
Perspectives on Emerging Computation-in-Memory
Paradigms

Shubham Rai1, Mengyun Liu2, Anteneh Gebregiorgis3, Debjyoti Bhattacharjee4, Krishnendu Chakrabarty2,
Said Hamdioui3, Anupam Chattopadhyay5, Jens Trommer6, Akash Kumar1

1Chair for Processor Design, Technische Universität Dresden, Germany,
2Department of Electrical and Computer Engineering, Duke University, USA,

3Department of Quantum and Computer Engineering, Delft University of Technology, The Netherlands
4imec, Leuven, Belgium, 5School of Computer Science and Engineering, Nanyang Technological University, Singapore

6Namlab gGmbH, Dresden, Germany

Abstract—The traditional Von-Neumann architecture is reach-
ing its limits and finding it difficult to cope up with the
ever-increasing demands of modern workloads like artificial
intelligence. This demand has fueled the search of technologies
that can mimic human brain to efficiently combine both memory
and computation within a single device. In this work, we present
the state-of-the-art research in the domain of computation-in-
memory. In particular, we take a look at memristors and
its widespread application in neuromorphic computation. We
introduce ReRAMs in terms of their novel computing paradigms
and present ReRAM-specific design flows. We address the various
circuit opportunities and challenges related to reliability and fault
tolerance associated with them. Another high-potential candidate
to leverage memory and computation from a single device is
Ferroelectric Field-effect Transistor (FeFET). Here we present a
co-integration of such FeFETs with another emerging nanotech-
nology concept, called Reconfigurable Field Effect Transistor
(RFET) and discuss the impact of the higher amount of states
provided by this combination.

I. INTRODUCTION

Technology scaling driven by Moore’s law has enabled the
semiconductor industry to build transistors that are smaller,
faster, and consume less power for successive generations [1].
Unfortunately, the continued scaling has now become extremely
costly due to various challenges such as physical, material,
thermal and technology challenges [1, 2]. The explosion of
data intensive applications and their unprecedented demand
for energy efficiency, from data centers to energy-constrained
edge and wearable technologies, further exacerbate these
challenges [3]. Hence, innovating technologies and architectures
that can not only keep up with these demands, but also
offer superior performance with limited energy budget are
of paramount importance [4, 5]. In this regard, the costly
development and deployment of accelerated systems has
been amortized by domain-specific architectures to provide
dedicated computing architectures for complex algorithms and
applications [6]. This has led to a proliferation of accelerators
in different application domains [7, 8]. Furthermore, the post-
CMOS era has led to the exploration of a new computing
paradigm with the help emerging technologies such as non-
volatile devices to provide high level of energy-efficiency
that are difficult to attain with the conventional CMOS-based
architectures [9, 10, 11].

Similarly, the breakthrough in Artificial Intelligence (AI)
which led to a booming increase in AI-based applications and
services, also poses a significant challenge in terms of energy
consumption, memory storage and data transfer bandwidth [3,

Controller

Arithme�c Logic
Unit

Memory I/OI/O

CPU/GPU

Bottleneck

(a)

Controller

I/OMemory
Array

Computa�on-in-memory unit

Memory
Array

I/O

(b)

Fig. 1: (a) Typical Von-Neumann Architecture showing
the memory-processor communication as the bottleneck (b)
Computation-in-memory (CIM)

12]. As a result, the existing AI processing architectures based
on the conventional von-Neumann architecture (see Figure 1a),
such as CPU, GPU and TPU, spend excessive time and energy
in moving massive amount of data between the memory
and data paths [13]. These challenges are indeed imperiling
the widespread deployment of AI on resource constrained
computing platforms such as edge devices. Therefore, a
computing paradigm shift is paramount to unlock the full
potential of AI. In this regard, memristor-based computation-
in-memory (CIM) has the potential to break the aforementioned
challenge by replacing the traditional computing architecture
by CIM architectures [14, 15] (as shown in Figure 1b).

Memristor-based CIM architecture uses non-volatile devices
to store the data while exploiting their inherent capability
to perform computation on the stored data and, hence, cir-
cumventing the costly data movement of von-Neumann based
systems [16]. Several recent works on CIM have demonstrated
that multiply-and-accumulate (MAC) operations, which are
the fundamental operations in AI applications such as Deep
Neural Networks (DNNs), can be successfully implemented on
CIM crossbar arrays consisting of memristor devices and boost
execution time significantly [17, 18]. In addition, memristor-
based CIM architecture has various advantages such as zero
leakage, non-volatility and density. CIM architecture has two
vital components, namely crossbar array (where the data resides
and computation takes place), and peripheral circuits such as
Digital-to-Analog Converters (DACs) and Analog-to-Digital
Converters (ADCs) for data format conversion [19].

This paper provides a broad overview of emerging
computation-in-memory paradigm highlighting state-of-the-art
research in the CIM domain. Particularly, the paper investigates
memristors and their widespread application in neuromorphic



Data Computation
movement requirements Available Memory design efforts

Architecture outside Data Complex bandwidth Cells & Scalability
memory Align- function Array Periphery Controller

core ment
CIM-A No Yes High latency Max High Low/medium High Low
CIM-P No Yes High cost High-Max Low/medium High Medium Medium

COM-N Yes NR Low cost High Low Low Low Medium
COM-F Yes NR Low cost Low Low Low Low High

NR: Not required.
TABLE I: Comparison of CIM-A, CIM-P, COM-N and COM-F architectures using different metrics [16]

computing. In this regard, ReRAMs are introduced in terms
of their potential for novel computing paradigms and ReRAM-
specific design flows are presented. Moreover, we address
various circuit opportunities and challenges related to reliability
and fault tolerance associated with ReRAM. We also look at an
emerging nanotechnology paradigm involving co-integration of
ferroelectric FET with reconfigurable field effect transistor
(RFET), which has the potential to leverage memory and
computation providing multiple states from a single device.

The remainder of this paper is organized as follows: Sec-
tion II presents CIM architecture classification, background of
ReRAM-based CIM architecture and its potentials. Section III
describes testing and fault tolerance of CIM designs. EDA for
ReRAM-based CIM is covered in IV. Emerging circuit design
topologies for CIM using non-volatile reconfigurable FETs
are presented in Section V. Finally, the paper is concluded in
Section VI.

II. CIM ARCHITECTURE CLASSIFICATION AND ITS
POTENTIALS

A. CIM classification and comparison

A memory core consists of one or more cell arrays (used
for storage) and peripheral circuits (used to access the cells).
Traditionally, the computation takes place in the computational
cores. However, with the emergence of CIM, the computation
can be done within the memory array as well as the periphery
circuits. Hence, computer architectures can be classified into
different categories based on where the computation takes place
as shown in Figure 2 [16]; if the result is produced within
the memory core, the computer architecture is referred to as
Computation-In-Memory (CIM); otherwise, the architecture is
referred to as Computation-Out-Memory (COM).

