
CL(R)Early: An Early-stage DSE Methodology for Cross-Layer
Reliability-aware Heterogeneous Embedded Systems

Siva Satyendra Sahoo
Institute of Computer Engineering

Technische Universität Dresden
Dresden, Germany

siva_satyendra.sahoo@tu-dresden.de

Bharadwaj Veeravalli
Department of ECE

National University of Singapore
Singapore, Singapore

elebv@nus.edu.sg

Akash Kumar
Institute of Computer Engineering

Technische Universität Dresden
Dresden, Germany

akash.kumar@tu-dresden.de

Abstract—Cross-layer reliability (CLR) presents a cost-effective alter-
native to traditional single-layer design in resource-constrained embedded
systems. CLR provides the scope for leveraging the inherent fault-
masking of multiple layers and exploiting application-specific tolerances
to degradation in some Quality of Service (QoS) metrics. However, it
can also lead to an explosion in the design complexity. State-of-the art
approaches to such joint optimization across multiple degrees of freedom
can lead to degradation in the system-level Design Space Exploration
(DSE) results. To this end, we propose a DSE methodology for enabling
CLR-aware task-mapping in heterogeneous embedded systems. Specifi-
cally, we present novel approaches to both task and system-level analysis
for performing an early-stage exploration of various design decisions. The
proposed methodology results in considerable improvements over other
state-of-the-art approaches and shows significant scaling with application
size.

Index Terms—Embedded Systems, Cross-layer Reliability, Design
Space Exploration, MOEA, Reliability Modeling

I. INTRODUCTION

The proliferation in the variety of application areas that use
embedded systems has led to an ever increasing and varying Quality
of Service (QoS) requirements for electronic systems. Consequently,
Heterogeneous Multi-Processor System-on-Chip (HMPSoC), with
improved parallelism and customized computation, are being increas-
ingly used in embedded systems to meet application-specific QoS
requirements. However, the primary enablers of such heterogeneous
systems—technology scaling and architectural innovations—have
also resulted in increasing physical fault-rates [1]. Traditional single-
layer1 reliability approaches (such as Triple Modular Redundancy
(TMR)) for mitigating such increased fault-rates can be infeasible
for resource-constrained embedded systems due to the large area
and power overheads. Moreover, a single-layer approach can prove
insufficient for stricter QoS requirements in varying operating condi-
tions. For instance, while operating at higher altitudes with very high
fault-rates, using only hardware-based fault-mitigation can lead to
inadequate functional correctness [2]. Therefore, reliability methods
need to be implemented at multiple layers [3]. However, an other-
layer-agnostic approach to such multi-layer fault-mitigation may lead
to costly over-designing.

In contrast, the Cross-layer Reliability (CLR) approach provides
a more application-specific and cost-efficient method for reliability-
aware system design by implementing an appropriate combination of
methods across multiple layers [4]. In addition to leveraging the effect
of implicit fault-masking at different layers [5], it allows the designer
to exploit application-specific tolerance to degradation in one or more
QoS metrics [2]. However, implementing CLR introduces additional
design complexity of selecting and configuring the reliability methods
for each layer. For instance, the reliability of matrix multiplication
can be improved by using different implementations that use various
levels of spatial (TMR-based hardware), temporal (Checkpointing)
and information (Checksum) redundancies. An application usually
contains a number of such tasks that can be executed on multiple
Processing Element (PE)s. Fig. 1 shows the increased complexity of
the search tree of Design Space Exploration (DSE) of the correspond-

1For the purpose of the current article, layers refers to the system stack—
Hardware, System Software and Application Software

𝑅𝑜𝑜𝑡

1𝑠𝑡𝑇𝑎𝑠𝑘 𝑡𝑜
𝑀𝑎𝑝 =?

𝑃𝐸 𝑡𝑜 𝑀𝑎𝑝
𝑇𝑎𝑠𝑘 = ?

1

1 𝑡 𝑇

1 𝑝 𝑃

2𝑛𝑑𝑇𝑎𝑠𝑘 𝑡𝑜
𝑀𝑎𝑝 = ?

1 𝑡 𝑇 − 1

2

𝑇
𝑃𝐸 𝑡𝑜 𝑀𝑎𝑝
𝑙𝑎𝑠𝑡 𝑇𝑎𝑠𝑘 = ?

(a) Task-mapping only

HWRel

𝑇𝑡

𝐼𝑚𝑝𝑙(𝑡,1) 𝐼𝑚𝑝𝑙(𝑡,𝑖) 𝐼𝑚𝑝𝑙(𝑡,𝐼)

𝑃𝐸 𝑡𝑜 𝑀𝑎𝑝
𝑇𝑎𝑠𝑘 = ?

