. 3: Quality-of-Service (QoS) values during run-time for different scenarios

learning exploitation phase). Based on the chosen action, new
𝐶𝐿𝑂 values are determined for some HC tasks (line 15).
Consequently, the reward function is used to update the Q-
table (lines 16,17). In lines 18-22, the service adaptation and
assigned virtual deadlines to HC tasks are computed based on
the updated HC tasks’ utilization to guarantee the schedulability
Thus, the maximum amount possible of service adaptation is
determined by finding the maximum execution rate of LC tasks,
i.e., reducing their periods to release more often.

V. EXPERIMENTS

In this section, the ADAPTIVE efficacy is evaluated in terms
of learning overheads, mode switches, QoS, utilization waste.

A. Investigating Timing And Memory Overheads of ML Tech.
We first analyze the timing overhead of the learning pro-

cess in each hyper-period on ODROID XU4, ARM A7, with
1.4GHz. Consider a system with 𝑛 tasks, in which 𝑛/2 of them
have HC. The timing overhead is different for the exploration
and exploitation phases of the learning process. The 𝜖−Greedy
policy makes a trade-off between the exploration and exploita-
tion phases. We measured the learning time at run-time, and
the average and maximum of exploration (exploitation) timing
overhead in ARM core are 19`s (52`s) and 2.11𝑚s (4.15𝑚s),
respectively. As a result, since the maximum timing overheads
are almost significant for real-time systems, we can consider
the learning process as a task with the WCET, equal to the
maximum learning timing overhead, and a period equal to
hyper-period, while checking the schedulability at design-time.
As a result, it can guarantee that the tasks’ timeliness is
maintained at run-time. Besides, from the memory overhead
perspective, we need to clarify the required memory space for
storing the Q-table. We store a two-dimensional array with
size (State) rows and size (Action) columns. Since the value
of a table cell is a float number in the range of [-2,2], at
most 32 bits are required for storing each cell. Thus, we need
size(State)×size(Action)× 32 bits to store the Q-table. For an
application with 40 tasks, the amount of required memory
space for saving the Q-table with ten states would be 10×
2.5×(40/2)×32 bits= 16 KB.

B. Evaluation With Real Application Model
We conducted experiments by various real benchmarks from

MiBench benchmark suite [18], like automotive, and network.
In this experiment, ‹insert-sort›, ‹qsort›, ‹bitcount›, ‹dijkstra›,
and ‹FFT› are considered as HC tasks, and ‹corner›, ‹edge›,
‹smooth›, ‹epic›, and ‹matrix-mult› as LC tasks. To obtain their
execution times, we run the benchmarks with various inputs
on Cortex A7 of the ODROID XU4 board (equipped with
Ubuntu 18.04 as OS) with maximum frequency (1.4𝐺𝐻𝑧).
More detail on WCET values has been reported in [19]. We
compare the results with the results of [3], [5]. As mentioned in

TABLE III: Number of deadline misses and gained utilization of different
methods for Object Detection function in Fig. 4a, where there are many objects

Metrics ADAPTIVE [3] [5] _ = 1
2 [5] _ = 1

4 [5] _ = 1
8

#𝑀𝑆𝑆𝑦𝑠 17% 11% 0 5% 45%
𝑈𝑡𝑖𝑙𝑊𝑠𝑡 28% 46% 76% 52% 47%

0
500
1000
1500
2000
2500
3000
3500

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5Co

m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET
									-	Ranjbar'21	[3] 									-	Liu'18	[5]-					=1/8
									-	Liu'18	[5]-				=1/4 									-	Liu'18	[5]-				=1/2

											𝐶!"−𝐴𝐷𝐴𝑃𝑇𝐼𝑉𝐸
𝐶!"

𝐶!"
𝐶!"

𝐶!" 𝜆 𝜆
𝜆

0									50						100					150					200					250					300					350					400					450				500

(𝒎
𝒔)

0

100

200

300

400

500

600

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Co

m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET𝐶!"

(𝒎
𝒔)

0					25					50				75			100			125			150			175			200			225			250

0

100

200

300

400

500

600

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Co
m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET

0					25					50				75			100			125			150			175			200			225			250

(𝒎
𝒔)

𝐶!"

(a) Input video with many objects

0
500
1000
1500
2000
2500
3000
3500

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

38
1

40
0

41
9

43
8

45
7

47
6

49
5Co

m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET
									-	Ranjbar'21	[3] 									-	Liu'18	[5]-					=1/8
									-	Liu'18	[5]-				=1/4 									-	Liu'18	[5]-				=1/2

											𝐶!"−𝐴𝐷𝐴𝑃𝑇𝐼𝑉𝐸
𝐶!"