1) CIM: Computations in CIM takes place either within the
memory array or peripheral circuit (labeled as (1) and
(2) in Figure 2), which are referred to as Computation-In-
Memory Array (CIM-A) and Computation-In-Memory

Memory System in Package (SiP)

Memory core

Data mem
Bank i

SAs

R
o

w
 A

d
d

r.
 M

u
x

Data mem
Bank i

R
o

w
 A

d
d

r.
 M

u
x

Memory 
array

SAsPeripheral circuits

Extra logic circuits

Computational Cores

Low BW

High BW

P
e

ri
p

h
e

ra
l 

c
ir

c
u

it
s

2

1

3

4

Fig. 2: Computer architecture classification

Peripheral (CIM-P), respectively. Both sub-classes impact
the design of the memory, either the redesign of cells
to support computing within the crossbar, or special
circuits in the peripheral circuit such as customized sense
amplifiers [20, 21], or the usage of ADCs [22].

2) COM: Computation in COM takes place either in the
extra logic circuits outside the memory core but inside the
memory SiP (as it is the case for commercialized High
Bandwidth Memories) or in the traditional computational
cores such as CPUs and GPUs (labeled as (3) and (4)
in Figure 2), which are referred to as Computation-Out-
Memory Near (COM-N) and Computation-Out-Memory
Far (COM-F), respectively.

The CIM and COM classes and their sub-classes can be
qualitatively compared based on different criteria. Table I
presents the comparison results of CIM-A, CIM-P, COM-N
and COM-F architectures, while considering data movement to
and from memory core, computational requirement, available
bandwidth, memory design efforts and scalability potential [16].
From the table we can observe that both CIM-A and CIM-P
architectures does not move data outside the memory core for
computation purposes and have relatively higher bandwidth
when compared to COM-N and COM-F architectures. However,
CIM-A and CIM-P architectures are less scalable, require data
alignment and requires more memory design efforts than their
COM-N and COM-F counterparts.

B. Basics and key components of CIM architecture

The memory array for CIM architecture can be implemented
using different non-volatile memory technologies such as
Phase Changing Memory (PCM), Resistive Random Access
memory (ReRAM) and magnetic memories (MRAM) as well
as conventional volatile memory technologies such as SRAM
and DRAM [23]. Irrespective of the memory technology
used for CIM architectures, the basic concept of CIM and
its core functional units are similar and independent of
the adopted memory technology. In this paper we will use
ReRAM technology to elaborate on CIM architectures and
their potential.

1) Evolution of ReRAM: In 1971, Chua proposed the concept
of the memristor (short for memory resistor) as the fourth
fundamental element besides the resistor, capacitor and induc-
tor [24]. The physical model of a two-terminal memristor was
first proposed by HP Lab in 2008 [25], and the first memristive
device was implemented by switching the doping front within
a thin TiO2/T iO2−x filament. Since then, different metal-
oxide materials have been studied to realize the programmable
resistance of memristors, e.g. TiOx [26], WOx [27] and
HfOx [28]. The characteristic of programmable resistance



Mechanism of RRAM Device
• Write operation: Change the length of metal filament

• Non-volatile
• Easy to obtain multi-bit levels, but contains random variation
• Endurance problem: the degradation of oxygen vacancy 

mobility and the oxygen vacancy diffusion out of the filament 
constriction

[D. Strukov et al., Nature, 2008]

Top Electrode

Metal Oxide

Bottom Electrode

Voltage

p. 1 Fig. 3: Diagram with a simplified equivalent circuit of a ReRAM
device [25].

leads to two important applications of memristors, i.e., a
nonvolatile memory cell and a synapse in a neural network [29],
which enable memristor-based computing systems.

The ReRAM was invented as an emerging non-volatile
memory device based on the metal-insulator-metal (MIM)
structure of the memristor [25]. The conceptual structure of
a ReRAM device is shown in Figure 3, and it contains two
regions, i.e., the doped region and the undoped region. This
two-port MIM structure is equivalent to two serially-connected
resistors. Therefore, by applying positive and negative voltages,
we can change the length of metal filament inside the structure
and further change the resistance value of the tunable insulator.
To reduce the effect of random variation, the resistance value
is typically quantized into N levels. Noise margin and guard
bands are added to each level [30].

2) CIM architecture units: As shown in Figure 4(b), a
CIM core has two main architectural units: (1) Memory array
commonly known as crossbar array unit and periphery unit.
The crossbar array stores the data, and can perform any logic
or arithmetic operation. Similarly, the periphery unit converts
input/output data formats between analog and digital. Moreover,
the periphery unit can also be used to perform basic logical
and arithmetic operations.

Crossbar array: Different neuromorphic applications use
primitive computational units such as multiply and accumulate
(MAC) extensively in order to perform matrix-matrix multipli-
cation (MMM) with large operand sizes [31, 32]. Such primitive
units can be easily mapped into a memristive-based crossbar
array and perform their operation e.g., MMM in the crossbar
unit of a CIM. Figure 4(a), shows a subset of MMM operation
i.e., vector-matrix multiplication (VMM) using CIM crossbar
array. From Figure 4(a) it can be observed that the VMM
is performed by applying a voltage vector V = Vj (where
j ∈ {1,m}) to a memristor-crossbar matrix of conductance
values G = Gij (where i ∈ {1, n}, j ∈ {1,m}). At any

Fig. 4: Basic CIM architecture (a) ReRAM based crossbar
operation demo (b) CIM core architecture i.e., Periphery +
crossbar array

instance, each column performs a vector-vector multiplication
(VVM) or a MAC operation, with the output current vector
I , in which each element is Ii = ΣVj · Gij . Note that all n
MAC operations are performed with O(1) time complexity.

Periphery: A CIM core needs some major modifications to
accommodate analog-based computing, as shown in Figure 4(b).
The circuit blocks comprising the periphery that supports the
bitcell array need to be modified to support CIM operations.
For example, the following is needed to perform VMM
operation in CIM: 1) Row-decoder becomes complex as it
involves enabling several rows in parallel. Also, 1-bit row
or word-line drivers are now replaced by digital-to-analog
converters (DACs) that convert multi-bit VMM operands into
an array of analog voltages. 2) Column periphery circuits
performing read operations need to be replaced by analog-
to-digital converters (ADCs). 3) Control block needs to deal
with complex instructions such as handling intricacies of multi-
operand VMM operations.

C. Early prototypes and results
Neuromorphic hardware implementations for Artificial In-

telligence (AI) applications are massively employing CIM
architectures to exploit its potential over the conventional
von-Neumann architecture, and accelerate AI deployment on
resource constrained devices [16]. Although CIM has huge
potential over the conventional architecture, it is not widely
adopted yet due to limitations in EDA tools and lack of
proper test and verification flow. However, there are quite
a few prototypes demonstrating CIM potential for different
application domains.

Data-intensive Architecture (DIVA) is one of the earliest
CIM architecture prototype developed at USC Information
Sciences Institute [33, 34]. The architecture consists of a host
processor, host memory interface and multiple CIM blocks
as co-processors. Similarly, ReVAMP a ReRAM-based VLIW
architecture was proposed by [35] to exploit parallelism using
majority logic.

D. Potential CIM applications
CIM architectures can be applied in different application

segments which have extreme demand in terms of storage,
energy and computation efficiency. This subsection presents
some of the application domains in which CIM can be
applied [36].