1 𝑃

𝑝

SSWRel

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

ASWRel

𝐶ℎ𝑒𝑐𝑘𝑠𝑢𝑚
𝐶𝑜𝑑𝑖𝑛𝑔

𝐷𝑉𝐹𝑆
𝑇𝑀𝑅

(b) Task-mapping with
cross-layer reliability

Fig. 1: Search tree for system-level DSE of CLR-aware design.
(a) Regular task-mapping involves task-to-PE binding and task-
scheduling decisions for each task. (b) Additional design decisions
have to be made regarding the optimal implementation, Impl(t,i),
and CLR configuration for each task Taskt.

ing task-mapping problem. The joint optimization across multiple de-
sign aspects—CLR, Dynamic Voltage and Frequncy Scaling (DVFS),
application-specific QoS requirements and PE heterogeneity in the
hardware platform—can result in an explosion in the design space
for task-mapping. The search for the optimal Pareto-front in such high
dimensional design spaces have led to increasing popularity of Multi-
Objective Evolutionary Algorithms (MOEA)-based optimization [6],
[7]. However, such approaches can suffer from scalability issues with
increasing application size. A naive problem-agnostic implementation
of such methods can result in poor quality of solutions. To this end,
we propose an MOEA-based DSE methodology for enabling an early-
stage exploration of system-level design decisions in CLR-aware task-
mapping The related contributions are listed below.
Contributions:
• We propose a framework for task-level analysis and estimation

of functional and timing reliability incorporating the impact of
implicit fault masking and imperfect fault mitigation on functional
reliability. Specifically, novel Markov chain-based models for esti-
mating the effect of any arbitrary CLR configuration are proposed.

• We propose a multi-stage DSE methodology for implementing
CLR-integrated task-mapping using MOEA-based optimization.
Specifically, we use Genetic Algorithms (GA) as a representative
method to demonstrate the impact of the proposed design space
pruning and modified stochastic search methods. With the proposed
modifications we report up to 231% improvement in the solution
quality of multi-objective optimization.

• The proposed framework for both task-level and system-level
analysis will be available as an open source tools at https://cfaed.
tu-dresden.de/pd-downloads.

The rest of the paper is organized as follows. In Section II,

TABLE I: Comparing related Works for design-time CLR-integrated
task-mapping

Related Works CLR DVFS HMPSoC
Multi-

Objective
Imperfect
Mitigation

Das, et al. [10] 7 3 3 3 7

Cheng, et al. [11] 3 7 7 3 7

Izosimov, et al. [12] 3 7 3 7 7

Rehman, et al. [13] 3 7 7 3 7

Savino, et al. [14] 3 7 7 3 7

proposed 3 3 3 3 3

we provide the relevant background and brief overview of related
work. The system model used for the evaluation of the proposed
methods is presented in Section III. The proposed task-level analysis
and system-level DSE methodology are presented in Section IV and
Section V respectively. In Section VI, we discuss the results from
the experimental evaluation of the proposed methods and conclude
the article in Section VII with a discussion on the scope for related
future research.

II. BACKGROUND AND RELATED WORKS

For our current work, we express the QoS in terms of: (1) func-
tional reliability – the probability of correctness in computation
results; (2) timing reliability in terms of average makespan – the
average time taken for execution of an application; (3) lifetime
reliability in terms of Mean Time To Failure (MTTF) – the expected
duration of system operation that does not result in permanent faults.

A. Cross-layer Reliability
In the CLR approach, the fault-mitigation activities are not limited

to the hardware layer and an appropriate combination of methods
that meets the design goals and constraints can be implemented. As
discussed in [8] and [2], implementing separate fault tolerance stages
at different layers can result in reduced power and area overheads.
Further, distributing fault tolerance tasks to higher layers enable the
designer to take advantage of the masking effects of more layers [5].
In [9], the authors proposed new techniques – Error-aware placement
and Failure prediction – for globally-optimized cross-layer resilience.
Similarly, in [3], the authors propose various cross-layer techniques
– from micro-architecture to application level – for both general
purpose processors and reconfigurable processor-based embedded
systems. In [8], the authors present a cross-layer approach providing
resilience in multimedia applications. However, all these works [2],
[3], [5], [8], [9] do not specify a DSE methodology or framework
for finding the optimal CLR configuration.

B. System-level CLR Optimization
Task-mapping of application tasks on HMPSoCs involves assign-

ment and ordering the execution of tasks on the platform’s PEs for
some optimization criteria. CLR-aware task-remapping introduces the
additional complexity due to the joint consideration of the PE hetero-
geneity, the implicit masking across multiple layers, the application-
specific constraints, and designing appropriate CLR configurations
for varying operating conditions [15].

For instance, in [11], a methodology is presented for optimizing
the CLR configuration of a task by maximizing the fault-mitigation
in software layers. Usually, software mitigation of hardware faults
involves some form of temporal redundancy resulting in lesser
area/power overheads. However, the increased execution time can
lead to faster aging. In [16], the authors show the adverse effects of
increasing checkpoints on permanent fault tolerance. In [14], the au-
thors present significant improvements over [11] by using Bayesian-
based methods for finding the optimal CLR configuration on different
processor architectures. Similarly, in [13], the authors use layer-
wise Pareto-filtering for joint optimization of timing and functional
reliability. However, proposed approaches lack a methodology for
implementing CLR in multi-processor systems.

