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Abstract—An increasing trend for reducing cost, space, and
weight leads to modern embedded systems that execute multiple
tasks with different criticality levels on a common hardware
platform while guaranteeing a safe operation. In such Mixed-
Criticality (MC) systems, multiple Worst-Case Execution Times
(WCETs) are defined for each task, corresponding to system
operation mode to improve the MC system’s timing behavior
at run-time. Determining the appropriate WCETs for lower
criticality modes is non-trivial. On the one hand, considering a
very low WCET for tasks can improve the processor utilization
by scheduling more tasks in that mode, on the other hand,
using a larger WCET ensures that the mode switches (which
causes by task overrunning) are minimized, thereby improving
the quality-of-service for all tasks, albeit at the cost of processor
utilization. Hitherto, no analytical solutions are proposed to
determine WCETs in lower criticality modes. In this regard, we
propose a scheme to determine WCETs by Chebyshev theorem,
to make a trade-off between the number of scheduled tasks at
design-time and the number of dropped low-criticality tasks at
run-time as a result of frequent mode switches. To have a tight
bound of execution times and mode switching probability, we
also propose a distribution analytics-based scheme, in which the
mode switching probability is obtained based on the cumulative
distribution function. Our experimental results show that our
scheme improves the utilization of state-of-the-art MC systems
by up to 72.27%, while maintaining 24.28% mode switching
probability in the worst-case scenario. Besides, the results of
running embedded real-time benchmarks on a real platform show
that the distribution-based scheme can improve the utilization by
7.30% while bounding the mode switching probability by 4.85%
more, compared to the Chebyshev-based scheme.

Index Terms—Mixed-Criticality, Mode Switching Probabil-
ity, Optimization, Resource Utilization, Schedulability, WCETs’
Analysis, Tight Execution Time Bound.

I. INTRODUCTION

NOWADAYS, implementing a complex system, executing
various applications with different levels of assurance,
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Fig. 1. Execution time distribution for a real-time task [9]. The figure shows
the large gap between the WCET and the ACET.

is a growing trend in modern embedded real-time systems,
to meet cost, space, timing, and power consumption require-
ments [1]–[5]. Medical devices, automotive, and avionics
industries are the most common applications, exploiting these
systems, which are known as Mixed-Criticality (MC) sys-
tems [6]. For instance, DO-178B [7] is an industrial standard
that is used in the avionics industry and has introduced
different levels of safety, in which, a failure/deadline miss
in tasks with various criticality levels has a different impact
on the system, from no impact to catastrophic consequences.
Therefore, an efficient MC system design should be devel-
oped to guarantee the successful execution of all tasks with
higher criticality (HC) level to prevent catastrophic damages
while ensuring the efficient resource utilization and Quality-
of-Service (QoS) maximization (i.e., execute a higher number
of lower criticality (LC) tasks) [3], [4], [8].

In conventional real-time systems, the tasks are sched-
uled based on their pessimistic Worst-Case Execution
Time (WCET). Many approaches like those presented in [9],
[10] and tools like OTAWA [11] are used to determine the
pessimistic WCET of a task by analyzing the task’s control
flow graph. These tools provide a safe and conservative
execution time-bound so that no task’s execution time exceeds
the WCET under any circumstances. However, Fig. 1 [9]
shows an execution time distribution of a task and observes
that most samples’ execution time is significantly shorter
than such a conservative WCET. As a result, the resources
would be severely under-utilized at run-time, which leads to
poor processor utilization and QoS in conventional real-time
systems.

To this end, in MC systems, tasks are analyzed with
optimistic and pessimistic assumptions to obtain multiple
WCETs, corresponding to the multiple criticality levels and
the operation mode of the system [2], [12]–[14]. This ensures
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that the processor utilization (and correspondingly, the QoS)
is maximized in the low-criticality mode (LO mode), while
the guarantees are preserved in the high-criticality mode (HI
mode). At first, tasks are scheduled based on the optimistic
WCETs. At run-time, if the execution time of at least one
HC task exceeds its optimistic WCET (a task overruns), the
system switches to the HI mode, i.e., the mode switch occurs
due to the HC tasks’ overrunning. In HI mode, to guarantee
the correct execution of HC tasks, the system switches to the
second scheduling, where all HC tasks are scheduled based
on their pessimistic WCETs and all or some LC tasks are
dropped [1]–[4], [6], [14], [15]. Therefore, when the gap
between the optimistic and pessimistic WCETs is large, more
tasks, especially LC tasks, are guaranteed to be scheduled in
a processor at design-time. However, it may cause frequent
system mode switches and, consequently, drop more LC tasks
at run-time due to inefficient, optimistic WCET determination
for HC tasks. When this gap is small, fewer LC tasks are
scheduled in the LO mode which under-utilizes the processor.
Indeed, this is overly pessimistic because, as shown in Fig. 1,
tasks would be executed with less likelihood up to observed
or actual WCET.

Therefore, optimistic WCETs play an important role in de-
signing efficient MC systems and improving the timing behav-
ior of these systems. Most state-of-the-art research works [2],
[4], [12], [13], [15] set optimistic WCETs as a percentage
of the pessimistic WCETs. However, Fig. 1 shows that most
tasks’ execution time is close to Average-Case Execution
Time (ACET) (we discuss more in detail in Section IV).
Furthermore, most studies have not analyzed the probability
of exceeding the optimistic WCETs in system design. Besides,
some studies determine the optimistic WCETs at run-time
based on the system behavior and overall processing require-
ments. However, since in embedded systems, tasks are known
in advance, and no new task is scheduled in the system, using
these methods leads to poor utilization at run-time and can
only optimize the probability of mode switching.

To the best of our knowledge, there is no method to
determine optimistic WCETs for MC tasks to provide a
reasonable trade-off between the number of scheduled LC
tasks at design-time and the probability of mode switching
at run-time to improve the system utilization and QoS. This
paper1 first proposes a novel scheme based on the Chebyshev
theorem [17] for MC systems to determine the appropriate
optimistic WCETs for tasks. Chebyshev theorem provides
a general bound for all tasks with any distribution, which
is pessimistic. To this end, we propose a second approach
to determine tighter execution time bounds for HC tasks.
In this approach, we analyze the execution time distribution
of each task and fit a known distribution curve to it. Then
we use the Cumulative Distribution Function (CDF) of the
known distribution to provide a tight bound for probability of
task overrunning and consequently, determining the optimistic
WCET for that task. This article focuses on MC systems with

1This article is an extended version of the prior work [16], with the
title ‘Improving the Timing Behaviour of Mixed-Criticality Systems Using
Chebyshev’s Theorem’, which has been published in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021.

two criticality levels, but our scheme can be extended for MC
systems with several criticality levels by determining different
values of WCETs corresponding to different system modes
and solve the optimization problem.

Contributions: The main contributions of this paper are:
• Introducing a novel scheme to obtain the optimistic

WCETs by Chebyshev theorem in MC systems and
showing the relation between the optimistic WCETs and
mode switching probability, that is proposed in [16].

• Determining the number of adequate samples for com-
puting ACET and standard deviation.

• Representing the tighter execution time bound and more
realistic overrunning probability based on the applica-
tions’ distribution time feature.

• Formulating and solving an optimization problem for
improving the resource utilization and reducing the mode
switching probability using Genetic Algorithm (GA).

• Evaluating our proposed scheme for various state-of-the-
art MC systems to investigate their timing behaviour with
real benchmarks on a real board, ODROID XU4.

Organization: The rest of the paper is organized as follows.
In Section II, we review the related works. In Section III, we
introduce MC task model and system operational modes. The
motivational example and our proposed method are presented
in Sections IV and V, respectively. Finally, we analyze the
experimental results in Section VI and conclude in Section VII.

II. RELATED WORKS

A significant number of papers have been published in
the last decade regarding the design of MC systems. Since
our focus is on improving the timing behaviour of these
MC systems by defining suitable WCETs and analyzing the
probability of mode switching based on these WCETs, we only
consider the works presented for designing these systems with
similar scope.