𝐶!"
𝐶!"

𝐶!" 𝜆 𝜆
𝜆

0									50						100					150					200					250					300					350					400					450				500

(𝒎
𝒔)

0

100

200

300

400

500

600

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Co

m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET𝐶!"

(𝒎
𝒔)

0					25					50				75			100			125			150			175			200			225			250

0

100

200

300

400

500

600

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

24
1Co
m
pu
ta
tio
na
l	T
im
e

Frame	ID

AET

0					25					50				75			100			125			150			175			200			225			250

(𝒎
𝒔)

𝐶!"

(b) Input video with few objects
Fig. 4: Learning process in adjusting 𝐶𝐿𝑂 for two video inputs of Object
Detection function, compared to other methods in adjusting 𝐶𝐿𝑂

[3], since most papers like [1], [5], [6], consider the same policy
to determine the 𝐶𝐿𝑂 (i.e., defining a fraction of 𝐶𝐻𝐼 as 𝐶𝐿𝑂),
we select [5] as a representative of these schemes and do the ex-
periments with two fractions of 𝐶𝐻𝐼 as 𝐶𝐿𝑂 (_ = 𝐶𝐿𝑂

𝐶𝐻𝐼 =[1
4 , 1],

[1
8 , 1]). Besides, we investigate the system for 2000 hyper-

periods of tasks. In the learning process, we set the values of
𝛾 to 0.2 and 𝛼 to 0.5, which are determined based on a wide
range of experiments that lead to the best improvement.

To evaluate different approaches in Table II, QoS represents
the percentage of executed to total LC task instances during
run-time (𝑄𝑜𝑆 = 𝑛𝑠𝑐ℎ𝑑

𝐿𝐶
/𝑛𝑚𝑎𝑥

𝐿𝐶
). 𝑀𝑆𝑆𝑦𝑠 indicates the number

of mode switches per hyper-period, and 𝑚𝑎𝑥(𝑈𝐿𝐶
𝐿𝑂

) represents
the maximum processor utilization that can be assigned to LC
tasks at design-time. 𝑈𝑡𝑖𝑙𝑊𝑠𝑡 shows the average percentage
of the difference between the WCET and actual execution
times to WCET of tasks. As shown, ADAPTIVE can schedule
more LC tasks; 10.8% and 19.3% more compared to [3], and
[5] approaches, respectively. Although 𝑀𝑆𝑆𝑦𝑠 is more than
the scenarios of [3], and [5] with _ = 1

4 , ADAPTIVE could
overcome the significant performance loss due to executing
more LC task instances in total. This can be achieved by
determining the appropriate 𝐶𝐿𝑂s during run-time, which is
close to the actual execution times (17.7% closer on average,
compared to [3], [5]). This fact can be observed with 𝑈𝑡𝑖𝑙𝑊𝑠𝑡

values, compared to other approaches. In addition, although
the scenario of [5] with _ = 1

8 assigns more utilization to LC
tasks at design-time, it has less QoS due to the more frequent
mode switches. Although we assign an initial value of 𝐶𝐿𝑂

by running each benchmark on the platform and choosing the
maximum of them (which causes lower utilization compared
to [3], [5]), our learning approach is independent of how the
𝐶𝐿𝑂s are set at design-time, and any of other design-time
approaches, like the approach of [3] can be used.

Fig. 3 shows the variation of QoS values in different hyper-
periods of the run-time phase. As shown, the scenario of [5]
with _ = 1

8 has a wide range of QoS values due to more mode
switches. ADAPTIVE also represents a variation in the QoS
values due to its adaptation to the input changes at run-time.