L
o
cal

M
em

o
ry

Heterogeneous MPSoC

On-chip Interconnect

..PE0 PE1 PEp

DMA

Control Unit

Reconfigurable Logic

NI

Processor

ICAPDDR

NI

(a) Architecture

𝐺𝑆𝑐𝑎𝑙𝑒

𝐺𝑆𝑚𝑡ℎ

𝑆𝑜𝑏𝐺𝑟𝑎𝑑𝑋 𝑆𝑜𝑏𝐺𝑟𝑎𝑑𝑌

𝐶𝑜𝑚𝑏𝑇ℎ𝑟

𝑇0

𝑇1

𝑇2 𝑇3

𝑇4

(b) Application

Fig. 2: System Model

In [10], the authors presented a GA-based multi-objective op-
timization methodology for reliability-aware task-mapping in ho-
mogeneous multi-processor systems. The proposed methods aim to
provide trade-offs between functional reliability and system lifetime
by varying the repetitions in task execution and the DVFS mode
of operation. However, a naive extension of this approach can lead
to scalability issues for larger applications. Similarly, the proposed
methodology of tabu-search with list scheduling in [12] involves
rejecting schedules that do not meet makespan criteria and during the
search focus on changes in the critical path only. Such an approach
is not scalable for multi-objective optimization since every initial
schedule may lead to a feasible solution w.r.t. functional reliability
and needs separate exploration. A summary of the comparisons of
our current work against those discussed is shown in TABLE I.

III. SYSTEM MODEL

The proposed DSE framework is based on a high-level representa-
tions for the system. Such an abstraction enables efficient early-stage
evaluation of various design choices in terms of their feasibility and
aids in design space pruning for later stages of the design.

A. Architecture Model
For the architecture model, we assume an HMPSoC containing

P PEs with a distributed shared memory architecture, similar to the
one shown in Fig. 2(a), with centralized control of task-remapping
and CLR implementation. Each of the PEs, PEp is characterized by
the tuple: (IDp, PETypep): the PE’s index and type. PETypep
denotes the heterogeneity among PEs and may represent the com-
binations of – (1) the type of processor, such as general purpose
embedded processors or accelerator on reconfigurable logic (2) aging-
related fault profile of the PE (characterized by βp of the Weibull
aging model) and (3) soft-error masking factor for the PE such as
the Architectural Vulnerability Factor (AVF) [17].

B. Application Model
We model the application as a task-graph Gapp, represented

by a tuple (Tapp, Eapp, Papp), the set of task nodes, the directed
connectivity of the nodes representing task dependencies, and the
periodicity of the application respectively. Fig. 2(b) shows a sample
task-graph for Sobel Edge Detection with 5 tasks (of four types) and 5
edges. Each task, Tt ∈ Tapp, in the task-graph is characterized by the
tuple (IDt, T ypet, Implt): the task index, task type (functionality)
and the set of implementations for the task. Each ith implementation
of Tt, Impl(t,i) ∈ Implt, is characterized by the following: (1)
the type of PE, (2) system software – bare-metal system or some
operating system and (3) application software – algorithms and
programming languages.

C. Reliability Model
TABLE II shows the CLR model adopted for the analysis. For

our current work, we consider reliability methods across three layers
– Hardware (HWRel), System Software (SSWRel) and Application
Software (ASWRel). Varying the selection and configuration of
reliability methods for each layer leads to varying performance of the
tasks’ implementations. The corresponding task-level performance

TABLE II: CLR Model and Task-level performance metrics

Abstraction
Layer

Redundancy
Type

Sample
Methods

Task-level Performance
Metrics of Impl(t,i)

Hardware Spatial HWRel Scale parameter
(stress indicator): η(t,i)
Minimum execution time:
MinExT(t,i)
Average execution time:
AvgExT(t,i)
Probability of error during
execution: ErrProb(t,i)
Mean time to failure:
MTTF(t,i)
Average power: W(t,i)

Partial TMR, DVFS,
Circuit Hardening

System
Software Temporal SSWRel

Retry, Task-mapping
Checkpointing

Application
Software Information ASWRel

Code Tripling,
Hamming Correction

Checksum [18]

TABLE III: System-level QoS metrics Estimation

Metric Estimation Method
Average Makespan

(Sapp) Sapp = max
Tt∈Tapp

{SETt} (1)

Lifetime Reliability

(Lapp)

MTTF(t,i,p) = η(t,i) × Γ (1 + 1/βp)

MTTFp =
Papp∑

Tp

AvgExTt
MTTF(t,i,p)

Lapp = MTTFsys = min
all PEs

(MTTFp)

(2)

Functional Reliability

(Fapp)

Ft = 1− ErrProb(t,i),
where Impl(t,i) is used for Tt

Fapp =
∑
Tt∈T

Ft × ζt

where ζt = Normalized criticality of Tt

(3)

Power (Wapp),
Energy (Japp)

Wapp = max
x∈(0,Sapp]

∑
Tt∈Tapp

I(x)×Wt

where, I(x) =

{
1, if x ∈ (SSTt ,SETt]

0, else

Japp =
∑

Tt∈Tapp

AvgExTt ×Wt

(4)

metrics, as described in TABLE II, are used for system-level analysis
and design. The scale parameter η(t,i) is a function of the thermal
profile of executing Impl(t,i), and is used in estimating the system’s
lifetime. The impact of DVFS on reliability is modeled similar to
that presented in [10].