The MC task model has been presented by Vestal in [18] for
the first time, and introduced different WCET levels for tasks.
However, the author has not discussed how these WCETs
are obtained and how often the system switches to the HI
mode based on the design. The authors have discussed a bit
further in [19] that how different WCETs can be defined and
determined. As an example, they can be determined at different
levels of accuracy with different degrees of confidence by
limiting the programming constructs, used in implementing
the task. However, this approach does not involve any analysis.
Most of the approaches, such as [1], [2], [4], [12], [13], [15],
[20]–[22], generally count the optimistic WCETs (,��)>?C )
as a percentage of the pessimistic WCETs (,��) ?4B). This
policy may waste the system utilization, or cause frequent
mode switches, which disturbs the LC tasks and reduces their
QoS (more detail is discussed in Section IV). Although the
efficiency of these approaches has been evaluated for differ-
ent percentages of ,��) ?4B , there is no scalable approach
for determining the WCETs for all criticality levels. A few
studies [23], [24] have determined the ,��)>?C of tasks
at run-time, based on their overall processing requirements
and actual execution times. However, there is no guarantee at
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design-time on optimal use of the system utilization and LC
tasks’ execution.

Besides, a few studies such as [25], [26], have focused
on probability distributions in MC systems by exploiting
Extreme Value Theory (EVT) [27] for timing analysis. Note
that, EVT is a branch of statistics, which estimates and
models the probability distribution of extreme events. In the
field of real-time systems, EVT is exploited to determine
WCETs. Applying these estimation methods has some open
challenges, such as the required number of execution times for
a sample and its incomplete representativity identification and
evaluation, that make it uncertain and unreliable [28]–[30].
Researchers in [30] have recently exploited this probabilistic
information and proposed a technique to optimize the energy
consumption of MC systems by finding the optimum core
speed in the LO mode and based on that, obtaining the
,��)>?C . However, their system operation model definition
for running the LC tasks is different from the popular MC
model. In this system, all LC and HC tasks are executed in
both LO and HI modes, and the authors have obtained the
,��)>?C for HC tasks to investigate the trade-off between the
minimum core frequency (that leads to energy minimization)
and probability of mode switching. Switching the system to
the HI mode causes an increase in processor frequency to
guarantee all task schedulability before their deadlines. In fact,
although this method improves the energy consumption, it
causes to schedule fewer LC tasks in the system which leads
to under-utilization.

From the mode switching probability perspective, some
research works such as [31], have addressed mode switching
probability in MC systems and how to have the safe mode
switching at run-time. However, the relation between the HC
tasks’ ,��)>?C and mode switching probability has not been
discussed.

Therefore, an appropriate WCET analysis of MC tasks in
LO mode is needed to reduce the use of WCET estima-
tion methods and improve the confidence in the WCET’s
values [3]. In this work, we propose a scheme to not just
determine the WCETs in the LO mode, but also exploit them
to optimize the system utilization, schedulability, and mode
switching probability.

III. MIXED-CRITICALITY TASK MODEL

We consider a dual-criticality system analogous to that
of [1], [4], [12], [12], [30], in which multiple periodic tasks
with two criticality levels are executed upon the same platform.
Each system has a finite number of MC tasks, {g1, g2, ..., gC }.
We characterize a task g8 as (Z8 , �!$8 , ���

8
, %8 , �8), where:

• Z8 denotes the criticality level of g8 (Z8 ∈ [!�, ��]).
• �!$

8
(���
8

) denotes the WCET of task g8 in LO (HI)
mode.

• %8 denotes the period of task g8 , which is the minimum
amount of the time between two released instances.

• �8 denotes the deadline of task g8 , �8 = %8 [2], [12].
We consider an independent periodic task model as a

case study to analyze the task schedulability. Note that,
our proposed scheme is not limited to independent periodic

tasks, and it can be used for any MC task set regardless of
the dependency between tasks. Further, since we have dual-
criticality systems, we have two levels of WCET for each
HC task g8 where ���

8
≥ �!$

8
, ���

8
= ,��)

?4B

8
, and

�!$
8

= ,��)
>?C

8
. Since we use the utilization bound to

schedule the MC tasks, the utilization of task g8 at criticality
mode l is defined as D;

8
=
�;
8

%8
and ; ∈ {!$, ��}.

System Operation Model: At first, the system begins its
operation in LO mode, where all tasks (LC and HC) are
executed correctly before their deadlines. If the execution time
of at least one HC task exceeds its lowest WCET (�!$

8
), the

system switches to the HI mode, and all HC tasks continue
their execution by their largest WCET (���

8
). In this mode,

since the HC tasks are supposed to execute longer, compared
to the LO mode, the LC tasks are degraded to guarantee
the correct execution of HC tasks before their deadlines and
prevent catastrophic consequences. The system switches back
to LO mode if there is no 1) ongoing HC task, executing on
the processor, 2) ready HC task in the processor’s queue [1]–
[4]. From the perspective of LC tasks’ degradation in the HI
mode, the system should execute these LC tasks to improve
its QoS and functionality. Note that, the QoS can be defined
as the percentage of executed LC tasks to all LC tasks in the
HI mode [8], [32] (&>( = =4G42DC43

!�
/=C>C0;
!�

, where =C>C0;
!�

is
the number of all LC tasks and =4G42DC43

!�
is the number of

executed LC tasks in the HI mode).

IV. MOTIVATIONAL EXAMPLE

In this example, we executed 20000 instances of five real-
world applications, and their ACETs and WCETs in terms of
CPU clock cycle are presented in Table I. ,��) ?4B of each
application is determined by OTAWA [11]. For each appli-
cation, Table I also shows how many instances violate their
,��)>?C when it is set to ACET, or fraction ( 1

4 , 1
8 , 1

16 , 1
32 , 1

64 )
of the ,��) ?4B [2], [4], [15]. The important point that
the table shows, is by increasing the size of inputs to an
application, the ACET and,��) ?4B growth are not the same.
For instance, the growth of ,��) ?4B and ACET for ‹qsort›,
a known algorithm for sorting arrays, is O(:2) and O(: log :),
respectively, where : is the size of the input array. Therefore,
the ,��) ?4B of ‹qsort› application for three different array
sizes with 10, 100, 10000 elements, are 8.1, 22.7, and 59.0
times higher than the ACET of them, respectively. This table
shows that ,��) ?4B is not an appropriate parameter to set
,��)>?C . For example, by setting ,��)>?C to ,��) ?4B

16 ,
the mode switching probability for ‹edge›, and ‹qsort-10› is
more than 99%, while for ‹smooth›, ‹epic›, ‹qsort-100›, and
‹qsort-10000›, it is less than 2%. On the other hand, when the
,��)>?C is equal to ACET, the mode switching probability
is between 43% to 55% for all applications. So, based on the
results in Table I, we can conclude that the mode switching
probability is more consistent when the,��)>?C is estimated
based on ACET, rather than ,��) ?4B . However, simply
setting ,��)>?C equal to ACET leads to many system mode
changes (almost half of the instances).

This paper introduces a scheme that provides a general
formula to choose a suitable ,��)>?C based on ACET to
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TABLE I
COMPARISON BETWEEN ACET AND WCET OF DIFFERENT APPLICATIONS

App ACET
(Cycle)

Pessimistic-
WCET (Cycle)

Standard-Deviation
(Cycle)

Percentage (%) of Samples that Overruns if the optimistic WCET is set to:

���) ,��) ?4B

4
,��) ?4B

8
,��) ?4B

16
,��) ?4B

32
,��) ?4B

64

qsort-10 2.3 × 102 1.9 × 103 3.9 × 101 50.52 0.00 45.52 99.98 100.00 100.00
qsort-100 1.8 × 104 4.1 × 105 1.2 × 103 50.22 0.00 0.02 0.02 99.98 99.98

qsort-10000 1.8 × 108 1.0 × 1010 1.1 × 106 43.86 0.00 0.00 0.02 0.02 99.98
corner 5.6 × 105 9.4 × 106 6.2 × 104 53.27 0.00 0.00 47.71 100.00 100.00
edge 9.8 × 105 1.1 × 107 1.1 × 105 54.88 0.00 0.00 99.84 100.00 100.00

smooth 1.9 × 107 4.9 × 108 5.1 × 106 54.31 0.00 0.00 1.41 78.85 97.25
epic 1.1 × 107 7.0 × 108 1.9 × 106 52.85 0.00 0.00 0.00 0.00 52.20

improve the utilization of the system. This approach makes a
reasonable trade-off between the mode switching probability
and the time that a core becomes idle because of the gap
between its actual execution time and the ,��)>?C .