1) Neuromorphic computing: Neuromoprhic computing is
one of the application domains which can significantly benefit
from CIM architecture. The main reason for this is the fact
that the main operation employed by neuromorphic systems
involves intensive Matrix-Matrix Multiplication (MMM) or
Vector-Matrix Multiplication (VMM). Since both MMM and
VMM kernels can be easily accelerated using CIM architecture,
neuromorphic computing can achieve substantial improvement
in energy-efficiency and alleviate data movement problems by
employing CIM.

2) Sparse coding: Sparse coding of information is a pow-
erful mean to perform feature extraction on high dimensional
data and it is of vital importance for wide range of application
segments such as object recognition, computer vision, signal
processing and etc. Sparse coding can be used to implement



Area

93%

2%
2%3% 8-bit ADC

2-bit DAC

Crossbar (128x128)

Additional Ciruitry

Power

66%

17%

10%

7%

Fig. 5: Area and Power share of CIM design blocks [32].

energy-efficient bio-inspired neuromorphic applications as
well. Since sparse coding mainly rely on bulky matrix-vector
multiplication operation, it can directly benefit from CIM to
accelerate the matrix-vector multiplication operation in an
efficient manner.

3) Threshold logic: Threshold logic is a basic operation
that uses a threshold gate which takes n inputs (x1,x2, . . .,
xn) and generates single output y. A threshold logic has a
threshold θ and each input xi is associated with a weight wi.
Since weighted sum operation is the core operation involved
in threshold logic, it can be easily accelerated using CIM.

E. CIM challenges
In CIM architectures, the operations are performed in an

analog manner as shown in Figure 4, and the result is converted
to digital signal using Analog-to-Digital Converter (ADC) at
the periphery of the CIM architecture. However, the conversion
performed by ADC is very critical and challenging due to 1)
Analog signals have low noise margin and hence, can lead
to erroneous output; 2) Analog computation heavily relies
on memristor and CMOS device strengths along the column,
therefore these variations induce variation in output current; 3)
Quantization error in ADC increases as we increase the number
of levels or reduce the resolution. In addition, area/power
increases drastically as we do so and speed reduces along
with accuracy. For instance, substantiating the importance of
ADC design in CIM-based implementation of machine learning
algorithms such as CNN and DNN, Figure. 5 shows that the
ADC alone typically dominates CIM die area (>90%) and
power consumption (>65%). Thus, efficient ADC design is
imperative to efficiently deploy CIM architecture in different
resource constrained systems.

III. TESTING OF CIM SYSTEMS

Emerging computation-in-memory systems provide attractive
hardware solutions for neuromorphic computing by reducing
time complexity and improving energy efficiency dramatically.
However, these emerging devices are vulnerable to faults. The
computational accuracy of practical circuits is limited by device
faults [37]. For example, previous studies have shown that the
classification accuracy for a typical ImageNet testbench with
random stuck-at-0 faults is reduced by 35% when the yield
drops to 80% [38]; clearly this accuracy drop is not acceptable.
If the yield is lower than 80%, the classification accuracy is
even lower. Besides the fabrication faults, faults may occur
during data processing. The accuracy is reduced further if
we take into account process-induced variations, aging, and
other sources of errors. In order to recover to an acceptable
level of accuracy in CIM applications, fault detection and fault
tolerance are necessary.

Hard Soft

Dynamic

Static
• Fabrication

Defect

• Fabrication

Variation

• Endurance 

Limitation

• Read Disturbance

• Write Disturbance

• Write Variation

Fig. 6: Classification of different fault types in ReRAM cells.

A. Fault Models

The ReRAM crossbar structure is similar to traditional RAM
structures, thus we can reuse most of the fault models used
for testing RAMs. These fault models include the Stuck-At-
Fault (SAF), Transition Fault (TF), and Address Decoder Fault
(ADF) [39]. Besides these memory-based faults, several unique
fault models based on the physical mechanism of ReRAM
cells have also been introduced, e.g., the read disturbance fault.
The read disturbance fault [39, 40] may appear when a read
current is applied during read operations, which may bias the
state of the cell.

Faults in a single ReRAM cell can be classified into soft
faults and hard faults [41]. For soft faults, the actual resistance
of the ReRAM cell deviates from the targeted value, but the
resistance can still be tuned. Soft faults are caused by variations
associated with both fabrication techniques and write/read
operations. For hard faults, the resistance of an ReRAM cell
is stuck at a fixed state which cannot be tuned anymore, e.g.,
the stuck-at-0 (SA0) and stuck-at-1 (SA1) faults. Although the
conductance of an ReRAM cell can take any value between
High Resistive State (HRS) and Low Resistive State (LRS),
the ReRAM cells with stuck-at faults tend to get stuck at the
highest and lowest value, i.e., SA0 or SA1 [42, 43]. The stuck-
at faults are caused by fabrication defects [39] and limited
endurance [44]. For example, a broken word-line in a ReRAM
crossbar array leads to the SA1 behavior.

Faults in a single ReRAM cell can also be classified into
dynamic faults and static faults, as shown in Fig. 6. Static
faults are generated during the process of fabrication, which
includes fabrication defects that cause hard faults and variations
that lead to soft faults. For example, a fresh ReRAM cell
needs to undergo a forming process to switch from its initial
resistance state to the normal LRS. During the forming process,
an unstable external voltage may lead to over-forming defects.
Dynamic faults are typically generated during read and write
operations in ReRAM cells which passed fabrication tests, e.g.,
the write variation, write disturbance and read disturbance faults.
For example, in write operations, positive and negative voltage
pulses are applied to ReRAM cells to change their resistance
values. Because of the stochastic characteristic of this process, it
is impossible to recreate an exactly same filament in a ReRAM
device every time [41]. As a result, write variation always exists
while programming a ReRAM cell and we end up writing to
the cell from a certain conductance distribution, instead of
a specific conductance value. The impact of various process
variations and manufacturing defects like oxide-pinholes on
ReRAM and associated defect-to-fault mapping have been
explored in [45].



B. Testing Methods

A typical test method to detect fault is to program all the
ReRAM cells to a target conductance state, and then measure
the conductance variations. Based on this idea, a March test
algorithm, named as March C∗, was proposed for ReRAM fault
detection in [39]: {⇑ (r0, w1);⇑ (r1, r1, w0);⇓ (r0, w1);⇓
(r1, w0);⇑ (r0)}. By applying the test pattern in this designed
order, each ReRAM cell provides a six-bit signature from
the six read operations in the algorithm. These signatures can
detect stuck-at faults, transition faults, coupling faults, address
decoder faults, and read-1 disturbance faults. However, the
March C∗ test checks each ReRAM cell sequentially. Despite
achieving very high fault coverage, it requires a long test time.

In order to accelerate the test process, a sneak-path technique
is proposed in [46] to increase test parallelism by testing a group
of adjacent ReRAM cells simultaneously. This method utilized
the inherent sneak-path mechanism in the ReRAM crossbar
array. Because of the resistive and bidirectional characteristics
of ReRAM cells, the current through both the targeted ReRAM
cell and adjacent unintended paths [46]. In this way, when
tests are applied to one ReRAM cell, the defect information
of the adjacent ReRAM cells in the region of detection can
be detected simultaneously by measuring the output currents.
In order to test the entire crossbar array, tests are applied to
a subset of ReRAM cells one by one. However, the test time
required by the sneak-path technique increases linearly with
the array size, remaining unacceptably high for on-line test.