D. System-level QoS Estimation
Task-mapping with CLR involves executing an implementation,

Impl(t,i), with a CLR configuration, say Ct, for every task, Tt
∈ Tapp, on any of the available PEs of the hardware platform in
some ordering. With the resulting execution schedule, the relevant
system-level QoS and performance metrics are estimated as shown
in TABLE III.

1) Average makespan: SSTt and SETt refer to the average start
and end execution time respectively for task Tt.

2) Functional Reliability: We use a task criticality-based method
for functional reliability estimation.

3) Lifetime Reliability: We represent the system’s lifetime relia-
bility by the MTTF of the system, MTTFsys with the the reliability
model similar to that presented in [19].

4) Power and Energy: The system’s peak power dissipation is
obtained from the sum of average power dissipation of all tasks
executing at any time instant.

IV. TASK-LEVEL ANALYSIS

A. Markov Chain-based Reliability Modeling
In [20], a Markov chain-based modelling of the execution of

a task implementing Checkpointing with roll-back recovery was
presented. The properties of the corresponding transition matrix was
then used to estimate the average execution time of the task. In our
current work, we introduce additional states in the Markov chain to

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝐼𝑚𝑝𝑙𝑆𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝐸𝑛𝑑

𝐶ℎ𝑘𝑝𝑛𝑡

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝐼𝑚𝑝𝑙𝑆𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

0 0 00 𝕋𝑇𝑜𝑙

𝕋𝐸𝑥𝑒𝑐
+𝕋𝐷𝑒𝑡

0 0 00 𝕋𝑇𝑜𝑙

𝕋𝐸𝑥𝑒𝑐
+𝕋𝐷𝑒𝑡

𝕋𝐶ℎ𝑘

(a) Timing Reliability

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝐸𝑟𝑟𝑜𝑟

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝑆𝑆𝑊 𝑚𝐴𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝑛𝑜 𝐸𝑟𝑟𝑜𝑟

𝐶ℎ𝑘𝑝𝑛𝑡

𝐸𝑥𝑒𝑐𝐼𝐶𝐼 𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝐼𝑚𝑝𝑙 𝐴𝑆𝑊𝑅𝑒𝑙

𝑝𝑛𝑒 𝑚𝐻𝑊 𝑚𝑆𝑆𝑊 𝑚𝐴𝑆𝑊

𝑆𝑆𝑊𝐷𝑒𝑡 𝑆𝑆𝑊𝑇𝑜𝑙

1 − 𝑐𝑜𝑣𝐷𝑒𝑡

𝑚𝑇𝑜𝑙

𝑝𝐶ℎ𝑘𝑒

(b) Functional Reliability

Fig. 3: Markov Chain-based reliability modeling for a task imple-
menting a single checkpoint along with HWRel and ASWRel

model cross-layer reliability. Fig. 3(a) shows the resulting Markov
chain for a task with two inter-checkpoint intervals. State ExecICI
with residence time Texec + TDet (the sum of useful execution
time and error-detection time) represents useful computation state.
Similarly, the HWrel state, with zero residence time, represents the
net effect of any spatial redundancy based fault-mitigation. The states
SSWImpl, SSWDet, and SSWTol represent the implicit masking
and the overheads due to detection and tolerance respectively at the
SSW layer. The effect of HWRel masking, implicit SSW Masking
and the coverage of the detection and tolerance methods are denoted
by mHW , mimplSSW , covDet and mTol respectively. The TDet is
added to ExecICI state as detection is always executed irrespective
of any masking from the HW layer. However the overhead TTol
occurs only when any error is detected and hence assigned to state
SSWTol. The state Chkpnt represents the Checkpoint creation state
and the End state denotes the end of execution.

We used a similar approach to model the functional reliability,
as shown in Fig. 3(b) for the same CLR configuration as Fig. 3(a).
However, in this case, we used two absorbing states to denote the
occurrence of an error despite the CLR implementation, (Error)
and the absence of any errors during execution (noError). The
masking probabilities are similar to those describe in the earlier
paragraph. Additionally, any errors during Checkpointing itself can
be modelled in the Markov chain, as shown by the dotted line. This
Markov-chain based approach enables modelling of various factors
such as unequal checkpoint intervals, imperfect fault detection or
tolerance and implicit masking. With this approach, any arbitrary
CLR configuration can be modeled into a Markov chain and the
same estimation methods can be used to estimate task-level reliability
metrics. With a given absorbing Markov chain the estimation of the
average execution time follows that proposed in [20]. The term pne
denotes the probability of no errors during useful execution time and
is obtained as pne = e−λTexec , where λ is the Single Event Upset
(SEU) rate. The functional reliability is estimated from the absorbing
probability of the noError state [21].

