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Abstract—In Mixed-Criticality (MC) systems, each task has
multiple WCETs for different operation modes. Determining
WCETs for low-criticality modes (LO modes) is challenging.
A lower WCET improves processor utilization, but a longer
one reduces mode switches, maintaining smooth task execution
even with low utilization. Most research focuses on WCETs
for the highest criticality mode, with fewer solutions for LO
modes in graph-based applications. This paper proposes GNN-
MiCS, a machine learning and graph neural networks scheme
to determine WCETs for directed acyclic graph applications
in LO modes. GNN-MiCS generates test sets and computes
proper WCETs based on the application graph to enhance system
timing behavior. Experiments show our approach improves MC
system utilization by up to 45.85% and 22.45% on average while
maintaining a reasonable number of mode switches in the worst-
case scenario.

Index Terms—Mixed-Criticality, Mode Switching Proba-
bility, Neural Network, Utilization, Worst-Case Execution
Time (WCET).

I. INTRODUCTION

NOWADAYS, Mixed-Criticality (MC) systems are widely
used in embedded real-time applications such as medical

devices, automotive, and avionics to meet requirements like
cost, space, timing, and power consumption [1]–[3]. These
systems handle tasks with different criticality levels, ensuring
flawless execution of High-Criticality (HC) tasks to prevent
catastrophic consequences while optimizing processor utiliza-
tion and Quality-of-Service (QoS) by executing more Low-
Criticality (LC) tasks [2]–[4].

MC systems typically define multiple Worst-Case Execution
Time (WCET) for different criticality levels and operational
modes [2]–[4]. A common type is the dual-criticality system
with LC and HC tasks, each having two WCETs: a lower
(WCETLO) and a higher (WCETHI) bound. WCETHI is the
maximum execution time under all conditions, but relying
on it reduces processor utilization and QoS as fewer LC
tasks can be scheduled [2], [5]. Thus, WCETLO is used to
maximize processor utilization and QoS in low-criticality
mode (LO mode), while ensuring task guarantees in high-
criticality mode (HI mode).

For dependent MC tasks, the system initially follows a
schedule based on WCETLO. If an HC task exceeds its
WCETLO, the system switches to HI mode, using WCETHI for
unexecuted HC tasks to ensure their correct execution, possibly
dropping unexecuted LC tasks [6]. A significant gap between
WCETLO and WCETHI means more tasks are scheduled at
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design-time, leading to frequent mode switches and more LC
tasks dropped at run-time. Conversely, a smaller gap reduces
processor utilization due to fewer tasks being scheduled. Thus,
WCETLOs are crucial for enhancing timing behavior, QoS, and
mode-switching probability.

While numerous approaches, such as those in [7] and tools
like OTAWA [8], exist for determining WCETHI, there are
fewer methods for determining WCETLO in MC systems. Ex-
isting approaches [9], [10] often set WCETLOs as a percentage
of WCETHIs, which may result in poor processor utiliza-
tion or frequent mode switches. [2] proposed determining
WCETLO based on the application’s Average-Case Execution
Time (ACET) using Chebyshev’s theorem; however, this is
limited to independent tasks and pessimistically determines
mode switching probability, leading to poor utilization. [11]
presented a Neural-Network (NN)-based approach to deter-
mine WCETLO based on task time distribution, but it is limited
to independent tasks and requires precise knowledge of task
functions and distributions, which is impractical at design-
time for some applications. In [12], Machine-Learning (ML)
techniques determine the WCETLO at run-time if there is
sufficient dynamic slack, but this approach has significant
timing overhead and relies on the generation of dynamic slack.

Our study introduces a novel learning-based approach called
GNN-MiCS, a Graph Neural-Network-based bounding time
approach to determine the WCETLOs in Mixed-Criticality
Systems. Our scheme aims to achieve the following ob-
jectives: 1) effectively minimize the frequency of system
mode switches, 2) achieve high processor utilization, thereby
enhancing the QoS, and 3) ensure the schedulability of the
system at each criticality level, i.e., all tasks can schedule and
execute correctly before their deadlines. To the best of our
knowledge, there is no method yet to determine WCETLO of
dependent MC tasks with no run-time timing overhead while
making a trade-off between the QoS and mode switches. Our
implementation and experimental data are publicly available1.