V. PROPOSED SCHEME

In this section, at first, we propose our scheme for determin-
ing the optimistic WCETs. We then present how to estimate
ACET to be used in determining the WCETs in Section V-B.
Further, a new scheme is proposed in Section V-C to determine
a tighter execution time bound, compared to the first proposed
scheme. At the end, we discuss the scheduling policy and
optimization problem based on our new proposed schemes in
Section V-D and V-E, respectively.

A. Determining optimistic WCET and overrunning probability

As mentioned earlier, determining the appropriate
,��)>?C for HC tasks is a major design challenge for
MC systems. The proposed scheme designs the MC systems
and analyzes the MC tasks of the application in the offline
phase. Based on the analysis results, the scheme chooses a
suitable ,��)>?C for each HC task based on their ACET,
which improves the number of scheduled LC tasks due to
the big gap between the ACET and WCET. To determine
,��)>?C , we introduce the following theorem based on
Chebyshev’s theorem. Note that, Chebyshev’s theorem is a
technique for bounding a tail distribution, which is used for
estimating the failure probability and also establishing high
probability bounds. In fact, it determines where most of the
data samples fall within a distribution. Note that this theorem
disregards how the data are distributed. By knowing only the
mean (ACET in this paper) and standard deviation of data
samples, this theorem claims that a certain fraction of these
data is less than a certain distance from the mean [33].

Theorem 1: Given a task g8 , for any positive integer =, the
rate at which the execution time exceeds the value (���)8 +
= × f8) for task g8 is bounded with 1

1+=2 .
Hence, by considering Chebyshev’s theorem (presented be-

low in detail), = can be any positive integer value. However,
in our proposed method, it plays an important role to draw
a trade-off between determining the ,��)>?C values and
the probability of mode switching. We explain its role after
formulating these two parameters.

Proof: We use Chebyshev’s theorem to prove Theorem 1:

One-Sided Chebyshev [33]: For any non-negative random
variable - , if � [-] is the mean and +0A = f2 is its variance,
then, for any positive real number 0 > 0, we have the
theorem (1):

%A [(- − � [-]) ≥ 0] ≤ f2

f2 + 02 (1)

In this theorem, if 0 is equivalent to = × f (0 ≡ = × f):

%A [(- − � [-]) ≥ = × f] ≤ 1
1 + =2 (2)

Now, assuming < samples of task g8 ( 98,1, 98,2, ..., 98,<) with
execution time �8,1, �8,2, ..., �8,<, the expected value � [-] of
task g8 is:

� [-] = ���)8 =
1
<

9=<∑
9=1

�8, 9 (3)

By using the expected value ���)8 (we present how to
compute ���) for each task g8 in Section V-B), the standard
deviation of execution time, f8 , for task g8 is calculated as
follows:

f8 =

√√√
1
<

9=<∑
9=1
(�8, 9 − ���)8)2 (4)

If the execution time of a task is considered as a random
variable, by using the Chebyshev’s theorem, we can show
that less than 1

1+=2 of samples have higher execution time
than = standard deviation (= × f) of the mean execution
time (ACET=E[X]).

%A [- ≥ (���)8 + = × f8)] ≤
1

1 + =2 (5)

Therefore, the rate of exceeding the execution time level
(���)8 + = × f8) for task g8 is bounded with 1

1+=2 . �
This theorem provides a general upper bound on the

probability of exceeding any arbitrary execution time level
for any task, independent of its distribution. To deter-
mine ,��)>?C , Chebyshev’s theorem can be applied, which
requires mean (���) , that we discuss later how to compute it
in the next subsection) and standard deviation of the execution
time (f) of each task.

�!$8 = ,��)
>?C

8
= (���)8 + =8 × f8) (6)

Parameter = should be set very carefully because a large
value of = reduces the number of scheduled tasks in LO
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mode, and a small = increases the probability of mode switch-
ing %"(

8
= 1

1+=2 . In Section VI, we evaluate the impact of
different values of = in computing the ,��)>?C and the
probability of system mode switching (%"(BHB ).

In addition, since the value of ,��)>?C is based on the
ACET, we need to calculate the average execution time for
each task. In general, it is hard to achieve the real mean (`)
with all possible samples of tasks [34]; so, we discuss a
method in the next subsection to estimate the empirical
mean ( ˆ̀) with the minimum number of samples.

B. ACET estimation and its minimum required samples

In this subsection, in order to calculate the ,��)
>?C

8

for each task g8 , we explain how to estimate the ���)8 .
Therefore, we need to determine how many samples (<) are
required for ACET estimation. We present the estimation by
the probability 1 − X and n error as follows.

Theorem 2: For any task g8 , consider < as the number
of samples; if < ≥ ;=( 2

X
) (,��)

?4B

8
)2

2(n×`)2 , there is an (n, X)-
approximation for computing ���) of task g8 .

Proof: Considering < samples of task g8 , where
�8,1, �8,2, ..., �8,< are their execution times. Then, empirical
mean ( ˆ̀) for task g8 is computed as Eq. (7).

ˆ̀ =
1
<

9=<∑
9=1

�8, 9 (7)

To prove Theorem 2, we use Hoeffding Bound theorem [17]
to approximate the real mean (`). Note that, Hoeffding Bound
theorem provides an upper bound on the probability that the
sum of random variables with a bounded range deviates from
its expected value by more than a certain value [17], [35]. The
execution time of a sample is an independent random variable
because the execution time of one sample does not affect other
samples’ execution time.

Hoeffding Bound: Let �8,1, �8,2, ..., �8,< be independent
random variables which are bounded by an interval [0, 1],
then:

%A [| ˆ̀ − � [ ˆ̀] | ≥ n] ≤ 24
(
− 2<n 2
(1−0)2

)
(8)

The Hoeffding theorem bounds %A [| ˆ̀−` | ≥ n] by using the
fact that � [ ˆ̀] = ∑ 9=<

9=1 � [�8, 9 ] = `. Thus, it can estimate the
real mean ` with n error. Based on the Hoeffding theorem, the
execution time of each sample must be bounded by an interval
[0, 1]. The upper bound execution time of task’s samples is the
pessimistic WCET of that task (,��) ?4B), so the execution
time of each instance is bounded by [0,,��) ?4B

8
] interval.

Therefore, 1 − 0 ≤ ,��)
?4B

8
. If we consider n = n∗ × `,

Eq. (8) is written as:

%A [| ˆ̀ − ` | ≥ n∗ × `] ≤ 24

(
− 2<(n ∗×`)2

(,��) ?4B
8

)2

)
(9)

In order to estimate the real mean with the minimum number
of samples, we use a definition of (n, X)-Approximation [17].
(n, X)-Approximation: An algorithm gives an (n, X)-

approximation for the input value + , if the output - of this

TABLE II
THE EFFECT OF VARYING = ON THE OVERRUNNING OF DIFFERENT TASKS
FROM MIBENCH SUITE [36], UNDER THE PROPOSED CHEBYSHEV-BASED

SCHEME AND EXPERIMENTS

Chebyshev bitcount qsort matrix-mult smooth corner
n=0 100.00% 43.31% 33.92% 42.33% 33.47% 7.96%
n=1 50.00% 8.87% 6.30% 16.26% 19.95% 4.95%
n=2 20.00% 3.68% 4.37% 4.18% 4.92% 3.98%
n=3 10.00% 0.92% 2.33% 0.91% 1.43% 3.08%
n=4 5.88% 0.71% 1.12% 0.22% 0.39% 2.22%

algorithm, satisfies the following inequality. In fact, output -
approximates input + with probability 1 − X and n error.