V. SYSTEM-LEVEL ANALYSIS

A. Problem Statement

The set of all possible cross-layer reliability configurations for each
task is represented by:
Ct = HWRel t × SSWRel t × ASWRel t , ∀Tt ∈ Tapp
It denotes the Cartesian product of the combinations of fault (error)
masking, detection, and tolerance methods for a task Tt across
different layers. Similarly, Mapp is used to denote the set of task-
to-PE binding and task-scheduling choices of the application. Mapp

depends on the number of available PEs – P , in the architecture
and the number of tasks, T , in the application. For a generic CLR-
aware problem, the constraints of maximum Sapp, minimum Fapp,
minimum Lapp, maximum Japp and maximum Wapp (TABLE III)
are represented by the terms SSPEC , FSPEC , LSPEC , JSPEC and
WSPEC respectively. Any arbitrary CLR-integrated task-mapping
configuration, Xi, represents the task-to-PE binding, task-scheduling
and CLR-related design choices for the application. The notations

Task-level DSE (tDSE)

CLR

Analysis

Pareto-filtered Task-mapping (pfCLR)

DVFS

Analysis
CLRImpls

Generic Task-mapping (fcCLR)

Task-mappingApp

Model

Arch

Model
Decisions:

PEs, Implementations,

CLR configurations

Reliability

Methods

DFVS

Modes

Base

Task Impls
PE

Types

Architecture

Application

QoS Specs

Task-mappingApp

Model

Arch

Model
Decisions:

PEs, Implementations

(a) DSE approaches

𝑡𝐷𝑆𝐸 𝑝𝑓𝐶𝐿𝑅

𝑓𝑐𝐶𝐿𝑅

CLR-integrated,

DVFS-aware

Pareto-front

task-mappings

Guided

Search

Seeded

Search

(b) Proposed

Fig. 4: System-level DSE Methodology

for the resulting system-level performance metrics are denoted by
Sapp(Xi), Fapp(Xi), Lapp(Xi), Japp(Xi) and Wapp(Xi). With this
terminology, a generic CLR-integrated task mapping optimization
problem is shown in Equation (5). The terms w〈m〉 determine the
application-specific priority of the system-level metrics (〈m〉). Simi-
larly, the terms c〈m〉 are used to denote the existence of constraints
due to application-specific QoS requirements. Implt refers to the set
of implementations (not considering CLR choices) for each task Tt.

minimize
Xi∈Xapp

{
wSSapp(Xi), wFFapp(Xi),

wLLapp(Xi), wWWapp(Xi), wJJapp(Xi)

}
s.t., Sapp(Xi) ≤ cS SSPEC ,Fapp(Xi) ≥ cF FSPEC ,

Lapp(Xi) ≤ cL LSPEC ,Japp(Xi) ≤ cJ JSPEC

Wapp(Xi) ≤ cW WSPEC

where,

Xapp =

Mapp ×

∏
Tt∈Tapp

Implt, for task-mapping only∏
Tt∈Tapp

Ct, for cross-layer-reliability only

Mapp ×
∏

Tt∈Tapp

(Implt × Ct), for CLR task-mapping

(5)

B. DSE Methodology
DSE in vast design spaces using MOEA-based methods usually

involves multiple optimization stages that implement some form
of decomposition and directed seeding to inject problem-specific
knowledge [22]. We use a similar approach in our proposed multi-
stage optimization methodology, shown in Fig. 4(a), with successive
design space pruning and directed search for the optimal Pareto-front.
The constituent techniques are described below.

1) Full configuration CLR (fcCLR): This method refers to a
problem-agnostic approach to task-mapping with CLR [10]. All the
CLR configuration decisions along with those related to task-to-PE
binding and scheduling are treated as separate degrees of freedom.
The total number of possible design points can be expressed as
PT × T ! ×

∏t=T
t=1 (It FMCL), where It is the number of possible

Implt choices for task Taskt and FMCL = |Ct| is the product of
the number CLR configurations for task Tt.

2) Task-level Pareto-filtered CLR (pfCLR): This method refers
to the system-level DSE with the Pareto-filtered implementations
only. In this case the exhaustive number of possible design points
is reduced to PT × T !×

∏t=T
t=1 (Ipft), where Ipft is the number of

CLR-integrated Pareto-filtered implementations of task Tt.
3) Proposed Methodology: In fcCLR, the joint consideration of

all CLR-based design decisions can lead to a design space explosion
and the random selection of choices for each decision can lead
to wasted search time in the infeasible region. Further, the fitness
evaluation of each individual involves calculating the task-level
metrics for the selected CLR-configuration for each task, in addition
to system-level QoS metrics estimation. This approach can result in
higher computation time for estimating the population’s fitness and
does not scale with increasing problem complexity. In pfCLR, the
design space is pruned due to the layer-wise Pareto-filtering and
the fitness evaluation of each design point involves just system-
level QoS metrics estimation, resulting in reduced computation time.

1
2
𝑖

𝐼

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
(𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒)

𝑚(𝑖,𝑞) 𝑐(𝑖,𝑞)

𝑡(𝑖,𝑞) 𝑝(𝑖,𝑞) 𝑙(𝑖,𝑞)
𝑃𝐸 𝐼𝑚𝑝𝑙

𝐻𝑊𝑅𝑒𝑙 𝑆𝑆𝑊𝑅𝑒𝑙𝐴𝑆𝑊𝑅𝑒𝑙

𝑇𝑎𝑠𝑘
Task-mapping

Cross-layer Reliability

Configuration

𝑡(𝑠,𝑞) 𝑝(𝑠,𝑞) 𝑒(𝑠,𝑞)
𝑃𝐸 𝐼𝑚𝑝𝑙𝑇𝑎𝑠𝑘

𝑇𝑎𝑠𝑘 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(𝑠𝑢𝑏 − 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒)

𝑠(𝑖,1) 𝑠(𝑖,2) 𝑠(𝑖,𝑞) 𝑠(𝑖,𝑄)……… ………

pfCLR

fcCLR

Fig. 5: Encoding for GA-based DSE

However, the number of implementations choices for each task may
be increased considerably, since Ipft ≥ It, and can lead to degraded
search results. We adopt a two-stage approach to take advantage of
each approach. As shown in Fig. 4(b), the system-level Pareto-fronts
obtained from pfCLR are used as seeds for the fcCLR stage. This
initial seeding enables a directed search and better quality results are
obtained.