Contributions: The main contributions of this paper are:
• Presenting a novel scheme to analyze and obtain the low

WCETs of dependent MC tasks in order to improve the
system timing behavior.

• Proposing a learning-based approach, called GNN-MiCS, to
design an MC system, which makes a reasonable trade-off
between mode-switching probability and utilization that can
be assigned to LC tasks.

• Scheduling the tasks before deadlines with insignificant and
no timing overheads at design- and run-time, respectively.

II. SYSTEM MODEL

We deal with periodic dependent MC tasks, each denoted
as τi={ζi,WCETLO

i ,WCETHI
i , di, Sui, P ri, Pi}, analo-

1The source code is available at https://etit.ruhr-uni-
bochum.de/esys/downloads/
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gous to [6], [9], [10]. We adopt a dual-criticality system where
each dependent MC task can be classified as either high-
critical (ζi = HC) or low-critical ζi = LC). Moreover, each
task τi has a specific local deadline di. The relationships
between tasks, including their successors and predecessors, are
determined by Sui and Pri, respectively. A task is executable
only after all its predecessors have completed their execution.
Each MC task has distinct WCETs, WCETLO and WCETHI.
For every LC task, WCETLO=WCETHI, while for every HC
task, WCETLO ≤ WCETHI. If a task is a predecessor to an HC
task, it is also considered an HC task [6]. Additionally, all
tasks share a common period Pi which represents the period
of the task graph.

An MC system initially starts the operation in the LO mode.
If the execution time of any HC task exceeds its WCETLO, the
system switches to the HI mode, and in this mode, some/all
LC tasks might be dropped to guarantee the correct execution
time of the tasks. During LO mode, mapping and scheduling
algorithms consider the WCETLO of tasks, while in HI mode,
tasks are scheduled according to WCETHI. In the context of
dependent MC task models, the system safely switches back
to LO mode at the end of each period [3], [5], [6].

III. PROPOSED METHOD: GNN-MICS
Identifying the appropriate WCETLOs for HC tasks is chal-

lenging. Our approach designs MC systems and analyzes task
graph applications using ML models to select the optimal
WCETLO, reducing mode switches and improving LC task ex-
ecution. For embedded applications, designers typically know
system tasks and can compute parameters, like WCETHIs,
at design-time. We utilize task graph applications from the
tool in [13]. MC tasks are scheduled for LO and HI modes
using static scheduling tables from the algorithm of [13]. Our
approach uses Graph Neural Network (GNN) to determine
WCETLO for HC tasks, improving QoS by scheduling more
LC tasks.

Using optimization methods like Integer Linear Program-
ming (ILP) to obtain WCETLO is inefficient compared to ML-
based approaches in terms of scalability, adaptability, and
speed. ML models handle large, complex task sets more effi-
ciently than ILP, since using ILP is computationally expensive
as task size and complexity increase. ML techniques learn
from historical data, generalizing to provide accurate estimates
for new task sets without solving new optimization problems
each time. Once trained, ML models offer quick WCETLO esti-
mates, beneficial for iterative design and real-time adjustments,
whereas ILP requires considerable computation time for each
new task set. Among ML techniques, GNN is preferred for
dependent MC task graph models due to their ability to
handle graph structures, learn complex dependencies, adapt
to varying input sizes, and generalize across different task
sets. Leveraging a program’s dependency graph for a GNN
integrates the inherent information within the structure into
the learning process by traversing the graph and computing
the information in each node.