C. On-Line Testing

Studies have shown that even among ReRAM chips that
pass manufacturing test, many faults appear in the field during
read and write operations [47, 48] because of the limited write
endurance of ReRAM cells. Various efficient approaches have
been proposed for online fault detection.

To reduce on-line testing time, a voltage-comparison method
was proposed in [38] to detect stuck-at faults by comparing
the real output voltage with the expected voltage. This method
includes four key steps. First, the conductance values of
ReRAM crossbars are read and stored off-chip. Second, a
fixed increment or decrement is written to all ReRAM cells for
detecting SA0 and SA1 faults, respectively. Third, test voltages
are applied to a group of rows at a time, and output voltages
are obtained at all column output ports concurrently. Fourth,
output voltages are compared with the corresponding reference
voltages, which are calculated with the assumption that all
the ReRAM cells can be tuned successfully. A discrepancy
between an output voltage and the corresponding reference
voltage denotes that at least one of the ReRAM cells in the
selected rows and columns has a stuck-at fault. By carrying
out this fault-detection method bidirectionally, faults can be
located.

To detect deviation faults and correct errors online, a
signature-based method called X-ABFT method was proposed
in [49, 50]. The basic idea of the X-ABFT method is to
encode matrices with checksums (the sum of each row or
column) and compute using both original and encoded data.
Thus, faults can be detected when discrepancies exist between
the checksums and the sum of the cells. Moreover, this method

Dy
na

m
ic

 P
ow

er

cycle

Detected changepoint

Fig. 7: A changepoint is detected when faults are inserted in a
ReRAM crossbar after cycle 600 [52].

periodically applies test-input vectors to extract signatures, and
uses signatures for fault localization and correction.

However, these methods are all based on a Pause-and-
Test mechanism. The Pause-and-Test mechanism periodically
interrupts the regular computation and applies test-specific
operations to detect the existence of faults. The time-consuming
fault detection process is carried out every fixed cycles, even if
there is no faults in ReRAM crossbars. Error-correction codes
(ECC) can also be used in ReRAM memory [51], when the bit
error rate (BER) is small (e.g., < 10−5). However, due to the
limited endurance, more devices will be worn out over time
and eventually the number of hard faults will exceed the ECCs
correction capability.

An efficient online fault-detection method for ReRAM-
based computing systems was proposed in [52]. This method
exploit the fact that ReRAM faults affect the dynamic power
consumption of ReRAM crossbars; therefore, it monitors the
dynamic power consumption of each ReRAM crossbar and
determines the occurrence of faults when a changepoint is
detected in the monitored power-consumption time series,
as shown in Fig. 7. Moreover, when faults are detected,
this method estimates the percentage of faulty cells in a
faulty ReRAM crossbar by training a machine learning-based
estimation model. To train the estimation model, the statistics
of the power-consumption profile as independent variables,
and the percentage of faulty cells as dependent variables. In
this way, the computationally expensive fault localization and
error-recovery steps are carried out only when a high fault rate
is estimated.

IV. ENABLING EDA FOR EMERGING MEMORY DEVICES

To allow computing of arbitrary Boolean functions using
CIM platforms, development of design automation flows (EDA)
is of critical importance. Typically for ReRAMs, EDA flows
consist of multiple phases. Technology-independent logic
synthesis is the first step, where the input Boolean function is
restructured without any specific technology constraints, which
is generally followed by a technology-dependent optimization
phase, where technology-specific hints are used for optimization
of the data structure obtained from the first step. The final
step is technology mapping, which takes the optimized func-
tion representation to implement it using technology-specific
constraints. In this section, a short overview of the EDA flow
(Fig. 8) with various mapping objectives is presented.



Technology
Independent

Logic Synthesis

Technology
Aware 

Logic Synthesis

Technology
Mapping

Boolean 
Function

Mapped
Netlist/

Instruction 
Sequence

Logic Representation

AIG: And-Inverter Graph
MIG: Majority-Inverter Graph

BDD: Binary Decision Diagrams

Technology Mapping Constraints

Delay Constraints
Area Constraints

Available Gate Library

Technology Constraints

State Update Function
Fan-in Constraints

Fig. 8: Representative EDA flow for various technologies.

A. Boolean Operator Set

ReRAMs permit stateful logic, where the logical states
are represented as resistive state of the devices and at the
same time, are capable of computation. Multiple functionally
complete logic families have been successfully demonstrated
using ReRAM devices. In the following, three prominent logic
families are presented.

Material Implication Logic: Consider two ReRAM devices p
and q with internal states Sp and Sq respectively. By applying
voltages to the terminal, material implication can be computed,
with the next state (NS) of device p set to the result of
computation.
NSp = Sp → Sq

Majority Logic: In this approach, the wordline voltage (Vwl)
and bitline voltages (Vbl) act as logic inputs, while the internal
resistive state (Sx) of the device x acts a third input. The next
state of device (NSx) in this case is a function of three inputs
as shown below in the following equation.
NSx = M3(Sx, Vwl, Vbl)

Memristor-Aided loGIC (MAGIC): MAGIC allows
computation-in-memory operation by using the internal
resistive state of single or multiple ReRAM devices as input.
The exact number of inputs (k) depends on the specific device
used for computation. The result of computation is written to a
new device (r). The internal resistive state of the input devices
remain unchanged. Using MAGIC operations, multi-input
NOR and NOT can be realized.

B. Logic Synthesis

Logic synthesis [53] converts the input Boolean function
into an intermediate representation, such as And-Inverter
Graph (AIG) [54], Majority-Inverter Graph (MIG) [55], Ex-
clusive Sum of Product (ESOP) [56], Binary Decision Dia-
grams (BDD) [57]. This is optimized according to some criteria,
such as reduction in the number of vertices or number of logic
levels, and fed onward to the technology mapping phase. A
variety of tools have been developed both by industrial as well
as in academic efforts, for logic synthesis and verification [54,
58, 56, 54, 59, 60]. For ReRAM logic synthesis flows, these
representations are further optimized by using technology
specific constraints [61, 62].

C. Technology Mapping

The technology mapping phase determines a sequence of
instructions, for application as input to the wordlines and
bitlines of the ReRAM devices or a crossbar array to compute
the target function. The quality of the technology mapping
phase is determined by the delay and area of the mapping. The
delay of the obtained mapping is equal to the number of steps
that the mapping contains. The number of devices used during
technology mapping determines the area of the solution.

For devices realizing material implication, a preliminary
approach was proposed [63] that considers two sets of devices—
one for storage of inputs and the other for computation. The
lower bound on working memristors was thereafter reduced to
two [64]. Implementation of various Boolean operators (e.g.,
NOT, NAND, XOR) and functions through Imply Sequence
Diagram was suggested in [65]. A multi-stage mapping
technique for Boolean functions, starting from an Or-Inverter
Graph representation and heuristics for device count and delay
reduction was proposed in [66].

For ReRAM devices realizing majority, an MIG can be
mapped with optimal delay (equal to the number of levels
in the MIG + 1) when the number of available devices is
not constrained [67]. A compiler for minimizing the number
of devices for an architecture performing majority operations
sequentially was developed in [68]. A delay-constrained map-
ping heuristic was proposed for mapping onto a crossbar array,
while considering the possibility of multiple majority operations
per row [69]. A lower bound on the size of crossbar array (3
wordlines and 2 bitlines) required to map a Boolean function in
Exclusive Sum-of-Product representation was introduced [69].
Using this bound as a building block, an LUT-based, area-
constrained mapping approach was proposed.