C. Encoding for Genetic Algorithms

Genetic Algorithms involve using stochastic search techniques to
tackle NP-hard problems based on the principles of evolution and
natural genetics. The problem-specific adaptations of our proposed
GA-based optimization framework are described below.
• Individual: As shown in Fig. 5, each ordered sequence of con-

figuration for all tasks forms an individual in the population. The
configuration decisions for pfCLR include the task index, the PE
index to execute the task and the index of Pareto-filtered imple-
mentation to be used. Additional decisions for CLR configuration
are used in fcCLR. The schedule of task execution is implicitly
encoded in the ordering of the tasks in the individual .

• Crossover: We use two operations for implementing crossover: (1)
A two-point crossover for exchanging the configuration data of
some tasks; (2) A single-point crossover to exchange the scheduling
information for some tasks.

• Mutation: Two mutation methods are implemented. (1) A single-
point mutation for randomly altering the configuration of a ran-
domly selected task. (2) A two-point mutation for altering schedul-
ing data by swapping the position of two randomly selected sub-
sequences.

• Selection: We use a tournament selection method for choosing
individuals for the next generation. This selection method involves
randomly choosing 5 (in our case) individuals from the current
population and selecting the one with best fitness for the next
generation.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup

The experiments were performed on a computer with two CPUs –
IntelTM XeonTM E5-2609 v2 @ 2.50GHz (each CPU is quad-core)
and 32 GB of memory. Experiments were carried out for a real-life
application—Sobel Edge detection (shown in Fig. 2(b))–and synthetic
task-graphs. The synthetic task-graphs and tasks’ execution times
for the synthetic applications were generated using Task Graphs For
Free (TGFF) tool. All the applications were mapped to an HMPSoC
with 6 PEs of 3 different types– four embedded processors with two
different masking factors and two partially reconfigurable regions.
The optimization methods were implemented in Python using the
DEAP and PYGMO packages for GA. Probability parameters of 0.8
and 0.05 were used for crossover and mutation respectively. The
experimental evaluation of the proposed DSE approaches involved
estimating the effects of using different reliability methods at mul-
tiple layers. Three methods – GenM , GenD, and GenT – with
tunable performance parameters to model generic fault/error masking,
detection, and tolerance methods respectively. Further, models for the
methods mentioned in TABLE II were used for the different layers.

0

5

10

15

20

25

30

35

300 800 1300 1800 2300 2800

P
ro

b
ab

il
it

y
 o

f
er

ro
r

(i
n

 %
)

Average Execution time (in microseconds)

1.2V, 900Mhz 1.1V, 600MHz 1.06V, 300MHz

0
1
2
3
4

320 420 520

(a) Pareto-fronts with DVFS Modes

0

5

10

15

20

25

30

1000 1500 2000 2500

P
ro

b
ab

il
it

y
 o

f
er

ro
r

(i
n

 %
)

Average execution time (in microseconds)

ImpMask = 0%
ImplMask = 5%
ImplMask = 10%
ImplMask = 20%

(b) Pareto-fronts with varying implicit
masking

Fig. 6: Task-level DSE

TABLE IV: Number of Pareto-front design points of each task-type
in Sobel Edge Detection (Fig. 2(b)

Sl. Optimization Objectives GScale GSmth SobGrad CombThr

I Average Execution time 2 2 2 2

II I + Error Probability 12 18 15 12

III II + MTTF 40 89 63 38

IV III + Energy 40 89 63 38

V IV + Power Dissipation 40 89 63 38

VI V + Peak Temperature 40 89 63 38

B. Task-level Analysis
The proposed framework enables estimating the effect of varying

the different degrees of freedom on task-level performance metrics.
Fig. 6(a) shows the resulting Pareto-fronts obtained from task-level
DSE (tDSE) for three different DVFS configurations for a single
task. While each DVFS mode would map to a single design point,
the inclusion of multiple reliability methods results in multiple Pareto
implementations of the same task.

TABLE IV shows the number of Pareto-front design points of each
task-type in Sobel Edge Detection (Fig. 2(b)). The number of execu-
tion cycles and power dissipation for each task type was estimated
using Gem5 [23] and McPAT [24]. As shown in the table, the number
of Pareto-front design points increases when multiple performance
metrics are considered. The two points for each task in first row (I)
is due to one implementation for each of the two PETypes in the
architecture model. Further, the number of implementations for each
task-type remains constant after row III. The determination of MTTF,
energy, power dissipation and peak temperature depends on similar
factors and hence do not result in additional dominant points on the
Pareto-front. The proposed framework allows the designer to consider
optimization problems with all the metrics shown in the table.