Algorithm 1 outlines the pseudo-code of the NN model
using GNN layers and shows fundamental operations, using a
data structure of steps (edges) and nodes. Each node contains
values and features, with values computed and features remain-
ing constant. Features include task criticality (ζ), WCETLO,
WCETHI, ACET, and Standard Deviation (STD). ACET and
STD are needed to compute task overrun probability based

Algorithm 1 Neural Network Model
Require: graph← graph[features, values, steps, deadline]

▷ features← [crits, wcetslow, wcetshigh, acets, stds] ◁
▷ crits, wcetslow, wcetshigh, acets, stds← array[#tasks] ◁
▷ values← array[#tasks] ◁
▷ steps← array[[sender, receiver], . . . ] ◁
function COLLECT(graph, step)

valuesender = graph.values[sender]
valuereceiver = graph.values[receiver]
valuenew = NN_collect(valuesender, valuereceiver)
graph.values[receiver] = valuenew
output graph

function APPLY(graph, step)
valuereceiver = graph.values[receiver]
featuresreceiver = graph.features[receiver]
valuenew = NN_apply(valuereceiver, featurereceiver)
graph.values[receiver] = valuenew
output graph

function OUTPUT(graph)
values = graph.values
results = NN_output(values)
output results

for all step ∈ graph.steps do
g = collect(g, step, params)
g = apply(g, step, params)

results = output(g, params)
output results

on [2], which are computed by running tasks several times on a
CPU processor core with various inputs. These two parameters
helps determine the probability of mode switching.

The steps follow a dependency-sensitive traversal of the
graph and are iterated over during the model’s application
process to generate output. Each step involves a sender and
receiver, referencing corresponding nodes by index. Opera-
tions in the model are facilitated by dedicated NNs, with the
four fundamental operations including init, collect, apply, and
output. The NNs share identical layouts with parameters like
the number of layers, neurons per layer (using a tanh activation
function), and output vector size. The NN for the output
operation reduces the number of neurons per layer until only
one remains to yield singular values. Various task graph sets,
generated by the tool [13] are utilized as training data set.

During training, the process iterates repeatedly as follows:
• Initialisation: For each node, the initial values are computed

based on the features using the init-function. The outcome is
an array, ideally matching the size of the number of neurons
per layer.

• Traversal: The model sequentially processes each step (or
edge), executing the collect- and apply-functions. In the
collect-function, values from both connected nodes are com-
bined to compute a new value, which replaces the receiving
node’s value, merging information from the predecessor
nodes. Subsequently, in the apply-function, the new value
(newly acquired information) is combined with the receiver
node’s features, updating the node’s value. This ensures
effective information propagation through the graph. Incor-
porating both sender and receiver values during the collect-
function prevents loss of information, especially for nodes
with multiple predecessors.

• Model Results: To prepare the model results for using
in subsequent loss calculations, the output-function con-
denses each node’s value array into a singular value for
the optimized WCETLO calculation. The loss function then
calculates a performance score based on utilization and
task overrun probability using the graph with the optimized
WCETLO.
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– Resource Utilization: The enhancement is characterized
by a notable increase in the utilization of LC tasks in
LO mode (ULO

LC ). This is restricted by the upper limits
imposed by the schedulability constraints in LO mode,
according to the scheduling algorithm in [13]. This open-
source algorithm creates two scheduling tables for LO
and HI modes. ULO

LO is calculated based on WCETLO [2]
using the tables form [13] and the available free slack for
scheduling LC tasks.

– Mode Switching Probability: its reduction positively
impacts the performance/functionality of MC systems,
notably by reducing the frequent drops of LC tasks in
the HI mode. P overrun

i represents the probability of task
τi exceeding WCETLO, while PMS

Sys is the mode switching
probability of the system. Since each HC task can overrun
independently of other tasks and causes the system to
switch to the HI mode, PMS

Sys is computed as follows [2].
Note that, P overrun

i is calculated based on the formula
mentioned in [2]:

PMS
Sys = 1−

∏
ζi∈HC

(1− P overrun
i ) (1)

To enhance the system’s timing behavior, maximizing the
equation score = ULO

LC ×(1−PMS
Sys ) is crucial [2]. Therefore,

an approach capable of determining appropriate values for
WCETLO should result in a higher value for this equation [2],
[11].
For training on multiple graphs, they are grouped into

batches. The size of these groups can be specified for each
run, but typically set to 20% of the total number tends to yield
optimal results. During batching, graphs are combined into a
single graph object with concatenated values and features, and
steps are merged element-wise with adjusted values based on
an offset. The batched graph resembles multiple sub-graphs,
with steps containing sender and receiver values referencing
nodes from each sub-graph. This method, along with acceler-
ated array computing, speeds up training. Metric calculations
remain graph-wise, producing results for each graph, which
are then aggregated by summing and dividing by the batch
size to obtain the average result.