For crossbars realizing MAGIC operations, optimal and
heuristic solutions to map Boolean functions from NOR/NOT
netlist onto single row was proposed, with the goal of optimiz-
ing throughput by Single Instruction Multiple Data (SIMD)
like operations [70]. For delay-optimal technology mapping on
crossbar array, a Satisfiability modulo theories (SMT) based
approach was proposed [71]. This was improved in [72], where
an LUT-based technology mapping approach was proposed to
minimize delay and maximize parallel execution of LUTs [72].
Recently, an area-constrained technology mapping flow was
proposed for crossbar memories, which uses A* search of
optimal data movement within the array [73]. The proposed
approach outperforms existing technology mapping flows [74,
75, 76, 77], when compared on the basis of the area-delay
product metric.

V. EMERGING CIRCUIT DESIGN TOPOLOGIES

Besides ReRAM [78, 62], PCM [79] and MRAM [80],
ferroelectric field effect transistor (FeFET) based memories
[81] have gained a high amount of traction for CIM appliations
within the last years [82, 83, 84, 85]. FeFETs conveniently
merge the two areas of computation and data storage, by placing
a non-volatile storage element directly into the gate stack of a
classical MOSFET.

In this section, we take the approach one step further and
discuss about the possible co-integration of FeFETs with



Fig. 9: Schematic of the integration of an ferroelectric (Fe)
Hafniumoxide with an remanent polarization into the gate stack
of an FET. Diagonal line indicates Fe-behavior

emerging reconfigurable field effect transistors transistors
(RFETs) [86, 87, 88]. This nanotechnology provides the
opportunity to switch its conduction on-the-fly from p-type to
n-type. This feature offers new potential for a large number
of new circuit topologies. For example a simple NAND gate
can be dynamically switched to a NOR functionality [89].
Albeit some pioneering studies have demonstrated that the
RFET functionality can be programmed in a non-volatile
fashion [90, 91, 92], most circuit design activities so far
have considered only volatile circuit operation [93, 94, 95,
11, 96]. Here we discuss the expected non-volatile device
characteristics of the combined Ferroelectric Reconfigurable
Field-Effect Transistors (FeRFET) and how they impact circuit
design topologies for both Memory-In-Logic as well as Logic-
In-Memory approaches and the potential benefit they offer to
memory-intensive applications.

A. Ferroelectric Reconfigurable Field-Effect Transistors

RFETs are typically based on ambipolar conduction in
Schottky-barrier transistors, allowing for electron and hole
transport. A physical structure with multiple independent gates
is then used to program the transistor and control the current.
Typically, two [88] or three independent gates [87] are used.
The RFET structure can simply be enhanced by a ferroelectric
(Fe) storage function via placing a doped HfO2 material [97,
98] directly into the gate stack (Fig. 9). This introduces an
internal remanent polarization acting superimposed with the
applied external potential.

The effect of the ferroelectric material on the device
characteristics is different for control (C) gate and program (P)
gate as shown in (Fig. 10). The state stored at the program gate
puts the transistor either into p-type or n-type transistor. The
programmed operation is retained after the applied voltage is
withdrawn. The effect at the control gate is different. Depending
on the stored polarization orientation, the device is operated
either with a high or low threshold voltage, which translate
into a high-resistive state (HRS) or low-resistive state (LRS),
respectively. This way overall four individual operation states
are generated which are shown by the exemplary simulation
data in Fig. 10(b). The simulation is based on a TCAD model
from [94], adding a Fe layer in the gate stack. Note, that the
voltage for programming has to be two to three times larger
than the typical operation voltage. This is inherent to the Fe
storage mechanism, where the same terminals are operated for
storing a state and readout.

(a) (b)

Fig. 10: Operation of an ferroelectric RFET. (a) schematic
circuit symbol of a dual gated devices with source (S), drain (D),
control (C) and program (P). (b) Exemplary TCAD simulations
of a dual gated device with 24 nm gate lengths. For both
non-volatile programmed configurations (n-type and p-type)
low resistive state (LRS) and high resistive state (HRS) are
indicated.

B. Memory-In-Logic Cell Topologies

In general two paradigms can be distinguished for the
combination of ferroelectric memory with logic. In the first
one, FeFETs are implemented within an existing logic circuit
to enhance the functionality or locally store data [99, 100].
Naturally, this Memory-In-Logic approach can be transferred
to RFETs to fix the logic gate functionality in a non-volatile
fashion. An example cell design, employing this strategy is
shown in Fig. 11. The cell comprises four transistors with
three gates each. Notably, the ferroelectric is just present at all
outer gates (program gates) which are combined to bias the
transistors to either p- or n-type operation. The cell is based
on the volatile design as proposed in [101]. As compared
to the original design, P and P are not used as data inputs,
but configure the gate to either compute the XOR or XNOR
function of the inputs A and B. Note, that the cell is built for
a static, pass-transistor-like style of operation, i.e. there are
data inputs located at the source and drain terminals of some
transistors. The output is calculated purely combinatorial. The
output switches directly, if one of the volatile input signals is
switched. The big benefit of this cell is, that the data paths
for programming and operation are completely separated. This
way, the overhead for providing both program and operation
signals with different voltage levels is reduced.

C. Logic-In-Memory Cell Topologies

The second paradigm discussed here is the direct execution
of logic inside a given memory array. Here the state stored
by the ferroelectric layer at the control gate is exploited as
logic input. In order to do so the logic operation is conducted
sequentially. This is exemplarily discussed on a simple AND-
array-like cell design in Fig. 12(a). In a first step, the LRS
or HRS of the control gate is selected by applying a high set
voltage at the word line (WL). The stored state serves as an
input A. Secondly, input B is applied in volatile fashion at the
same WL using a distinctive smaller VDD. Simultaneously, the
program line has to be biased, to enable a dynamic readout at



Fig. 11: A programmable XOR/XNOR cell based on four
ferroelectric RFETs with three gates each. The program signals
P and P are used to program the funtionality in a non-volatile
fashion. A and B are volatile logic inputs.

(a) (b)

Fig. 12: Array cells for possible exploitation of ferroelectric
RFETs for Logic-In-Memory applications. Word line (WL), bit
line (BL), select line (SL) and polarity line (PL) are used to
address the cells. (a) AND-array-like cell design. (b) NOR-
array-like cell design.

the bit-line. The output will compute the (N)OR function of A
and B. Note, that either a sense amplifier or a respective pull-
up/down-network is needed to transform the current response
into an inverted voltage response.

More options arise for RFETs with multiple independent
gates, which intrinsically support a wired-AND functionality
[102]. The corresponding cell can be seen as a NOR-array-
like design as proposed by [103] and is shown in Fig. 12(b).
The middle gate can either be used as access transistor or to
perform more complex logic operations in a similar operation
scheme as described for simple AND-array example. This way,
the cell can perform an AND-OR-INVERT or XNOR function
in a dynamic fashion [104]. Finally, the static XOR/XNOR
in Fig. 11 can also be realized in array if four such cells are
coupled, given that the GND line can be reallocated as signal
input.