%A [[- −+] ≤ n+] ≥ 1 − X⇔ %A [[- −+] ≥ n+] ≤ X (10)

By using this definition and Eq. (9), we present the follow-
ing equation to achieve a (1−X) confidence for the correctness
of such an approximation:

24

(
− 2<(n×`)2

(,��) ?4B
8

)2

)
≤ X =⇒ ;=( 2

X
)
(,��) ?4B

8
)2

2(n × `)2
≤ < (11)

This equation shows that with < ≥ ;=( 2
X
) (,��)

?4B

8
)2

2(n×`)2
instances, ˆ̀ is an (n, X)-approximation for `.

%A [| ˆ̀ − ` | ≥ n × `] ≤ X � (12)

C. Determining a tight execution time bound

Eq. (5) presents a general theorem that is applied to any
time distribution of tasks. Therefore, it might not provide
a tight upper bound for the probability of mode switching.
For example, if we consider = = 0 (�!$

8
= ���)8), the

rate of exceeding ���)8 for task g8 is bounded with 100%
by Chebyshev theorem. It means the execution time of all
samples of task g8 might be more than ���)8 , which is not
true for most distributions. Although it is not wrong, it does
not provide a piece of useful information. Table II shows the
percentage of overruns for five different applications, from
MiBench suite [36] through experiments and our analysis,
Chebyshev-based scheme. As shown, the proposed scheme
can provide an upper bound which is valid for any execution
time distribution. However, this scheme gives a pessimistic and
loose upper bound for many applications. As an example, the
percentage of overruns in experiments for ‹corner› application,
is 7.96% when = = 0, while according to our scheme, it is
estimated to be 100%.

Since in our case, the tasks’ execution time distribution
for some applications is known, we propose another scheme,
alternative one, to determine the tighter execution time bounds.
As we discuss further, the determined WCETs would be more
realistic, which cause the method to be more scalable. Note
that, this method might help for better scale to multiple criti-
cality levels and thus, better management of mode switches. To
preset the tighter execution bounds, we execute several bench-
marks on a real board (we discuss the details in Section VI)
and investigate their time distributions. Fig. 2a depicts the
execution time distribution of four applications, from MiBench
suite [36]. The distribution curve of these applications is very
similar to existing known probability distributions. Therefore,
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Fig. 2. Empirical execution time distributions and fitted distributions. (a) Empirical time distribution. (b) Fitted distribution. (c) Empirical and fitted CDF.
(d) Top-3 distributions’ PDF for insertsort. (e) CDF of Bur distribution. (f) CDF of t distribution. (g) CDF of Weibull distribution.

we fitted these applications with the well-known distributions.
We used features of those distributions like probability density
function (PDF) and cumulative distribution function (CDF)
to estimate a tighter upper bound for mode switching. A
distribution’s CDF shows the probability that the execution
time of an instance is less than or equal to a certain value,
which we can consider as the optimistic WCET. Fig. 2b
shows the fitted PDF and Fig. 2c shows the empirical and
fitted CDF for four benchmarks. Since the probability of each
task overrunning is important in our proposed method, we
use the CDF formula (based on the best-fitted distribution) as
(1 − %"(

8
) in our proposed method to find a tighter bound.

To identify the best-fitted distribution for the applications’
execution time data, we have considered 16 different data
distributions such as Normal, Burr, Gamma, t, Weibull, Log-
normal, etc.. We evaluate the distributions’ efficacy using
Kolmogorov-Smirnov’s (K-S) fitness metric [37], which is a
commonly used technique. We select top-three distributions
to implement the corresponding fitness functions for each
application. As an example, Fig. 2d shows the density of
top-3 distributions for the ‹insertion-sort› application, that
are Burr, t, and Weibull distributions. Besides, to see how
well a distribution fits data, we show how empirical data is
distributed compared with a fitted distribution. Therefore, by
using probability–probability (p-p) plot [38], we show two
CDFs against each other. Fig. 2e, 2f, and 2g show it for the
empirical and fitted data for top-three distributions. As shown,
the Burr distribution (Fig. 2e) is more matched between the
observed and theoretical cumulative distributions, compared to
t distributions (Fig. 2f) and Weibull (Fig. 2g) distribution.

In the end, to compute a tighter probability of task overrun-
ning (%A>1"(

8
) based on =, ���) and f, instead of using

Eq. (5), the CDF of the determined distribution (�8 (C)) is used
as %A>1"(

8
= 1 − �8 (���)8 + = × f8).

D. Task schedulability analysis

In this subsection, we analyze the task schedulability and
present the conditions based on the new formula of,��)>?C ,
determined in previous subsections. To schedule MC tasks
in the uni-processor, we apply the existing MC scheduling
technique, EDF-VD algorithm, which has been used in many
studies since the last decade [1], [2], [4]. Here, when the
system switches to the HI mode, all LC tasks are dropped. If
*:
;

denotes total utilization of tasks with the same criticality
level ; in the mode : , then:

*!$�� =
∑
Z8=��

(
���)8 + =8 × f8

)8

)
0=3 *���� =

∑
Z8=��

���
8

)8

(13)

A suitable ,��)>?C for each HC task g8 can be achieved
by choosing the optimum =8 (used in Eq. (6)). The optimum
=8 must be determined to minimize the mode switching prob-
ability and maximize the resource utilization. To solve this,
we formulate the optimization problem to find the optimum
=8 for each task g8 and determine its ,��)>?C

8
. Furthermore,

Eq. (14) must be satisfied to guarantee schedulability by EDF-
VD at run-time [1]. Eq. (14) presents the necessary and
sufficient conditions to guarantee the task schedulability in
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both LO and HI modes and meeting deadlines of running tasks
even if the system switches to the HI mode [1].

*!$�� +*
!$
!� ≤ 1 0=3 *���� +

(
*!$
��
×*!$

!�

1 −*!$
!�

)
≤ 1 (14)

E. Optimization problem formulation
In order to formulate the optimization problem based on

the two objectives (mode switching probability and system
utilization), we first identify the variables and constraints for
better understanding. For each task g8 , ���)8 , ,��)

?4B

8
,

)8 (period) and f8 (standard variation) are constant. ,��)>?C
8

is variable, which is computed based on the variable =8 (In-
troduced in Section V-A). These constant parameters and
variables are used to compute the objectives, mode switching
probability, and system utilization. In order to optimize these
objectives and find the optimum value for =8 , we first present
the constraints and then formulate the objectives as follows.

Execution Time Constraint: ,��)>?C
8

of each HC task
g8 must not be more than ,��) ?4B

8
.

(���)8 + =8 × f8) ≤ ,��) ?4B8
(15)

There are two main objectives to optimize the system:
Objective 1: Mode Switching Probability: If the LC tasks
are dropped frequently due to the HC tasks overrunning, it
may negatively impact the performance or functionality of
MC systems. Therefore, one of the most significant objectives
is the minimization of mode switching probability. Let %"(

(HB

denote the probability of system mode switching. If %=>"(
(HB

is
the probability that no HC task overruns and consequently,
no mode switch happens, then, %"(

(HB
= 1 − %=>"(

(HB
. Since

tasks are independent, %"(
(HB

is computed as shown in Eq. (16),
where %"(

8
is the probability of task overrunning for task g8 .

According to our discussion in Section V-A, %"(
8

= 1
1+=2

8

. The
higher the =8 , the less the mode switching probability.

%"((HB = 1 −
∏
Z8 ∈��

(1 − %"(8 ) = 1 −
∏
Z8 ∈��

(
1 − 1
(1 + =2

8
)

)
(16)

Objective 2: Resource Utilization: The second objective is
to improve the resource utilization by a significant gain in
terms of the utilization that can be allocated to LC tasks in
the LO mode (*!$

!�
). Although maximizing *!$

!�
is desired,

it is upper-bounded by the schedulability constraints, which
can be derived from Eq. (14). Eq. (17) presents the condition
to guarantee the task schedulability in the LO mode under
the EDF-VD algorithm. In addition, as mentioned in Sec-
tion V-D, Eq. (18) shows the condition for guaranteeing the
task schedulability in the HI mode and mode switching [1], [8].
In these equations, the maximum amount of *!$

!�
depends on

the values of =8 for each HC task. The lower the =8 , the higher
the *!$

!�
. Therefore, the second objective can be bounded as

follows.