IV. EVALUATION RESULTS

A. Experimental Setup
In our experiments, we evaluate our scheme by synthetic

task sets, known as task graphs, generated by the tool men-
tioned in [13]. These applications involve four key parameters:
c (number of cores), U (system utilization), d (outgoing
edge percentage), and n (number of tasks). The parameter d
represents the probability of having outgoing edges from one
task to other tasks. U/c is a normalized utilization, which refers
to both LC and HC tasks, each with their predefined WCETHI.
Since we use the same configuration and system inputs as [5],
by taking inspiration from actual execution times as detailed
in [5], we consider the same scenario in [5] to provide ACET
and STD within the ranges of [ 15 ∗WCETHI , 1

3 ∗WCETHI ]
and [0.05 ∗WCETHI , 0.1 ∗WCETHI ], respectively.

We compare our proposed method, GNN-MiCS, against the
re-implemented approaches in [2], [9], [10], [13]. WCETLOs
are set in [13] based on its generated tool. Besides, most of the
state-of-the-art works, like [9], [10] have defined a fraction of
WCETHI as WCETLO. If λ = WCETLO

WCETHI , researchers in [9] have

T2

T1 T4

T3

T5 T7

T6

T8

T1 T2 T3 T4 T5 T6 T7 T8

WCETLO

WCETHI

30 60 20 20 30 60 20 20

30 80 50 20 30 60 20 20

Fig. 1. Real-life application task graph (UAV).

considered λ ∈ [0.001, 1] in their experiment. Researchers
in [10] have also considered λ ∈ [ 23 , 1]. Since these papers
have the same policy in determining WCETLO, we select [10]
as a representative methodology for all these research works
in the experiments. In addition, [2] computed WCETLO based
on the task ACET by exploiting Chebyshev’s theorem.

From the machine learning perspective, the NNs comprise
4 layers, each containing 32 neurons. The vector used for
calculation also consists of 32 values and the learning rate
is set to 1× e−5.

B. Investigating Timing Overhead and Different Configuration
of ML Technique

We first analyze the timing overhead and different configura-
tions of the NN process. To this end, 1000 task sets are running
on 8 cores, and for the learning part, the batch size is 200.
The number of layers, neurons, and size are varied to show the
results ({layer, neuron, size}). The training time (Timetrain,
computed on a machine with Intel(R) Xeon (R) CPU E5-2630
v2@2.6GHz) and the score value (max(ULO

LC × (1 − PMS
Sys ))

for each configuration are as follows.
• {4,32,32}: (Timetrain,score)=(350.74s,0.278)
• {8,64,64}: (Timetrain,score)= (621.16s,0.2488)
• {16,128,128}: (Timetrain,score)= (1523.63s,0.2529)
• {32,256,256}: (Timetrain,score)= (5848.11s,0.2644)
Instead of larger NNs improving results significantly, a

smaller configuration with 4 layers, 32 neurons, and a vector
size of 32 performs better than larger setups. This might be
because the limited data provided is insufficient for more
complex NNs. Although larger configurations show a trend of
improved results, they also increase training time considerably.
Finding an optimal NN configuration requires an extensive
search for correlations between configuration parameters and
training attributes, or brute-forcing different configurations.
Additionally, handling larger NNs may necessitate more pro-
cessing power to explore the model’s performance limits.
However, in the case of complex and huge task graph ap-
plications, utilizing larger NN would be reasonable as it can
improve the results significantly.