D. FeRFET Circuit Design Challenges and Opportunities
The co-integration of a Fe with MOSFETs already allows

for various functionalities in terms of logic gate design. FeFET
memory cells have already been demonstrated to provide all
needed basic functions, such as NAND, [105] and XOR [104],
flip-flops [106] and LUTs [100, 107]. In-array operation of
various half- and full-adder designs [103] has been shown
experimentally. Inter-coupled arrays can be used for flexible
computation, bit-passing and data storage [108]. Beyond

that, biologic-inspired behavior [109, 110, 111, 112] and
analog signal processing [113] have been demonstrated using
FeFET cells as well. Consequently, the main challenge for
exploiting a co-integration of FeFETs with reconfigurable
nanotechnologies is to find applications where the added
benefit of the reconfiguration is worth the overhead of the
additional polarity signal lines. One such target application are
binary neural networks [114]. Particularly the very efficient
XOR and XNOR implementation enabled by the RFET base
technology is suitable to be employed for this type of computing
paradigm [115]. The Fe layer allows non-volatility which can
be used to store weights as well as other parameters. In contrast
to memristors, which carry out computation in analog domain,
FeRFETs can enable logic computation in the digital domain
without the need of an extensive peripheral circuits. Hence, CIM
paradigms based on FeRFETs can in principle be integrated as
add-on functionality into the front-end of conventional CMOS
circuits. Following this path, it might be possible to deduce
paradigms exploiting both Logic-In-Memory and Memory-In-
Logic concepts in intermixed fashion.

While this poses FeRFETs as a promising alternative to
ReRAM technologies, one major limitation until now is that
RFETs are less mature technology in terms of commercializa-
tion. Thus extensive work on design enablement is needed for
FeRFET based approaches. For example EDA for RFETs [116,
117] needs to be extended in order to support the added
capabilities of non-volatility to enable commercial integration
of FeRFETs within circuit.

VI. CONCLUSIONS AND DISCUSSIONS

In the present work, we explored various emerging architec-
tures and solutions which enable computation-in-memory. We
looked at two main technologies which can contribute to solve
the Von-Neumann bottleneck of data transport between separate
compute and memory blocks. We gave an overview of how
memristors have added new computing paradigms enabling
computation-in-memory. We introduced CIM architecture and
explored how the integrated core comprising of crossbar arrays
and peripheral units can carry out logical and arithmetic
operations along with storing data. Such capabilities are widely
applicable in neuromorphic compute loads. Compute-intensive
loads such as vector multiplication can be easily offloaded to
CIM architectures with low power and latency overheads.

However, CIM also comes with its own set of challenges.
Firstly, due to the requirements of extra analog computation,
CIM demands periphery circuits for data format conversion
such as ADC. Since ADC imposes significant area and power
overhead, efficient ADC design is crucial to harness the full
potential of CIM architectures.

Secondly, wider adoption of CIM paradigm critically depends
on the support of effective design automation flows. To that
effect, there is a bottom-up growth in the research of such tools,
starting from technology mapping. The tools are connected to
standard logic synthesis flows, and have been fine-tuned for
optimization of delay, device count and crossbar constraints.
Future research in this space includes connecting system-level
design automation flows and also extending the support towards
testing and verification. This requires streamlining design
automation process and the fabrication process to achieve



higher yields. Thirdly, the immature fabrication techniques
result in reliability problems. Thus, to take advantages of CIM
in practical applications, efficient fault-detection and effective
fault-tolerance techniques need to be explored across the various
abstraction levels.

Fourthly, within CIM paradigms, the unavoidable require-
ment of different voltages for read and write can lead to
excessive power requirements. Further, this skewed voltage
for read and write also requires different voltage drivers and
can put extra burden on the physical resources within the
circuit implementation. Research in this direction is an integral
component to make the whole concept of CIM more feasible
and to enable co-existence with conventional CMOS-based
circuits.

Lastly, while most of the research discussed here has been
on ReRAMs, new emerging technologies need to be explored
to augment the CIM reqirements. The newly proposed combi-
nation of ferroelectrics on emerging reconfigurable transistors
opens up new avenues in CIM applications. The co-integration
with CMOS allows for an easy integration with the existing
manufacturing process. The devices allow for dynamically
changing the data and control paths within a circuit, opening
up extended functionalities for both computation and storage
within the same circuit structure.

ACKNOWLEDGEMENTS

Anupam Chattopadhyay gratefully acknowledge the National
Research Foundation (NRF), Singapore for the NRF-CRP grant
NRF-CRP21-2018-003.

REFERENCES
[1] Nor Zaidi Haron et al. “Why is CMOS scaling coming to an END?”

In: Design and Test Workshop. 2008.
[2] Tze-Chiang Chen. “Overcoming research challenges for CMOS

scaling: Industry directions”. In: Conference on Solid-State and IC
Technology Proceedings. 2006.

[3] Yi Sun et al. “Deepid3: Face recognition with very deep neural
networks”. In: arXiv preprint 1502.00873 (2015).

[4] Mark T Bohr et al. “CMOS scaling trends and beyond”. In: IEEE
Micro (2017).

[5] Mohammed A Zidan et al. “The future of electronics based on
memristive systems”. In: Nature Electronics (2018).

[6] Lisa Wu Wills et al. “Guest Editorial: IEEE TC Special Issue
on Domain-Specific Architectures for Emerging Applications”. In:
History of Computing (2020).

[7] William J Dally et al. “Domain-specific hardware accelerators”. In:
Communications (2020).

[8] Maria Malik et al. “Architecture exploration for energy-efficient
embedded vision applications: From general purpose processor to
domain specific accelerator”. In: ISVLSI. 2016.

[9] Muath Abu Lebdeh et al. “Memristive device based circuits for
computation-in-memory architectures”. In: ISCAS. 2019.

[10] Anne Siemon et al. “Memristive Device Modeling and Circuit Design
Exploration for Computation-in-Memory”. In: ISCAS. 2019.

[11] Shubham Rai et al. “Designing efficient circuits based on runtime-
reconfigurable field-effect transistors”. In: TVLSI (2018).

[12] Ping Chi et al. “Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main memory”. In:
Computer Architecture News (2016).

[13] Said Hamdioui et al. “Memristor based computation-in-memory
architecture for data-intensive applications”. In: DATE. 2015.

[14] Hsu et al. “AI Edge Devices Using Computing-In-Memory and
Processing-In-Sensor: From System to Device”. In: IEDM. 2019.

[15] Zhi Zhou et al. “Edge intelligence: Paving the last mile of artificial
intelligence with edge computing”. In: IEEE (2019).

[16] Hoang Anh Du Nguyen et al. “A classification of memory-centric
computing”. In: JETC (2020).

[17] Manuel Le Gallo et al. “Mixed-precision in-memory computing”. In:
Nature Electronics (2018).

[18] Daniele Ielmini et al. “In-memory computing with resistive switching
devices”. In: Nature Electronics (2018).

[19] Bing Chen et al. “Efficient in-memory computing architecture based
on crossbar arrays”. In: IEDM. 2015.

[20] Lei Xie et al. “Scouting Logic: A Novel Memristor-Based Logic
Design for Resistive Computing”. In: ISVLSI. 2017.