*!$�� +*
!$
!� ≤ 1 =⇒

*!$!� ≤ (1 −*
!$
�� ) = 1 −

∑
Z8=��

(
���)8 + =8 × f8

)8

)
(17)

TABLE III
THE MINIMUM VALUE OF = IN ,��)

>?C

8
≥ ,��)

?4B

8
FOR DIFFERENT

TASKS

FFT qsort dijkstra corner edge smooth epic bitcount
= 60 17 12 11 27 8 7 19

*���� +
(
*!$
��
×*!$

!�

1 −*!$
!�

)
≤ 1 =⇒ *!$!� ≤

(
1 −*��

��

1 −*��
��
+*!$

��

)

=⇒ *!$!� ≤
©«

1 −*��
��

1 −*��
��
+

(∑
Z8=��

(
���)8+=8×f8

)8

)) ª®®¬ (18)

Hence, if %"(
(HB

=1, it means the system is always in the
HI mode, and all LC tasks are always dropped. If %"(

(HB
=0, it

implies all LC tasks are always executed with no dropping.
Therefore, by having these two objectives, we maximize the
following equation.

<0G8<8I4{(1 − %"((HB ) ×*
!$
!� } (19)

1) Problem solving: Derivation-based optimization: In or-
der to optimize two objectives of mode switching probability
and utilization, the optimum value of =8 must be obtained
for each task g8 . If the uniform = is considered for all tasks
to compute the ,��)!$

8
, we can obtain the optimum = by

finding the derivation of both objectives. Using the method of
the second derivative helps to find the largest or smallest value
of a function, where the derivative equals zero. Further details,
on how the derivative works to find the optimum value, are
provided in the result section (Section VI-B2) by an example.
However, obtaining the uniform optimum = for all tasks is not
fair and tasks have different time distribution. Table III shows
the minimum value of = for some benchmarks of MiBench
Suite, where ,��)

>?C

8
= ���)8 + = × f ≥ ,��)

?4B

8
.

Due to having different time distribution of tasks, choosing
the uniform = causes the system’s objectives to not optimize
well and precisely. As a result, optimization techniques that
can handle non-uniform values of =8 across different tasks and
can scale effectively with increasing number of tasks in the
system are necessary.

2) Problem solving: GA-based optimization: Global op-
timization methods based on randomized algorithms, have
been used extensively in system-level design space exploration
for QoS improvement in embedded systems [39]. In our
current work, we use Genetic Algorithms (GA) for solving
the maximization problem shown in Eq. (19). GA involves
using randomized search methods based on the principles of
natural evolution and genetics.

It is important to mention that Mixed-Integer Linear Pro-
gramming (MILP) can be used as an alternative to Genetic
Algorithms (GA) for optimisation. However, the problem
formulation of MILP is much more complex compared to
that of GA, which allows a simpler implementation of the
fitness function. Although GA has the lack of optimality
guarantees, MILP also does not scale very well with the
number of integer variables. So, increased number of integer



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (TCAD), VOL. XX, NO. X, MM 2021 8

TABLE IV
EXECUTION TIME DISTRIBUTION OF VARIOUS BENCHMARKS

Exe. Parameters (<B) insertsort-10000 matrix-mult qsort-10000 corner edge smooth epic bitcount dijkstra FFT
,��) ?4B 753.23 387.67 759.32 51.63 131.47 301.09 230.81 1142.17 1039.98 686.52
���) 51.33 13.05 39.65 0.55 0.94 9.317 2.69 64.73 81.95 6.15
f 6.38 5.6 5.46 0.71 0.87 5.63 1.98 6.94 8.65 2.12

(and real) variables resulting from large number of tasks—=8
and support variables—in an MILP formulation can increase
the complexity considerably. Most state-of-the-art tools for
solving MILP problems also provide a time-bound best-effort
solution for complex problems. Further, for the distribution-
aware optimization for real-world tasks, we use a lookup table
to search for the closest WCET and PMS values. Implementing
such lookup-based optimizations from real-world observations
with standard MILP formulation can be considerably more
complex than using GA. It must be noted that the focus
of the article is on showing the efficacy of the proposed
methodology in providing improved trade-offs between mode
switching probability and utilization. While we would ideally
prefer optimization methods with guaranteed optimality, the
choice of GA was based on the ease of implementation and
the support for integrating varying estimation methods–both
mathematical and lookup-based. However, MILP formulation
for the current research problem can be a suitable topic for
further exploration. The encoding approach and GA methods
used in our current work include the following:

• Individual: An ordered sequence of integer values forms
the individual in the population. Each integer in the
sequence corresponds to the value of =8 for a task g8 .

• Population: During the optimization we generate two
types of individuals for initializing the population of the
first generation of candidate solutions. Firstly, we gener-
ate individuals comprising of randomly sampled =8 values
from the range [1, 50] for each task g8 in the benchmark.
Secondly, we generate uniform-valued individuals from
the same range to ensure that the optimization included
uniform values of =8 for each task.

• Cross-over and Mutation: We used two-point cross-over
for exchanging =8 values among two candidate solutions.
During cross-over, the configurations of the two randomly
selected possible solutions are interchanged. This process
forms one of the algorithms that generates new possible
solutions (individuals) for the next generation of solu-
tions. In our current problem, this entails interchanging
the =8 values of two candidate solutions, selected from
the current generation, for a subset of the tasks. Similarly,
we used single-point mutation to set the value of =8 for
a randomly selected task in the candidate solution to a
randomly selected value in the range [1, 50].

• Selection: We use tournament selection for choosing
the candidate solutions for the population of the next
generation. It involves randomly choosing a fixed number
of individuals from the current population and selecting
the one with the maximum value of (1 − %"(

(HB
) × *!$

!�

for the next generation.
• Fitness and Feasibility: Eq. (16) to (18) were used to

evaluate the fitness ((1 − %"(
(HB
) × *!$

!�
) of each candi-

date solution. Similarly, Eq. (14) and (15) were used to
determine the feasibility of each candidate solution.

VI. EVALUATION

In this section, we present the experiments to evaluate the
effectiveness of our proposed scheme in terms of utilization,
schedulability, and mode switching probability.

A. Evaluation with real-life benchmarks at run-time

1) Evaluation setup: To evaluate our scheme, we con-
ducted some experiments on the ODROID XU4 board powered
by ARM, which has the big.LITTLE architecture, with four
Cortex A15 (big) and four Cortex A7 (LITTLE) cores. We use
the LITTLE cores with the maximum frequency of 1.4��I,
for doing the experiments.

To evaluate our scheme by real benchmarks, we use various
benchmarks from MiBench benchmark suite [36] such as au-
tomotive, network, telecomm. and from AXBench [40] such as
matrix-multiplier. We execute each benchmark with different
inputs on ODROID-XU4 board, to achieve their execution
times. Table IV shows the pessimistic WCET, ACET, and f

(standard deviation) of these benchmarks.
2) Minimum required samples to estimate ACETs: Fig. 3

shows the minimum required samples of each benchmark
based on Theorem 2 to estimate ACET, by varying the pa-
rameters of (n, X)-Approximation. In fact, as an example in
Fig. 3a, with 90% confidence, the estimation error of ACET
for each benchmark is less than (n × `), where ` is the real
mean. Besides, by decreasing the confidence, the minimum
required samples for each benchmark is decreased. It means
with more samples, we can say with more confidence that the
difference between the estimated average and the real average
is less than n × ���)A40; .