Fig. 6(b) shows the variation in the Pareto-front with increas-
ing implicit masking. The proposed Markov chain-based functional
reliability model was used for the estimation. While the current
experiments for tDSE use a brute-force search, other stochastic search
methods can also be used along with the proposed framework.
C. System-level Analysis

1) Cross-layer Optimization: The CLR approach involves joint
consideration of all degrees of freedom during optimization of task-
mapping. A more traditional approach would entail separately opti-
mizing with each degree of freedom and then combining those results.
Fig. 7 shows the DSE results using such an other-layer-agnostic
approach compared to that using CLR for a synthetic application
with 20 tasks. The results from optimization runs using DVFS only,
HWRel only, SSWRel only and ASWRel only are combined and
the dominant points are used to obtain the Agnostic Pareto-front.
As shown in the figure, the CLR approach results in a considerably
improved Pareto-front. The improvement in the hypervolume of CLR-
based Pareto-fronts over that of Agnostic are shown in TABLE V for
different application sizes. The extreme improvements observed in
the application with 10 tasks is an outlier. In this case, the Agnostic
approach resulted in a single Pareto implementation compared to 15
points with CLR.

1 2 3 4 5 6 7 8
Average Makespan(us) ×106

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ap
pl

ica
tio

n
Er

ro
r P

ro
ba

bi
lit

y

Agnostic
CLR
DVFS

HWRel
SSWRel
ASWRel

Fig. 7: Comparison of Pareto-front obtained from cross-layer opti-
mization and the combination of points obtained from single-layer
optimizations for an application with 20 tasks.

TABLE V: Improvement in DSE results (Pareto-front hypervolume)
with cross-layer optimization over an other-layer-agnostic approach

#Tasks 10 20 30 40 50 60 70 80 90 100
% increase in
hypervolume

24664 251 190 198 139 175 196 196 135 182

2) System-level DSE: The proposed approach for system-level
DSE takes advantage of task-level Pareto-based design space pruning
and uses multiple runs to improve the quality of the solution. Fig. 8
shows the resulting Pareto-fronts with the proposed approach and that
with an extension of that proposed in [10]. The result is shown for
minimization of Sapp and Fapp in an application with 50 tasks. The
improvements in the hypervolume of the same optimization problem
for different application sizes is shown in TABLE VI. Improvements
of up to 231% and an average of 129% are observed.

The proposed DSE method improves upon the pfCLR method
by executing an additional fcCLR optimization with starting seed
solutions from pfCLR results. To demonstrate the shortcoming of the
standalone pfCLR method, we executed three optimizations—with
increasing number of task-level implementations for each task-type.
Fig. 9 shows the number of implementations obtained from task-level
DSE for each of the 10 task-types used in the synthetic applications.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Average Makespan(us) ×107

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Ap
pl

ica
tio

n
Er

ro
r P

ro
ba

bi
lit

y

fcCLR proposed

Fig. 8: Comparison of Pareto-front obtained from proposed and
fcCLR [10] methods for an application with 50 tasks.

TABLE VI: Percentage increase in the Pareto-front hypervolume with
proposed approach over fcCLR optimization for applications with
varying number of tasks.

#Tasks 10 20 30 40 50 60 70 80 90 100
% increase in
hypervolume

92 84 207 231 103 167 111 88 132 73

0

10

20

30

40

50

60

70

80

90

SYN_0 SYN_1 SYN_2 SYN_3 SYN_4 SYN_5 SYN_6 SYN_7 SYN_8 SYN_9

#
P

ar
et

o
 I

m
p

le
m

en
ta

ti
o

n
s

Task Types

tDSE_1 tDSE_2 tDSE_3

Fig. 9: Number of task-level Pareto-implementations for different
task-types for three different tDSE executions resulting in increasing
number of implementations.

1 2 3 4 5
Average Makespan(us) ×106

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ap
pl

ica
tio

n
Er

ro
r P

ro
ba

bi
lit

y

proposed_1
pfCLR_1

proposed_2
pfCLR_2

proposed_3
pfCLR_3

Fig. 10: Pareto-fronts for three optimization runs with proposed and
pfclr methods with varying number of task-level implementations for
an application with 30 tasks.

The resulting Pareto-fronts for an application with 50 tasks using
both pfCLR and the proposed method for each of the three runs
is shown in Fig. 10. With an increase in the number of task-level
implementations, the result quality degrades with both approaches.
However, as highlighted in TABLE VII, with the proposed approach,
the result quality is either equal or marginally improved in most cases.

The higher number of task-level implementations were obtained
by using additional task-level objectives. So, the first approach
(tDSE_1)uses the task’s average execution time and error probability
as optimization objectives. Additional optimization objectives were
used for tDSE_2 and tDSE_3. This experiment demonstrates the
importance of task-level DSE for effective system-level exploration.
The proposed framework allows the designer to select task and
system-level objectives independently to enable the evaluation of
task-level metrics on various system-level multi-objective optimiza-
tion problems.