[21] Shuangchen Li et al. “Pinatubo: A processing-in-memory architecture
for bulk bitwise operations in emerging non-volatile memories”. In:
DAC. 2016.

[22] Daichi Fujiki et al. “In-Memory Data Parallel Processor”. In:
ICASPLOS. 2018.

[23] Said Hamdioui et al. “Memristor for computing: Myth or reality?”
In: DATE. 2017.

[24] Leon Chua. “Memristor-the missing circuit element”. In: Circuit
Theory (1971).

[25] Dmitri B Strukov et al. “The missing memristor found”. In: Nature
(2008).

[26] Kyungah Seo et al. “Analog memory and spike-timing-dependent
plasticity characteristics of a nanoscale titanium oxide bilayer
resistive switching device”. In: Nanotechnology (2011).

[27] Ting Chang et al. “Short-term memory to long-term memory
transition in a nanoscale memristor”. In: ACS Nano (2011).

[28] Z Fang et al. “Multilayer-Based Forming-Free RRAM Devices With
Excellent Uniformity”. In: Electron Device Letters (2011).

[29] Mohammad Javad Sharifi et al. “General SPICE models for memristor
and application to circuit simulation of memristor-based synapses
and memory cells”. In: Circuits, Systems, and Computers (2010).

[30] Cory E Merkel et al. “Reconfigurable N-level memristor memory
design”. In: IJCNN. 2011.

[31] Alvaro Velasquez et al. “Parallel boolean matrix multiplication in
linear time using rectifying memristors”. In: ISCAS. 2016.

[32] Ali Shafiee et al. “ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars”. In: ISCAS.
2016.

[33] Jaffrey Draper et al. “A prototype processing-in-memory (PIM) chip
for the data-intensive architecture (DIVA) system”. In: Journal of
VLSI signal processing systems (2005).

[34] Jeff Draper et al. “The architecture of the DIVA processing-in-
memory chip”. In: conference on Super computing. 2002.

[35] Debjyoti Bhattacharjee et al. “ReVAMP: ReRAM based VLIW
architecture for in-memory computing”. In: DATE. 2017.

[36] Said Hamdioui et al. “Applications of computation-in-memory
architectures based on memristive devices”. In: DATE. 2019.

[37] Said Hamdioui et al. “Testing Computation-in-Memory Architectures
Based on Emerging Memories”. In: ITC. 2019.

[38] Lixue Xia et al. “Fault-tolerant training with on-line fault detection
for RRAM-based neural computing systems”. In: DAC. 2017.

[39] Ching-Yi Chen et al. “RRAM defect modeling and failure analysis
based on march test and a novel squeeze-search scheme”. In: TC
(2015).

[40] Moritz Fieback et al. “Testing Scouting Logic-Based Computation-
in-Memory Architectures”. In: ETS. 2020.

[41] R Degraeve et al. “Causes and consequences of the stochastic aspect
of filamentary RRAM”. In: Microelectronic Engineering (2015).

[42] Lerong Chen et al. “Accelerator-friendly neural-network training:
Learning variations and defects in RRAM crossbar”. In: DATE. 2017.

[43] Wenqin Huangfu et al. “Computation-oriented fault-tolerance
schemes for RRAM computing systems”. In: ASP-DAC. 2017.

[44] Karsten Beckmann et al. “Nanoscale hafnium oxide RRAM de-
vices exhibit pulse dependent behavior and multi-level resistance
capability”. In: MRS Advances (2016).

[45] Arjun Chaudhuri et al. “Analysis of Process Variations, Defects, and
Design-Induced Coupling in Memristors”. In: ITC. 2018.

[46] Sachhidh Kannan et al. “Sneak-path testing of crossbar-based
nonvolatile random access memories”. In: Nanotechnology (2013).

[47] Boxun Li et al. “ICE: inline calibration for memristor crossbar-based
computing engine”. In: DATE. 2014.

[48] Jue Wang et al. “i2WAP: Improving non-volatile cache lifetime by
reducing inter-and intra-set write variations”. In: HPCA. 2013.

[49] Mengyun Liu et al. “Fault Tolerance for RRAM-Based Matrix
Operations”. In: ITC. 2018.

[50] Mengyun Liu et al. “Algorithmic Fault Detection for RRAM-based
Matrix Operations”. In: TODAES (2020).

[51] Mingqing Wang et al. “Theory study and implementation of
configurable ECC on RRAM memory”. In: NVMTS. 2015.

[52] Mengyun Liu et al. “Online Fault Detection in ReRAM-Based
Computing Systems by Monitoring Dynamic Power Consumption”.
In: ITC. 2020.



[53] Giovanni De Micheli. Synthesis and optimization of digital circuits.
1994.

[54] Robert Brayton and Alan Mishchenko. “ABC: An Academic
Industrial-Strength Verification Tool”. In: Computer Aided Verifi-
cation. 2010.

[55] Luca Amarù et al. “Majority logic synthesis”. In: ICCAD. 2018.
[56] Patrick McGeer et al. “ESPRESSO-SIGNATURE: A new exact

minimizer for logic functions”. In: DAC. 1993.
[57] Chang-Yeong Lee. “Representation of switching circuits by binary-

decision programs”. In: The Bell System Technical Journal (1959).
[58] Ellen M Sentovich et al. “SIS: A system for sequential circuit

synthesis”. In: (1992).
[59] Synopsys Design Compiler. https : / / www . synopsys . com /

implementation-and-signoff/rtl-synthesis-test/dc-ultra.html. 2018.
[60] Xilinx Design Suite. https : / / www. xilinx . com / products / design -

tools/vivado.html. 2018.
[61] Debjyoti Bhattacharjee et al. “Technology-aware logic synthesis for

ReRAM based in-memory computing”. In: DATE. 2018.
[62] Saeideh Shirinzadeh et al. “Fast logic synthesis for RRAM-based

in-memory computing using majority-inverter graphs”. In: DATE.
2016.

[63] Eero Lehtonen et al. “Stateful implication logic with memristors”.
In: Symposium on Nanoscale Architectures. 2009.

[64] E. Lehtonen, and others. “Two memristors suffice to compute all
Boolean functions”. In: (2010).

[65] Anika Raghuvanshi et al. “Logic Synthesis and a Generalized
Notation for Memristor-Realized Material Implication Gates”. In:
ICCAD (2014).

[66] Anupam Chattopadhyay et al. “Combinational logic synthesis for
material implication”. In: VLSI-SOC. 2011.

[67] Debjyoti Bhattacharjee et al. “Delay-optimal technology mapping for
in-memory computing using ReRAM devices”. In: ICCAD. 2016.

[68] M. Soeken et al. “An MIG-based Compiler for Programmable Logic-
in-Memory Architectures”. In: DAC. 2016.

[69] Debjyoti Bhattacharjee et al. “Crossbar-constrained technology
mapping for ReRAM based in-memory computing”. In: TC (2020).

[70] Rotem Ben-Hur et al. “Simpler magic: Synthesis and mapping of
in-memory logic executed in a single row to improve throughput”.
In: TCAD (2019).

[71] Rotem Ben Hur et al. “SIMPLE MAGIC: Synthesis and in-memory
mapping of logic execution for memristor-aided logic”. In: ICCAD.
2017.