3) Investigating MC systems’ timing behaviour: In order
to evaluate the proposed approach, we run these benchmarks
on a single core. We consider ‹insert-sort›, ‹matrix-mult›,
‹qsort›, ‹bitcount›, ‹dijkstra›, and ‹FFT› as HC tasks, and
‹corner›, ‹edge›, ‹smooth›, and ‹epic› as LC tasks. We compute
the low WCET for each HC task based on the three polices–
our scheme under Chebyshev’s theorem, our scheme under
distribution analysis, and the fraction analysis. In order to
specify what the fraction analysis is, as discussed in Section II,
most of the state-of-the-art approaches have defined a fraction
of ,��) ?4B as ,��)>?C . For example, if we define _ =
,��) >?C

,��) ?4B
, researchers in [12] have considered _ ∈ [ 1

2.5 ,
1

1.5 ] in
their experiments. In [1], two different ranges for _ have been
considered, _ ∈ [ 14 , 1] and _ ∈ [ 18 , 1]. Researchers in [4] have
considered the amount of _ ∈ { 1

16 ,
1
8 ,

1
4 ,

1
2 , 1}. Since all papers
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Fig. 3. Required number of samples for different benchmarks by varying the
error (n ) and confidence (1 − X). (a) 1 − X= 0.9. (b) 1 − X= 0.8.

have the same policy to determine ,��)>?C , we choose [1]
as a representative of these approaches.

For these real tasks, including both LC and HC tasks, the
system with _ = 1 has the utilization more than one in the
worst-case scenario and then it is not schedulable. Therefore,
we only consider the amount of _ as { 1

16 ,
1
8 ,

1
4 ,

1
2 }. Here, we

investigate the system at run-time for 1000 hyper-period of
tasks, and see how often these tasks exceed their ,��)>?C

under various policies and the system has to switch to the HI
mode.

By reducing the _, the optimistic WCET (�!$
8

) for HC
tasks decreases, and the system executes more LC tasks. But
on the other hand, it causes frequent system switches and
more LC tasks dropping during run-time, leading to lower
QoS. As an example, Table V shows the maximum total
utilization bound that can be assigned to LC tasks at design-
time for each scenario and also the percentage of dropped
LC tasks due to the system mode switching at run-time. We
assume that the system needs to run different instances of
each LC tasks (with different input) as much as possible
to improve the QoS. As shown in Table V, the Chebyshev-
based scheme can schedule more LC tasks in the system
compare to [1] approach. Although the maximum assigned
utilization to LC tasks is almost equal to the scenario of [1]
with _ = 1

8 , the mode switching probability and the number LC
dropped tasks are lower in the Chebyshev-based scheme. This
is because a fraction of pessimistic WCET does not provide
any information about how many samples might exceed it.
So, setting the optimistic WCET of each task equal to _ = 1

8
of the pessimistic WCET of that task is too low for some
tasks and too high for others. The optimization goal in the last
column of the table shows this fact that the Chebyshev-based

TABLE V
SYSTEM PERFORMANCE IN BOTH DESIGN-TIME AND RUN-TIME PHASES,

FOR DIFFERENT SCENARIOS

dropped <0G (*!$
!�
) %"(

(HB
<0G (*!$

!�
)×

LC jobs(%) (1 − %"(
(HB

)

[1] _ = 1
2 0 44.7% 0.24% 0.446

[1] _ = 1
4 0 61.78% 1.21% 0.610

[1] _ = 1
8 0.33% 76.37% 10.23% 0.686

[1] _ = 1
16 39.29% 86.61% 92.02% 0.069

Chebyshev 0.06% 77.01% 7.1% 0.715
Dist. Analyt. 0 84.31% 2.25% 0.824

scheme performs better than the approach of [1] (i.e., the goal
metric has a larger value). Besides, the distribution analytics-
based scheme improves total utilization by 7.3% compared to
Chebyshev-based scheme. It also reduces the mode switching
probability by 4.85%. This is because the Chebyshev is a
general formula that is valid for any distribution, but it isn’t
very optimistic. The value of optimization goal in the last
column of the table also shows this fact. Let us consider the
distribution analytics-based scheme with the method of [1]
with _ = 1

16 which both have almost the same total utilization.
The results show that in the distribution analytics-based, the
probability of mode switching and the percentage of dropped
LC tasks are 89.75% and 39.29% lower, respectively, which
is desirable.

B. Evaluation with synthetic task sets

1) Task set generation and evaluation setup: In order
to further evaluate our scheme, we generated synthetic dual-
criticality task sets similar to the state of the art studies [1],
[13], [20], [21], for various system utilization bounds (*1>D=3)
in line with the previous works [1], [13], [15], [20], [21],
where (*1>D=3 = <0G(*!$

!�
+ *!$

��
,*��

��
)). The algorithm

adds tasks to the task set randomly to increase the*1>D=3 until
it reaches a given threshold. We evaluate different approaches
for *1>D=3 in the range of [0.05, 1] with steps of 0.05 and
for each *1>D=3 , 1000 task sets are generated. Here, we
consider balanced tasks in terms of criticality levels, i.e., the
probability of a generated task being HC is equal to being
LC. Besides, inspired by real execution times, presented in
Table IV, we provide the,��) ?4B , ���) and f in the range
of [52,1142], [0.55,81.95] and [0.71,8.65]<B, respectively,
where ,��) ?4B > ���) . As a result, the periods of tasks
are computed based on the task utilization and ,��) ?4B

(D��
8

=
,��)

?4B

8

%8
).

The recent advanced features in CAD tools, like MATLAB,
Excel, and new libraries in Python, provide several practical
ways to find a distribution that fits the best to the data
samples. Besides, the probabilistic analysis for distribution
fitting is implemented in Python using multiple packages,
including scikit-learn. For solving the formulated problem with
GA, we set the mutation probability to 0.2 and the cross-
over probability to 0.8. We also used five individuals in the
tournament selection process. The optimization methods were
implemented in Python using the DEAP [41] package. In the
following, we perform extensive simulations to evaluate the
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Fig. 4. Effect of varying uniform = on maximum assigned utilization to LC tasks and mode switching probability for an example task set. (a) second derivation
of system properties. (b) %"(BHB and <0G (*!$

!�
) . (c) objective function.

effectiveness of our proposed approach in comparison with
the state-of-the-art methods.

2) Effect of varying uniform n on maximum assigned
utilization to LC tasks and mode switching probability for
a task set example: In this section, we evaluate the effects
of varying the parameter =, used to determine ,��)>?C for
each HC task, on system properties. In this experiment, for
the sake of presentation, we considered only one = (uniform)
for all HC tasks. However, in further experiments, due to our
explanation in Section V-E1, we find an independent = for
each task with the help of the GA algorithm. As mentioned,
we improve resource utilization by a significant utilization that
can be allocated to LC tasks in the LO mode. Fig. 4 shows
the results for an example task set with *��

��
= 0.84. First

we show the results, solved by derivation-based optimization
in Fig. 4a, and then by GA-based Optimization in Fig. 4b
and 4c.

Fig. 4a shows the second derivative of utilization and mode
switching probability for the task set. The figure shows that
the second derivative of utilization is almost zero all the time,
while the second derivative of mode switching probability
becomes almost zero for = ≥ 18. Therefore, we can conclude
that the mode switching probability impacts more on obtaining
the optimum value of =. To show how effective the derivation-
based optimization is, we solve the problem with uniform =

by GA-based Optimization for this example, shown in Fig. 4b
and 4c.

Eq. (15) shows that by increasing the value of =, the
,��)>?C of HC tasks, and consequently HC tasks’ utilization
in the LO mode are increased, which reduces the number
of scheduled LC tasks at design-time (<0G(*!$

!�
)). On the

other hand, Eq. (16) shows that by increasing the value of =,
the probability of mode switching (%"(BHB ) is decreased, which
means fewer LC tasks are dropped at run-time. Fig. 4b depicts
that, by increasing the value of =, both %"(BHB and <0G(*!$

!�
)

are decreased, while to achieve the best utilization, we need to
maximize <0G(*!$

!�
), and minimize %"(BHB . Therefore, if the

= is set to 5, then %"(BHB is equal to 0.54, and <0G(*!$
!�
), is

equal to 0.91. Meanwhile for = = 10, %"(BHB is equal to 0.18,
and <0G(*!$

!�
) is equal to 0.88. Indeed, %"(BHB is decreased

at a great rate by increasing =, compared to <0G(*!$
!�
)

decrements. Now, consider = = 20 where %"(BHB = 0.05 and
<0G(*!$

!�
) = 0.82. It can be seen that the rate of %"(BHB

reduction is decreased by increasing =, while <0G(*!$
!�
)

reduction rate is very low. Therefore, <0G(*!$
!�
) becomes

more important than %"(BHB in this case. We used Eq. (19),
to find a proper = which makes a trade-off between %"(BHB

and <0G(*!$
!�
) and improves the system utilization. Fig. 4c

shows, the optimum = is 18 for our case study task set where
<0G(*!$

!�
) = 83% and %"(BHB = 0.06.