Besides, since the GNN-MiCS is a design-time approach,
WCETLOs are computed at design-time and computed training
time is reasonable. The determined WCETLOs are then used at
run-time with no timing overheads.

C. Evaluation With Real UAV Application Model
To evaluate GNN-MiCS in terms of maximum utilization

that can be assigned to LC tasks, mode switching probability,
and the score (ULO

LC × (1 − PMS
Sys )), we first consider a real

application. We selected the Unmanned Aerial Vehicles (UAV)
application [13] (Fig. 1), which includes 8 tasks: three HC
tasks (T1 to T3) for system avoidance, navigation, and stability,
and five LC tasks (T4 to T8) for sensor data recording,
GPS coordination, and video transmission [13]. This UAV
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Fig. 2. Objectives and system goal (score) for different approaches, GNN-MiCS, [2], [10], [13]

TABLE I
OBJECTIVES AND SYSTEM GOAL (SCORE) OF DIFFERENT APPROACHES

FOR THE REAL-LIFE APPLICATION

max(ULO
LC )

∗
PMS
Sys

∗∗
max(ULO

LC )× (1− PMS
Sys )

∗

GNN-MiCS 0.269 0.262 0.198
[10] 0.076 0.067 0.071
[13] 0.188 0.237 0.143

∗ Higher is better ∗∗ Lower is better

application runs on two cores, with an overall task graph
deadline (equal to period) of 200 units. Training and predicting
on a single graph can lead to model overfitting but help assess
the approach’s effectiveness. We will later expand the training
set using the tool from [13] to generate task sets.

Table I shows significant improvement in the score with
GNN-MiCS over the unaltered graph. While [10] has a lower
mode switching probability, their maximum utilization that
can be assigned to LC tasks is inferior to GNN-MiCS due
to choosing WCETLO too pessimistic. Additionally, although
GNN-MiCS has a mode switching probability nearly equal
to [13], it achieves significantly higher maximum utilization.
Thus, GNN-MiCS outperforms other methods by effectively
balancing mode switching and utilization, as evidenced by
having a higher score value than other approaches.

D. Evaluation With Synthetic Task Sets
Now, we evaluate GNN-MiCS in terms of maximum uti-

lization that can be assigned to LC tasks, mode switching
probability, and the score (ULO

LC ×(1−PMS
Sys )), using synthetic

task sets. Fig. 2 shows the parameters if we set WCETLO

according to different approaches by varying numbers of cores.
Fig. 2 shows the average results from 1000 task graph

sets across different core numbers (c = 2, 4, 8) for training
and predicting phase. For all core counts, the mode-switching
probability in [13] and [10] is lower (better) than in GNN-
MiCS and [2], but their utilization is worse due to overly
pessimistic WCETLO estimates. Although [2] achieves a higher
score (ULOLC × (1 − PSysMS)) compared to [10], [13],
it has worse utilization and mode switching probability and
consequently the score, compared to GNN-MiCS. GNN-MiCS
provides higher utilization and fewer mode switches by ob-
taining an appropriate WCETLO for HC tasks compared to
other approaches. It improves utilization by up to 45.85% and
22.45% on average while maintaining a reasonable number
of mode switches in the worst-case scenario compared to
the other methods. Additionally, the ML model effectively
balances utilization and mode switching across different core
configurations (utilization is fixed for each number of cores
(U/c =0.75)), optimizing the score for each configuration.

V. CONCLUSION AND FUTURE WORK

The article introduces a novel machine-learning-based ap-
proach for determining tasks’ low WCETs, aiming to bal-
ance system utilization and mode-switching probability while
ensuring task schedulability and timeliness. This approach
enhances MC system utilization by up to 45.85% and 22.45%
on average, while keeping mode switches reasonable in the
worst-case scenario, compared to other methods.

In future research, we aim to create more practice-oriented
graphs to assess the model’s applicability in realistic scenarios.
We will also explore the impact of neural network parameters
on the training process and results, focusing on fine-tuning
model calculations. Additionally, we plan to investigate the
effects of varying system and application parameters, such as
utilization and edge percentage.
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