Now, we demonstrate the progress of the learning pro-
cess in adjusting the 𝐶𝐿𝑂 during run-time for the two input
videos from the object detection function, explained in the
motivational example of Section I. Fig. 4 depicts the actual
execution time trace and the adjusted 𝐶𝐿𝑂 for a time period
during run-time for ADAPTIVE and the methods of [3], [5]. In
ADAPTIVE, by changing the inputs which have low execution
time values, the 𝐶𝐿𝑂 would be adjusted to the lower value
intentionally. The 𝐶𝐿𝑂 is also re-adjusted when the value

0.0
1.0
2.0
3.0
4.0

10% 30% 50%
0

20
40
60
80

Margin ThresholdQ
oS

 -
Ut

il.
 W

as
te

 (%
)

QoS o

(a) Margin threshold

0.0
1.0
2.0
3.0
4.0

#1000 HP #400 HP
0

20
40
60
80

Learning Time

Utilization Waste o

(b) Learning time

0.0
1.0
2.0
3.0
4.0

0.1X 0.3X 0.5X
0

20
40
60
80

Av
g(

M
S

(#
))

Inc./Dec. Step

Mode Switches o

(c) WCET Inc./Dec. steps
Fig. 5: Impacts of varying different parameters of learning process on QoS,
mode switches and utilization waste.

of execution times is increased. As shown in Fig. 4a, the
methods of [3], [5] set the static 𝐶𝐿𝑂 which may lead to
frequent task overruns (i.e., leads to regular mode switches)
in the case that there are many objects to detect (lead to high
computational time values) or poor utilization when there are
few objects to detect in this function (like Fig. 4b). Although
there are few errors while adjusting the 𝐶𝐿𝑂, which leads to
task overrunning and QoS degradation, the number of task
overruns and the wasted processor utilization (𝑈𝑡𝑖𝑙𝑊𝑠𝑡) are
less, and consequently, overall QoS value would be higher
at the end of system execution. For example, in Fig. 4a, the
black rectangles show the time periods in which some of
the execution times are higher than 𝐶𝐿𝑂 for most methods,
even though the execution times of these input videos are
less than the adjusted 𝐶𝐿𝑂 in [5] with _ = 1

2 . Table III
presents the percentage of task overruns (which leads to mode
switches) and the average percentage of wasted utilization
for ADAPTIVE and [3], [5]. Although the number of mode
switches is higher than the results of some scenarios, the wasted
utilization is lower compared to other methods, which leads to
higher QoS (like what is discussed for Fig. 3 and Table II).

To evaluate ADAPTIVE in improving the QoS, we first ana-
lyze varying the margin threshold, which adjusts above the ac-
tual execution times to overcome high WCET reduction. Fig. 5a
shows that the QoS improvement is less while the threshold is
pessimistic, i.e., having a larger margin. In this case, fewer
mode switches exist due to adjusting the WCETs so cautiously,
and consequently, the utilization waste has a higher value.
Based on this observation, having the margin threshold equal to
10% improves the QoS even with more mode switches. Now,
we vary the time of training/exploring, during run-time, e.g.,
400 or 1000 hyper-periods (HP) of total time (2000 HP) in
Fig. 5b. Note that the learning process starts to learn for a
period of time, and then the learned data is exploited for the rest
of the time. Spending more time learning leads to more accurate
results. Thus, the QoS is improved by 5.9% with increasing the
learning time, with an insignificant increase in mode switches
and utilization waste. To more accurately adjust the WCETs, we
define steps for WCET increment/decrement at run-time. These
steps are coefficients of the difference between the WCETs
and actual execution times. Having a larger coefficient (0.1X to
0.5X) leads to adjusting faster to the actual execution times (i.e.,
having better QoS (7.95%) and less utilization waste (18%)),
but it may cause more wrong decisions in learning (i.e., more
mode switches). However, step=0.5X improves QoS more.

C. Evaluation With Synthetic Task Sets
We now carry out an extensive evaluation with the synthetic

task sets to evaluate the ADAPTIVE efficacy, compared to [3],
[5] in terms of varying utilization in Fig. 6. The synthetic task
sets are generated for various utilization bounds (𝑈𝑏𝑜𝑢𝑛𝑑) in
line with research works like [6], in the range of [0.60,1] with
steps of 0.05. For each 𝑈𝑏𝑜𝑢𝑛𝑑 , 50 task sets are generated in
which tasks’ periods are selected in the range of [200, 1000]𝑚𝑠.
Besides, balanced tasks are assumed in terms of criticality
levels. The minimum QoS equals to 0.3 in this paper. According
to Fig. 6, the ability to improve QoS is less by increasing the
utilization bound due to having more HC and LC tasks in the

0
7
14
21
28
35
42
49
56

20
30
40
50
60
70
80
90

100

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

M
S

(#
)

Q
oS

 (%
)

Utilization Bound

QoS-ADAPTIVE QoS-Ranjbar'21 [3] QoS-Liu'18 [5]- QoS-Liu'18 [5]-
MS-ADAPTIVE MS-Ranjbar'21 [3] MS-Liu'18[5]- MS-Liu'18 [5]-