[72] Valerio Tenace et al. “SAID: A Supergate-Aided Logic Synthesis
Flow for Memristive Crossbars”. In: DATE. 2019.

[73] Debjyoti Bhattacharjee et al. “CONTRA: Area-Constrained Technol-
ogy Mapping Framework For Memristive Memory Processing Unit”.
In: ICCAD. 2020.

[74] Nishil Talati et al. “Logic design within memristive memories using
memristor-aided loGIC (MAGIC)”. In: Nanotechnology (2016).

[75] Rahul Gharpinde et al. “A scalable in-memory logic synthesis
approach using memristor crossbar”. In: TVLSI (2017).

[76] Phrangboklang L Thangkhiew et al. “Scalable in-memory mapping
of Boolean functions in memristive crossbar array using simulated
annealing”. In: Journal of Systems Architecture (2018).

[77] Dev Narayan Yadav et al. “Look-ahead mapping of Boolean functions
in memristive crossbar array”. In: Integration (2019).

[78] Pierre-Emmanuel Gaillardon et al. “The programmable logic-in-
memory (PLiM) computer”. In: DATE. 2016.

[79] Marco andothers Cassinerio. “Logic computation in phase change
materials by threshold and memory switching”. In: Advanced
Materials (2013).

[80] Wang Kang et al. “In-memory processing paradigm for bitwise logic
operations in STT–MRAM”. In: Transactions on Magnetics (2017).

[81] T Mikolajick et al. “The Past, the Present, and the Future of
Ferroelectric Memories”. In: TED (2020).

[82] Dayane Reis et al. “Computing in memory with FeFETs”. In: ISLPED.
2018.

[83] Yun Long et al. “A Ferroelectric FET-Based Processing-in-Memory
Architecture for DNN Acceleration”. In: Journal on Exploratory
Solid-State Computational Devices and Circuits (2019).

[84] Dayane Reis et al. “A Computing-in-Memory Engine for Searching
on Homomorphically Encrypted Data”. In: Journal on Exploratory
Solid-State Computational Devices and Circuits (2019).

[85] Mingyen Lee et al. “FeFET-based low-power bitwise logic-in-memory
with direct write-back and data-adaptive dynamic sensing interface”.
In: ISLPED. 2020.

[86] Thomas Mikolajick et al. “The RFET–a reconfigurable nanowire
transistor and its application to novel electronic circuits and systems”.
In: Semiconductor Science and Technology (2017).

[87] Michele De Marchi et al. “Polarity control in double-gate, gate-all-
around vertically stacked silicon nanowire FETs”. In: IEDM. 2012.

[88] André Heinzig et al. “Reconfigurable silicon nanowire transistors”.
In: Nano Letters (2012).

[89] Jens Trommer et al. “Elementary aspects for circuit implementation
of reconfigurable nanowire transistors”. In: Electron device letters
(2013).

[90] Jun-Mo Park et al. “High-density reconfigurable devices with
programmable bottom-gate array”. In: Electron Device Letters (2017).

[91] So Jeong Park et al. “Reconfigurable Si nanowire nonvolatile
transistors”. In: Advanced Electronic Materials (2018).

[92] Violetta Sessi et al. “A Silicon Nanowire Ferroelectric Field-Effect
Transistor”. In: Advanced Electronic Materials (2020).

[93] Jian Zhang et al. “Configurable circuits featuring dual-threshold-
voltage design with three-independent-gate silicon nanowire FETs”.
In: TCAS I (2014).

[94] Jens Trommer et al. “Functionality-enhanced logic gate design
enabled by symmetrical reconfigurable silicon nanowire transistors”.
In: Transactions on Nanotechnology (2015).

[95] Michael Raitza et al. “Exploiting transistor-level reconfiguration to
optimize combinational circuits”. In: DATE. 2017.

[96] Shubham Rai et al. “Emerging reconfigurable nanotechnologies: Can
they support future electronics?” In: ICCAD. 2018.

[97] TS Böscke et al. “Phase transitions in ferroelectric silicon doped
hafnium oxide”. In: Applied Physics Letters (2011).

[98] Min Hyuk Park et al. “Review and perspective on ferroelectric HfO
2-based thin films for memory applications”. In: Communications
(2018).

[99] Xunzhao Yin et al. “Exploiting ferroelectric FETs for low-power
non-volatile logic-in-memory circuits”. In: ICCAD. 2016.

[100] Evelyn T Breyer et al. “Ultra-dense co-integration of FeFETs
and CMOS logic enabling very-fine grained logic-in-memory”. In:
ESSDERC. 2019.

[101] Ogun Turkyilmaz et al. “Self-checking ripple-carry adder with
ambipolar silicon nanowire FET”. In: ISCAS. 2013.

[102] Maik Simon et al. “A wired-AND transistor: Polarity controllable
FET with multiple inputs”. In: Device Research Conference. 2018.

[103] Evelyn T Breyer et al. “Compact FeFET circuit building blocks for
fast and efficient nonvolatile logic-in-memory”. In: (2020).

[104] Evelyn T andothers Breyer. “Demonstration of versatile nonvolatile
logic gates in 28nm HKMG FeFET technology”. In: ISCAS. 2018.

[105] ET Breyer et al. “Reconfigurable NAND/NOR logic gates in 28 nm
HKMG and 22 nm FD-SOI FeFET technology”. In: IEDM. 2017.

[106] Danni Wang et al. “Ferroelectric transistor based non-volatile flip-
flop”. In: ISLPED. 2016.

[107] Xiaoming Chen et al. “The Impact of Ferroelectric FETs on Digital
and Analog Circuits and Architectures”. In: Design & Test (2019).

[108] Evelyn T Breyer et al. “Flexible Memory, Bit-Passing and Mixed
Logic/Memory Operation of two Intercoupled FeFET Arrays”. In:
ISCAS. 2020.

[109] Y Nishitani et al. “Three-terminal ferroelectric synapse device with
concurrent learning function for artificial neural networks”. In:
Journal of Applied Physics (2012).

[110] H Mulaosmanovic et al. “Novel ferroelectric FET based synapse for
neuromorphic systems”. In: Symposium on VLSI Technology. 2017.

[111] Halid Mulaosmanovic et al. “Mimicking biological neurons with a
nanoscale ferroelectric transistor”. In: Nanoscale (2018).

[112] S Dutta et al. “Biologically plausible ferroelectric quasi-leaky
integrate and fire neuron”. In: Symposium on VLSI Technology. 2019.

[113] Halid Mulaosmanovic et al. “Reconfigurable frequency multiplication
with a ferroelectric transistor”. In: Nature Electronics (2020).

[114] Mohammad Rastegari et al. “Xnor-net: Imagenet classification using
binary convolutional neural networks”. In: Computer vision. 2016.

[115] Jong-Ho Bae et al. “Reconfigurable Field-Effect Transistor as a
Synaptic Device for XNOR Binary Neural Network”. In: Electron
Device Letters (2019).

[116] Shubham Rai et al. “A physical synthesis flow for early technology
evaluation of silicon nanowire based reconfigurable FETs”. In: DATE.
2018.

[117] Shubham Rai et al. “Technology mapping flow for emerging
reconfigurable silicon nanowire transistors”. In: DATE. 2018.