3) Effect of varying uniform n on maximum assigned
utilization to LC tasks and mode switching probability for
more task sets: Now, we evaluate the effects of parameter
= and different utilization of HC tasks on system properties
in Fig. 5, by running 1000 task sets for each utilization
point. According to Fig. 5a, %"(BHB is increased when utilization
increases. For example, for a constant = = 10, for *��

��
equal

to 0.4 and 0.8, %"(BHB is 15.47% and 28.43%, respectively. The
reason is, when utilization of HC tasks is high, more HC
tasks are scheduled in the system. Since each HC task has
the probability of overrunning, by increasing the number of
HC tasks, %"(BHB is increased. In addition, we discussed that
%"(BHB is decreased by increasing =. Fig. 5b also shows that
by increasing *��

��
, there is less opportunity to schedule LC

tasks. As a result, the system schedules fewer LC tasks which
degrades <0G(*!$

!�
). As an example, for a constant = = 10,

if *��
��

= 0.4, then <0G(*!$
!�
) = 87.59% and if *��

��
= 0.8,

then <0G(*!$
!�
) = 53.46%. Besides, as mentioned, increasing

= causes a decrease in <0G(*!$
!�
). As a result, by increasing

=, %"(BHB is reduced (which is desirable), and the LC tasks
utilization and consequently schedulability is also reduced
(which is not desirable). Now, if we optimize both %"(BHB and
assigned utilization to LC tasks, we can find the optimum
value of = for HC tasks. Fig. 5c shows the product of %"(BHB

and <0G(*!$
!�
) (Eq. 19), where, the optimum = is decreased in

general with an increase in *��
��

, to run more tasks in system.
4) Comparison with the other policies: Since applications

have different time distributions, choosing the uniform =

prevents the system from optimizing its objectives precisely.
Therefore, solving the problem with optimization algorithms
like GA is the best method to optimize system properties. As
a result, in this subsection, we compare the mode switching
probability and resource utilization under our proposed scheme
with non-uniform = using the GA-algorithm, and the other
policies, used to determine ,��)>?C and then, *!$

��
.

Since ACET and f for each task are known, the system
mode switching probability for other policies can be obtained
using Eq. 6. Fig. 6 shows the results of comparing different
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(a) (b) (c)

Fig. 5. Effect of = and HC tasks’ utilization on maximum assigned utilization to LC tasks and mode switching probability. (a) %"(BHB by varying = and *��
��

.
(b) <0G (*!$

!�
) by varying = and *��

��
. (c) optimization goal.

U_{bound} Chebyshev-based Scheme[1] with 𝜆=1 [1] with 𝜆∊[1/2,1][1] with 𝜆∊[1/4,1][1] with 𝜆∊[1/8,1] [1] with 𝜆∊[1,1][1] with 𝜆∊[1,2][1] with 𝜆∊[1,4][1] with 𝜆∊[1,8]
0.05 0.9744 0.93058867 0.96395642 0.98163392 0.99073377 0.04496236 0.01071796 -0.007424 -0.0167629

0.1 0.9528 0.88294088 0.93770415 0.96784314 0.98365502 0.07331981 0.01584367 -0.0157884 -0.0323835
0.15 0.9388 0.83219548 0.90824425 0.9519061 0.97535057 0.11355403 0.03254767 -0.0139605 -0.0389333

0.2 0.9165 0.78295939 0.87807122 0.93506873 0.96644141 0.14570716 0.04192993 -0.0202605 -0.0544914
0.25 0.8911 0.73321033 0.8458322 0.91645744 0.95640163 0.17718513 0.05079991 -0.0284563 -0.073282

0.3 0.8693 0.68282689 0.81125378 0.89576893 0.94500935 0.2145095 0.06677352 -0.0304486 -0.0870923
0.35 0.8379 0.63244915 0.77453323 0.87291765 0.93213916 0.24519734 0.0756257 -0.0417922 -0.1124707

0.4 0.8176 0.58272957 0.73601964 0.84791455 0.91768195 0.28726814 0.09978028 -0.0370775 -0.1224094
0.45 0.7834 0.53290666 0.69491692 0.81995583 0.90105579 0.31975152 0.11294752 -0.046663 -0.1501861

0.5 0.7576 0.48285128 0.65084029 0.78844231 0.88169601 0.36265671 0.14091831 -0.0407105 -0.1638015
0.55 0.7089 0.43304584 0.60394468 0.75301024 0.8590648 0.38912986 0.14805378 -0.0622235 -0.2118279

0.6 0.6721 0.38325092 0.55368367 0.71265182 0.83216511 0.42977099 0.17618855 -0.060336 -0.2381567
0.65 0.6336 0.33319348 0.49938574 0.66600158 0.79947159 0.47412645 0.21182806 -0.0511389 -0.2617923

0.7 0.5793 0.28198592 0.43944279 0.61042005 0.75799483 0.5132299 0.2414245 -0.0537201 -0.3084668
0.75 0.5239 0.23286842 0.37728822 0.54768698 0.70758304 0.5555098 0.27984688 -0.0454037 -0.3506071

0.8 0.4575 0.18212513 0.3076613 0.47030168 0.63947078 0.60191227 0.32751628 -0.0279818 -0.3977503
0.85 0.3676 0.13265552 0.23379979 0.3786333 0.5488224 0.6391308 0.36398316 -0.0300144 -0.492988

0.9 0.2597 0.08246861 0.15197149 0.26331424 0.41589186 0.68244662 0.41481906 -0.013917 -0.6014319
0.95 0.1207 0.03346636 0.06443662 0.1202608 0.21241261 0.72273108 0.46614233 0.00363881 -0.7598394

1 0 0 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0.72273108 0.46614233 0.00363881 -0.0167629
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Chebyshev-based Scheme [1] with 𝜆=1
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(a)

U_{bound} Chebyshev-based Scheme[1] with 𝜆=1 [1] with 𝜆∊[1/2,1][1] with 𝜆∊[1/4,1][1] with 𝜆∊[1/8,1]
0.05 0.0122 0.00680744 0.04326321 0.0982695 0.20561634

0.1 0.02 0.01285068 0.07377674 0.15344641 0.29968019
0.15 0.0308 0.01844388 0.09264771 0.20874546 0.38873335

0.2 0.0395 0.03064475 0.12076037 0.26643465 0.49954731
0.25 0.0526 0.04585996 0.16068102 0.32876305 0.55820045

0.3 0.0568 0.03461451 0.16915906 0.37999117 0.62754063
0.35 0.0657 0.04468982 0.20231487 0.42352292 0.68574847

0.4 0.0801 0.04259597 0.21437713 0.44738188 0.72087621
0.45 0.0938 0.05071574 0.25717965 0.50105793 0.76689966

0.5 0.1017 0.06024768 0.27212854 0.52023567 0.79636174
0.55 0.1148 0.07419249 0.29463279 0.56031265 0.83022485

0.6 0.1211 0.0670634 0.33186823 0.58226389 0.85819372
0.65 0.1366 0.08453308 0.33376003 0.62994809 0.87800017

0.7 0.1477 0.08792615 0.35534392 0.65026546 0.90870956
0.75 0.1646 0.09659439 0.38795748 0.65452383 0.90754691

0.8 0.1866 0.09384369 0.38546609 0.69009248 0.9182094
0.85 0.1958 0.10180699 0.40623276 0.71916022 0.93555015

0.9 0.2233 0.11240223 0.43305292 0.74219558 0.94148157
0.95 0.2428 0.10461891 0.44411067 0.76000731 0.94938786