VII. CONCLUSION

With the rise in the physical fault-rates due to technology scaling
and architectural innovations, cross-layer reliability is becoming
increasingly necessary for resource-constrained embedded systems.
However, with the resulting increase in the degrees of freedom in
the associated optimization problem, an early-stage exploration is
necessary for determining the feasibility of different methods and
hardware platforms. To this end, a framework for early-stage DSE for
CLR is presented in this article. This enables the designer to perform
different optimizations—both at task and system-level, evaluate the
effectiveness of different reliability methods and integrate the effect
of implicit masking across multiple layers. Further, the proposed
DSE method shows considerable improvement over related state-
of-the-art approaches. Related future research would involve further
improvements to the framework by integrating the effect of the
communication and storage constraints of the hardware platform.

TABLE VII: Percentage increase in Pareto-front hypervolume over
pfCLR_3 for different application sizes

#Tasks proposed_1 pfCLR_1 proposed_2 pfCLR_2 proposed_3 pfCLR_3
10 108 99 71 71 4 0
20 62 59 53 39 28 0
30 325 324 265 257 38 0
40 92 92 57 56 3 0
50 85 85 40 40 0 0
60 52 51 21 20 4 0
70 80 80 37 36 2 0
80 102 102 46 44 4 0
90 70 69 24 23 3 0

100 95 94 38 36 2 0

ACKNOWLEDGMENT

This work is supported in part by the German Research Foundation
(DFG) within the Cluster of Excellence “Center for Advancing Electron-
ics Dresden” (cfaed) at the Technische Universität Dresden.

REFERENCES

[1] P. Shivakumar, et al. Modeling the effect of technology trends on the
soft error rate of combinational logic. In Proceedings International
Conference on Dependable Systems and Networks, pages 389–398, 2002.

[2] S. S. Sahoo, et al. Cross-layer fault-tolerant design of real-time systems.
In DFTS, pages 63–68, 2016.

[3] J. Henkel, et al. Multi-layer dependability: From microarchitecture to
application level. In 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1–6, June 2014.

[4] N. P. Carter, et al. Design techniques for cross-layer resilience. In DATE,
pages 1023–1028, March 2010.

[5] T. Santini, et al. Evaluation of failures masking across the software
stack. MEDIAN, 2015.

[6] J. Huang, et al. Analysis and optimization of fault-tolerant task
scheduling on multiprocessor embedded systems. In CODES+ISSS,
pages 247–256, Oct 2011.

[7] S. Kang, et al. Multi-objective mapping optimization via problem
decomposition for many-core systems. In 2012 IEEE 10th Symposium
on Embedded Systems for Real-time Multimedia, pages 28–37, Oct 2012.

[8] K. Lee, et al. Mitigating the impact of hardware defects on multimedia
applications: A cross-layer approach. In Proceedings of the 16th ACM
International Conference on Multimedia, MM ’08, pages 319–328, New
York, NY, USA, 2008. ACM.

[9] L. Leem, et al. Cross-layer error resilience for robust systems. In ICCAD,
pages 177–180, Nov 2010.

[10] A. Das, et al. Combined DVFS and mapping exploration for lifetime
and soft-error susceptibility improvement in MPSoCs. In DATE, pages
1–6, March 2014.

[11] E. Cheng, et al. CLEAR: Cross-Layer Exploration for Architecting
Resilience - Combining Hardware and Software Techniques to Tolerate
Soft Errors in Processor Cores. In DAC, pages 68:1–68:6, New York,
NY, USA, 2016. ACM.

[12] V. Izosimov, et al. Analysis and optimization of fault-tolerant embedded
systems with hardened processors. In DATE, pages 682–687, April 2009.

[13] S. Rehman, et al. Cross-layer software dependability on unreliable
hardware. IEEE Transactions on Computers, 65(1):80–94, Jan 2016.

[14] A. Savino, et al. Redo: Cross-layer multi-objective design-exploration
framework for efficient soft error resilient systems. IEEE Transactions
on Computers, 67(10):1462–1477, Oct 2018.

[15] S. S. Sahoo, et al. A Hybrid Agent-based Design Methodology for
Dynamic Cross-layer Reliability in Heterogeneous Embedded Systems.
In DAC, 2019.

[16] A. Das, et al. Aging-aware hardware-software task partitioning for
reliable reconfigurable multiprocessor systems. In CASES, pages 1–10,
Sept 2013.

[17] S. S. Mukherjee, et al. A systematic methodology to compute the ar-
chitectural vulnerability factors for a high-performance microprocessor.
In MICRO-36., pages 29–40, Dec 2003.

[18] M. Nicolaidis. Soft Errors in Modern Electronic Systems. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[19] Y. Xiang, et al. System-level reliability modeling for MPSoCs. In
CODES+ISSS, pages 297–306, Oct 2010.

[20] S. S. Sahoo, et al. CLRFrame: An analysis framework for designing
cross-layer reliability in embedded systems. In VLSID, pages 307–312,
2018.

[21] J. G. Kemeny, et al. Introduction to Finite Mathematics. Prentice Hall
Inc, 1974.

[22] T. Chen, et al. On the effects of seeding strategies: A case for search-
based multi-objective service composition. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’18, pages 1419–
1426, New York, NY, USA, 2018. ACM.

[23] N. Binkert, et al. The Gem5 Simulator. SIGARCH Comput. Archit.
News, pages 1–7.

[24] S. Li, et al. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. MICRO 42, New
York, NY, USA, 2009. ACM.