𝞴=! "⁄𝞴=! #⁄
𝞴=! #⁄ 𝞴=! "⁄

Fig. 6: QoS and mode switches in different approaches by varying utilization.

system, and then, the probability of mode switches is increased.
In [5], although considering a small value for _ like 1

8 , increases
the assigned utilization to LC tasks, but it causes more mode
switches and dropping more LC task instances, which leads to
poor QoS. Besides, considering a large value (_ = 1

4) decreases
the utilization at design-time, but it increases the QoS due to
fewer mode switches. The approach of [3] has better results in
total in comparison with [5] due to making an ideal trade-off
between the mode switches and utilization. Although [3] has a
slight improvement in mode switches, compared to ADAPTIVE,
our scheme can improve QoS more, due to considering the run-
time behavior which causes different execution times.

VI. CONCLUSION AND FUTURE WORK

This article proposed an adaptive scheme to analyze the MC
tasks at run-time to determine their WCET based on the task
behavioral changes. The proposed adaptive scheme employed
the ML techniques to improve the QoS, while guaranteeing
the task schedulability and timeliness. The proposed scheme
improves the QoS for synthetic and embedded real-time bench-
marks by 17.62% and 16.4% on average, respectively.

In future research, we would extend our scheme by reducing
the complexity of the ML technique to reduce its timing
overhead. Besides, a design-time data set training would be
investigated to speed up the run-time learning process.

REFERENCES

[1] S. Baruah et al., “The Preemptive Uniprocessor Scheduling of Mixed-
Criticality Implicit-Deadline Sporadic Task Systems,” in ECRTS, 2012.

[2] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” CSUR, 2017.

[3] B. Ranjbar et al., “Improving the timing behaviour of mixed-criticality
systems using chebyshev’s theorem,” in DATE, 2021.

[4] X. Gu and A. Easwaran, “Dynamic budget management with service
guarantees for mixed-criticality systems,” in RTSS, 2016.

[5] D. Liu et al., “Scheduling analysis of imprecise mixed-criticality real-time
tasks,” TC, 2018.

[6] H. Su et al., “An elastic mixed-criticality task model and early-release
edf scheduling algorithms,” TODAES, 2016.

[7] R. Wilhelm et al., “The worst-case execution-time problem—overview of
methods and survey of tools,” TECS, 2008.

[8] C. Ballabriga et al., “Otawa: An open toolbox for adaptive wcet analysis,”
in SEUS. Springer, 2010.

[9] B. Ranjbar et al., “Motivating Agent-Based Learning For Bounding Time
in Mixed-Criticality Systems,” in DATE, 2023.

[10] D. Liu et al., “Edf-vd scheduling of mixed-criticality systems with
degraded quality guarantees,” in RTSS, 2016.

[11] X. Gu and A. Easwaran, “Dynamic budget management and budget
reclamation for mixed-criticality systems,” Real-Time Systems, 2019.

[12] B. Hu et al., “Ffob: Efficient online mode-switch procrastination in
mixed-criticality systems,” Real-Time Systems, 2019.

[13] B. Ranjbar et al., “Learning-oriented qos- and drop-aware task scheduling
for mixed-criticality systems,” Computers, 2022.

[14] ——, “FANTOM: Fault Tolerant Task-Drop Aware Scheduling for
Mixed-Criticality Systems,” IEEE Access, 2020.

[15] S. Pagani et al., “Machine learning for power, energy, and thermal
management on multicore processors: A survey,” TCAD, 2020.

[16] S. Dey et al., “User interaction aware reinforcement learning for power
and thermal efficiency of cpu-gpu mobile mpsocs,” in DATE, 2020.

[17] D. Biswas et al., “Machine learning for run-time energy optimisation in
many-core systems,” in DATE, 2017.

[18] M. R. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” in WWC-4 (Cat. No.01EX538), 2001.

[19] B. Ranjbar et al., “BOT-MICS: Bounding time using analytics in mixed-
criticality systems,” TCAD, 2022.

	Introduction
	Related Works
	Mixed-Criticality Task Model
	Proposed Method: ADAPTIVE
	Design-Time Exploration
	Run-Time Adaptation
	Learning-Based System Properties Improvement
	Algorithm

	Experiments
	Investigating Timing And Memory Overheads of ML Tech.
	Evaluation With Real Application Model
	Evaluation With Synthetic Task Sets

	Conclusion and Future Work
	References