1 0 0.00571799 0.01473599 0.02505219 0.03140517
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Chebyshev-based Scheme [1] with 𝜆=1
[1] with 𝜆∊[1/2,1] [1] with 𝜆∊[1/4,1]
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U_{bound} Chebyshev-based Scheme[1] with 𝜆=1 [1] with 𝜆∊[1/2,1][1] with 𝜆∊[1/4,1][1] with 𝜆∊[1/8,1]
0.05 0.96251232 0.92422077 0.92225869 0.88519104 0.78705388

0.1 0.933744 0.8715963 0.8685283 0.81937375 0.68887996
0.15 0.90988496 0.81681001 0.82411564 0.75327304 0.59626

0.2 0.88029825 0.75896117 0.77202905 0.68593742 0.48365406
0.25 0.84422814 0.69952915 0.70997506 0.61525688 0.42256324

0.3 0.81992376 0.65919973 0.67404733 0.55539462 0.35204354
0.35 0.78284997 0.60423392 0.61785413 0.50333268 0.29291991

0.4 0.75211024 0.55793044 0.57823804 0.46862158 0.25611111
0.45 0.70991708 0.50584535 0.51631141 0.40919279 0.21006491

0.5 0.68055208 0.45376297 0.473646 0.37823052 0.17952981
0.55 0.62751828 0.40098271 0.42599258 0.33102177 0.14584366

0.6 0.59070869 0.35757987 0.36991617 0.29776567 0.11801537
0.65 0.54705024 0.30513447 0.33291969 0.24648281 0.09749673

0.7 0.49373739 0.25721371 0.28353783 0.2134353 0.06922195
0.75 0.43766606 0.2103539 0.23062448 0.18930733 0.06541406

0.8 0.3721305 0.16510454 0.18929781 0.1458501 0.05228699
0.85 0.29562392 0.11917997 0.13878968 0.1063869 0.03557968

0.9 0.20170899 0.07320871 0.08625624 0.06789473 0.02448803
0.95 0.09139404 0.02987335 0.03564829 0.02895873 0.01068797

1 0 0 0 0 0
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Fig. 6. The effectiveness of our proposed scheme in comparison with other policies, proposed in other research works. (a) <0G (*!$
!�
) by varying *��

��
.

(b) %"(BHB by varying *��
��

. (c) optimization goal by varying *��
��

.

policies and our scheme with the optimum =8 for each task g8
of task sets using the GA-algorithm, for different utilization.
In the Baruah’s approach [1], considering a large lower-
bound value for _ like 1, 1

2 , reduces the probability of mode
switching, but it under-utilizes the system during run-time.
For example if *��

��
= 0.75, for _ = 1, %"(BHB = 9.66%

and <0G(*!$
!�
) = 23.28%, while for our proposed scheme,

%"(BHB = 16.46% and <0G(*!$
!�
) = 52.39%. On the other hand,

using a smaller lower-bound value for _ like 1
8 , increases the

maximum utilization of the LC tasks with high mode switching
probability. For instance, if *��

��
= 0.75, then %"(BHB = 90.75%

and <0G(*!$
!�
) = 70.75%. Note that, to prevent the figures

from being unclear, we only show the result for the _ ∈ [ 18 , 1].
The results for _ ∈ [ 1

16 , 1] and _ ∈ [ 1
32 , 1], have more

maximum utilization increment of the LC tasks with higher
mode switching probability in comparison with _ ∈ [ 18 , 1],
which is undesirable. Our approach works well in both system
properties by determining the best ,��)>?C values for HC
tasks base on the ACET, and then, the optimum *!$

��
. Fig. 6c

shows this fact by optimizing both system properties, where
the proposed scheme performs better than other policies. As
a result, our scheme improves the utilization by up to 72.27%
compared to the existing approaches, while %"(BHB is bounded
by 24.28% in the worst-case scenario.

5) Evaluating scheduling approaches under proposed
scheme: Now, we evaluate and compare the results in terms of
schedulable task sets (acceptance ratio) to the state-of-the-art

approaches, proposed in [1], [2], with and without our scheme.
In this experiment, we assume that the probability that a task is
an HC or LC is equal. In both [1], [2], the EDF-VD algorithm
has been used to schedule the tasks. In [2], the algorithm
executes all LC tasks in the HI mode by reducing their WCET
to 50%, and also in [1], the algorithm drops all LC tasks
when the system switches to the HI mode. It is noteworthy to
mention that our scheme for selecting the suitable ,��)>?C

for HC tasks can be applied to any scheduling algorithm
with any policy of task execution and optimize the resource
utilization and mode switching probability.

Fig. 7 shows the acceptance ratio for two state-of-the-art
scheduling approaches [1], [2], which are improved with our
scheme in all utilization bounds. As shown in this figure,
when *1>D=3 ≤ 0.7, all tasks sets are schedulable with
Liu’s approach [2], and our scheme. When the system uti-
lization is increased (0.7 < *1>D=3 ≤ 0.95), our proposed
scheme performs better than Liu’s approach [2] in terms of
acceptance ratio. And so that, no task set is schedulable for
*1>D=3 ≥ 0.95. Besides, the same trend is found for Baruah’s
approach [1]. The reason for having a better acceptance ratio
in our scheme is determining the appropriate ,��)>?C for
HC tasks and executing more tasks in the system.

VII. CONCLUSION

In this paper, we proposed a scheme, Worst-Case Execu-
tion Time (WCET) analysis of mixed-criticality tasks, which
manages the probability of mode switching and improves the
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[1] Chebyshev-based scheme under the sch. alg. of [1][2] Chebyshev-based scheme under the sch. alg. of [2]
0.05 1 1 1 1 1 1 0 0 1

0.1 1 1 1 1 1 1 0 0 1
0.15 1 1 1 1 1 1 0 0 1

0.2 1 1 1 1 1 1 0 0 1
0.25 1 1 1 1 1 1 0 0 1

0.3 1 1 1 1 1 1 0 0 1
0.35 1 1 1 1 1 1 0 0 1

0.4 1 1 1 1 1 1 0 0 1
0.45 1 1 1 1 1 1 0 0 1

0.5 1 1 1 1 1 1 0 0 0.975
0.55 1 1 1 1 1 1 0 0 0.979

0.6 0.993 1 1 1 1 1 0.007 0 0.974
0.65 0.777 0.99563319 1 1 1 1 0.21959211 0 0.963

0.7 0.413 0.83157895 1 1 1 1 0.50335443 0 0.871
0.75 0.175 0.45833333 0.961 0.97142857 0.961 0.97142857 0.61818182 0.01073529 0.546

0.8 0.065 0.29411765 0.636 0.79591837 0.636 0.79591837 0.779 0.20092308 0.237
0.85 0.011 0.125 0.2 0.375 0.2 0.375 0.912 0.46666667 0.052

0.9 0.002 0 0.013 0.04761905 0.013 0.04761905 #DIV/0! 0.727 0.003
0.95 0 0 0 0 0 0 #DIV/0! #DIV/0! 0

1 0 0 0 0 0 0 #DIV/0! #DIV/0! 0

0.50652139 0.35133126

0.42892633
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Fig. 7. Different scheduling approaches with our scheme

schedulability and timing budget allocated to low-criticality
tasks. Our scheme analyzes the application in the offline
phase to determine an appropriate low WCET for each task,
based on two approaches. In the first approach, we analyze
the applications based on the Chebyshev theorem, a general
theorem which is valid for any task with any execution
time distribution. However, to have a tighter bound for sys-
tem mode switching probability, we analyze the applications
based on their distribution. The proposed scheme based on
the Chebyshev theorem improves the system utilization and
schedulability up to 72.27% and 91.2%, respectively, while
bounding the mode switching probability to 24.28% in the
worst-case scenario. We also evaluated the approaches with
real benchmarks on a hardware platform to show its efficiency.
The proposed scheme based on the distribution analysis can
reduce the mode switching probability 4.85% more for a real
task set, compared to the scheme based on the Chebyshev
theorem.

As future work, we intend to work on a machine-learning-
based execution time bound for the application, which would
determine better WCETs for HC tasks based on the run-time
behaviour. Therefore, we would present a scheduling algorithm
and execute the lower-criticality tasks in higher mode.
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